CN106966699B - 一种高温复合材料全温度段热匹配涂层的制备方法 - Google Patents

一种高温复合材料全温度段热匹配涂层的制备方法 Download PDF

Info

Publication number
CN106966699B
CN106966699B CN201610390188.4A CN201610390188A CN106966699B CN 106966699 B CN106966699 B CN 106966699B CN 201610390188 A CN201610390188 A CN 201610390188A CN 106966699 B CN106966699 B CN 106966699B
Authority
CN
China
Prior art keywords
temperature
composite material
powder
furnace
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610390188.4A
Other languages
English (en)
Other versions
CN106966699A (zh
Inventor
罗瑞盈
俞月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN201610390188.4A priority Critical patent/CN106966699B/zh
Publication of CN106966699A publication Critical patent/CN106966699A/zh
Application granted granted Critical
Publication of CN106966699B publication Critical patent/CN106966699B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58064Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides
    • C04B35/58078Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on refractory borides based on zirconium or hafnium borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3821Boron carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Composite Materials (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Ceramic Products (AREA)

Abstract

本发明提供了一种高温复合材料全温度段热匹配涂层的制备方法,包括:制备自密封粘接层步骤;制备热匹配功能层步骤和制备高温阻挡层步骤。本发明引入与高温复合材料基体物理及化学相容性好的具有机械互锁的自密封粘接层,再采用负热膨胀效应优异的材料作为热匹配功能层,采用耐高温烧蚀的材料作为高温阻挡层,使其与高温复合材料的热膨胀系数从室温到高温完全匹配,制备出了高温复合材料全温度段热匹配涂层,该涂层制备成本低,制备工艺简单,是一种能够适用于全温度段的高温涂层,能够使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命。

