CN102386233A - 半导体器件 - Google Patents

半导体器件 Download PDF

Info

Publication number
CN102386233A
CN102386233A CN2011102534885A CN201110253488A CN102386233A CN 102386233 A CN102386233 A CN 102386233A CN 2011102534885 A CN2011102534885 A CN 2011102534885A CN 201110253488 A CN201110253488 A CN 201110253488A CN 102386233 A CN102386233 A CN 102386233A
Authority
CN
China
Prior art keywords
diffusion layer
gate electrode
conductivity type
groove
conductive type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102534885A
Other languages
English (en)
Other versions
CN102386233B (zh
Inventor
桥谷雅幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN102386233A publication Critical patent/CN102386233A/zh
Application granted granted Critical
Publication of CN102386233B publication Critical patent/CN102386233B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • H01L29/0865Disposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66666Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种半导体器件,能够提高具有沟槽结构的纵向MOS晶体管的驱动能力。与从具有沟槽结构的纵向MOS晶体管的沟槽引出的栅电极相邻地形成厚氧化膜,通过去除该厚氧化膜而形成比周围平面低的面和倾斜面。由此,能够在用于形成源高浓度扩散层的离子注入中在栅电极正下方形成高浓度扩散层,能够解决在元件的一部分中无法得到电流的问题,提高驱动能力。

