CN102473450B - 具有带垂直磁化取向的基准层的磁性叠层 - Google Patents

具有带垂直磁化取向的基准层的磁性叠层 Download PDF

Info

Publication number
CN102473450B
CN102473450B CN201080032404.9A CN201080032404A CN102473450B CN 102473450 B CN102473450 B CN 102473450B CN 201080032404 A CN201080032404 A CN 201080032404A CN 102473450 B CN102473450 B CN 102473450B
Authority
CN
China
Prior art keywords
key horizon
ferromagnetism
magnetization orientation
ferromagnetism pinning
pinning key
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201080032404.9A
Other languages
English (en)
Other versions
CN102473450A (zh
Inventor
Z·袁凯
G·郑
Z·文忠
J·文俊
X·海文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seagate Technology LLC
Original Assignee
Seagate Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology LLC filed Critical Seagate Technology LLC
Publication of CN102473450A publication Critical patent/CN102473450A/zh
Application granted granted Critical
Publication of CN102473450B publication Critical patent/CN102473450B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/329Spin-exchange coupled multilayers wherein the magnetisation of the free layer is switched by a spin-polarised current, e.g. spin torque effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

一种磁性单元(10)包括具有自由磁化取向(MF)的铁磁性自由层(18)以及具有第一基准磁化取向(MR1)的第一铁磁性钉扎基准层(14),该第一基准磁化取向(MR1)平行于或逆平行于自由磁化取向。第一氧化物阻挡层(16)位于铁磁性自由层和第一铁磁性钉扎基准层之间。磁性单元还包括具有第二基准磁化取向(MR2)的第二铁磁性钉扎基准层(13),该第二基准磁化取向(MR2)垂直于第一基准磁化取向。铁磁性自由层位于第一铁磁性钉扎基准层和第二铁磁性钉扎基准层之间。

