CN102484937A - Lpp方式的euv光源及其产生方法 - Google Patents

Lpp方式的euv光源及其产生方法 Download PDF

Info

Publication number
CN102484937A
CN102484937A CN2010800388996A CN201080038899A CN102484937A CN 102484937 A CN102484937 A CN 102484937A CN 2010800388996 A CN2010800388996 A CN 2010800388996A CN 201080038899 A CN201080038899 A CN 201080038899A CN 102484937 A CN102484937 A CN 102484937A
Authority
CN
China
Prior art keywords
gas jet
laser
hypersonic
euv light
target material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010800388996A
Other languages
English (en)
Inventor
桑原一
堀冈一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Tokyo Institute of Technology NUC
Original Assignee
IHI Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, Tokyo Institute of Technology NUC filed Critical IHI Corp
Publication of CN102484937A publication Critical patent/CN102484937A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/003X-ray radiation generated from plasma being produced from a liquid or gas
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • X-Ray Techniques (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

一种LPP方式EUV光源,具备:真空腔室(12),被保持成真空环境;气体射流装置(14),在该真空腔室内以能够回收的方式形成靶物质的高超音速稳态气体射流(1);以及激光装置(16),将激光(3)聚光到高超音速稳态气体射流来进行照射,在激光的聚光点(2)激励靶物质而使等离子体产生,从那里使极紫外光发光。

