CN102277560A - 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法 - Google Patents

化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法 Download PDF

Info

Publication number
CN102277560A
CN102277560A CN2011102428496A CN201110242849A CN102277560A CN 102277560 A CN102277560 A CN 102277560A CN 2011102428496 A CN2011102428496 A CN 2011102428496A CN 201110242849 A CN201110242849 A CN 201110242849A CN 102277560 A CN102277560 A CN 102277560A
Authority
CN
China
Prior art keywords
graphite electrode
gas
graphite
stage
graphite electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011102428496A
Other languages
English (en)
Other versions
CN102277560B (zh
Inventor
徐锋
廖志钦
杨晓智
刘明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANTONG YANGZI CARBON CO Ltd
Nanjing University of Science and Technology
Original Assignee
NANTONG YANGZI CARBON CO Ltd
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANTONG YANGZI CARBON CO Ltd, Nanjing University of Science and Technology filed Critical NANTONG YANGZI CARBON CO Ltd
Priority to CN 201110242849 priority Critical patent/CN102277560B/zh
Publication of CN102277560A publication Critical patent/CN102277560A/zh
Application granted granted Critical
Publication of CN102277560B publication Critical patent/CN102277560B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本发明公开了一种化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,对石墨电极进行表面预处理;将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空;加热反应炉中的石墨电极,通入CH4气体,在石墨电极表面形成一层热解碳;保持腔体温度不变,通入载体气H2,经由沸腾的SiCl4液体,载体气H2带出的SiCl4气体在石墨电极表面与CH4气体反应并沉积;沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在炉内原位热处理,热处理结束后将石墨电极随炉冷却至室温,得到具有SiC/C梯度功能表面保护层的石墨电极。本发明具有更好的渗透性,能够渗入石墨电极基体表面任何细微的孔隙,对于表面空隙的抗氧化,具有良好的效果。