Description

一种高温复合材料全温度段热匹配涂层的制备方法
技术领域
本发明涉及无机功能涂层材料技术领域,特别是涉及一种高温复合材料全温度段热匹配涂层的制备方法。
背景技术
高温复合材料是一种新型高温材料,具有模量高、比强度大、热导率高、抗热震性好、耐高温、耐磨擦磨损等一系列优异性能,使得其成为最有发展前途的航空高温部件之一。然而在高温有氧环境下,高温复合材料会发生氧化,大大地限制了高温复合材料的应用范围,因此抗氧化成为高温复合材料在高温有氧气氛下应用的前提条件。而目前所制备的防护涂层无法满足全温度段长寿命的要求,大多数高温抗氧化涂层体系只能在1300℃以上实现有效的氧化防护。由于涂层与基体之间的热膨胀系数存在差异,因此在涂层制备过程中从高温降低到室温时会产生微裂纹,且不易愈合,这样就会给氧气的渗透提供通道,加快氧化进程,降低涂层使用寿命。因此,如何使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命成为本领域亟需解决的技术问题。
发明内容
为此,本发明的一个目的在于提出一种制备成本较低,制备工艺较简单的新型全温度段热匹配涂层的制备方法。
本发明提供了一种高温复合材料全温度段热匹配涂层的制备方法,包括:
制备自密封粘接层:
对高温复合材料基体进行表面打磨,将表面打磨后的高温复合材料基体放入清洗液中超声清洗,清洗后的所述高温复合材料基体放入烘箱中在90-100℃条件下烘干2-6h;将一定质量配比的硅粉、氧化钽粉、碳化硼粉、碳化硅粉混合,球磨8-10h,制得所述自密封粘结层的混合粉料,将所述混合粉料放入石墨坩埚内,将所述高温复合材料基体包埋于所述混合粉料中;将所述石墨坩埚放入高温炉中,抽真空并通入保护气体,以20-30℃/min的升温速率将所述高温炉的炉温升至1700-2000℃,保温3-6h,随后以20-30℃/min的降温速率将所述高温炉的炉温降至200-400℃,而后关闭所述高温炉的电源使所述石墨坩埚自然降温至室温;将处理后的所述高温复合材料基体取出,放入清洗液中超声清洗,清洗后放入烘箱中在90-100℃条件下烘干2-6h,在所述高温复合材料基体的表面制备出自密封粘接层。
制备热匹配功能层:
将表面有自密封粘接层的高温复合材料基体放入化学气相沉积炉中,抽真空至-0.1Mpa;将所述化学气相沉积炉升温至900-1100℃,通入硅酸乙酯和高纯氩气的混合气体,炉内压力为500Pa-1000Pa,气流量为20-40sccm,沉积时间为25-40h,得到热匹配功能层。
制备高温阻挡层:
取出一定的质量配比的硅溶胶、氧化钇粉、硼化锆粉和氧化锆粉,将取出的氧化钇粉、硼化锆粉和氧化锆粉混合,球磨5-10h,再与取出的硅溶胶混合,搅拌6-10h,得到高温阻挡层的硅溶胶料浆;将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中,抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干;将表面浸有高温阻挡层的料浆的高温复合材料基体放入高温炉中,抽真空,通入保护气体,以10-20℃/min的升温速率将炉温升至1400-1800℃,保温1-2h,随后以20-40℃/min的降温速率将炉温降至200-400℃,关闭所述高温炉的电源,自然降温至室温,制备出高温阻挡层。
本发明引入与高温复合材料基体物理及化学相容性好的具有机械互锁的自密封粘接层,再采用负热膨胀效应优异的材料作为热匹配功能层,采用耐高温烧蚀的材料作为高温阻挡层,使其与高温复合材料的热膨胀系数从室温到高温完全匹配,制备出了高温复合材料全温度段热匹配涂层,该涂层制备成本低,制备工艺简单,是一种能够适用于全温度段的高温涂层,能够使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命。
进一步地,所述清洗液为无水乙醇。
进一步地,所述制备自密封粘接层步骤中硅粉、氧化钽粉、碳化硼粉和碳化硅粉的质量配比如下:35-50wt%硅粉,15-30wt%氧化钽粉,20-30wt%碳化硼粉,10-20wt%碳化硅粉。
进一步地,所述保护气体为高纯氩气。
进一步地,所述制备热匹配功能层步骤中硅酸乙酯和高纯氩气的摩尔比的范围为1-10。
进一步地,所述制备高温阻挡层步骤中硅溶胶、氧化钇粉、硼化锆粉和氧化锆粉的质量配比如下:20-40wt%硅溶胶,10-20wt%氧化钇粉,20-30wt%硼化锆粉和20-40wt%氧化锆粉。
进一步地,所述制备高温阻挡层步骤中,将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干的操作重复4-6次。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
图1示出了本发明实施例的一种高温复合材料全温度段热匹配涂层的制备方法的流程图;
图2示出了本发明实施例制备的一种高温复合材料全温度段热匹配涂层的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1所示,本发明提供了一种高温复合材料全温度段热匹配涂层的制备方法,包括:
步骤S1,制备自密封粘结层;
对高温复合材料基体进行表面打磨,将表面打磨后的高温复合材料基体放入无水乙醇中超声清洗,清洗后的所述高温复合材料基体放入烘箱中在100℃条件下烘干2h。此处使用无水乙醇作为清洗溶剂,由于乙醇易挥发,容易去除,同时乙醇比较便宜,可以降低制备成本。
将质量配比为50wt%的硅粉,20wt%的氧化钽粉,20wt%的碳化硼粉,10wt%的碳化硅粉混合,球磨10h,制得所述自密封粘结层的混合粉料,将所述混合粉料放入石墨坩埚内,将所述高温复合材料基体包埋于所述混合粉料中。
将所述石墨坩埚放入高温炉中,抽真空并通入保护气体,以30℃/min的升温速率将所述高温炉的炉温升至2000℃,保温4h,随后以30℃/min的降温速率将所述高温炉的炉温降至400℃,而后关闭所述高温炉的电源使所述石墨坩埚自然降温至室温。
将处理后的所述高温复合材料基体取出,放入清洗液中超声清洗,清洗后放入烘箱中在100℃条件下烘干6h,在所述高温复合材料基体的表面制备出自密封粘接层。
步骤S2,制备热匹配功能层;
将表面有自密封粘接层的高温复合材料基体放入化学气相沉积炉中,抽真空至-0.1Mpa。
将所述化学气相沉积炉升温至1100℃,通入硅酸乙酯和高纯氩气的摩尔比为5的混合气体,炉内压力为1000Pa,气流量为40sccm,沉积时间为40h,得到热匹配功能层。
步骤S3,制备高温阻挡层;
取出质量配比为40wt%的硅溶胶,10wt%的氧化钇粉,30wt%的硼化锆粉和20wt%的氧化锆粉,将取出的氧化钇粉、硼化锆粉和氧化锆粉混合,球磨10h,再与取出的硅溶胶混合,搅拌10h,得到高温阻挡层的硅溶胶料浆。
将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中,抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干,如此重复6次。
将表面浸有高温阻挡层的料浆的高温复合材料基体放入高温炉中,抽真空,通入保护气体,以20℃/min的升温速率将炉温升至1800℃,保温2h,随后以40℃/min的降温速率将炉温降至400℃,关闭所述高温炉的电源,自然降温至室温,制备出高温阻挡层。
本发明引入与高温复合材料基体物理及化学相容性好的具有机械互锁的自密封粘接层,再采用负热膨胀效应优异的材料作为热匹配功能层,采用耐高温烧蚀的材料作为高温阻挡层,使其与高温复合材料的热膨胀系数从室温到高温完全匹配,制备出了高温复合材料全温度段热匹配涂层,该涂层制备成本低,制备工艺简单,是一种能够适用于全温度段的高温涂层,能够使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命。
在本发明实施例的一个方面,制得的高温复合材料全温度段热匹配涂层如图2所示,从内到外依次为自密封粘结层,热匹配功能层和高温阻挡层。经过涂层测试,本实施例方法制备的高温复合材料全温度段热匹配涂层在1650℃的氧化环境中,200小时后氧化失重为3.45wt%,在较低温度时未产生裂纹,能够在全温度段具有较好的抗氧化效果。
在本发明实施例的一个方面,所述保护气体为氩气,由于氩气为惰性气体,不易发生化学反应,常用作化学反应中的保护气体。
实施例二
如图1所示,本发明提供了一种高温复合材料全温度段热匹配涂层的制备方法,包括:
步骤S1,制备自密封粘结层;
对高温复合材料基体进行表面打磨,将表面打磨后的高温复合材料基体放入无水乙醇中超声清洗,清洗后的所述高温复合材料基体放入烘箱中在90℃条件下烘干6h。此处使用无水乙醇作为清洗溶剂,由于乙醇易挥发,容易去除,同时乙醇比较便宜,可以降低制备成本。
将质量配比为35wt%的硅粉,15wt%的氧化钽粉,30wt%的碳化硼粉,20wt%的碳化硅粉混合,球磨8h,制得所述自密封粘结层的混合粉料,将所述混合粉料放入石墨坩埚内,将所述高温复合材料基体包埋于所述混合粉料中。
将所述石墨坩埚放入高温炉中,抽真空并通入保护气体,以20℃/min的升温速率将所述高温炉的炉温升至1700℃,保温3h,随后以20℃/min的降温速率将所述高温炉的炉温降至200℃,而后关闭所述高温炉的电源使所述石墨坩埚自然降温至室温。
将处理后的所述高温复合材料基体取出,放入清洗液中超声清洗,清洗后放入烘箱中在90℃条件下烘干2h,在所述高温复合材料基体的表面制备出自密封粘接层。
步骤S2,制备热匹配功能层;
将表面有自密封粘接层的高温复合材料基体放入化学气相沉积炉中,抽真空至-0.1Mpa。
将所述化学气相沉积炉升温至900℃,通入硅酸乙酯和高纯氩气的摩尔比为1的混合气体,炉内压力为500Pa,气流量为20sccm,沉积时间为25h,得到热匹配功能层。
步骤S3,制备高温阻挡层;
取出质量配比为20wt%的硅溶胶,20wt%的氧化钇粉,20wt%的硼化锆粉和40wt%的氧化锆粉,将取出的氧化钇粉、硼化锆粉和氧化锆粉混合,球磨5h,再与取出的硅溶胶混合,搅拌6h,得到高温阻挡层的硅溶胶料浆。