Description

半导体器件
技术领域
本发明涉及一种具有纵向MOS晶体管的半导体器件及其制造方法,该纵向MOS晶体管具有沟槽(trench)结构。
背景技术
近年来,在电压调节器、电压检测器所代表的电源IC中,伴随装载的移动设备的小型化和多样化,具有芯片尺寸缩小和输出电流增加的倾向。由于在构成该电源IC的元件中用于流过电流的驱动元件占据芯片面积的大部分,因此,至今为止,都是通过采用具有沟槽结构的MOS晶体管,来谋求面积的缩小和有效的沟道宽度的增大带来的高驱动能力化。
到目前为止,例如专利文献1或者专利文献2中介绍了具有沟槽结构的半导体器件及其制造方法。
根据图3说明以往的具有沟槽结构的纵向MOS晶体管的制造方法。图3是基于制造方法的步骤顺序示意性截面图流程。
首先,如图3(A)所示,在第2导电型嵌入层21上形成有第1导电型阱扩散层22(称作主体),在其表面上层叠热氧化膜23和堆积氧化膜24、抗蚀膜25,并被部分地蚀刻。
接着,如图3(B)所示,去除抗蚀膜25之后,使用硬掩模通过蚀刻形成沟槽26,该硬掩模是由上述构图后的热氧化膜23和堆积氧化膜24层叠而成的。接下来,如图3(C)所示,去除用作硬掩模的热氧化膜23和堆积氧化膜24之后,为了改善沟槽26的形状,通过热氧化形成牺牲氧化膜27。
然后,如图3(D)所示,去除牺牲氧化膜27之后,通过热氧化形成栅绝缘膜28,进而堆积包含杂质的掺杂多晶硅膜29。
接着,如图3(E)所示,使用抗蚀膜31进行构图,通过对掺杂多晶硅膜29进行过蚀刻而得到栅电极30。
然后,如图3(F)所示,对抗蚀膜32进行构图并添加用于形成源极区域的第2导电型的杂质,接下来,如图3(G)所示,重新对抗蚀膜33进行构图并添加用于形成衬底电位区域的第1导电型的杂质。
然后,如图3(H)所示,通过热处理形成第2导电型源高浓度扩散层34和第1导电型衬底电位高浓度扩散层35。接下来,在堆积层间绝缘膜36之后,形成接触孔37,嵌入钨等的栓塞,形成源衬底电位布线39和栅电位布线38,其中,该接触孔37用于取得栅电极30、第2导电型源高浓度扩散层34和第1导电型衬底电位高浓度扩散层35的电连接。
从而,完成具有形成在第1导电型阱扩散层22上的沟槽26,且具有纵向动作的沟槽结构的纵向MOS晶体管的元件结构。
专利文献
专利文献1:日本特开平10-32331号公报
专利文献2:日本特开2008-34794号公报
但是,在上述以往的半导体器件的制造方法中存在以下问题,即,在从具有沟槽结构的纵向MOS晶体管的沟槽引出的栅电极上设置接触孔时,由于不在栅电极正下方的衬底上形成高浓度扩散层,因此,在元件的一部分中无法得到电流。
发明内容
本发明是一种着眼于以上问题的半导体器件的制造方法。与从具有沟槽结构的纵向MOS晶体管的沟槽引出的栅电极相邻地形成厚氧化膜,通过去除该厚氧化膜而形成具有比周围平面低的面和倾斜面的阶梯部。从而能够在用于形成源高浓度扩散层的离子注入中,在栅电极正下方形成高浓度扩散层,能够解决在元件的一部分中无法得到电流的问题,进一步提高驱动能力。
为了解决上述问题,本发明的半导体器件及其制造方法采取下述的结构。
(1)一种半导体器件,其特征在于,在纵向MOS晶体管中,通过与从沟槽引出的栅电极相邻地形成厚氧化膜并去除,从而形成具有比周围平面低的面和倾斜面的阶梯部,在栅电极正下方形成第2导电型源高浓度扩散层,其中,该纵向MOS晶体管在第1导电型半导体衬底中具有第2导电型嵌入层,在第1导电型外延生长层的一部分上形成第1导电型阱扩散层而作为半导体衬底。该纵向MOS晶体管具有沟槽结构,该沟槽结构是隔着栅绝缘膜将栅电极嵌入以从半导体衬底表面到达第2导电型嵌入层的深度形成的沟槽而成的。该纵向MOS晶体管具有第2导电型源高浓度扩散层和第1导电型衬底电位扩散层,它们形成在第1导电型阱扩散层的沟槽结构以外其余的岛部的上部。该纵向MOS晶体管在表面露出部具有接触孔和布线,它们用于经由栅绝缘膜从沟槽结构引出栅电极而取得电连接。该纵向MOS晶体管具有布线,其同时接触形成在岛部的上部的第2导电型源高浓度扩散层和第1导电型衬底电位扩散层。由此,将沟槽结构侧面作为沟道进行动作。