Description

化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法
技术领域
本发明属于石墨电极表面处理和表面改性技术,特别是一种化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法。
背景技术
重眼电极而引起电极的脱落和掉块。石墨电极是电弧炉不可缺少的导电消耗品,在电炉冶炼技术中具有重要作用。冶金企业使用的石墨电极具有高温性能良好、热膨胀系数低、重量轻、易加工等特点。但是在钢铁冶炼的高温和吹氧环境中,石墨电极易与氧发生氧化反应,产生消耗。石墨电极的消耗所带来的成本占炼钢总成本的1/3左右,而其主要消耗机制即为氧化。因此提高石墨电极抗氧化性能对于钢铁行业的成本控制至关重要。目前,工业上普遍采用的石墨电极抗氧化技术包括两类主要技术方法:一是涂层法,二是浸渍法。中国专利200510047757.7公开了一种用于减少石墨电极消耗的保护涂料及制作方法,以特别设计的保护涂料涂覆于石墨电极表面,干燥后使用。尽管涂料的热膨胀系数与石墨电极接近,但是由于氧化物保护涂层与石墨电极结合力有限,且本身的裂纹扩展不可避免,长期使用仍将带来涂层的剥落。而中国专利200410010023.7为代表的石墨电极抗氧化方法则是石墨电极浸渍处理法,该方法将石墨电极高压浸渍于氧化物盐溶液或者树脂类溶液中,实现对表面和微孔的有效保护。利用该方法可以实现石墨电极在较低温度区间的抗氧化保护,但是在高温区间,特别是在1000oC以上乃至1500oC以上的工作温度区间,浸渍液的分解会导致其保护效果会随着温度上升显著下降。
石墨材料表面的碳化硅涂层在石墨电极的工作温度区间具有良好的抗氧化性能,是石墨基体最重要和有效的防氧化屏障。为了提高表面保护层与石墨电极基体的结合度,使得抗氧化防护层具有优异的抗热冲击性能,一种有效的方法是将涂层与石墨电极基体的结合界面构造成热应力缓和型的梯度功能材料表面。梯度功能材料是一种组成和性能呈梯度变化的材料,其特殊结构和结合度使其具有优异的抗热冲击性能。SiC/C梯度涂层是一种典型的热应力缓和型梯度功能材料。
化学气相沉积法是一种高效的碳化硅涂层制备方法,其气相沉积过程对于形状复杂和带内表面的部件具有极佳的适应能力,能方便地控制涂层的成分和微细结构,有利于对涂层/基体界面的结构或成分梯度进行控制。
发明内容
针对石墨电极在冶炼过程中出现的电极端头挥发、电极侧壁氧化等表面氧化消耗,本发明的目的在于提供一种提高石墨电极抗氧化性的方法,它利用化学气相沉积在石墨电极表面沉积SiC/C梯度复合涂层,实现表面抗氧化涂层与石墨基体之间的有机结合,有效地提高石墨电极在高温使用过程中的抗氧化性。
实现本发明目的的技术解决方案为:一种化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,步骤如下:
步骤1,对石墨电极进行表面预处理,包括表面抛光、清洗和干燥;
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空;
步骤3,加热反应炉中的石墨电极,通入CH4气体,在石墨电极表面形成一层热解碳;
步骤4,保持腔体温度不变,通入载体气H2,经由沸腾的SiCl4液体,载体气H2带出的SiCl4气体在石墨电极表面与CH4气体反应并沉积;
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在炉内原位热处理,热处理结束后将石墨电极随炉冷却至室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
本发明与现有技术相比,其显著优点:(1)与现有石墨电极表面处理技术中涂层法和浸渍法相比较,本发明的化学气相沉积法具有更好的渗透性,能够渗入石墨电极基体表面任何细微的孔隙,对于表面空隙的抗氧化,具有良好的效果。(2)本发明中,通过控制沉积工艺参数可以得到具有梯度结构、性能呈梯度变化的热应力缓和型梯度功能涂层,该类涂层的成分由石墨基体的C向SiC呈梯度渐变,与石墨电极基体有机结合,涂层结合力强。(3)本发明中的表面SiC涂层在石墨电极工作温度范围内能够有效提高石墨电极的抗氧化性能。(4)本发明中的涂层在沉积结束后经过热处理,表面涂层与石墨基体的互扩散进一步增强了涂层的成分梯度及其与石墨基体的结合度。(5)根据本发明得到的SiC/C梯度表面涂层的石墨电极,其抗氧化性在生产环境中进行了实际的评估,结果表明,与未处理的石墨电极相比,相同条件下的吨钢消耗量至少降低了20%以上,其抗氧化效果达到乃至大幅超越浸渍法、涂层法的保护效果。根据本发明对石墨电极进行表面处理后,石墨电极的高温抗氧化性可更好地满足大型炼钢电炉等应用的严苛要求。
下面结合附图对本发明作进一步详细描述。
附图说明
附图为本发明在石墨电极表面化学气相沉积SiC/C梯度表面涂层的方法示意图。
具体实施方式
结合附图,本发明化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,包括以下步骤:
步骤1,对石墨电极12进行表面预处理,包括表面抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极12固定在化学气相沉积设备水冷式反应炉8内的支架上,炉内抽真空至1Pa以下。
步骤3,利用工作线圈9对反应炉中的石墨电极12进行加热,当温度到达1400~1500℃之间时,从2通入CH4气体,使得反应炉内气压维持在1~2kPa之间,并在该条件下维持1~3h,使之在石墨电极表面形成一层热解碳。
步骤4,从1通入载体气H2,H2经由沸腾的SiCl4液体4,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积。载体气H2带出的SiCl4气体与CH4气体反应沉积通过载体气H2的流量3来控制;在反应沉积全过程中,载体气H2与CH4的流量之比由0线性增加至30~50,总压强由CH4气体的1~2kPa线性增加至4~8kPa,总沉积时间在3~15h;或者反应沉积也可以阶段式进行,即H2与CH4的流量之比由0分阶段逐步递增至30~50,总压强由CH4气体的1~2kPa分阶段逐步递增至4~8kPa,总沉积时间在3~15h,总的反应沉积过程包括三个及以上沉积时间相等、流量比等值递增的阶段。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1400~1500℃在炉内原位热处理1~3h;热处理结束后,将石墨电极随炉冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