将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中,抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干,如此重复4次。
将表面浸有高温阻挡层的料浆的高温复合材料基体放入高温炉中,抽真空,通入保护气体,以10℃/min的升温速率将炉温升至1400℃,保温1h,随后以20℃/min的降温速率将炉温降至200℃,关闭所述高温炉的电源,自然降温至室温,制备出高温阻挡层。
本发明引入与高温复合材料基体物理及化学相容性好的具有机械互锁的自密封粘接层,再采用负热膨胀效应优异的材料作为热匹配功能层,采用耐高温烧蚀的材料作为高温阻挡层,使其与高温复合材料的热膨胀系数从室温到高温完全匹配,制备出了高温复合材料全温度段热匹配涂层,该涂层制备成本低,制备工艺简单,是一种能够适用于全温度段的高温涂层,能够使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命。
在本发明实施例的一个方面,制得的高温复合材料全温度段热匹配涂层如图2所示,从内到外依次为自密封粘结层,热匹配功能层和高温阻挡层。经过涂层测试,本实施例方法制备的高温复合材料全温度段热匹配涂层在1650℃的氧化环境中,200小时后氧化失重为4.52wt%,在较低温度时未产生裂纹,能够在全温度段具有较好的抗氧化效果。
在本发明实施例的一个方面,所述保护气体为氩气,由于氩气为惰性气体,不易发生化学反应,常用作化学反应中的保护气体。
实施例三
如图1所示,本发明提供了一种高温复合材料全温度段热匹配涂层的制备方法,包括:
步骤S1,制备自密封粘结层;
对高温复合材料基体进行表面打磨,将表面打磨后的高温复合材料基体放入无水乙醇中超声清洗,清洗后的所述高温复合材料基体放入烘箱中在100℃条件下烘干4h。此处使用无水乙醇作为清洗溶剂,由于乙醇易挥发,容易去除,同时乙醇比较便宜,可以降低制备成本。
将质量配比为35wt%的硅粉,30wt%的氧化钽粉,25wt%的碳化硼粉,10wt%的碳化硅粉混合,球磨8h,制得所述自密封粘结层的混合粉料,将所述混合粉料放入石墨坩埚内,将所述高温复合材料基体包埋于所述混合粉料中。
将所述石墨坩埚放入高温炉中,抽真空并通入保护气体,以25℃/min的升温速率将所述高温炉的炉温升至1800℃,保温4h,随后以20℃/min的降温速率将所述高温炉的炉温降至300℃,而后关闭所述高温炉的电源使所述石墨坩埚自然降温至室温。
将处理后的所述高温复合材料基体取出,放入清洗液中超声清洗,清洗后放入烘箱中在100℃条件下烘干4h,在所述高温复合材料基体的表面制备出自密封粘接层。
步骤S2,制备热匹配功能层;
将表面有自密封粘接层的高温复合材料基体放入化学气相沉积炉中,抽真空至-0.1Mpa。
将所述化学气相沉积炉升温至1000℃,通入硅酸乙酯和高纯氩气的摩尔比为10的混合气体,炉内压力为800Pa,气流量为30sccm,沉积时间为30h,得到热匹配功能层。
步骤S3,制备高温阻挡层;
取出质量配比为30wt%的硅溶胶,10wt%的氧化钇粉,30wt%的硼化锆粉和30wt%的氧化锆粉,将取出的氧化钇粉、硼化锆粉和氧化锆粉混合,球磨8h,再与取出的硅溶胶混合,搅拌8h,得到高温阻挡层的硅溶胶料浆。
将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中,抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干,如此重复5次。
将表面浸有高温阻挡层的料浆的高温复合材料基体放入高温炉中,抽真空,通入保护气体,以10℃/min的升温速率将炉温升至1600℃,保温2h,随后以30℃/min的降温速率将炉温降至400℃,关闭所述高温炉的电源,自然降温至室温,制备出高温阻挡层。
本发明引入与高温复合材料基体物理及化学相容性好的具有机械互锁的自密封粘接层,再采用负热膨胀效应优异的材料作为热匹配功能层,采用耐高温烧蚀的材料作为高温阻挡层,使其与高温复合材料的热膨胀系数从室温到高温完全匹配,制备出了高温复合材料全温度段热匹配涂层,该涂层制备成本低,制备工艺简单,是一种能够适用于全温度段的高温涂层,能够使高温复合材料的涂层与基体之间在较低温度时也不会产生裂纹,增加涂层的使用寿命。
在本发明实施例的一个方面,制得的高温复合材料全温度段热匹配涂层如图2所示,从内到外依次为自密封粘结层,热匹配功能层和高温阻挡层。经过涂层测试,本实施例方法制备的高温复合材料全温度段热匹配涂层在1650℃的氧化环境中,200小时后氧化失重为3.99wt%,在较低温度时未产生裂纹,能够在全温度段具有较好的抗氧化效果。
在本发明实施例的一个方面,所述保护气体为氩气,由于氩气为惰性气体,不易发生化学反应,常用作化学反应中的保护气体。
以上对本发明的一个或几个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进,均应归属于本发明的专利涵盖范围之内。