(2)一种所述半导体器件的制造方法,其特征在于,所述厚氧化膜是通过STI(浅沟槽隔离)形成的嵌入氧化膜。
(3)一种所述半导体器件的制造方法,其特征在于,形成在栅电极正下方的第2导电型源高浓度扩散层的形成方法是自旋注入法或者阶梯注入法。
(4)在所述半导体器件中,其特征在于,第1导电型阱扩散层中的沟槽结构的形状为格子状或者条纹状。
如上所述,本发明提供一种半导体器件及其制造方法,与从具有沟槽结构的纵向MOS晶体管的沟槽引出的栅电极相邻地形成厚氧化膜,通过去除该厚氧化膜而形成具有比周围平面低的面和倾斜面的阶梯部。从而能够在用于形成源高浓度扩散层的离子注入中,在栅电极正下方形成高浓度扩散层,能够解决在元件的一部分中无法得到电流的问题,提高驱动能力。同时,能够解决想要在栅电极正下方形成源高浓度扩散层时产生的、由于缩小栅电极的一部分的宽度而引起的AC动作时栅电极阻抗增加的问题。
附图说明
图1是示出本发明的实施例的示意性截面图的步骤流程。
图2是示出本发明的特征的实施例的特征性俯视图。
图3是示出以往的制造方法的示意性截面图流程。
图4是示出本发明的特征的步骤截面图流程的补充图。
标号说明
1、21:第2导电型嵌入层;2、22:第1导电型阱扩散层;3:厚氧化膜;4、8、19、23:热氧化膜;5、20:堆积氧化膜;6、12、13、14:抗蚀膜;25、31、32、33:抗蚀膜;7、26:沟槽;9、28:栅绝缘膜;10、29:掺杂多晶硅膜;11、30:栅电极;15、34:第2导电型源高浓度扩散层;16、35:第1导电型衬底电位高浓度扩散层;17、36:层间绝缘膜;18、37:接触孔;19、39:源衬底电位布线;20、38:栅电位布线;51:第1导电型半导体衬底;52:第1导电型外延生长层。
具体实施方式
以下,根据附图说明用于实施本发明的方式。图1是示出本发明的半导体器件的制造方法的实施例的示意性截面图的流程。另外,在示意性截面图的流程中,使用图2(B)所示的通过本发明的半导体器件的制造方法得到的元件俯视图的B-B′截面图。
图1(A)示出用于沟槽蚀刻的硬掩模的形成结束后的状态的衬底。衬底通过如下方式形成,即,作为第1导电型半导体衬底51,在例如作为P型半导体衬底添加有硼的电阻率为20Ωcm~30Ωcm的杂质浓度的半导体衬底上,部分地形成扩散例如具有1×1016atoms/cm3~1×1018atoms/cm3左右的浓度的例如砷、磷、锑等杂质而得到的N型嵌入层,作为第2导电型嵌入层1,使第1导电型外延生长层52生长成例如几μm~几十μm的厚度,进而在具有沟槽结构的区域,通过例如1×1012atoms/cm2~1×1013atoms/cm2的剂量,离子注入例如硼或者二氟化硼等的杂质,从而形成第1导电型阱扩散层2(称作主体)。例如,如果上述第2导电型嵌入层1是P型嵌入层,则以使硼等杂质成为上述浓度的方式进行杂质添加。半导体衬底51、嵌入层1以及外延生长层52的导电型与本发明的本质没有关系。另外,在以下的图中省略了半导体衬底51和第1导电型的外延生长层52。
进而,在具有沟槽结构的区域的第1导电型阱扩散层2的表面的一部分上,具有例如具有几百nm膜厚的元件分离用的STI(浅沟槽隔离:Shallow Trench Isolation)这样的嵌入氧化膜,作为本发明的一个特征的厚氧化膜3。进而,为了形成沟槽蚀刻用的硬掩模,使用抗蚀膜6的图案,通过蚀刻去除层叠而成的膜厚例如为几十nm~几百nm的热氧化膜4和膜厚例如为几百nm~1μm的堆积氧化膜5,从而在第1导电型阱扩散层2的表面设置开口部。此时的硬掩模如果能够通过之后的沟槽蚀刻而得到足够的耐性,则也可以是热氧化膜或者堆积氧化膜之一的单层结构。进而,这里的硬掩模能够使用抗蚀膜或者氮化膜,不存在问题。
接着,如图1(B)所示,在去除抗蚀膜6之后,使用由上述构图后的热氧化膜4和堆积氧化膜5层叠而成的硬掩模通过蚀刻形成沟槽7。关于沟槽7的深度,优选到达第2导电型嵌入层1。进而,关于沟槽7的平面形状,如图2(B)和图2(C)所示,可以形成为格子状,也可以形成为条纹状。因此,没有形成沟槽的区域是在俯视图中孤立成岛状的岛状区域,由沟槽包围周围。