本发明中得到SiC的基本反应原理为:                                               
Figure 2011102428496100002DEST_PATH_IMAGE001
,即以SiCl4和CH4为反应物,以H2为载体气,生成SiC和HCl气体(排出);而本发明梯度涂层中的C通过CH4的高温裂解实现。
结合附图,图中H2气源1、CH4气源2分别为H2载体气体和CH4气体,其压力通过减压阀调控,流量通过各自的流量计3调控,从H2气源1中出来的H2载体气经过流量计3后,进入恒温槽5保温下的SiCl4液体容器4。此时恒温槽5的温度设定在SiCl4液体的沸点温度(57.6oC)。H2载体气以鼓泡的形式通过SiCl4容器4,将SiCl4气体带出。为确保SiCl4不凝结,用带式加热器6缠绕在从SiCl4容器4到沉积腔体的气路上,使得气路中的温度高于SiCl4的沸点。SiCl4和H2载体气的混合气压由压力调整器7来进行调整。混合气体和CH4气源2中出来的CH4气体进一步混合后,进入高温的水冷式反应炉8,在石墨电极12的侧面高温反应沉积。其高温由工作线圈9加热实现,压力和温度分别由压力传感器10和光学高温计11来控制,而反应产生的气体经由压力调整器7后由排气阀13排出。
实施例1
选择直径450mm、长1500mm的超高功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.2Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1400℃时,通入CH4气体,使得反应炉内气压维持在1kPa,并在该条件下维持2h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积时间为9小时,在反应沉积9小时全过程中,载体气H2与CH4的流量之比由0线性增加至40;总压强由CH4气体的1kPa线性增加至6kPa。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1400℃在炉内原位热处理2h;热处理结束后,将石墨电极随炉冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的超高功率石墨电极与未处理过的超高功率石墨电极、浸渍法处理过的超高功率石墨电极、以及涂层法处理过的超高功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低。其吨钢电极消耗量由未处理超高功率石墨电极的2.4kg、浸渍超高功率石墨电极的1.9kg、涂层法处理过的超高功率石墨电极2kg,降低至1.7kg;与未处理超高功率石墨电极相比降低约29%,超过浸渍法和涂层法的效果。
实施例2
选择直径450mm、长1500mm的超高功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.5Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1450℃时,通入CH4气体,使得反应炉内气压维持在1.5kPa,并在该条件下维持3h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积时间为3小时,在反应沉积3小时全过程中,载体气H2与CH4的流量之比由0线性增加至30;总压强由CH4气体的1kPa线性增加至4kPa。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1450℃在炉内原位热处理3h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的超高功率石墨电极与未处理过的超高功率石墨电极、浸渍法处理过的超高功率石墨电极、以及涂层法处理过的超高功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低,吨钢电极消耗量可降低至1.9kg,与未处理超高功率石墨电极相比降低约21%,达到乃至超过浸渍法、涂层法的抗氧化保护效果。
实施例3
选择直径450mm、长1500mm的超高功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.8Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1500℃时,通入CH4气体,使得反应炉内气压维持在2kPa,并在该条件下维持1h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积时间为15小时,在反应沉积15小时全过程中,载体气H2与CH4的流量之比由0线性增加至50;总压强由CH4气体的1kPa线性增加至8kPa。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1500℃在炉内原位热处理1h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的超高功率石墨电极与未处理过的超高功率石墨电极、浸渍法处理过的超高功率石墨电极、以及涂层法处理过的超高功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低,吨钢电极消耗量可降低至1.2kg,与未处理超高功率石墨电极相比降低约50%,与浸渍法、涂层法相比也有大幅降低。
实施例4