Description

LPP方式的EUV光源及其产生方法
技术领域
本发明涉及LPP方式的EUV光源及其产生方法。
背景技术
为了下一代半导体的微细加工,期待使用极紫外光源的光刻法。光刻法是将光、光束通过描绘有电路图案的掩模缩小投影到硅基板上,使抗蚀剂材料感光,由此形成电子电路的技术。利用光刻法形成的电路的最小加工尺寸基本上依赖于光源的波长。因此,在下一代半导体开发中,光源的短波长化是必须的,正在进行面向该光源开发的研究。
作为下一代光刻光源被视为最有力的是极紫外(EUV:Extreme Ultra Violet)光源,这意味着大约1~100nm的波长区域的光。该区域的光对所有物质的吸收率高,不能利用透镜等的透射型光学系统,因此使用反射型光学系统。此外,极紫外光区域的光学系统的开发非常困难,仅在有限的波长中显示出反射特性。
现在,正在开发在13.5nm具有灵敏度的Mo/Si多层膜反射镜,预测如果开发了将该波长的光和反射镜组合起来的光刻技术的话,就能实现30nm以下的加工尺寸。为了实现更微细的加工技术,当务之急是波长13.5nm的光刻光源的开发,来自高能量密度等离子体的辐射光受到瞩目。
光源等离子体的生成能够大致分为利用激光照射方式的光源等离子体的生成(LPP:Laser Produced Plasma)和通过脉冲功率技术驱动的气体放电方式的光源等离子体的生成(DPP:Discharge Produced Plasma)。
本发明涉及LPP方式的EUV光源。LPP方式EUV光源例如在专利文献1、2中公开。
图1是表示在专利文献1中公开的现有的LPP方式EUV光源的结构图。在该方法中,使至少1个靶57在腔室(chamber)内产生,并且使至少1个脉冲激光束53在腔室内聚光到靶57。靶以液体的射流的方式产生,激光束53被聚光到射流的空间连续的部分。
此外,该装置包含:用于产生至少1个激光束53的单元;腔室;用于在腔室内产生至少1个靶57的单元50;用于在腔室内使激光束53聚光到靶57的单元54。靶产生单元50产生液体的射流,聚光单元54使激光束53聚光到射流的空间连续部分。
再有,在该图中,51是聚光点,52是液滴,55是液滴形成点。
图2是表示在专利文献2中公开的现有的LPP方式EUV光源的结构图。
该装置包含:激光振荡部61、聚光透镜等的聚光光学系统62、靶供给装置63、靶喷嘴64、EUV聚光反射镜65。激光振荡部61是对用于使靶物质激励的激光束进行脉冲振荡的激光光源。从激光振荡部61射出的激光束通过聚光透镜62而被聚光到规定位置。另一方面,靶供给装置63对靶喷嘴64供给靶物质,靶喷嘴64将供给的靶物质向规定的位置喷射。
通过对靶物质照射激光束,从而靶物质激励而产生等离子体66,从那里辐射极紫外光67(EUV)。在EUV聚光反射镜65的反射面,为了有选择地反射波长13.5nm附近的EUV光,例如形成有将钼和硅交替层叠的膜(Mo/Si多层膜)。从等离子体66辐射的EUV光67通过EUV聚光反射镜65而被聚光反射,作为输出EUV光向曝光装置等输出。
现有技术文献
专利文献
专利文献1:日本特表2000-509190号公报“X線放射線または極紫外線放射線を発生するための方法および装置”;
专利文献2:日本特开2007-207574号公报(極端紫外光源装置)。
发明内容
发明要解决的课题
原理上在上述现有的LPP方式EUV光源中,作为激光光源使用高输出的脉冲激光(例如0.1J/Pulse),将其对靶物质高度反复(例如100kHz)照射,能够获得实用输出(例如100J/s=100W)的EUV光源。
可是,在专利文献1和2记载的EUV光源中,由于对靶物质的每次发射(shot)而产生的等离子体进行排气,所以在每次发射都废弃靶物质(锡、锂、氙等)的蒸气化、等离子体化所需要的能量,存在靶物质和能量的利用效率低的问题。
此外,在以实用输出为目标的高度反复运转(10~100kHz)中,发光源物质(即靶物质)的废弃会引起残渣产生、腔室的真空度恶化等的大问题。
本发明正是为了解决上述的现有的问题点而创造的。即,本发明的目的在于提供一种能够大幅提高靶物质和能量的利用效率,并且能够抑制残渣的产生和腔室的真空度恶化的LPP方式的EUV光源及其产生方法。
用于解决课题的方案
根据本发明,提供一种LPP方式EUV光源,其特征在于,具备:
真空腔室,被保持成真空环境;
气体射流装置,在该真空腔室内以能够回收并循环的方式形成靶物质的高超音速稳态气体射流;以及