Description

具有带垂直磁化取向的基准层的磁性叠层
背景技术
也称为自旋电子学的自旋扭矩转移技术结合半导体技术与磁力学并且是最近研发的。在自旋电子学中,电子而非电荷的自旋被用来指示数字信息的存在。表示为“0”或“1”的数字信息或数据可存储在磁性元件内的磁矩排列中。磁性元件的阻抗取决于磁矩的排列或取向。通过检测组件的阻态从元件读出所存储的状态。
磁性元件一般包括铁磁性钉扎层和铁磁性自由层,每个层具有限定整个磁性元件阻抗的磁化方向。这种元件通常被称作“自旋隧穿结”、“磁性隧穿结”、“磁性隧穿结单元”等。当自由层与钉扎层的磁化方向平行时,元件的阻抗低。当自由层与被钉扎层的磁化方向逆平行时,元件的阻抗高。
自旋扭矩转移存储器的应用具有大致在106至107A/cm2的切换电流密度需求,这导致难以与常规CMOS工艺结合。要求显著降低切换电流密度,以制造出可行的产品。已作出各种尝试。
然而,在切换电流和自旋扭矩转移单元的数据稳定性之间存在两难选择。由于自旋扭矩转移单元的热不稳定性,低切换电流可能降低数据保持性。需要可既获得低切换电流又具有足够数据保持性的自旋扭矩转移单元设计。
发明内容
本公开涉及磁性单元,例如自旋扭矩存储单元,所述磁性单元具有磁性的两个基准层或元件,所述两个基准层或元件具有垂直的磁化取向。这些自旋扭矩存储单元在高阻数据状态和低阻数据状态之间快速切换并包括在两个氧化物阻挡层之间的自由磁性层。两个基准层是垂直对准的。
在本公开的一个实施例中披露了一种磁性单元,该磁性单元包括具有自由磁化取向的铁磁性自由层以及具有第一基准磁化取向的第一铁磁性钉扎基准层,该第一基准磁化取向平行于或逆平行于自由磁化取向。第一氧化物阻挡层位于铁磁性自由层和第一铁磁性钉扎基准层之间。磁性单元还包括具有第二基准磁化取向的第二铁磁性钉扎基准层,该第二基准磁化取向垂直于第一基准磁化取向。铁磁性自由层位于第一铁磁性钉扎基准层和第二铁磁性钉扎基准层之间。
通过阅读以下详细描述,这些以及各个其他特征和优点将是显而易见的。
附图简述
考虑以下结合附图对本公开的各个实施例的详细描述,可更完整地理解本公开,在附图中:
图1A是处于低阻数据状态并具有垂直基准层磁化取向的磁性单元的示意性侧视图;
图1B是处于高阻数据状态并具有垂直基准层磁化取向的磁性单元的示意性侧视图;
图2是包括存储单元和半导体晶体管的示例性存储元件的示意图;
图3是解说性存储器阵列的示意图;
图4是具有垂直基准层磁化取向的另一磁性单元的示意性侧视图;以及
图5是具有垂直基准层磁化取向的另一磁性单元的示意性侧视图。
这些附图不一定按比例示出。附图中所使用的相同数字表示相同组件。然而,应当理解,在给定附图中使用数字表示组件并不旨在限制在另一附图中用相同数字标记的组件。
详细描述
本公开针对磁性叠层或单元(例如自旋扭矩存储(STRAM)单元),该磁性叠层或单元具有带垂直的磁化取向的两个磁性基准层或元件。这些自旋扭矩存储单元在高阻数据状态和低阻数据状态之间快速切换并包括在两个氧化物阻挡层之间的自由磁性层。两个基准层是垂直对准的。相比不具有垂直对准的基准层的传统数据单元,这种数据单元结构增加了写入速度并提高了数据单元的隧穿磁阻比。
在以下描述中,参考形成本说明书一部分的一组附图,其中通过解说示出了若干具体实施例。应当理解,可构想并可作出其他实施例而不背离本公开的范围或精神。因此,以下详细描述不具有限制性含义。本文中所提供的任何定义有助于理解本文中频繁使用的某些术语,而不旨在限制本公开的范围。
除非另外指示,否则在说明书和权利要求书中使用的表示特征大小、量和物理性质的所有数字应当理解为在任何情况下均由术语“大约”修饰。因此,除非相反地指出,否则在上述说明书和所附权利要求中阐述的数值参数是近似值,这些近似值可利用本文中公开的教示根据本领域技术人员所寻求获得的期望性质而变化。
如本说明书和所附权利要求书中所使用的,单数形式“一”、“一个”和“该”涵盖具有复数引用物的实施例,除非该内容另外明确地指出。如本说明书和所附权利要求书中所使用的,术语“或”一般以包括“和/或”的含义来使用,除非该内容另外明确地指出。
要注意,诸如“顶”、“底”、“之上”、“之下”等术语可在本公开中使用。这些术语不应当解释为限制结构的位置或方向,而是应当用来提供结构之间的空间关系。
尽管本公开不限于此,但通过讨论以下所提供的示例将获得对本公开的各个方面的理解。
图1A是处于低阻数据状态并具有垂直基准层磁化取向的磁性单元10的示意性侧视图。图1B是处于高阻数据状态并具有垂直基准层磁化取向的磁性单元10的示意性侧视图。磁性隧穿结单元10包括具有第一基准磁化取向MRR1的第一铁磁性钉扎基准层或元件14、具有自由磁化取向MF的铁磁性自由元件或层18以及将第一铁磁性钉扎基准磁性元件14与铁磁性自由元件18分离的第一隧穿阻挡层16。第二铁磁性钉扎基准层或元件13具有第二基准磁化取向MR2,该第二基准磁化取向MR2垂直于第一基准磁化取向MR1。铁磁性自由层位于第一铁磁性钉扎基准层14和第二铁磁性钉扎基准层13之间。在许多实施例中,第二隧穿阻挡层15将第二铁磁性钉扎基准磁性元件13与铁磁性自由元件18隔开。
这些元件或层电气地设置在第一电极13和第二电极19之间。尽管示出了单个磁性隧穿结单元10,然而要理解多个磁性隧穿结单元10可配置成阵列以形成存储器阵列。为了清楚起见,附图中不绘出例如籽晶层或覆盖层的其它层。
铁磁性自由元件18具有自由磁化取向MF,该自由磁化取向MF可在高阻数据状态(即相对于第一铁磁性钉扎基准磁性元件14磁化取向MR1的逆平行方向且如图1B所示)和低阻数据状态(即相对于第一铁磁性钉扎基准磁性元件14磁化取向MR1的平行方向且如图1A所示)之间切换。铁磁性自由元件或层18、第一铁磁性钉扎基准磁性元件14以及第二铁磁性钉扎基准磁性元件13具有面内磁各向异性。
尽管第一铁磁性钉扎基准元件14图示为单个层,然而要理解,该元件14可包括两个或更多个层,例如铁磁性基准(钉扎)层和反铁磁性基准(钉扎层),其中反铁磁性基准层用来固定铁磁性基准层的磁化。在其它实施例中,第一铁磁性钉扎基准元件14包括反铁磁性地彼此耦合(的一个以上铁磁性层(例如合成的反铁磁体)。铁磁性基准层可由例如包含Co、Fe和/或Ni的合金和物质的任何有用材料形成。诸如CoFeB的三元合金可能尤为有用,因为它们具有较低磁矩与高极化比,这些对于自旋电流切换而言是合乎要求的。反铁磁性基准层可由例如IrMn、FeMn和/或PtMn的任何有用材料形成。
尽管第二铁磁性钉扎基准元件13图示为单个层,然而要理解,该元件13可包括两个或更多个层,例如铁磁性基准(钉扎)层和反铁磁性基准(钉扎)层,其中反铁磁性基准层用来固定铁磁性基准层的磁化。在其它实施例中,第二铁磁性钉扎基准元件13包括反铁磁性地彼此耦合(例如合成的反铁磁体)的一个以上铁磁性层。铁磁性基准层可由例如包含Co、Fe和/或Ni的合金和物质的任何有用材料形成。诸如CoFeB之类的三元合金可能尤为有用,因为它们具有较低磁矩与高极化比,这些对于自旋电流切换而言是合乎要求的。反铁磁性基准层可由例如IrMn、FeMn和/或PtMn的任何有用材料形成。
铁磁性自由元件18可由任何有用的软磁材料形成,所述软磁材料允许铁磁性自由元件18的磁化取向在第一磁化取向和相反的第二磁化取向之间切换。在许多实施例中,铁磁性自由元件18由例如Co65Fe30B15并在例如1200-500emu/cc的范围内具有磁饱和的CoFeB材料形成。第一磁化取向可平行于第一铁磁性钉扎基准元件14的磁化取向,由此形成低阻数据状态或“0”数据状态。第二磁化取向可逆平行于第一铁磁性钉扎基准元件14的磁化取向,由此形成高阻数据状态或“1”数据状态。铁磁性自由层可由任何有用材料形成,例如包括Co、Fe和/或Ni的合金材料。诸如CoFeB的三元合金可能尤为有用,因为它们具有较低磁矩与高极化比,这些对于自旋电流切换而言是合乎要求的。因此铁磁性自由元件18可因由流过磁性单元10的电流诱发的自旋力矩转移而切换。
第一和第二隧穿或氧化物阻挡层15、16是电绝缘和非磁性的材料。隧穿或氧化物阻挡层15、16可由任何可用的电绝缘和非磁性材料形成,例如AlO、MgO、和/或TiO。在一些实施例中,氧化物阻挡层15、16具有约0.5-2nm的厚度。
电极13、19将磁性隧穿结单元10连接于控制电路,该控制电路通过磁性隧道结单元10提供读和写电流。磁性隧穿结单元10两侧的阻抗是由磁化矢量的相对取向和铁磁性层14、18的磁化取向确定的。当电流流过磁性隧穿结单元10时,铁磁性钉扎基准层14、13的磁化方向被钉扎在预定方向,而铁磁性自由层18的磁化方向在自旋扭矩影响下自由旋转。
当流过磁性隧穿结单元10的磁性层的电流变为自旋极化的并将自旋扭矩作用在磁性隧穿结单元10的铁磁性自由层18时,通过自旋扭矩转移而切换电阻状态并因此切换磁性隧穿结单元10的数据状态发生。当将足够的自旋扭矩(足以克服能垒E)作用于铁磁性自由层18时,非铁磁性自由层18的磁化取向可在两相反的方向上切换并因此磁性隧穿结单元10可在平行状态(即低阻态或“0”数据状态)和逆平行状态(即高阻态或“1”数据状态)之间切换。
图2是包含存储单元20和半导体晶体管22的解说性存储单元的示意图。存储单元20包括磁性隧穿结单元10。
图3是解说性存储器阵列30的示意图。存储器阵列30包括形成交叉点阵列的多个字线WL和多个位线BL。在每个交叉点,如这里描述的存储单元10电耦合于字线WL和位线BL。选择器件(未示出)可处于各交叉点或处于各字线WL和位线BL。
图4是具有垂直基准层磁化取向的另一磁性单元40的示意性侧视图。磁性隧穿结单元40包括具有第一基准磁化取向的第一铁磁性钉扎基准层或元件14、具有自由磁化取向的铁磁性自由元件或层18以及将第一铁磁性钉扎基准磁性元件14与铁磁性自由元件18分离的第一隧穿阻挡层16。第二铁磁性钉扎基准层或元件13具有第二基准磁化取向,该第二基准磁化取向垂直于第一基准磁化取向。铁磁性自由层18位于第一铁磁性钉扎基准层14和第二铁磁性钉扎基准层13之间。在许多实施例中,第二隧穿阻挡层15将第二铁磁性钉扎基准磁性元件13与铁磁性自由元件18隔开。
这些元件或层电气地设置在第一电极13和第二电极19之间。尽管示出了单个磁性隧穿结单元10,然而要理解多个磁性隧穿结单元10可配置成阵列以形成存储器阵列。为了清楚起见,附图中不绘出例如籽晶层或覆盖层的其它层。
第一铁磁性钉扎基准层或元件14包括第一合成反铁磁性元件SAF1和第一反铁磁性基准(钉扎)层AFM1。第一合成的反铁磁性元件SAF1包括反铁磁性耦合的并由非磁性和导电间隔层SP1隔开的两个铁磁性层FM1、FM2。第二铁磁性钉扎基准层或元件13包括第二合成反铁磁性元件SAF2和第二反铁磁性基准(钉扎)层AFM2。第二合成的反铁磁性元件SAF2包括反铁磁性耦合的并由非磁性和导电间隔层SP2隔开的两个铁磁性层FM3、FM4。
在许多实施例中,第一反铁磁性基准(钉扎)层AFM1具有与第二反铁磁性基准(钉扎)层AFM2不同的材料成份。第一反铁磁性基准(钉扎)层AFM1可具有比第二反铁磁性基准(钉扎)层AFM2更高的阻挡温度。因此,第一铁磁性钉扎基准层或元件14可将其磁化取向设定在比之后形成的第二铁磁性钉扎基准层或元件13更高的温度下。然后,第二铁磁性钉扎基准层或元件13可将其磁化取向设定在比之前形成的第一铁磁性钉扎基准层或元件14更低的温度下。
图5是具有垂直基准层磁化取向的另一磁性单元50的示意性侧视图。磁性隧穿结单元50包括具有第一基准磁化取向的第一铁磁性钉扎基准层或元件14、具有自由磁化取向的铁磁性自由元件或层18以及将第一铁磁性钉扎基准磁性元件14与铁磁性自由元件18分离的第一隧穿阻挡层16。第二铁磁性钉扎基准层或元件13具有第二基准磁化取向,该第二基准磁化取向垂直于第一基准磁化取向。铁磁性自由层18位于第一铁磁性钉扎基准层14和第二铁磁性钉扎基准层13之间。在许多实施例中,第二隧穿阻挡层15将第二铁磁性钉扎基准磁性元件13与铁磁性自由元件18隔开。
这些元件或层电气地设置在第一电极13和第二电极19之间。尽管示出了单个磁性隧穿结单元10,然而要理解多个磁性隧穿结单元10可配置成阵列以形成存储器阵列。为了清楚起见,附图中不绘出例如籽晶层或覆盖层之类的其它层。
第一铁磁性钉扎基准层或元件14包括第一合成反铁磁性元件SAF1和反铁磁性基准(钉扎)层AFM。第一合成的反铁磁性元件SAF1包括反铁磁性耦合的并由非磁性和导电间隔层SP1隔开的两个铁磁性层FM1、FM2。第二铁磁性钉扎基准层或元件13包括第二合成反铁磁性元件SAF2和永磁体PM。第二合成的反铁磁性元件SAF2包括反铁磁性耦合的并由非磁性和导电间隔层SP2隔开的两个铁磁性层FM3、FM4。第一铁磁性钉扎基准层或元件14的磁化取向可通过磁性设定退火来设定,而第二铁磁性钉扎基准层或元件13的磁化取向可通过永磁体PM来设定。
本公开的各种结构可通过薄膜技术制成,例如化学汽相沉积(CVD)、物理汽相沉积(PVD)、溅射沉积以及原子层沉积(ALD)。
由此,披露了具有带垂直磁化取向的基准层的磁性叠层的实施例。上述实现及其他实现在以下权利要求书的范围内。本领域技术人员应当理解,本公开可通过除所披露的实施例以外的实施例来实施。出于说明而非限制目的给出了所公开的实施例,且本发明仅受限于所附权利要求。
在下面权利要求书中使用数字表示,例如“第一”、“第二”等是为了标识和提供在前基础。除非内容明确表示相反情形,否则不应当认为数字表示意指这一数目的这类要素必须在设备、系统或装置中出现。例如,如果设备包括第一层,这并不意味着该设备中一定就要有第二层。