选择直径400mm、长1200mm的普通功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.3Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1425℃时,通入CH4气体,使得反应炉内气压维持在2kPa,并在该条件下维持3h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积时间为12小时,在反应沉积12小时全过程中,载体气H2与CH4的流量之比由0线性增加至45;总压强由CH4气体的1kPa线性增加至7kPa。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1425℃在炉内原位热处理2h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的普通功率石墨电极与未处理过的普通功率石墨电极、浸渍法处理过的普通功率石墨电极、以及涂层法处理过的普通功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低。其吨钢电极消耗量由未处理普通功率石墨电极的4.2kg、浸渍法处理的普通功率石墨电极的2.9kg、涂层法处理的普通功率石墨电极3.1kg,降低至2.2kg;与未处理普通功率石墨电极相比,吨钢电极消耗量降低约48%,超过浸渍法和涂层法的效果。
实施例5
选择直径400mm、长1200mm的普通功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.75Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1475℃时,通入CH4气体,使得反应炉内气压维持在1.75kPa,并在该条件下维持2.5h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积总时间为6小时,分三个沉积时间相等、流量比等值逐步递增的阶段:阶段一、H2与CH4的流量之比为10,总压强为3kPa,沉积时间为2小时;阶段二、H2与CH4的流量之比为20,总压强为4.5kPa,沉积时间为2小时;阶段三、H2与CH4的流量之比为30,总压强为6kPa,沉积时间为2小时。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1475℃在炉内原位热处理2.5h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的普通功率石墨电极与未处理过的普通功率石墨电极、浸渍法处理过的普通功率石墨电极、以及涂层法处理过的普通功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低。其吨钢电极消耗量可降至2.5kg,与未处理普通功率石墨电极相比,降低约40%,超过浸渍法和涂层法的效果。
实施例6
选择直径500mm、长1200mm的高功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.1Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1500℃时,通入CH4气体,使得反应炉内气压维持在1kPa,并在该条件下维持3h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积总时间为15小时,分五个沉积时间相等、流量比等值逐步递增的阶段:阶段一、H2与CH4的流量之比为10,总压强为4kPa,沉积时间为3小时;阶段二、H2与CH4的流量之比为20,总压强为5kPa,沉积时间为3小时;阶段三、H2与CH4的流量之比为30,总压强为6kPa,沉积时间为3小时;阶段四、H2与CH4的流量之比为40,总压强为7kPa,沉积时间为3小时;阶段五、H2与CH4的流量之比为50,总压强为8kPa,沉积时间为3小时。
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1500℃在炉内原位热处理3h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的高功率石墨电极与未处理过的高功率石墨电极、浸渍法处理过的高功率石墨电极、以及涂层法处理过的高功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低。其吨钢电极消耗量由未处理高功率石墨电极的2.7kg、浸渍法处理的高功率石墨电极的1.9kg、涂层法处理的高功率石墨电极2.1kg,降低至1.1kg;与未处理高功率石墨电极相比,吨钢电极消耗量降低约59%,超过浸渍法和涂层法的效果。
实施例7
选择直径500mm、长1200mm的高功率石墨电极为基体,对石墨电极按以下工艺进行处理:
步骤1,对石墨电极进行表面清理、抛光、清洗和干燥。
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空至0.4Pa。
步骤3,对反应炉中的石墨电极进行加热,当温度到达1450℃时,通入CH4气体,使得反应炉内气压维持在2kPa,并在该条件下维持2h,使之在石墨电极表面形成一层热解碳。
步骤4,通入载体气H2,H2经由沸腾的SiCl4液体,将SiCl4带出,并与CH4气体在石墨电极表面反应沉积,反应沉积总时间为8小时,分四个沉积时间相等、流量比等值逐步递增的阶段:阶段一、H2与CH4的流量之比为10,总压强为3kPa,沉积时间为2小时;阶段二、H2与CH4的流量之比为20,总压强为4kPa,沉积时间为2小时;阶段三、H2与CH4的流量之比为30,总压强为5kPa,沉积时间为2小时;阶段四、H2与CH4的流量之比为40,总压强为6kPa,沉积时间为2小时。 
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在1450℃在炉内原位热处理3h;热处理结束后,将石墨电极缓慢冷却到室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
经过该工艺处理过的高功率石墨电极与未处理过的高功率石墨电极、浸渍法处理过的高功率石墨电极、以及涂层法处理过的高功率石墨电极相比,在1000℃至1500℃的工作温区,氧化消耗有了显著的降低。其吨钢电极消耗量降低至1.6kg;与未处理高功率石墨电极相比,吨钢电极消耗量降低约37%,超过浸渍法和涂层法的效果。