激光装置,将激光聚光到所述高超音速稳态气体射流来进行照射,
在所述激光的聚光点激励靶物质而使等离子体产生,从那里使极紫外光发光。
根据本发明的优选实施方式,所述气体射流装置包括:高超音速喷嘴和高超音速扩压器,在所述真空腔室内夹着所述聚光点相向配置;以及气体再循环装置,从高超音速喷嘴喷射所述高超音速稳态气体射流,并且从高超音速扩压器回收所述高超音速稳态气体射流以使其循环。
此外,所述气体射流装置不提高所述真空腔室的反压力,并且稳定地形成适于激光的吸收和EUV光的放出的高密度的靶物质区域。
此外根据本发明,提供一种LPP方式EUV光产生方法,其特征在于,
将真空腔室内保持成真空环境,
在该真空腔室内以能够回收并循环的方式形成靶物质的高超音速稳态气体射流,
将激光聚光到所述高超音速稳态气体射流来进行照射,
在所述激光的聚光点激励靶物质而使等离子体产生,从那里使极紫外光发光。
发明的效果
根据本发明的装置和方法,与对每次发射生成的等离子体和靶物质进行排气的现有例子相比较,能够回收并循环使用靶物质,因此能够大幅提高靶物质的利用效率,并且大幅提高能量的利用效率。此外,由此能够抑制残渣的产生和腔室的真空度恶化。
附图说明
图1是表示在专利文献1中公开的现有的LPP方式EUV光源的结构图。
图2是表示在专利文献2中公开的现有的LPP方式EUV光源的结构图。
图3是本发明的LPP方式EUV光源的结构图。
图4是图3的等离子体光源的局部放大图。
具体实施方式
以下,基于附图详细地说明本发明的优选实施方式。再有,在各图中对共同的部分赋予同一符号,省略重复的说明。
图3是本发明的LPP方式EUV光源的结构图。在该图中,本发明的LPP方式EUV光源10具备真空腔室12、气体射流装置14和激光装置16。
真空腔室12具备真空泵13,由此将内部保持成真空环境。在真空腔室12设置有透过激光3(后述)的光学窗12a。
再有,在本发明中,上述真空环境需要是10-2Torr以下,优选是10-5~10-4Torr的范围内。
气体射流装置14在真空腔室12内连续地形成并回收靶物质的高超音速稳态气体射流1。
靶物质优选是Xe(氙)、Sn(锡)、Li(锂)等的气体或团簇(cluster)。
此外,气体射流的构成物质不必须是常温气体物质,也能够通过使气体供给部为高温,从而形成金属气体射流。在该情况下,气体射流的形成是通过高超音速喷嘴来进行的,但在回收侧不必须是高超音速扩压器(diffuser),也能够通过被温度控制的回收板等将气体射流作为液体金属进行回收。进而,在金属气体射流的情况下,在激光照射区域中金属原子不是完全零散的气体状,也有时变成多个原子凝集起来的团簇射流。
在该例子中,气体射流装置14具有高超音速喷嘴14a、高超音速扩压器14b和气体再循环装置15。
高超音速喷嘴14a和高超音速扩压器14b在真空腔室12中夹着聚光点2相向配置。
高超音速喷嘴14a的末端(图中上端)和高超音速扩压器14b的顶端(图中下端)夹着聚光点2隔开规定的空隙。该空隙与真空腔室12内的真空环境连通。
高超音速喷嘴14a是具有狭缝部的拉瓦尔喷嘴,将以亚音速流入的气体(靶物质)加速到高超音速向聚光点2喷射。此外,高超音速扩压器14b形成为具有狭缝部的拉瓦尔喷嘴形状,将通过了聚光点2的高超音速的气体(靶物质)的大部分收容在内部,将其减速到亚音速。
气体再循环装置15在本例子中包括吸入泵15a、靶腔室15b、以及排出泵15c。
气体再循环装置15将靶物质经由供给管路17a以亚音速供给到高超音速喷嘴14a,从高超音速喷嘴14a以高超音速(M>5)喷射靶物质的高超音速稳态气体射流1,并且从高超音速扩压器14b以高超音速(M>5)回收靶物质,减速到亚音速并经由返回管路17b返回到吸入泵15a,由此使靶物质循环使用。再有,从外部对靶腔室15b供给靶物质。
进而,气体射流装置14进行气体动力学设计,使得不提高真空腔室12的反压力(back pressure),并且在聚光点2稳定地形成适于激光3的吸收和EUV光4的放出的高密度的靶物质区域。
再有,通常高超音速和高超音速稳态气体射流1意味着M>5的高超音速流,但在本发明中,只要满足上述条件的话,只要是M>1即可。
此外,为了加热靶物质,优选在高超音速喷嘴14a和气体再循环装置15之间设置靶加热装置18。靶加热装置18将靶物质的温度加热到适于形成高超音速扩压器14b的温度。该加热单元是任意的。