Claims (17)

1.一种磁性单元,包括:
具有自由磁化取向的铁磁性自由层;
第一铁磁性钉扎基准层,所述第一铁磁性钉扎基准层具有与所述自由磁化取向平行或逆平行的第一基准磁化取向;
位于所述铁磁性自由层和所述第一铁磁性钉扎基准层之间的第一氧化物阻挡层;以及
第二铁磁性钉扎基准层,所述第二铁磁性钉扎基准层具有与所述第一基准磁化取向垂直的第二基准磁化取向,所述铁磁性自由层位于所述第一铁磁性钉扎基准层和所述第二铁磁性钉扎基准层之间,
其中所述第二铁磁性钉扎基准层包括永磁体。
2.如权利要求1所述的磁性单元,其特征在于,所述铁磁性自由层、第一铁磁性钉扎基准层和第二铁磁性钉扎基准层具有面内的磁各向异性。
3.如权利要求1所述的磁性单元,其特征在于,还包括位于所述铁磁性自由层和所述第二铁磁性钉扎基准层之间的第二氧化物阻挡层。
4.如权利要求1所述的磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括合成的反铁磁性元件。
5.如权利要求1所述的磁性单元,其特征在于,所述第二铁磁性钉扎基准层包括合成的反铁磁性元件。
6.如权利要求1所述的磁性单元,其特征在于,所述铁磁性自由层由于流过所述磁性单元的电流诱发的自旋扭矩转移而在高阻数据状态和低阻数据状态之间切换。
7.如权利要求1所述的磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括具有第一阻挡温度的合成的反铁磁性元件,而所述第二铁磁性钉扎基准层包括具有第二阻挡温度的合成的反铁磁性元件,其中所述第二阻挡温度低于所述第一阻挡温度。
8.如权利要求1所述的磁性单元,其特征在于,所述自由磁化取向垂直于所述第二基准磁化取向。
9.一种自旋扭矩转移磁性单元,包括:
具有面内自由磁化取向的铁磁性自由层,所述铁磁性自由层由于流过所述磁性单元的电流诱发的自旋扭矩转移而在高阻数据状态和低阻数据状态之间切换;
第一铁磁性钉扎基准层,所述第一铁磁性钉扎基准层具有与所述自由磁化取向平行或逆平行的第一基准磁化取向;
位于所述铁磁性自由层和所述第一铁磁性钉扎基准层之间的第一氧化物阻挡层;
第二铁磁性钉扎基准层,所述第二铁磁性钉扎基准层具有与所述自由磁化取向垂直的面内第二基准磁化取向;以及
位于所述铁磁性自由层和所述第二铁磁性钉扎基准层之间的第二氧化物阻挡层,
其中所述第二铁磁性钉扎基准层包括永磁体。
10.如权利要求9所述的自旋扭矩转移磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括合成的反铁磁性元件。
11.如权利要求9所述的自旋扭矩转移磁性单元,其特征在于,所述第二铁磁性钉扎基准层包括合成的反铁磁性元件。
12.如权利要求9所述的自旋扭矩转移磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括具有第一阻挡温度的合成的反铁磁性元件,而所述第二铁磁性钉扎基准层包括具有第二阻挡温度的合成的反铁磁性元件,其中所述第二阻挡温度低于所述第一阻挡温度。
13.如权利要求9所述的自旋扭矩转移磁性单元,其特征在于,所述自由磁化取向垂直于所述第二基准磁化取向。
14.一种自旋扭矩转移磁性单元,包括:
具有面内自由磁化取向的铁磁性自由层,所述铁磁性自由层由于流过所述磁性单元的电流诱发的自旋扭矩转移而在高阻数据状态和低阻数据状态之间切换;
第一铁磁性钉扎基准层,所述第一铁磁性钉扎基准层具有与所述自由磁化取向平行或逆平行的第一基准磁化取向;
位于所述铁磁性自由层和所述第一铁磁性钉扎基准层之间的第一氧化物阻挡层;
第二铁磁性钉扎基准层,所述第二铁磁性钉扎基准层具有与所述第一基准磁化取向垂直的面内第二基准磁化取向;以及
位于所述铁磁性自由层和所述第二铁磁性钉扎基准层之间的第二氧化物阻挡层,
其中所述第二铁磁性钉扎基准层包括永磁体。
15.如权利要求14所述的自旋扭矩转移磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括合成的反铁磁性元件。
16.如权利要求14所述的自旋扭矩转移磁性单元,其特征在于,所述第二铁磁性钉扎基准层包括合成的反铁磁性元件。
17.如权利要求14所述的自旋扭矩转移磁性单元,其特征在于,所述第一铁磁性钉扎基准层包括具有第一阻挡温度的合成的反铁磁性元件,而所述第二铁磁性钉扎基准层包括具有第二阻挡温度的合成的反铁磁性元件,其中所述第二阻挡温度低于所述第一阻挡温度。
CN201080032404.9A 2009-07-13 2010-07-08 具有带垂直磁化取向的基准层的磁性叠层 Expired - Fee Related CN102473450B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/502,209 US7999338B2 (en) 2009-07-13 2009-07-13 Magnetic stack having reference layers with orthogonal magnetization orientation directions
US12/502,209 2009-07-13
PCT/US2010/041300 WO2011008615A1 (en) 2009-07-13 2010-07-08 Magnetic stack having reference layers with orthogonal magnetization orientation directions