Claims (5)

1.一种高温复合材料全温度段热匹配涂层的制备方法,其特征在于,包括:
制备自密封粘接层:
对高温复合材料基体进行表面打磨,将表面打磨后的高温复合材料基体放入清洗液中超声清洗,清洗后的所述高温复合材料基体放入烘箱中在90-100℃条件下烘干2-6h;
将一定质量配比的硅粉、氧化钽粉、碳化硼粉、碳化硅粉混合,球磨8-10h,制得所述自密封粘结层的混合粉料,将所述混合粉料放入石墨坩埚内,将所述高温复合材料基体包埋于所述混合粉料中;
将所述石墨坩埚放入高温炉中,抽真空并通入保护气体,以20-30℃/min的升温速率将所述高温炉的炉温升至1700-2000℃,保温3-6h,随后以20-30℃/min的降温速率将所述高温炉的炉温降至200-400℃,而后关闭所述高温炉的电源使所述石墨坩埚自然降温至室温;
将处理后的所述高温复合材料基体取出,放入清洗液中超声清洗,清洗后放入烘箱中在90-100℃条件下烘干2-6h,在所述高温复合材料基体的表面制备出自密封粘接层;
制备热匹配功能层:
将表面有自密封粘接层的高温复合材料基体放入化学气相沉积炉中,抽真空至-0.1Mpa;
将所述化学气相沉积炉升温至900-1100℃,通入硅酸乙酯和高纯氩气的混合气体,炉内压力为500Pa-1000Pa,气流量为20-40sccm,沉积时间为25-40h,得到热匹配功能层;
制备高温阻挡层:
取出一定的质量配比的硅溶胶、氧化钇粉、硼化锆粉和氧化锆粉,将取出的氧化钇粉、硼化锆粉和氧化锆粉混合,球磨5-10h,再与取出的硅溶胶混合,搅拌6-10h,得到高温阻挡层的硅溶胶料浆;
将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中,抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干;
将表面浸有高温阻挡层的料浆的高温复合材料基体放入高温炉中,抽真空,通入保护气体,以10-20℃/min的升温速率将炉温升至1400-1800℃,保温1-2h,随后以20-40℃/min的降温速率将炉温降至200-400℃,关闭所述高温炉的电源,自然降温至室温,制备出高温阻挡层;
所述制备自密封粘接层步骤中硅粉、氧化钽粉、碳化硼粉和碳化硅粉的质量配比如下:35-50wt%硅粉,15-30wt%氧化钽粉,20-30wt%碳化硼粉,10-20wt%碳化硅粉;
所述制备高温阻挡层步骤中硅溶胶、氧化钇粉、硼化锆粉和氧化锆粉的质量配比如下:20-40wt%硅溶胶,10-20wt%氧化钇粉,20-30wt%硼化锆粉和20-40wt%氧化锆粉。
2.根据权利要求1所述的一种高温复合材料全温度段热匹配涂层的制备方法,其特征在于,所述清洗液为无水乙醇。
3.根据权利要求1所述的一种高温复合材料全温度段热匹配涂层的制备方法,其特征在于,所述保护气体为高纯氩气。
4.根据权利要求1所述的一种高温复合材料全温度段热匹配涂层的制备方法,其特征在于,所述制备热匹配功能层步骤中硅酸乙酯和高纯氩气的摩尔比的范围为1-10。
5.根据权利要求1所述的一种高温复合材料全温度段热匹配涂层的制备方法,其特征在于,所述制备高温阻挡层步骤中,将表面有自密封粘接层和热匹配功能层的高温复合材料基体放入浸渍罐中抽真空至-0.1MPa,注入搅拌均匀的所述高温阻挡层的料浆,浸渍完全后,取出自然晾干的操作重复4-6次。
CN201610390188.4A 2016-06-03 2016-06-03 一种高温复合材料全温度段热匹配涂层的制备方法 Expired - Fee Related CN106966699B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610390188.4A CN106966699B (zh) 2016-06-03 2016-06-03 一种高温复合材料全温度段热匹配涂层的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610390188.4A CN106966699B (zh) 2016-06-03 2016-06-03 一种高温复合材料全温度段热匹配涂层的制备方法

Publications (2)

Publication Number Publication Date
CN106966699A CN106966699A (zh) 2017-07-21
CN106966699B true CN106966699B (zh) 2020-04-07