激光装置16具有连续地或脉冲地振荡激光3的激光振荡器16a,和将激光3聚光到聚光点2的聚光透镜16b,将激光3聚光到高超音速稳态气体射流1进行照射。
在该例子中,激光3的光路与高超音速稳态气体射流1的流路正交,但本发明并不限定于此,也可以倾斜地交叉。此外,激光装置16和激光3并不限定于各是1个,也可以使用2个以上。
在激光振荡器16a中能够使用CO2激光器(波长大约10μm)、CO激光器(波长大约5μm)、YAG激光器(波长大约1μm和大约0.5μm)等。特别是优选使用YAG激光器或CO激光器,但本发明并不限定于YAG激光器或CO激光器,也可以是CO2激光器。
聚光透镜16b优选是能够将聚光点2的直径聚光到大约10μm以下、更优选大约5μm以下的凸透镜系统。
使用上述装置,在本发明的LPP方式EUV光产生方法中,
(A)将真空腔室12内保持成规定的真空环境,
(B)在真空腔室12内以能够回收的方式形成靶物质的高超音速稳态气体射流1,
(C)将激光3聚光到高超音速稳态气体射流1进行照射,在激光的聚光点2激励靶物质而使等离子体产生,从那里使极紫外光4发光。
图4是图3的等离子体光源的局部放大图。
为了使靶物质等离子体化来使极紫外光4发光,需要在聚光点2将靶物质加热到等离子体化的温度。该等离子体化温度的最优温度条件在氙气的情况下是大约30eV,在锂气体的情况下是大约10eV。
等离子体化而发光极紫外光4的发光等离子体的总辐射量在黑体辐射体的情况下最大,在等离子体尺寸(即聚光点2的直径)是10μm的情况下,来自30eV的氙气的辐射量达到大约150kW,来自10eV的锂气体的辐射量成为其1/80左右(大约1.9kW)。实际的发光等离子体不是黑体,来自EUV发光等离子体的总辐射量比其低。从能量平衡调整的观点出发,激光器的最小聚光直径优选能够从激光振荡器16a对聚光点2供给与等离子体总辐射量相当的能量。
以聚光透镜16b能够聚光的聚光点2的直径大致相当于激光的波长,在CO2激光器的情况下是大约10μm,在CO激光器的情况下是大约5μm,在YAG激光器的情况下是大约1μm或大约0.5μm。
为了使与上述的辐射量相当的能量聚光到聚光点2,优选聚光点2的直径越小越好,从该观点出发,优选使用YAG激光器或CO激光器。
例如,在使用YAG激光器、聚光点2的直径是2.5μm的情况下,来自30eV的氙气的辐射量是大约9.4kW(150kW的情况下的1/42)。同样地,在例如使用CO激光器、聚光点2的直径是5μm的情况下,来自10eV的锂气体的辐射量是大约470W(150kW×1/80×1/22)。
另一方面,来自激光器的发光等离子体的热输入是在高超音速稳态气体射流1通过等离子体尺寸(即聚光点2的直径)的期间从激光振荡器16a接受的能量,这能够根据气体射流1的速度和激光振荡器16a的输出来计算,不对聚光点2的直径造成影响。
因此,通过使用YAG激光器或CO激光器,能够使聚光点2的直径尽量小(例如2.5μm~5μm),由此在具有输出的比较小输出(例如1~10kW)的激光振荡器16a中,能够在聚光点2激励靶物质使等离子体产生,从那里使极紫外光4发光。
为了增加EUV光的总获得量,通过激光器输出、激光波长、发光物质的组合,能够一边保持EUV光的产生效率高的能量平衡,一边增大等离子体尺寸(聚光尺寸),由此增加EUV光的总获得量。
根据上述的本实施方式的装置和方法,通过气体射流装置14在真空腔室12内以能够回收的方式形成靶物质的高超音速稳态气体射流1,并且通过激光装置16,将激光3聚光到高超音速稳态气体射流1进行照射,在激光的聚光点2激励靶物质使等离子体产生,从那里使极紫外光4发光。
因此,与对每次发射生成的等离子体和靶物质进行排气的现有例子相比较,能够回收并循环使用靶物质,因此能够大幅提高靶物质的利用效率,并且大幅提高能量的利用效率。此外,由此能够抑制残渣的产生和腔室的真空度恶化。
再有,本发明不限于上述的实施方式而通过本技术方案所要求的范围的记载来表示,也包含与本技术方案所要求的范围的记载同等的意思,以及范围内的全部变更。
附图标记说明
1 高超音速稳态气体射流;
2 聚光点;3 激光;
10 LPP方式EUV光源;12 真空腔室;
12 光学窗;13 真空泵;
14 气体射流装置;
14a 高超音速喷嘴;14b 高超音速扩压器;
15 气体再循环装置;15a 吸入泵;
15b 靶腔室;15c 排出泵;
16 激光装置;
16a 激光振荡器;16b 聚光透镜;
17a 供给管路;17b 返回管路;
18 靶加热装置。