Publications (2)

Publication Number Publication Date
CN102473450A CN102473450A (zh) 2012-05-23
CN102473450B true CN102473450B (zh) 2015-07-08

Family

ID=42663675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080032404.9A Expired - Fee Related CN102473450B (zh) 2009-07-13 2010-07-08 具有带垂直磁化取向的基准层的磁性叠层

Country Status (5)

Country Link
US (3) US7999338B2 (zh)
JP (1) JP2012533189A (zh)
KR (1) KR101323786B1 (zh)
CN (1) CN102473450B (zh)
WO (1) WO2011008615A1 (zh)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8045366B2 (en) 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
US8116043B2 (en) * 2009-12-09 2012-02-14 Western Digital (Fremont), Llc Method and system for providing a magnetic transducer having an improved read sensor synthetic antiferromagnet
KR101739952B1 (ko) 2011-02-25 2017-05-26 삼성전자주식회사 자기 메모리 장치
US8576617B2 (en) 2011-11-10 2013-11-05 Qualcomm Incorporated Circuit and method for generating a reference level for a magnetic random access memory element
EP2626860B1 (en) * 2012-02-08 2016-11-16 Crocus Technology S.A. Self-referenced mram element with linear sensing signal
US9007818B2 (en) 2012-03-22 2015-04-14 Micron Technology, Inc. Memory cells, semiconductor device structures, systems including such cells, and methods of fabrication
US9054030B2 (en) 2012-06-19 2015-06-09 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US8923038B2 (en) 2012-06-19 2014-12-30 Micron Technology, Inc. Memory cells, semiconductor device structures, memory systems, and methods of fabrication
US9166149B2 (en) * 2012-11-27 2015-10-20 Industrial Technology Research Institute Magnetic device with a substrate, a sensing block and a repair layer
US8901687B2 (en) * 2012-11-27 2014-12-02 Industrial Technology Research Institute Magnetic device with a substrate, a sensing block and a repair layer
US9379315B2 (en) 2013-03-12 2016-06-28 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, and memory systems
US9368714B2 (en) 2013-07-01 2016-06-14 Micron Technology, Inc. Memory cells, methods of operation and fabrication, semiconductor device structures, and memory systems
US9466787B2 (en) 2013-07-23 2016-10-11 Micron Technology, Inc. Memory cells, methods of fabrication, semiconductor device structures, memory systems, and electronic systems
US9461242B2 (en) 2013-09-13 2016-10-04 Micron Technology, Inc. Magnetic memory cells, methods of fabrication, semiconductor devices, memory systems, and electronic systems
US9608197B2 (en) 2013-09-18 2017-03-28 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9251816B2 (en) 2013-10-03 2016-02-02 Seagate Technology Llc Magnetic sensor shield pinned by a high-coercivity ferromagnet
US9529060B2 (en) * 2014-01-09 2016-12-27 Allegro Microsystems, Llc Magnetoresistance element with improved response to magnetic fields
US10454024B2 (en) 2014-02-28 2019-10-22 Micron Technology, Inc. Memory cells, methods of fabrication, and memory devices
US9281466B2 (en) 2014-04-09 2016-03-08 Micron Technology, Inc. Memory cells, semiconductor structures, semiconductor devices, and methods of fabrication
US9269888B2 (en) 2014-04-18 2016-02-23 Micron Technology, Inc. Memory cells, methods of fabrication, and semiconductor devices
US9349945B2 (en) 2014-10-16 2016-05-24 Micron Technology, Inc. Memory cells, semiconductor devices, and methods of fabrication
US9768377B2 (en) 2014-12-02 2017-09-19 Micron Technology, Inc. Magnetic cell structures, and methods of fabrication
US10439131B2 (en) 2015-01-15 2019-10-08 Micron Technology, Inc. Methods of forming semiconductor devices including tunnel barrier materials
WO2016196157A1 (en) 2015-06-05 2016-12-08 Allegro Microsystems, Llc Spin valve magnetoresistance element with improved response to magnetic fields
US10305026B2 (en) 2015-11-19 2019-05-28 Samsung Electronics Co., Ltd. Cross-point architecture for spin-transfer torque magnetoresistive random access memory with spin orbit writing
US9761368B2 (en) * 2015-12-22 2017-09-12 International Business Machines Corporation Laminated structures for power efficient on-chip magnetic inductors
US9979401B2 (en) * 2016-07-19 2018-05-22 Georgia Tech Research Corporation Magnetoelectric computational devices
US11022661B2 (en) 2017-05-19 2021-06-01 Allegro Microsystems, Llc Magnetoresistance element with increased operational range
US10620279B2 (en) 2017-05-19 2020-04-14 Allegro Microsystems, Llc Magnetoresistance element with increased operational range

