CN102254899B - 具有对准标记的半导体结构及其形成方法 - Google Patents

具有对准标记的半导体结构及其形成方法 Download PDF

Info

Publication number
CN102254899B
CN102254899B CN201010527199.5A CN201010527199A CN102254899B CN 102254899 B CN102254899 B CN 102254899B CN 201010527199 A CN201010527199 A CN 201010527199A CN 102254899 B CN102254899 B CN 102254899B
Authority
CN
China
Prior art keywords
layer
semiconductor substrate
cloth
alignment
alignment area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010527199.5A
Other languages
English (en)
Other versions
CN102254899A (zh
Inventor
温明璋
王宪程
陈俊光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Original Assignee
Taiwan Semiconductor Manufacturing Co TSMC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Manufacturing Co TSMC Ltd filed Critical Taiwan Semiconductor Manufacturing Co TSMC Ltd
Publication of CN102254899A publication Critical patent/CN102254899A/zh
Application granted granted Critical
Publication of CN102254899B publication Critical patent/CN102254899B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823493MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the wells or tubs, e.g. twin tubs, high energy well implants, buried implanted layers for lateral isolation [BILLI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本发明提供一种具有对准标记的半导体结构及其形成方法。在一实施例的半导体结构中,多个栅极堆叠形成于半导体基板上并构成对准标记。多个掺杂结构形成于半导体基板中并位于每一栅极堆叠的两侧。多个通道区位于栅极堆叠下方,且通道区不具有任何通道掺质。