Claims (4)

1.一种LPP方式EUV光源,其特征在于,具备:
真空腔室,被保持成真空环境;
气体射流装置,在该真空腔室内以能够回收并循环使用的方式形成靶物质的高超音速稳态气体射流;以及
激光装置,将激光聚光到所述高超音速稳态气体射流来进行照射,
在所述激光的聚光点激励靶物质而使等离子体产生,从那里使极紫外光发光。
2.根据权利要求1所述的LPP方式EUV光源,其特征在于,所述气体射流装置包括:高超音速喷嘴和高超音速扩压器,在所述真空腔室内夹着所述聚光点相向配置;以及气体再循环装置,从高超音速喷嘴喷射所述高超音速稳态气体射流,并且从高超音速扩压器回收所述高超音速稳态气体射流以使其循环。
3.根据权利要求1或2所述的LPP方式EUV光源,其特征在于,所述气体射流装置不提高所述真空腔室的反压力,并且稳定地形成适于激光的吸收和EUV光的放出的高密度的靶物质区域。
4.一种LPP方式EUV光产生方法,其特征在于,
将真空腔室内保持成真空环境,
在该真空腔室内以能够回收并循环的方式形成靶物质的高超音速稳态气体射流,
将激光聚光到所述高超音速稳态气体射流来进行照射,在所述激光的聚光点激励靶物质而使等离子体产生,从那里使极紫外光发光。
CN2010800388996A 2009-09-01 2010-08-27 Lpp方式的euv光源及其产生方法 Pending CN102484937A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009-201433 2009-09-01
JP2009201433A JP2011054376A (ja) 2009-09-01 2009-09-01 Lpp方式のeuv光源とその発生方法
PCT/JP2010/064557 WO2011027717A1 (ja) 2009-09-01 2010-08-27 Lpp方式のeuv光源とその発生方法