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714402A (zh) * 2002-02-08 2005-12-28 索尼株式会社 使用铁磁隧道结器件的磁存储装置
CN101093721A (zh) * 2006-06-22 2007-12-26 株式会社东芝 磁阻元件和磁性存储器

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252797A (ja) 1985-08-30 1987-03-07 Mitsubishi Electric Corp 半導体記憶装置
US5191223A (en) 1991-07-03 1993-03-02 International Business Machines Corporation Device for selective magnetization and method
KR0158485B1 (ko) 1995-03-31 1999-02-01 김광호 본딩옵션용 워드라인전압 승압회로
US5646419A (en) 1995-04-07 1997-07-08 California Institute Of Technology n-type wide bandgap semiconductors grown on a p-type layer to form hole injection pn heterojunctions and methods of fabricating the same
JPH0992904A (ja) * 1995-09-22 1997-04-04 Alps Electric Co Ltd 巨大磁気抵抗効果材料膜およびその製造方法とそれを用いた磁気ヘッド
US5761115A (en) 1996-05-30 1998-06-02 Axon Technologies Corporation Programmable metallization cell structure and method of making same
US5920446A (en) 1998-01-06 1999-07-06 International Business Machines Corporation Ultra high density GMR sensor
US6072718A (en) 1998-02-10 2000-06-06 International Business Machines Corporation Magnetic memory devices having multiple magnetic tunnel junctions therein
JP3672435B2 (ja) 1998-04-22 2005-07-20 富士通株式会社 不揮発性メモリ装置
US6252796B1 (en) 1998-08-14 2001-06-26 U.S. Philips Corporation Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer
US6072717A (en) * 1998-09-04 2000-06-06 Hewlett Packard Stabilized magnetic memory cell
US6178136B1 (en) 1998-09-28 2001-01-23 Texas Instruments Incorporated Semiconductor memory device having Y-select gate voltage that varies according to memory cell access operation
JP2000132961A (ja) 1998-10-23 2000-05-12 Canon Inc 磁気薄膜メモリ、磁気薄膜メモリの読出し方法、及び磁気薄膜メモリの書込み方法
US6542000B1 (en) 1999-07-30 2003-04-01 Iowa State University Research Foundation, Inc. Nonvolatile programmable logic devices
GB9925213D0 (en) 1999-10-25 1999-12-22 Univ Cambridge Tech Magnetic logic elements
US6469926B1 (en) 2000-03-22 2002-10-22 Motorola, Inc. Magnetic element with an improved magnetoresistance ratio and fabricating method thereof
US6700753B2 (en) 2000-04-12 2004-03-02 Seagate Technology Llc Spin valve structures with specular reflection layers
US6381106B1 (en) 2000-04-12 2002-04-30 International Business Machines Corporation Top spin valve sensor that has a free layer structure with a cobalt iron boron (cofeb) layer
TW504713B (en) 2000-04-28 2002-10-01 Motorola Inc Magnetic element with insulating veils and fabricating method thereof
US6979586B2 (en) 2000-10-06 2005-12-27 Headway Technologies, Inc. Magnetic random access memory array with coupled soft adjacent magnetic layer
US6574079B2 (en) * 2000-11-09 2003-06-03 Tdk Corporation Magnetic tunnel junction device and method including a tunneling barrier layer formed by oxidations of metallic alloys
FR2817998B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a rotation d'aimantation, memoire et procede d'ecriture utilisant ce dispositif
FR2817999B1 (fr) 2000-12-07 2003-01-10 Commissariat Energie Atomique Dispositif magnetique a polarisation de spin et a empilement(s) tri-couche(s) et memoire utilisant ce dispositif
US6584016B2 (en) 2001-01-08 2003-06-24 Azalea Microelectronics Corporation Non-volatile memory architecture and method of operation
JP3677455B2 (ja) 2001-02-13 2005-08-03 Necエレクトロニクス株式会社 不揮発性磁気記憶装置およびその製造方法
WO2002073699A2 (en) 2001-03-14 2002-09-19 University Of Massachusetts Nanofabrication
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
JP3565268B2 (ja) 2001-06-22 2004-09-15 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
US6569745B2 (en) 2001-06-28 2003-05-27 Sharp Laboratories Of America, Inc. Shared bit line cross point memory array
US6781801B2 (en) 2001-08-10 2004-08-24 Seagate Technology Llc Tunneling magnetoresistive sensor with spin polarized current injection
US6888703B2 (en) 2001-09-17 2005-05-03 Headway Technologies, Inc. Multilayered structures comprising magnetic nano-oxide layers for current perpindicular to plane GMR heads
WO2003032392A2 (en) 2001-10-09 2003-04-17 Axon Technologies Corporation Programmable microelectronic device, structure, and system, and method of forming the same
JP3834616B2 (ja) 2001-11-13 2006-10-18 国立大学法人東北大学 スピンフィルタ
FR2832542B1 (fr) 2001-11-16 2005-05-06 Commissariat Energie Atomique Dispositif magnetique a jonction tunnel magnetique, memoire et procedes d'ecriture et de lecture utilisant ce dispositif
KR100450794B1 (ko) 2001-12-13 2004-10-01 삼성전자주식회사 마그네틱 랜덤 엑세스 메모리 및 그 작동 방법
US6650562B2 (en) 2002-01-23 2003-11-18 Hewlett-Packard Development Company, L.P. System and method for determining the logic state of a memory cell in a magnetic tunnel junction memory device
US6778421B2 (en) 2002-03-14 2004-08-17 Hewlett-Packard Development Company, Lp. Memory device array having a pair of magnetic bits sharing a common conductor line
JP4073691B2 (ja) 2002-03-19 2008-04-09 株式会社ルネサステクノロジ 半導体記憶装置
TWI222763B (en) 2002-03-29 2004-10-21 Toshiba Corp Magnetic logic element and magnetic logic element array
KR100476889B1 (ko) 2002-04-04 2005-03-17 삼성전자주식회사 플래쉬메모리의 워드라인디코더
US6711067B1 (en) 2002-05-08 2004-03-23 Virage Logic Corporation System and method for bit line sharing
KR20030089078A (ko) 2002-05-16 2003-11-21 주식회사 하이닉스반도체 자기터널접합소자를 갖는 자기메모리셀
US6633498B1 (en) 2002-06-18 2003-10-14 Motorola, Inc. Magnetoresistive random access memory with reduced switching field
US6781867B2 (en) 2002-07-11 2004-08-24 Micron Technology, Inc. Embedded ROM device using substrate leakage
US6850433B2 (en) 2002-07-15 2005-02-01 Hewlett-Packard Development Company, Lp. Magnetic memory device and method
US7196882B2 (en) 2002-07-23 2007-03-27 Micron Technology, Inc. Magnetic tunnel junction device and its method of fabrication
US6765819B1 (en) 2002-07-25 2004-07-20 Hewlett-Packard Development Company, Lp. Magnetic memory device having improved switching characteristics
US6714444B2 (en) 2002-08-06 2004-03-30 Grandis, Inc. Magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6888742B1 (en) 2002-08-28 2005-05-03 Grandis, Inc. Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element
US6759263B2 (en) 2002-08-29 2004-07-06 Chentsau Ying Method of patterning a layer of magnetic material
US6831312B2 (en) 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6801415B2 (en) 2002-08-30 2004-10-05 Freescale Semiconductor, Inc. Nanocrystalline layers for improved MRAM tunnel junctions
US6711051B1 (en) 2002-09-05 2004-03-23 National Semiconductor Corporation Static RAM architecture with bit line partitioning
US6838740B2 (en) 2002-09-27 2005-01-04 Grandis, Inc. Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6958927B1 (en) 2002-10-09 2005-10-25 Grandis Inc. Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element
US6639830B1 (en) 2002-10-22 2003-10-28 Btg International Ltd. Magnetic memory device
KR100536592B1 (ko) 2002-11-01 2005-12-14 삼성전자주식회사 자기 메모리 및 그 제조 방법
JP2004179483A (ja) 2002-11-28 2004-06-24 Hitachi Ltd 不揮発性磁気メモリ
US6909633B2 (en) 2002-12-09 2005-06-21 Applied Spintronics Technology, Inc. MRAM architecture with a flux closed data storage layer
US7190611B2 (en) 2003-01-07 2007-03-13 Grandis, Inc. Spin-transfer multilayer stack containing magnetic layers with resettable magnetization
US6829161B2 (en) 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6845038B1 (en) 2003-02-01 2005-01-18 Alla Mikhailovna Shukh Magnetic tunnel junction memory device
US6864551B2 (en) 2003-02-05 2005-03-08 Applied Spintronics Technology, Inc. High density and high programming efficiency MRAM design
US7126200B2 (en) 2003-02-18 2006-10-24 Micron Technology, Inc. Integrated circuits with contemporaneously formed array electrodes and logic interconnects