Family

ID=59334817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610390188.4A Expired - Fee Related CN106966699B (zh) 2016-06-03 2016-06-03 一种高温复合材料全温度段热匹配涂层的制备方法

Country Status (1)

Country Link
CN (1) CN106966699B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880453A (zh) * 2019-01-30 2019-06-14 浙江乐太新材料有限公司 一种制备耐用不粘炊具涂层的方法
CN114017500B (zh) * 2021-11-25 2023-07-18 珠海格力电器股份有限公司 一种密封件及制冷设备
CN116854501A (zh) * 2023-07-17 2023-10-10 中钢集团洛阳耐火材料研究院有限公司 一种抗氧化隔热涂层的制备方法
CN117534507B (zh) * 2023-11-28 2024-07-16 苏州清研半导体科技有限公司 一种含钽化合物涂层的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786906A (zh) * 2009-12-14 2010-07-28 西北工业大学 C/C复合材料表面防氧化SiC/mullite-Si-Al2O3复合涂层的制备方法
CN106757020A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于连续纤维增强的热结构复合材料的多层高温涂层及其制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN106966764A (zh) * 2016-06-12 2017-07-21 北京航空航天大学 热结构复合材料高温抗氧化复合涂层及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786906A (zh) * 2009-12-14 2010-07-28 西北工业大学 C/C复合材料表面防氧化SiC/mullite-Si-Al2O3复合涂层的制备方法
CN106757020A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于连续纤维增强的热结构复合材料的多层高温涂层及其制备方法
CN106747670A (zh) * 2016-05-30 2017-05-31 北京航空航天大学 一种用于多元碳与陶瓷基复合材料的环境障涂层及其制备方法
CN106966764A (zh) * 2016-06-12 2017-07-21 北京航空航天大学 热结构复合材料高温抗氧化复合涂层及其制备方法

Also Published As

Publication number Publication date
CN106966699A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
CN106966699B (zh) 一种高温复合材料全温度段热匹配涂层的制备方法
CN107814591B (zh) 一种碳材料表面硼化物改性硅基抗氧化涂层的制备方法
CN107188591B (zh) 氮化硅纤维增强二氧化硅陶瓷基复合材料及其制备方法和应用
CN100497265C (zh) 一种C/SiC复合材料表面抗氧化涂层及其制备方法
CN103922778B (zh) 三维氧化铝纤维织物增强氧化物陶瓷及其制备方法
CN103011836B (zh) 一种碳材料表面涂层组合物及涂层的制备方法
CN103724042B (zh) 一种叠层混杂防热复合结构材料的制备方法
CN114907144B (zh) 一种一步法制备SiC-C复合高温涂层的方法
CN103993474B (zh) 一种硬质碳纤维毡表面碳化硅涂层的制备方法
CN113563113A (zh) 一种碳基复合材料表面高温抗氧化涂层及其制备方法
CN109437943A (zh) 一种Cf/C-SiC-ZrB2复合材料及其制备方法
CN113526973B (zh) 一种具有双界面相的透波陶瓷基复合材料及其制备方法
CN103360124B (zh) 一种复合涂层及其在碳/碳复合材料中的应用
CN105753514B (zh) 一种石墨碳素材料表面抗氧化SiC复合保护层的制备方法
CN103724033B (zh) 一种立体织物增强氮化硅-碳化硅陶瓷复合材料及其制备方法
CN111039663B (zh) 一种氧化铝陶瓷烧结方法
CN107746282A (zh) 一种原位碳化硅纤维增强液相烧结碳化硅陶瓷及制造方法
CN104926345B (zh) 一种氧化铝纤维增强碳化硅‑硅酸铝陶瓷及其制备方法
CN105503265B (zh) 一种石墨加热炉内石墨热场表面制备SiC涂层的方法
CN103570352B (zh) 一种石墨发热体加热炉内碳素材料表面原位反应烧结SiC涂层的制备方法
CN109748595A (zh) 一种混合渗剂、用途及反应熔渗制备方法
CN115894085B (zh) 一种复合陶瓷涂层材料及其制备方法和应用
CN115636692B (zh) 一种耐高温、防氧化的陶瓷涂层及其制备方法和应用
CN105236988A (zh) 一种高纯高密重结晶碳化硅器件及其制备方法
CN111233498A (zh) 一种环境障碍涂层及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200407

CF01 Termination of patent right due to non-payment of annual fee