Publications (1)

Publication Number Publication Date
CN102484937A true CN102484937A (zh) 2012-05-30

Family

ID=43649255

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010800388996A Pending CN102484937A (zh) 2009-09-01 2010-08-27 Lpp方式的euv光源及其产生方法

Country Status (7)

Country Link
US (1) US9000402B2 (zh)
EP (1) EP2475228A4 (zh)
JP (1) JP2011054376A (zh)
KR (1) KR101357231B1 (zh)
CN (1) CN102484937A (zh)
TW (1) TWI422286B (zh)
WO (1) WO2011027717A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103064260A (zh) * 2012-12-10 2013-04-24 华中科技大学 一种用于极紫外光刻机光源的锡液滴靶产生装置
WO2014106356A1 (zh) * 2013-01-05 2014-07-10 中国科学院微电子研究所 一种靶源预整形增强的极紫外光发生装置
CN104756607A (zh) * 2012-09-24 2015-07-01 通快激光系统半导体制造有限公司 Euv辐射产生设备及其运行方法
CN104914680A (zh) * 2015-05-25 2015-09-16 中国科学院上海光学精密机械研究所 基于溶胶射流靶的lpp-euv光源系统
CN110113855A (zh) * 2018-02-01 2019-08-09 三星电子株式会社 Euv产生装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2976440B1 (fr) * 2011-06-09 2014-01-17 Ecole Polytech Procede et agencement pour engendrer un jet de fluide, procede et systeme de transformation du jet en un plasma et applications de ce systeme
JP5901210B2 (ja) 2011-10-06 2016-04-06 浜松ホトニクス株式会社 放射線発生装置及び放射線発生方法
DE102012103777A1 (de) * 2012-05-22 2013-11-28 Reinhausen Plasma Gmbh Verfahren und vorrichtung zur beständigkeitsprüfung eines werkstoffs
NL2011580A (en) 2012-11-07 2014-05-08 Asml Netherlands Bv Method and apparatus for generating radiation.
US9585236B2 (en) * 2013-05-03 2017-02-28 Media Lario Srl Sn vapor EUV LLP source system for EUV lithography
DE102014006265B4 (de) * 2013-05-03 2017-08-24 Media Lario S.R.L. Sn-dampf-euv-llp-quellsystem für die euv-lithographie
DE102014006063A1 (de) * 2014-04-25 2015-10-29 Microliquids GmbH Strahlerzeugungsvorrichtung und Verfahren zur Erzeugung eines Flüssigkeitsstrahls
US9301381B1 (en) 2014-09-12 2016-03-29 International Business Machines Corporation Dual pulse driven extreme ultraviolet (EUV) radiation source utilizing a droplet comprising a metal core with dual concentric shells of buffer gas
US10887974B2 (en) * 2015-06-22 2021-01-05 Kla Corporation High efficiency laser-sustained plasma light source
WO2017187571A1 (ja) * 2016-04-27 2017-11-02 ギガフォトン株式会社 極端紫外光センサユニット及び極端紫外光生成装置
KR102447685B1 (ko) * 2020-07-22 2022-09-27 포항공과대학교 산학협력단 특정 파장대의 광원을 발생시키기 위한 장치 및 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002744A (en) * 1996-04-25 1999-12-14 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
US6194733B1 (en) * 1998-04-03 2001-02-27 Advanced Energy Systems, Inc. Method and apparatus for adjustably supporting a light source for use in photolithography
JP2002544675A (ja) * 1999-05-06 2002-12-24 アドヴァンスド、エナジー、システィムズ、インク 半導体製造工程用のリソグラフィ光源を提供するためのシステムおよび方法
CN1466860A (zh) * 2000-07-28 2004-01-07 产生x-光或euv辐射的方法和装置
JP2005032510A (ja) * 2003-07-10 2005-02-03 Nikon Corp Euv光源、露光装置及び露光方法
US20060158126A1 (en) * 2003-08-12 2006-07-20 Schuermann Max C Plasma radiation source and device for creating a gas curtain for plasma radiation sources
US20070012889A1 (en) * 2005-07-13 2007-01-18 Nikon Corporation Gaseous extreme-ultraviolet spectral purity filters and optical systems comprising same
JP2007207574A (ja) * 2006-02-01 2007-08-16 Komatsu Ltd 極端紫外光源装置
JP2007317598A (ja) * 2006-05-29 2007-12-06 Komatsu Ltd 極端紫外光源装置
JP2008300351A (ja) * 2007-05-16 2008-12-11 Xtreme Technologies Gmbh プラズマベースのeuv放射線源用のガスカーテンを生成する装置