US6847547B2 (en) 2003-02-28 2005-01-25 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
JP3906212B2 (ja) 2003-03-11 2007-04-18 株式会社東芝 磁気ランダムアクセスメモリ
US6998150B2 (en) 2003-03-12 2006-02-14 Headway Technologies, Inc. Method of adjusting CoFe free layer magnetostriction
US6963500B2 (en) 2003-03-14 2005-11-08 Applied Spintronics Technology, Inc. Magnetic tunneling junction cell array with shared reference layer for MRAM applications
JP4008857B2 (ja) 2003-03-24 2007-11-14 株式会社東芝 半導体記憶装置及びその製造方法
US7092279B1 (en) 2003-03-24 2006-08-15 Sheppard Douglas P Shared bit line memory device and method
US7067866B2 (en) 2003-03-31 2006-06-27 Applied Spintronics Technology, Inc. MRAM architecture and a method and system for fabricating MRAM memories utilizing the architecture
US6933155B2 (en) 2003-05-21 2005-08-23 Grandis, Inc. Methods for providing a sub .15 micron magnetic memory structure
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
US6885582B2 (en) 2003-06-12 2005-04-26 Hewlett-Packard Development Company, L.P. Magnetic memory storage device
US7088624B2 (en) 2003-07-18 2006-08-08 Infineon Technologies, A.G. System of multiplexed data lines in a dynamic random access memory
US7245462B2 (en) 2003-08-21 2007-07-17 Grandis, Inc. Magnetoresistive element having reduced spin transfer induced noise
US6985385B2 (en) 2003-08-26 2006-01-10 Grandis, Inc. Magnetic memory element utilizing spin transfer switching and storing multiple bits
US6943040B2 (en) 2003-08-28 2005-09-13 Headway Technologes, Inc. Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling
US7009266B2 (en) 2003-08-29 2006-03-07 Applied Spintronics Technology, Inc. Method and system for providing a magnetic element including passivation structures
US7161829B2 (en) 2003-09-19 2007-01-09 Grandis, Inc. Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
US7116530B2 (en) 2003-09-30 2006-10-03 Hitachi Global Storage Technologies Netherlands B.V. Thin differential spin valve sensor having both pinned and self pinned structures for reduced difficulty in AFM layer polarity setting
JP2005116923A (ja) 2003-10-10 2005-04-28 Hitachi Ltd スピントルクを用いた不揮発性磁気メモリセルおよびこれを用いた磁気ランダムアクセスメモリ
US7282755B2 (en) 2003-11-14 2007-10-16 Grandis, Inc. Stress assisted current driven switching for magnetic memory applications
US7009877B1 (en) 2003-11-14 2006-03-07 Grandis, Inc. Three-terminal magnetostatically coupled spin transfer-based MRAM cell
JP2005150482A (ja) * 2003-11-18 2005-06-09 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
US7093347B2 (en) 2003-12-05 2006-08-22 Seagate Technology Llc Method of making a current-perpendicular to the plane (CPP) magnetoresistive (MR) sensor
US7138648B2 (en) 2003-12-17 2006-11-21 Palo Alto Research Center Incorporated Ultraviolet group III-nitride-based quantum well laser diodes
US20050136600A1 (en) 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
US7072209B2 (en) 2003-12-29 2006-07-04 Micron Technology, Inc. Magnetic memory having synthetic antiferromagnetic pinned layer
US20050150535A1 (en) 2004-01-13 2005-07-14 Nanocoolers, Inc. Method for forming a thin-film thermoelectric device including a phonon-blocking thermal conductor
US20050150537A1 (en) 2004-01-13 2005-07-14 Nanocoolers Inc. Thermoelectric devices
US7105372B2 (en) 2004-01-20 2006-09-12 Headway Technologies, Inc. Magnetic tunneling junction film structure with process determined in-plane magnetic anisotropy
US7110287B2 (en) 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer
US7242045B2 (en) 2004-02-19 2007-07-10 Grandis, Inc. Spin transfer magnetic element having low saturation magnetization free layers
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US6992359B2 (en) 2004-02-26 2006-01-31 Grandis, Inc. Spin transfer magnetic element with free layers having high perpendicular anisotropy and in-plane equilibrium magnetization
US6965522B2 (en) 2004-03-17 2005-11-15 Macronix International Co., Ltd. Tunneling diode magnetic junction memory
WO2005101378A1 (en) 2004-04-02 2005-10-27 Tdk Corporation Composite free layer for stabilizing magnetoresistive head
WO2005101373A1 (en) 2004-04-02 2005-10-27 Tdk Corporation Laminated free layer for stabilizing magnetoresistive head having low magnetostriction
US7233039B2 (en) 2004-04-21 2007-06-19 Grandis, Inc. Spin transfer magnetic elements with spin depolarization layers
US7274057B2 (en) 2004-04-26 2007-09-25 International Business Machines Corporation Techniques for spin-flop switching with offset field
US7057921B2 (en) * 2004-05-11 2006-06-06 Grandis, Inc. Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same
US20050269612A1 (en) 2004-05-11 2005-12-08 Integrated Magnetoelectronics Solid-state component based on current-induced magnetization reversal
US7088609B2 (en) 2004-05-11 2006-08-08 Grandis, Inc. Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same
JP4377751B2 (ja) 2004-06-10 2009-12-02 シャープ株式会社 クロスポイント構造の半導体記憶装置及びその製造方法
US7098494B2 (en) 2004-06-16 2006-08-29 Grandis, Inc. Re-configurable logic elements using heat assisted magnetic tunneling elements
US7411235B2 (en) 2004-06-16 2008-08-12 Kabushiki Kaisha Toshiba Spin transistor, programmable logic circuit, and magnetic memory
US7067330B2 (en) 2004-07-16 2006-06-27 Headway Technologies, Inc. Magnetic random access memory array with thin conduction electrical read and write lines
US7576956B2 (en) 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7098495B2 (en) 2004-07-26 2006-08-29 Freescale Semiconducor, Inc. Magnetic tunnel junction element structures and methods for fabricating the same
DE102004041894B3 (de) 2004-08-30 2006-03-09 Infineon Technologies Ag Speicherbauelement (CBRAM) mit Speicherzellen auf der Basis eines in seinem Widerstandswert änderbaren aktiven Festkörper-Elektrolytmaterials und Herstellungsverfahren dafür
JP2006080241A (ja) * 2004-09-08 2006-03-23 Univ Nagoya 固体メモリ装置
US7369427B2 (en) 2004-09-09 2008-05-06 Grandis, Inc. Magnetic elements with spin engineered insertion layers and MRAM devices using the magnetic elements
US7336525B2 (en) 2004-10-18 2008-02-26 Kabushiki Kaisha Toshiba Nonvolatile memory for logic circuits
US7126202B2 (en) 2004-11-16 2006-10-24 Grandis, Inc. Spin scattering and heat assisted switching of a magnetic element
US7241631B2 (en) 2004-12-29 2007-07-10 Grandis, Inc. MTJ elements with high spin polarization layers configured for spin-transfer switching and spintronics devices using the magnetic elements
US20060171197A1 (en) 2005-01-31 2006-08-03 Ulrich Klostermann Magnetoresistive memory element having a stacked structure
US7173848B2 (en) 2005-02-01 2007-02-06 Meglabs, Inc. Magnetic random access memory with memory cell stacks having more than two magnetic states
US7099186B1 (en) 2005-02-10 2006-08-29 Infineon Technologies Ag Double-decker MRAM cells with scissor-state angled reference layer magnetic anisotropy and method for fabricating
KR100632953B1 (ko) 2005-03-07 2006-10-12 삼성전자주식회사 메모리 소자, 상기 메모리 소자를 위한 메모리 배열 및 상기 메모리 배열의 구동 방법
US7285836B2 (en) 2005-03-09 2007-10-23 Maglabs, Inc. Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing
US7241632B2 (en) 2005-04-14 2007-07-10 Headway Technologies, Inc. MTJ read head with sidewall spacers
JP2006294191A (ja) 2005-04-14 2006-10-26 Toshiba Corp 磁気ランダムアクセスメモリのデータ読み出し方法
US7230265B2 (en) 2005-05-16 2007-06-12 International Business Machines Corporation Spin-polarization devices using rare earth-transition metal alloys
US7289356B2 (en) 2005-06-08 2007-10-30 Grandis, Inc. Fast magnetic memory devices utilizing spin transfer and magnetic elements used therein
US7518835B2 (en) 2005-07-01 2009-04-14 Grandis, Inc. Magnetic elements having a bias field and magnetic memory devices using the magnetic elements