接下来,如图1(C)所示,在去除用作硬掩模的热氧化膜4和堆积氧化膜5之后,为了改善沟槽7的形状,通过例如膜厚为几nm~几十nm的热氧化而形成牺牲氧化膜8。之后,如图1(D)所示,与去除牺牲氧化膜8相同地去除厚氧化膜3。此时,作为本发明的特征之一的去除厚氧化膜3后的区域,成为比周围平面低且形成有倾斜面的阶梯部。接下来,形成栅绝缘膜9、例如膜厚为几百
Figure BDA0000087440140000051
~几千
Figure BDA0000087440140000052
的热氧化膜。进而,优选将掺杂多晶硅膜10堆积成膜厚为100nm~500nm,在沟槽中填充多晶硅膜10。这里的掺杂多晶硅膜10的导电型例如可以是第1导电型,也可以是第2导电型。
接着,如图1(E)所示,使用抗蚀膜12进行构图,对掺杂多晶硅膜10进行过蚀刻而得到栅电极11。此时,以不在作为本发明的特征之一的去除厚氧化膜3后的区域覆盖栅电极11的方式进行构图,形成为栅电极11的端部位于厚氧化膜3的端部。进而,在此使用元件俯视图的图2进行说明。图2(A)、(B)、(C)都是以具有沟槽结构的纵向MOS晶体管为基本单元,以至少几个百~几千个的量级集成在芯片内。
在图2(A)、(B)、(C)中,符号C表示的是用于与栅电极11取得电连接的接触孔。图2(A)示出一种形成第2导电型源高浓度扩散层15的制造方法,该第2导电型源高浓度扩散层15是通过在图中A部分缩小宽度来对栅电极11进行构图,之后如图2(A)中的D所示地形成的。此时,虽然在元件的一部分中无法得到电流的问题基本得到解决,但是担心栅电极的阻抗增加导致的AC动作时的特性恶化。在为了降低阻抗而扩大栅电极11的A部分的宽度时,由于不在栅电极11的A部分正下方形成第2导电型源高浓度扩散层15,因此,在元件的一部分中无法得到电流。
与此相对,在图2(B)、(C)的俯视图所示的本发明的半导体器件中,通过与栅电极11相邻地形成阶梯部,从而能够在栅电极11正下方形成第2导电型源高浓度扩散层15,能够解决在元件的一部分中无法得到电流的问题而提高驱动能力,并且不会缩小栅电极11的一部分的宽度,该阶梯部具有通过去除上述厚氧化膜3而形成的比周围平面低的面和倾斜面。
然后,如图1(F)所示,对抗蚀膜13进行构图并添加用于形成源极区域的第2导电型的杂质。通过离子注入法进行杂质添加。此时,如图4(A)所示,使半导体衬底相对于注入的离子倾斜,并通过自旋注入或者阶梯注入来进行,从而从阶梯部离子注入到栅电极11的下表面,该阶梯部具有作为本发明的特征的通过去除厚氧化膜3而形成的比周围平面低的面和倾斜面。
进而,如图1(G)所示,在去除抗蚀膜13之后重新对抗蚀膜14进行构图,添加用于形成衬底电位区域的第1导电型的杂质。使用离子注入法进行杂质添加。在图1(F)和图1(G)的离子注入中,如果导电型为N型,则优选采用1×1015atoms/cm2~1×1016atoms/cm2的剂量,离子注入例如砷或者磷。另一方面,如果导电型为P型,则优选采用1×1015atoms/cm2~1×1016atoms/cm2的剂量,离子注入硼或者二氟化硼。
进而,能够在与不具有沟槽7的同一芯片内的MOS晶体管相同的条件下,同时向这里的源极区域和衬底电位区域添加杂质。
然后,如图1(H)所示,通过在800℃~1000℃下进行几小时的热处理,从而在栅电极11正下方形成第2导电型源高浓度扩散层15。同时,与上述热处理相同地形成第1导电型衬底电位高浓度扩散层16。由此,完成具有形成在第1导电型阱扩散层2上的沟槽7,且具有纵向动作的沟槽结构的纵向MOS晶体管的元件结构。
接下来,按照例如膜厚为几百nm~1μm的方式层叠层间绝缘膜17之后,形成接触孔18,嵌入钨等的栓塞,形成源衬底电位布线19和栅电位布线20,该接触孔18用于取得栅电极11、第2导电型源高浓度扩散层15和第1导电型衬底电位高浓度扩散层16的电连接。
综上所述,本发明提供一种半导体器件及其制造方法,其特征在于,通过去除厚氧化膜而形成具有比周围平面低的面和倾斜面的阶梯部,能够通过离子注入法在栅电极正下方形成源高浓度扩散层,因此,能够解决在元件的一部分中无法得到电流的问题,提高驱动能力,其中,该厚氧化膜与从沟槽引出的栅电极相邻地形成。