Claims (6)

1.一种化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于步骤如下:
步骤1,对石墨电极进行表面预处理,包括表面抛光、清洗和干燥;
步骤2,将表面预处理后的石墨电极固定在化学气相沉积设备水冷式反应炉内的支架上,炉内抽真空;
步骤3,加热反应炉中的石墨电极,通入CH4气体,在石墨电极表面形成一层热解碳;
步骤4,保持腔体温度不变,通入载体气H2,经由沸腾的SiCl4液体,载体气H2带出的SiCl4气体在石墨电极表面与CH4气体反应并沉积;
步骤5,沉积结束后,保持腔体温度不变,保持H2气氛,将石墨电极在炉内原位热处理,热处理结束后将石墨电极随炉冷却至室温,得到具有SiC/C梯度功能表面保护层的石墨电极。
2.根据权利要求1所述的化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于:步骤2中炉内抽真空后真空度达到1Pa以下。
3.根据权利要求1所述的化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于:步骤3中石墨电极加热后达到1400~1500℃,通入CH4气体后气压达到1~2kPa之间,并维持1~3h。
4.根据权利要求1所述的化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于:步骤4中载体气H2带出的SiCl4气体与CH4气体反应沉积通过载体气H2的流量来控制;在反应沉积全过程中,载体气H2与CH4的流量之比由0线性增加至30~50,总压强由CH4气体的1~2kPa线性增加至4~8kPa,总沉积时间在3~15h;反应沉积也可以阶段式进行,即H2与CH4的流量之比由0分阶段逐步增加至30~50,总压强由CH4气体的1~2kPa分阶段逐步增加至4~8kPa,总沉积时间在3~15h,总的反应沉积过程包括三个及以上沉积时间相等、流量比等值递增的阶段。
5.根据权利要求1所述的化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于:步骤4中载体气H2带出的SiCl4气体与CH4气体反应沉积通过载体气H2的流量来控制;反应沉积阶段式进行,即H2与CH4的流量之比由0分阶段逐步增加至30~50,总压强由CH4气体的1~2kPa分阶段逐步增加至4~8kPa,总沉积时间在3~15h,总的反应沉积过程包括三个以上沉积时间相等、流量比等值递增的阶段。
6.根据权利要求1所述的化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法,其特征在于:步骤5中石墨电极原位热处理的温度为1400~1500℃,时间为1~3h。
CN 201110242849 2011-08-23 2011-08-23 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法 Expired - Fee Related CN102277560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110242849 CN102277560B (zh) 2011-08-23 2011-08-23 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110242849 CN102277560B (zh) 2011-08-23 2011-08-23 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法

Publications (2)

Publication Number Publication Date
CN102277560A true CN102277560A (zh) 2011-12-14
CN102277560B CN102277560B (zh) 2013-07-17

Family

ID=45103285

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110242849 Expired - Fee Related CN102277560B (zh) 2011-08-23 2011-08-23 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法

Country Status (1)