JP4504273B2 (ja) 2005-07-06 2010-07-14 株式会社東芝 磁気抵抗効果素子および磁気メモリ
KR100725380B1 (ko) 2005-07-28 2007-06-07 삼성전자주식회사 반도체 메모리 장치의 전압 발생 회로, 이를 포함하는반도체 메모리 장치 및 반도체 메모리 장치의 전압 발생방법
US7230845B1 (en) 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7489541B2 (en) 2005-08-23 2009-02-10 Grandis, Inc. Spin-transfer switching magnetic elements using ferrimagnets and magnetic memories using the magnetic elements
US7224601B2 (en) 2005-08-25 2007-05-29 Grandis Inc. Oscillating-field assisted spin torque switching of a magnetic tunnel junction memory element
US7272035B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US7272034B1 (en) 2005-08-31 2007-09-18 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells
US20070054450A1 (en) 2005-09-07 2007-03-08 Magic Technologies, Inc. Structure and fabrication of an MRAM cell
US7532442B2 (en) 2005-09-19 2009-05-12 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive (MR) elements having pinning layers formed from permanent magnetic material
US7973349B2 (en) 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
JP2007095734A (ja) * 2005-09-27 2007-04-12 Toshiba Corp 磁気記録装置
US7807492B2 (en) 2005-09-28 2010-10-05 Northern Lights Semiconductor Corp. Magnetoresistive random access memory with improved layout design and process thereof
US7403418B2 (en) 2005-09-30 2008-07-22 Silicon Storage Technology, Inc. Word line voltage boosting circuit and a memory array incorporating same
US20070085068A1 (en) 2005-10-14 2007-04-19 Dmytro Apalkov Spin transfer based magnetic storage cells utilizing granular free layers and magnetic memories using such cells
JP4444241B2 (ja) 2005-10-19 2010-03-31 株式会社東芝 磁気抵抗効果素子、磁気ランダムアクセスメモリ、電子カード及び電子装置
US7286395B2 (en) 2005-10-27 2007-10-23 Grandis, Inc. Current driven switched magnetic storage cells having improved read and write margins and magnetic memories using such cells
US20070096229A1 (en) 2005-10-28 2007-05-03 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory device
US7411815B2 (en) 2005-11-14 2008-08-12 Infineon Technologies Ag Memory write circuit
US7187577B1 (en) 2005-11-23 2007-03-06 Grandis, Inc. Method and system for providing current balanced writing for memory cells and magnetic devices
US7485503B2 (en) 2005-11-30 2009-02-03 Intel Corporation Dielectric interface for group III-V semiconductor device
US7880249B2 (en) 2005-11-30 2011-02-01 Magic Technologies, Inc. Spacer structure in MRAM cell and method of its fabrication
US20070132049A1 (en) 2005-12-12 2007-06-14 Stipe Barry C Unipolar resistance random access memory (RRAM) device and vertically stacked architecture
US7430135B2 (en) 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US7466583B2 (en) 2006-01-13 2008-12-16 Magic Technologies, Inc. MRAM with split read-write cell structures
US7515457B2 (en) 2006-02-24 2009-04-07 Grandis, Inc. Current driven memory cells having enhanced current and enhanced current symmetry
US8183652B2 (en) 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US7732881B2 (en) 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US20070246787A1 (en) 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US7826174B2 (en) 2006-03-31 2010-11-02 Ricoh Company, Ltd. Information recording method and apparatus using plasmonic transmission along line of ferromagnetic nano-particles with reproducing method using fade-in memory
US20070241392A1 (en) 2006-04-14 2007-10-18 Hsin-Chang Lin Non-volatile flash memory structure and method for operating the same
US7345912B2 (en) 2006-06-01 2008-03-18 Grandis, Inc. Method and system for providing a magnetic memory structure utilizing spin transfer
JP2008028362A (ja) * 2006-06-22 2008-02-07 Toshiba Corp 磁気抵抗素子及び磁気メモリ
US7379327B2 (en) 2006-06-26 2008-05-27 Grandis, Inc. Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells having enhanced read and write margins
US7502249B1 (en) 2006-07-17 2009-03-10 Grandis, Inc. Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
JP4385156B2 (ja) 2006-07-27 2009-12-16 独立行政法人産業技術総合研究所 Ccp−cpp型巨大磁気抵抗素子
JP2008047739A (ja) * 2006-08-17 2008-02-28 Nippon Hoso Kyokai <Nhk> 磁気ランダムアクセスメモリ
US7851840B2 (en) 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
JP5206414B2 (ja) 2006-10-16 2013-06-12 日本電気株式会社 磁気メモリセルおよび磁気ランダムアクセスメモリ
US7572645B2 (en) 2006-11-15 2009-08-11 Everspin Technologies, Inc. Magnetic tunnel junction structure and method
US7864569B2 (en) 2006-12-01 2011-01-04 Macronix International Co., Ltd. Structure of magnetic random access memory using spin-torque transfer writing
US7598579B2 (en) 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
US20090218645A1 (en) 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US7480173B2 (en) 2007-03-13 2009-01-20 Magic Technologies, Inc. Spin transfer MRAM device with novel magnetic free layer
US8058697B2 (en) 2007-03-26 2011-11-15 Magic Technologies, Inc. Spin transfer MRAM device with novel magnetic synthetic free layer
US7738287B2 (en) 2007-03-27 2010-06-15 Grandis, Inc. Method and system for providing field biased magnetic memory devices
US7728622B2 (en) 2007-03-29 2010-06-01 Qualcomm Incorporated Software programmable logic using spin transfer torque magnetoresistive random access memory
US7486551B1 (en) 2007-04-03 2009-02-03 Grandis, Inc. Method and system for providing domain wall assisted switching of magnetic elements and magnetic memories using such magnetic elements
US7605437B2 (en) 2007-04-18 2009-10-20 Everspin Technologies, Inc. Spin-transfer MRAM structure and methods
US7782661B2 (en) 2007-04-24 2010-08-24 Magic Technologies, Inc. Boosted gate voltage programming for spin-torque MRAM array
US7919826B2 (en) 2007-04-24 2011-04-05 Kabushiki Kaisha Toshiba Magnetoresistive element and manufacturing method thereof
JP2008277542A (ja) 2007-04-27 2008-11-13 Toshiba Corp 磁気ランダムアクセスメモリ及びその製造方法
US7539047B2 (en) 2007-05-08 2009-05-26 Honeywell International, Inc. MRAM cell with multiple storage elements
US7486552B2 (en) 2007-05-21 2009-02-03 Grandis, Inc. Method and system for providing a spin transfer device with improved switching characteristics
US7573736B2 (en) 2007-05-22 2009-08-11 Taiwan Semiconductor Manufacturing Company Spin torque transfer MRAM device
WO2008154519A1 (en) 2007-06-12 2008-12-18 Grandis, Inc. Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled
US7742328B2 (en) 2007-06-15 2010-06-22 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors
US7750421B2 (en) 2007-07-23 2010-07-06 Magic Technologies, Inc. High performance MTJ element for STT-RAM and method for making the same
US7764536B2 (en) 2007-08-07 2010-07-27 Grandis, Inc. Method and system for providing a sense amplifier and drive circuit for spin transfer torque magnetic random access memory
US7982275B2 (en) 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US20090185410A1 (en) 2008-01-22 2009-07-23 Grandis, Inc. Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices
US8233247B2 (en) 2008-04-11 2012-07-31 Hitachi Global Storage Technologies Netherlands B.V. Scissoring-type current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with damped free layer structures
US20090302403A1 (en) 2008-06-05 2009-12-10 Nguyen Paul P Spin torque transfer magnetic memory cell
US7881095B2 (en) 2008-08-08 2011-02-01 Seagate Technology Llc Asymmetric write current compensation using gate overdrive for resistive sense memory cells
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8536669B2 (en) 2009-01-13 2013-09-17 Qualcomm Incorporated Magnetic element with storage layer materials
US7999338B2 (en) * 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1714402A (zh) * 2002-02-08 2005-12-28 索尼株式会社 使用铁磁隧道结器件的磁存储装置
CN101093721A (zh) * 2006-06-22 2007-12-26 株式会社东芝 磁阻元件和磁性存储器