Claims (4)

1.一种半导体器件,该半导体器件具有:
第1导电型半导体衬底;
第1导电型外延生长层,其夹着第2导电型嵌入层设置在所述第1导电型半导体衬底上;
第1导电型阱扩散层,其形成在所述第2导电型嵌入层上方的所述第1导电型外延生长层的一部分上;
格子状或者条纹状的相互连接的沟槽,其形成为从所述第1导电型阱扩散层到达所述第2导电型嵌入层的深度;
栅绝缘膜,其形成在所述沟槽的表面;
多晶硅膜的栅电极,其隔着所述栅绝缘膜填充所述沟槽;
第一第2导电型源高浓度扩散层和第1导电型衬底电位扩散层,它们形成在第1导电型阱扩散层的不是所述沟槽的岛状区域的表面的上部;
接触孔,其沿着所述栅电极的一边配置在所述栅电极上;以及
第二第2导电型源高浓度扩散层,其设置在阶梯部上,该阶梯部沿着所述栅电极的所述一边设置在所述第1导电型阱扩散层的与所述栅电极的所述一边相接的表面,具有比周围平面低的面和倾斜面。
2.一种半导体器件,该半导体器件具有:
衬底,其在第1导电型半导体衬底中具有第2导电型嵌入层,在第1导电型外延生长层的一部分上形成有第1导电型阱扩散层;
沟槽结构,其是隔着栅绝缘膜将栅电极嵌入沟槽而形成的,该沟槽形成为从所述衬底的表面到达第2导电型嵌入层的深度;
第2导电型源高浓度扩散层和第1导电型衬底电位扩散层,它们形成在第1导电型阱扩散层的沟槽结构以外其余的岛状区域的上部;
接触孔,其配置在表面露出部上,被设置成经由所述栅绝缘膜从所述沟槽结构引出所述栅电极而取得电连接;
布线,其同时接触形成在所述岛状区域的上部的所述第2导电型源高浓度扩散层和所述第1导电型衬底电位扩散层;以及
所述栅电极正下方的第2导电型源高浓度扩散层,其形成在阶梯部上,该阶梯部与从所述沟槽引出的所述栅电极相邻地配置,具有比周围平面低的面和倾斜面。
3.根据权利要求1所述的半导体器件,其中,通过蚀刻去除厚氧化膜而形成所述阶梯部,该厚氧化膜是基于浅沟槽隔离的嵌入氧化膜。
4.根据权利要求1所述的半导体器件,其中,通过基于自旋注入法或者阶梯注入法的离子注入,进行形成在所述栅电极正下方的所述第二第2导电型源高浓度扩散层的形成。
CN201110253488.5A 2010-08-30 2011-08-30 半导体器件 Expired - Fee Related CN102386233B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-192634 2010-08-30
JP2010192634A JP5616720B2 (ja) 2010-08-30 2010-08-30 半導体装置およびその製造方法

Publications (2)

Publication Number Publication Date
CN102386233A true CN102386233A (zh) 2012-03-21
CN102386233B CN102386233B (zh) 2015-11-11

Family

ID=45695989

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110253488.5A Expired - Fee Related CN102386233B (zh) 2010-08-30 2011-08-30 半导体器件

Country Status (5)