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62176038A (ja) 1986-01-28 1987-08-01 Hitachi Ltd X線発光装置
US4817892A (en) * 1986-04-28 1989-04-04 Janeke Charl E Aerospace plane and engine therefor
US4778130A (en) * 1986-05-08 1988-10-18 Kyusik Kim Ultra hypersonic aircraft
US4934632A (en) * 1987-12-03 1990-06-19 Kyusik Kim Aerothermal ultra hypersonic aircraft
JPH01243349A (ja) 1988-03-25 1989-09-28 Hitachi Ltd プラズマ極端紫外光発生装置
US6133577A (en) * 1997-02-04 2000-10-17 Advanced Energy Systems, Inc. Method and apparatus for producing extreme ultra-violet light for use in photolithography
US5963616A (en) 1997-03-11 1999-10-05 University Of Central Florida Configurations, materials and wavelengths for EUV lithium plasma discharge lamps
US6232613B1 (en) * 1997-03-11 2001-05-15 University Of Central Florida Debris blocker/collector and emission enhancer for discharge sources
US6541786B1 (en) * 1997-05-12 2003-04-01 Cymer, Inc. Plasma pinch high energy with debris collector
US6566667B1 (en) 1997-05-12 2003-05-20 Cymer, Inc. Plasma focus light source with improved pulse power system
US5763930A (en) * 1997-05-12 1998-06-09 Cymer, Inc. Plasma focus high energy photon source
US6014252A (en) * 1998-02-20 2000-01-11 The Regents Of The University Of California Reflective optical imaging system
US6180952B1 (en) * 1998-04-03 2001-01-30 Advanced Energy Systems, Inc. Holder assembly system and method in an emitted energy system for photolithography
US6438199B1 (en) 1998-05-05 2002-08-20 Carl-Zeiss-Stiftung Illumination system particularly for microlithography
JP4332648B2 (ja) 1999-04-07 2009-09-16 レーザーテック株式会社 光源装置
JP2001108799A (ja) * 1999-10-08 2001-04-20 Nikon Corp X線発生装置、x線露光装置及び半導体デバイスの製造方法
US6469310B1 (en) 1999-12-17 2002-10-22 Asml Netherlands B.V. Radiation source for extreme ultraviolet radiation, e.g. for use in lithographic projection apparatus
TWI246872B (en) * 1999-12-17 2006-01-01 Asml Netherlands Bv Radiation source for use in lithographic projection apparatus
US6711233B2 (en) * 2000-07-28 2004-03-23 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
GB0111204D0 (en) * 2001-05-08 2001-06-27 Mertek Ltd High flux,high energy photon source
JP4995379B2 (ja) * 2001-06-18 2012-08-08 ギガフォトン株式会社 光源装置及びそれを用いた露光装置
US6998785B1 (en) * 2001-07-13 2006-02-14 University Of Central Florida Research Foundation, Inc. Liquid-jet/liquid droplet initiated plasma discharge for generating useful plasma radiation
JP5098126B2 (ja) 2001-08-07 2012-12-12 株式会社ニコン X線発生装置、露光装置、露光方法及びデバイス製造方法
US6714624B2 (en) * 2001-09-18 2004-03-30 Euv Llc Discharge source with gas curtain for protecting optics from particles
JP3791441B2 (ja) 2002-03-27 2006-06-28 ウシオ電機株式会社 極端紫外光発生装置
JP3759066B2 (ja) * 2002-04-11 2006-03-22 孝晏 望月 レーザプラズマ発生方法およびその装置
WO2004031854A2 (de) 2002-09-30 2004-04-15 Carl Zeiss Smt Ag Beleuchtungssystem für eine wellenlänge ≤ 193 nm mit sensoren zur bestimmung der ausleuchtung
JP2004226244A (ja) * 2003-01-23 2004-08-12 Ushio Inc 極端紫外光源および半導体露光装置
DE10305701B4 (de) 2003-02-07 2005-10-06 Xtreme Technologies Gmbh Anordnung zur Erzeugung von EUV-Strahlung mit hohen Repetitionsraten
US7087914B2 (en) * 2004-03-17 2006-08-08 Cymer, Inc High repetition rate laser produced plasma EUV light source
TW200613706A (en) 2004-09-29 2006-05-01 Ushio Electric Inc EUV generator
JP2006294606A (ja) * 2005-04-12 2006-10-26 Xtreme Technologies Gmbh プラズマ放射線源
DE102005020521B4 (de) * 2005-04-29 2013-05-02 Xtreme Technologies Gmbh Verfahren und Anordnung zur Unterdrückung von Debris bei der Erzeugung kurzwelliger Strahlung auf Basis eines Plasmas
EP1887841A1 (en) 2005-05-06 2008-02-13 Tokyo Institute of Technology Plasma generating apparatus and plasma generating method
JP4667140B2 (ja) * 2005-06-30 2011-04-06 キヤノン株式会社 露光装置およびデバイス製造方法
DE102005041567B4 (de) * 2005-08-30 2009-03-05 Xtreme Technologies Gmbh EUV-Strahlungsquelle mit hoher Strahlungsleistung auf Basis einer Gasentladung
DE102005048670B3 (de) * 2005-10-07 2007-05-24 Xtreme Technologies Gmbh Anordnung zur Unterdrückung von unerwünschten Spektralanteilen bei einer plasmabasierten EUV-Strahlungsquelle
DE102006003683B3 (de) 2006-01-24 2007-09-13 Xtreme Technologies Gmbh Anordnung und Verfahren zur Erzeugung von EUV-Strahlung hoher Durchschnittsleistung
JP4954584B2 (ja) 2006-03-31 2012-06-20 株式会社小松製作所 極端紫外光源装置
JP4884152B2 (ja) 2006-09-27 2012-02-29 株式会社小松製作所 極端紫外光源装置
US20080237498A1 (en) * 2007-01-29 2008-10-02 Macfarlane Joseph J High-efficiency, low-debris short-wavelength light sources
JP2008270149A (ja) 2007-03-28 2008-11-06 Tokyo Institute Of Technology 極端紫外光光源装置および極端紫外光発生方法
US7737420B2 (en) * 2007-03-30 2010-06-15 Intel Corporation Pixelated modulation of illumination pupil image
US7691755B2 (en) 2007-05-15 2010-04-06 Applied Materials, Inc. Plasma immersion ion implantation with highly uniform chamber seasoning process for a toroidal source reactor
WO2008154222A1 (en) 2007-06-06 2008-12-18 Mks Instruments, Inc. Particle reduction through gas and plasma source control
US7709816B2 (en) 2007-08-16 2010-05-04 Sematech, Inc. Systems and methods for monitoring and controlling the operation of extreme ultraviolet (EUV) light sources used in semiconductor fabrication
JP5458243B2 (ja) * 2007-10-25 2014-04-02 国立大学法人大阪大学 Euv光の放射方法、および前記euv光を用いた感応基板の露光方法
US20090218521A1 (en) * 2008-02-08 2009-09-03 Nikon Corporation Gaseous neutral density filters and related methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6002744A (en) * 1996-04-25 1999-12-14 Jettec Ab Method and apparatus for generating X-ray or EUV radiation
US6194733B1 (en) * 1998-04-03 2001-02-27 Advanced Energy Systems, Inc. Method and apparatus for adjustably supporting a light source for use in photolithography
JP2002544675A (ja) * 1999-05-06 2002-12-24 アドヴァンスド、エナジー、システィムズ、インク 半導体製造工程用のリソグラフィ光源を提供するためのシステムおよび方法
CN1466860A (zh) * 2000-07-28 2004-01-07 产生x-光或euv辐射的方法和装置
JP2005032510A (ja) * 2003-07-10 2005-02-03 Nikon Corp Euv光源、露光装置及び露光方法
US20060158126A1 (en) * 2003-08-12 2006-07-20 Schuermann Max C Plasma radiation source and device for creating a gas curtain for plasma radiation sources
US20070012889A1 (en) * 2005-07-13 2007-01-18 Nikon Corporation Gaseous extreme-ultraviolet spectral purity filters and optical systems comprising same
JP2007207574A (ja) * 2006-02-01 2007-08-16 Komatsu Ltd 極端紫外光源装置
JP2007317598A (ja) * 2006-05-29 2007-12-06 Komatsu Ltd 極端紫外光源装置
JP2008300351A (ja) * 2007-05-16 2008-12-11 Xtreme Technologies Gmbh プラズマベースのeuv放射線源用のガスカーテンを生成する装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756607A (zh) * 2012-09-24 2015-07-01 通快激光系统半导体制造有限公司 Euv辐射产生设备及其运行方法
CN104756607B (zh) * 2012-09-24 2017-02-22 通快激光系统半导体制造有限公司 Euv辐射产生设备及其运行方法
CN103064260A (zh) * 2012-12-10 2013-04-24 华中科技大学 一种用于极紫外光刻机光源的锡液滴靶产生装置
WO2014106356A1 (zh) * 2013-01-05 2014-07-10 中国科学院微电子研究所 一种靶源预整形增强的极紫外光发生装置
CN104914680A (zh) * 2015-05-25 2015-09-16 中国科学院上海光学精密机械研究所 基于溶胶射流靶的lpp-euv光源系统
CN110113855A (zh) * 2018-02-01 2019-08-09 三星电子株式会社 Euv产生装置
CN110113855B (zh) * 2018-02-01 2024-04-09 三星电子株式会社 Euv产生装置