Country Link
CN (1) CN102277560B (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046034A (zh) * 2013-01-10 2013-04-17 湖南南方搏云新材料有限责任公司 一种直拉硅单晶用石墨导流筒基体强化及表面涂层方法
CN103739311A (zh) * 2013-09-11 2014-04-23 太仓派欧技术咨询服务有限公司 一种(Nb/C/SiC)n多层抗氧化涂层及其制备方法
CN104119108A (zh) * 2014-08-08 2014-10-29 苏州宏久航空防热材料科技有限公司 一种复合陶瓷石墨电极的制备方法
CN104177127A (zh) * 2014-08-08 2014-12-03 苏州宏久航空防热材料科技有限公司 一种纳米石墨电极
CN104177128A (zh) * 2014-08-08 2014-12-03 苏州宏久航空防热材料科技有限公司 一种复合陶瓷石墨电极
CN105669253A (zh) * 2016-01-14 2016-06-15 上海大学 低温低压制备氮化硼涂层的方法
CN107207373A (zh) * 2015-01-29 2017-09-26 揖斐电株式会社 SiC被覆碳复合材料
CN107513698A (zh) * 2017-09-08 2017-12-26 武汉理工大学 一种立方碳化硅涂层的制备方法
CN108977795A (zh) * 2017-05-31 2018-12-11 中国科学院金属研究所 一种电耦合化学气相沉积法制备碳化硅涂层的装置和方法
CN110144567A (zh) * 2019-06-06 2019-08-20 中国科学院金属研究所 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法
CN111087229A (zh) * 2019-12-05 2020-05-01 宜兴市耐火材料有限公司 一种纳米材料改性的高抗氧化长水口及其制备工艺
CN111172555A (zh) * 2020-01-22 2020-05-19 核工业第八研究所 一种制氟用碳阳极板
CN112391675A (zh) * 2020-11-16 2021-02-23 南京工业大学 一种具有过渡层结构的半导体石墨基座盘及其制备方法
CN116410021A (zh) * 2023-04-17 2023-07-11 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法
CN117328036A (zh) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964924A (en) * 1975-07-11 1976-06-22 Pfizer Inc. Protective coating for graphite electrodes
CN101775590A (zh) * 2010-01-08 2010-07-14 刘锡潜 一种具有保护涂层的石墨基座及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964924A (en) * 1975-07-11 1976-06-22 Pfizer Inc. Protective coating for graphite electrodes
CN101775590A (zh) * 2010-01-08 2010-07-14 刘锡潜 一种具有保护涂层的石墨基座及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
YOOTAEK KIM ET AL.,: "Effect of source gas composition on the synthesis of Sic/C functionally fradient materials by CVD", 《MATERIALS LETTERS》 *
曾桂生等: "石墨电极高温抗氧化技术研究现状", 《南方金属》 *
王新华等: "SiC/C薄膜的制备及其力学性能", 《复合材料学报》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103046034A (zh) * 2013-01-10 2013-04-17 湖南南方搏云新材料有限责任公司 一种直拉硅单晶用石墨导流筒基体强化及表面涂层方法
CN103739311A (zh) * 2013-09-11 2014-04-23 太仓派欧技术咨询服务有限公司 一种(Nb/C/SiC)n多层抗氧化涂层及其制备方法
CN103739311B (zh) * 2013-09-11 2015-05-06 太仓派欧技术咨询服务有限公司 一种(Nb/C/SiC)n多层抗氧化涂层及其制备方法
CN104119108A (zh) * 2014-08-08 2014-10-29 苏州宏久航空防热材料科技有限公司 一种复合陶瓷石墨电极的制备方法
CN104177127A (zh) * 2014-08-08 2014-12-03 苏州宏久航空防热材料科技有限公司 一种纳米石墨电极
CN104177128A (zh) * 2014-08-08 2014-12-03 苏州宏久航空防热材料科技有限公司 一种复合陶瓷石墨电极
CN104119108B (zh) * 2014-08-08 2015-12-30 苏州宏久航空防热材料科技有限公司 一种复合陶瓷石墨电极的制备方法
CN107207373A (zh) * 2015-01-29 2017-09-26 揖斐电株式会社 SiC被覆碳复合材料
CN105669253A (zh) * 2016-01-14 2016-06-15 上海大学 低温低压制备氮化硼涂层的方法
CN108977795A (zh) * 2017-05-31 2018-12-11 中国科学院金属研究所 一种电耦合化学气相沉积法制备碳化硅涂层的装置和方法
CN108977795B (zh) * 2017-05-31 2021-01-12 中国科学院金属研究所 一种电耦合化学气相沉积法制备碳化硅涂层的装置和方法
CN107513698B (zh) * 2017-09-08 2019-03-08 武汉理工大学 一种立方碳化硅涂层的制备方法
CN107513698A (zh) * 2017-09-08 2017-12-26 武汉理工大学 一种立方碳化硅涂层的制备方法
CN110144567A (zh) * 2019-06-06 2019-08-20 中国科学院金属研究所 采用化学气相沉积工艺在硅基体上制备超厚碳化硅梯度涂层的方法
CN111087229A (zh) * 2019-12-05 2020-05-01 宜兴市耐火材料有限公司 一种纳米材料改性的高抗氧化长水口及其制备工艺
CN111172555B (zh) * 2020-01-22 2022-11-08 核工业第八研究所 一种制氟用碳阳极板
CN111172555A (zh) * 2020-01-22 2020-05-19 核工业第八研究所 一种制氟用碳阳极板
CN112391675A (zh) * 2020-11-16 2021-02-23 南京工业大学 一种具有过渡层结构的半导体石墨基座盘及其制备方法
CN112391675B (zh) * 2020-11-16 2021-08-31 南京工业大学 一种具有过渡层结构的半导体用石墨基座盘及其制备方法
CN116410021A (zh) * 2023-04-17 2023-07-11 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法
CN116410021B (zh) * 2023-04-17 2024-04-19 北京理工大学 一种在陶瓷基复合材料表面制备防护涂层的方法
CN117328036A (zh) * 2023-12-01 2024-01-02 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺
CN117328036B (zh) * 2023-12-01 2024-04-05 成都超纯应用材料有限责任公司 一种石墨碳化硅复合材料及石墨表面碳化硅的沉积工艺