Country Link
US (1) US8643093B2 (zh)
JP (1) JP5616720B2 (zh)
KR (1) KR101798241B1 (zh)
CN (1) CN102386233B (zh)
TW (1) TWI525816B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715262A (zh) * 2012-09-28 2014-04-09 精工电子有限公司 半导体装置
CN105374864A (zh) * 2014-08-20 2016-03-02 新唐科技股份有限公司 绝缘栅极双极性晶体管及其制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5616720B2 (ja) * 2010-08-30 2014-10-29 セイコーインスツル株式会社 半導体装置およびその製造方法
KR102046987B1 (ko) 2013-08-30 2019-11-20 삼성전자 주식회사 반도체 소자 및 그 제조방법
JP2018117070A (ja) * 2017-01-19 2018-07-26 エイブリック株式会社 半導体装置及びその製造方法
CN109461769B (zh) * 2018-12-10 2024-03-12 无锡紫光微电子有限公司 一种沟槽栅igbt器件结构及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223705A (ja) * 1999-01-29 2000-08-11 Nissan Motor Co Ltd 半導体装置
CN1294415A (zh) * 1999-10-18 2001-05-09 精工电子有限公司 垂直mos晶体管
JP2003174167A (ja) * 2001-12-06 2003-06-20 Hitachi Ltd 半導体装置及びその製造方法
US20060014349A1 (en) * 2003-03-05 2006-01-19 Williams Richard K Planarized and silicided trench contact
CN1841776A (zh) * 2005-03-30 2006-10-04 三洋电机株式会社 半导体装置
US20070120194A1 (en) * 2003-08-04 2007-05-31 Renesas Technology Corporation Semiconductor device and a method of manufacturing the same
US20090045457A1 (en) * 2006-11-16 2009-02-19 Alpha & Omega Semiconductor, Ltd. Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS)

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2876670B2 (ja) 1989-12-26 1999-03-31 日本電気株式会社 不揮発性半導体記憶装置の製造方法
JP3092834B2 (ja) 1992-01-17 2000-09-25 三菱電機株式会社 素子分離のための半導体装置およびその製造方法
JP2917922B2 (ja) 1996-07-15 1999-07-12 日本電気株式会社 半導体装置及びその製造方法
US6413822B2 (en) * 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
US6617226B1 (en) * 1999-06-30 2003-09-09 Kabushiki Kaisha Toshiba Semiconductor device and method for manufacturing the same
KR100381953B1 (ko) * 2001-03-16 2003-04-26 삼성전자주식회사 노어형 플래시 메모리 소자의 제조방법
JP4176734B2 (ja) * 2004-05-14 2008-11-05 株式会社東芝 トレンチmosfet
JP5984282B2 (ja) 2006-04-27 2016-09-06 富士電機株式会社 縦型トレンチ型絶縁ゲートmos半導体装置
JP2008085278A (ja) * 2006-09-29 2008-04-10 Ricoh Co Ltd 半導体装置及びその製造方法
US8217419B2 (en) * 2007-06-15 2012-07-10 Rohm Co., Ltd. Semiconductor device
JP5767430B2 (ja) 2007-08-10 2015-08-19 ローム株式会社 半導体装置および半導体装置の製造方法
JP5386120B2 (ja) 2008-07-15 2014-01-15 ローム株式会社 半導体装置および半導体装置の製造方法
JP2010147219A (ja) * 2008-12-18 2010-07-01 Renesas Electronics Corp 半導体装置及びその製造方法
WO2011148427A1 (en) * 2010-05-27 2011-12-01 Fuji Electric Co., Ltd. Mos-driven semiconductor device and method for manufacturing mos-driven semiconductor device
DE102010030768B4 (de) * 2010-06-30 2012-05-31 GLOBALFOUNDRIES Dresden Module One Ltd. Liability Company & Co. KG Herstellverfahren für ein Halbleiterbauelement als Transistor mit eingebettetem Si/Ge-Material mit geringerem Abstand und besserer Gleichmäßigkeit und Transistor
JP5616720B2 (ja) * 2010-08-30 2014-10-29 セイコーインスツル株式会社 半導体装置およびその製造方法
JP6031681B2 (ja) * 2011-04-20 2016-11-24 パナソニックIpマネジメント株式会社 縦型ゲート半導体装置およびその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223705A (ja) * 1999-01-29 2000-08-11 Nissan Motor Co Ltd 半導体装置
CN1294415A (zh) * 1999-10-18 2001-05-09 精工电子有限公司 垂直mos晶体管
JP2003174167A (ja) * 2001-12-06 2003-06-20 Hitachi Ltd 半導体装置及びその製造方法
US20060014349A1 (en) * 2003-03-05 2006-01-19 Williams Richard K Planarized and silicided trench contact
US20070120194A1 (en) * 2003-08-04 2007-05-31 Renesas Technology Corporation Semiconductor device and a method of manufacturing the same
CN1841776A (zh) * 2005-03-30 2006-10-04 三洋电机株式会社 半导体装置
US20090045457A1 (en) * 2006-11-16 2009-02-19 Alpha & Omega Semiconductor, Ltd. Optimized configurations to integrate steering diodes in low capacitance transient voltage suppressor (TVS)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103715262A (zh) * 2012-09-28 2014-04-09 精工电子有限公司 半导体装置
CN103715262B (zh) * 2012-09-28 2017-12-26 精工半导体有限公司 半导体装置
CN105374864A (zh) * 2014-08-20 2016-03-02 新唐科技股份有限公司 绝缘栅极双极性晶体管及其制造方法