Also Published As

Publication number Publication date
JP2011054376A (ja) 2011-03-17
WO2011027717A1 (ja) 2011-03-10
KR20120066002A (ko) 2012-06-21
US9000402B2 (en) 2015-04-07
EP2475228A4 (en) 2015-01-21
US20120145930A1 (en) 2012-06-14
TWI422286B (zh) 2014-01-01
KR101357231B1 (ko) 2014-01-29
EP2475228A1 (en) 2012-07-11
TW201130386A (en) 2011-09-01

Similar Documents

Publication Publication Date Title
CN102484937A (zh) Lpp方式的euv光源及其产生方法
US6647088B1 (en) Production of a dense mist of micrometric droplets in particular for extreme UV lithography
KR101710433B1 (ko) 액적 가속기를 포함하는 euv 방사선 소스 및 리소그래피 장치
JP5073146B2 (ja) X線発生方法および装置
US20080237498A1 (en) High-efficiency, low-debris short-wavelength light sources
JP2014160670A (ja) Lpp、euv光源駆動レーザシステム
TW201117675A (en) EUV radiation system and lithographic apparatus
JP2008204752A (ja) 極端紫外光源装置
TWI644177B (zh) 用於產生輻射之方法及裝置
US20130015373A1 (en) EUV Radiation Source and EUV Radiation Generation Method
CN111955058A (zh) 光束的空间调制
US20080068575A1 (en) Euv Light Source, Euv Exposure Equipment, And Semiconductor Device Manufacturing Method
JP2016509363A (ja) Euvリソグラフィ装置用ビーム搬送装置
TW201313075A (zh) 輻射源及微影裝置
TW201308020A (zh) 輻射源
CN108803247A (zh) 极紫外光源产生方法
JP5709084B2 (ja) Lpp方式のeuv光源とその発生方法
JP5930553B2 (ja) Lpp方式のeuv光源とその発生方法
JP6940529B2 (ja) デブリ低減システム、放射源及びリソグラフィ装置
JP5578483B2 (ja) Lpp方式のeuv光源とその発生方法
WO2016027346A1 (ja) 極端紫外光生成システムおよび極端紫外光生成方法
JP5578482B2 (ja) Lpp方式のeuv光源とその発生方法
CN108170005B (zh) 高亮度光线的产生方法
US10880982B2 (en) Light generation system using metal-nonmetal compound as precursor and related light generation method
JP6895538B2 (ja) 極端紫外光生成装置及び電子デバイスの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120530