Also Published As

Publication number Publication date
CN102473450A (zh) 2012-05-23
US20110260274A1 (en) 2011-10-27
US8519498B2 (en) 2013-08-27
US7999338B2 (en) 2011-08-16
US20110006385A1 (en) 2011-01-13
US20130001720A1 (en) 2013-01-03
KR20120042961A (ko) 2012-05-03
US8294227B2 (en) 2012-10-23
WO2011008615A1 (en) 2011-01-20
JP2012533189A (ja) 2012-12-20
KR101323786B1 (ko) 2013-10-31

Similar Documents

Publication Publication Date Title
CN102473450B (zh) 具有带垂直磁化取向的基准层的磁性叠层
US9419210B2 (en) Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
KR101893908B1 (ko) 하이브리드 자기 터널 접합 소자의 제조 방법 및 시스템
US8963222B2 (en) Spin hall effect magnetic-RAM
US9093637B2 (en) MRAM synthetic anitferomagnet structure
KR102198032B1 (ko) 개선된 분극 강화막 및 높은 pma막을 갖는 자기 접합들을 제공하기 위한 방법 및 시스템
CN102414756B (zh) 具有辅助层的磁性叠层
CN102467954B (zh) 切换向平面外的磁性隧道结单元的方法
US20100148167A1 (en) Magnetic tunnel junction stack
CN102804279B (zh) 用于提供反向双磁隧道结元件的方法和系统
US8710602B2 (en) Method and system for providing magnetic junctions having improved characteristics
CN102396031A (zh) 具有垂直各向异性的st-ram单元
US8169810B2 (en) Magnetic memory with asymmetric energy barrier
KR20140115246A (ko) 삽입층을 갖는 자기 접합 및 이를 이용한 자기 메모리
CN110366756A (zh) 磁存储器、半导体装置、电子设备和读取磁存储器的方法
KR20150009664A (ko) 수직 자기 이방성을 갖는 mtj 구조 및 이를 포함하는 자성소자
KR20150009665A (ko) 수직 자기 이방성을 갖는 강자성 다층박막, 이를 포함하는 mtj 구조 및 자성소자
JP2013168667A (ja) 磁気抵抗効果素子及びmram

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20180708