Also Published As

Publication number Publication date
CN102277560B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
CN102277560B (zh) 化学气相沉积SiC/C梯度表面涂层提高石墨电极抗氧化性的方法
CN111848201B (zh) 一种具有碳化硅/硅涂层的炭/炭坩埚及其制备方法
CN103866319B (zh) 锆合金表面制备镍基耐热耐磨涂层的激光熔覆方法
CN102534469B (zh) 一种高温抗氧化涂层钼材料的制备方法
CN105541412A (zh) 一种C/C复合材料表面SiC纳米线增韧SiC陶瓷涂层的制备方法
CN103993474B (zh) 一种硬质碳纤维毡表面碳化硅涂层的制备方法
CN109942317A (zh) 碳/碳复合材料表面莫来石晶须-莫来石/钇铝硅酸盐复合抗氧化涂层及制备方法
CN110803941B (zh) 一种碳-碳化硅复合材料表面抗氧化涂层及其制备方法
CN105506579A (zh) 一种石墨烯包覆碳化硅纳米线的制备方法
CN101139217A (zh) 一种C/SiC复合材料表面抗氧化涂层及其制备方法
CN106431498A (zh) 一种制备石墨/碳化硅致密复合材料的方法
CN103265331A (zh) 一种适用于石墨材料的C/SiC/Na2Si03抗氧化复合涂层及其制备方法
CN101215187A (zh) 碳化硅纳米线的制备方法
CN103045983A (zh) 一种表面含钨涂层的碳纤维基高温隔热材料的制备方法
CN107630184B (zh) 一种在铌或铌合金表面制备硅化铌涂层的方法
RU2011105001A (ru) Способ нанесения покрытия и антикоррозионное покрытие для компонентов турбин
CN102851635B (zh) Mo-C-N-Si-Nb梯度涂层材料及其制备方法
CN102497689A (zh) 一种石墨电极表面改性提高抗氧化性能的方法
CN105712746A (zh) 一种C/C复合材料表面制备抗热震性能优越的Si-Mo-Cr涂层的方法
CN107675120A (zh) 一种在钼或钼合金表面制备硅化钼涂层的方法
CN106966699B (zh) 一种高温复合材料全温度段热匹配涂层的制备方法
CN102703852B (zh) 一种两相钛合金表面复合无氢氧碳共渗的方法
CN101905979A (zh) 一种C/C-SiC复合材料自愈合抗氧化涂层的制备方法
CN107190261B (zh) 一种高温抗氧化铌合金表面复合硅化物涂层及制备方法
CN107904658A (zh) 一种还原炉内壁复合涂层制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130717

Termination date: 20180823

CF01 Termination of patent right due to non-payment of annual fee