Also Published As

Publication number Publication date
KR20120021240A (ko) 2012-03-08
JP5616720B2 (ja) 2014-10-29
JP2012049466A (ja) 2012-03-08
CN102386233B (zh) 2015-11-11
TWI525816B (zh) 2016-03-11
US8643093B2 (en) 2014-02-04
TW201214708A (en) 2012-04-01
KR101798241B1 (ko) 2017-11-15
US20120049275A1 (en) 2012-03-01

Similar Documents

Publication Publication Date Title
TWI441336B (zh) 帶有減小的擊穿電壓的金屬氧化物半導體場效應管裝置
US7906388B2 (en) Semiconductor device and method for manufacture
US8507977B2 (en) Semiconductor device and manufacturing method of the same
KR101787352B1 (ko) 매립된 절연 층 및 그를 통해 연장하는 수직 도전 구조를 포함하는 전자 디바이스 및 이를 형성하는 공정
CN104752492B (zh) 用于制造半导体器件的方法和半导体器件
CN107710418A (zh) 多屏蔽沟槽栅极场效应晶体管
US20240222498A1 (en) Semiconductor device including trench gate structure and buried shielding region and method of manufacturing
US8178409B2 (en) Semiconductor device with alternately arranged P-type and N-type thin semiconductor layers and method for manufacturing the same
CN103855222B (zh) 半导体器件和制造半导体器件的方法
CN106571394B (zh) 功率器件及其制造方法
CN102386233B (zh) 半导体器件
TW591752B (en) Symmetric trench MOSFET device and method of making same
CN102983164A (zh) 半导体器件及其制造方法
CN105321824A (zh) 半导体装置的制造方法
JP2010225831A (ja) 半導体装置の製造方法
US20090166795A1 (en) Schottky diode of semiconductor device and method for manufacturing the same
JP2010238725A (ja) 半導体装置及びその製造方法
US8143680B2 (en) Gated diode with non-planar source region
CN103178115B (zh) 半导体装置及其制造方法
CN102446973A (zh) 通过低温处理形成的umos半导体器件
US6800917B2 (en) Bladed silicon-on-insulator semiconductor devices and method of making
US7923330B2 (en) Method for manufacturing a semiconductor device
KR100940643B1 (ko) 반도체 소자의 제조방법
CN103022087A (zh) 一种半导体晶片及其制造方法
US20110084332A1 (en) Trench termination structure

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160323

Address after: Chiba County, Japan

Patentee after: DynaFine Semiconductor Co.,Ltd.

Address before: Chiba County, Japan

Patentee before: Seiko Instruments Inc.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: DynaFine Semiconductor Co.,Ltd.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20151111

Termination date: 20210830