Description

具有对准标记的半导体结构及其形成方法
技术领域
本发明是有关于一种微影工艺(lithographic processes)所用的对准标记(alignment masks),且特别是有关于一种改善高介电常数的介电层-金属栅极工艺的对准标记结构与形成方法。
背景技术
对准标记对半导体组件或集成电路的制作很重要,这是因为制作中需根据对准标记对准导电材料层、半导体层与绝缘材料层。产品功能性与可信度的关键在于准确对准每一层与前一层。一般来说,晶片步进机可完成上述对准工作。步进机的晶片吸盘可用以放置晶片。步进机可将固定其中的光罩的电路图案投影至晶片上的光阻层。在光罩图案转移前,晶片需先准确对准光罩。当对准步骤完成后,才可继续将光罩图案投影至半导体晶片上。
在对准过程中,一般以激光束侦测晶片上的对准标记,经对准标记反弹后形成反射光信号。上述反射光信号将由步进机的侦测器接收并分析,以确认对准标记的确切位置。值得注意的是,由对准标记反射的信号质量将直接反应在结构的可信度及集成度上。现有技术所形成的对准标记并无法形成够强的反射信号,这会使准确的对准更为困难。
综上所述,部分现有技术已调整对准标记的形成方法以符合特定需求,但这些方法并不完全适于所有应用。
发明内容
本发明的目的在于提供一种具有对准标记的半导体结构及其形成方法。
本发明提供一种对准标记的结构,其包括位于半导体基板上的多个栅极堆叠、位于栅极堆叠两侧的半导体基板中的多个掺杂结构,以及位于栅极堆叠下方的多个通道区,其中通道区不具有任何掺质。
本发明亦提供一种具有对准标记的半导体结构,包括半导体基板,其具有组件区与对准区。位于组件区中的场效晶体管组件,其包括位于半导体基板上的第一栅极堆叠。第一源极/漏极区形成于半导体基板中,并分别位于第一栅极堆叠两侧。第一通道区具有通道掺杂结构,位于第一栅极堆叠下的半导体基板中。位于对准区中的对准标记,其包括位于半导体基板上的第二栅极堆叠、位于第二栅极堆叠两侧的半导体基板中的第二源极/漏极区及位于第一栅极堆叠下的半导体基板中的第二通道区,且第二通道区不具有通道掺杂结构。
本发明更提供一种半导体结构的形成方法,包括提供半导体基板,其具有组件区与对准区。以布值掩模遮住对准区,进行第一离子布植至半导体基板的组件区中,同时以布植掩模层覆盖对准区。接着形成第一多晶硅栅极堆叠于组件区中,与第二多晶硅栅极堆叠于对准区中。接着进行第二离子布植至半导体基板的组件区与对准区中。
本发明并不限于半导体结构如FET(金属氧化物半导体晶体管)或SRAM,并可进一步应用于其它具有金属栅极堆叠与对准标记的集成电路。举例来说,半导体结构可包含动态随机存取内存(DRAM)单元、影像侦测器、电容及/或其它通称为微电子组件的组件。在另一实施例中,半导体结构包含鳍状场效晶体管(FinFET)。可以确定的是,本发明亦可应用于其它种类的晶体管如单栅极晶体管、双栅极晶体管或其它多栅极晶体管,亦可应用于其它组件如侦测单元、存储单元、逻辑单元或其它单元。
附图说明
图1是本发明的多种实施例中,具有对准标记的半导体结构的形成方法的流程图;
图2-10是本发明的多种实施例中,具有对准标记的半导体结构的工艺剖视图;
图11是图8的半导体结构中对准标记的上视图。
【主要组件符号说明】
100:方法                                 102:步骤
104:步骤                                 106:步骤
108:步骤                                 110:步骤
112:步骤                                 200:半导体结构
210:半导体基板                          212:对准区
214:组件区                              216:浅沟槽绝缘结构
217:布植掩模层                          218:第一离子布植
219:掺杂结构                            220:介电材料层
222:硅层                                224:硬掩模层
226:栅极堆叠                            228:栅极堆叠
229:栅极堆叠                            230:LDD布植
232:LDD结构                             234:间隙壁
236:离子布植                            242:层间介电层
244:高介电常数的介电材料层              246:功函数金属层
248:导电材料层                          250:接触蚀刻停止层
252:层间介电层                          260:对准标记
具体实施方式
本发明是有关于一种微影工艺所用的对准标记,且特别是有关于一种改善高介电常数的介电层-金属栅极工艺的对准标记结构与形成方法。可以理解的是,下述内容将提供多种不同的实施例或实例,以说明不同实施例中的不同结构。下述的特定组成与形态是用以简化说明,当然只用以举例而非限定本发明。此外为了简化说明,本发明在不同实例中可能重复一些标号及/或符号,但这些重复不代表不同实施例及/或结构中具有相同标号的组件具有对应关系。另一方面,形成第一结构于第二结构上可能包含下列两者情况。在第一种情况中,第一结构直接形成于第二结构上,两者直接接触。在另一种情况中,第一结构与第二结构之间隔有额外结构,两者并不直接接触。
图1是一实施例中,制造半导体组件的方法100的流程图。根据本发明的多种实施例,半导体组件包含金属栅极与对准标记。图2-10是依据本发明多种实施例中,半导体结构200的工艺剖视图。通过图1-10及相关描述,将揭露半导体结构200与其形成方法100。
如图1及2所示,方法100的步骤102提供半导体基板210。半导体基板210的材料可为硅。另一方面,半导体基板210的材料也可为锗、硅锗合金或其它合适的半导体材料。半导体基板210亦包含多种绝缘结构如浅沟槽绝缘(STI)形成于其中,浅沟槽绝缘的作用在分隔不同组件。在一实施例中,半导体基板210包含对准区212与组件区214,前者具有对准标记而后者具有一或多个场效晶体管(FET)及(或)其它组件。多种浅沟槽绝缘结构216是形成于半导体基板210中。形成浅沟槽绝缘结构216的方法可为蚀刻基板形成沟槽,接着在沟槽中填入一或多种绝缘材料如氧化硅、氮化硅或氮氧化硅。填入沟槽的结构可为多层结构,比如在衬垫氧化层上以氧化硅填满沟槽。在一实施例中,浅沟槽绝缘结构216的工艺如下述:成长垫氧化层(pad oxide layer)后,以低压化学气相沉积法(LPCVD)形成氮化物层。接着利用光阻与光罩,于光阻中图案化出浅沟槽绝缘开口,再利用浅沟槽开口来蚀刻基板,形成沟槽。接着,选择性地以热氧化法来成长衬氧化层(liner oxide layer),以改善沟槽界面,再以化学气相沉积法将氧化物填入沟槽中。然后以化学机械研磨法(CMP)回蚀上述结构后,剥除氮化物层即完成浅沟槽绝缘结构。半导体基板210亦具有多种n型井区与p型井区,其位于各种主动区中。
如图1及2所示,方法100的步骤104进行第一离子布植218,将掺质布植入半导体基板210的组件区214之中。在此同时,以布植掩模层(implant masklayer)217保护对准区212不受第一离子布植218影响。在形成栅极堆叠之前,采用一或多种离子的第一离子布植218将形成多种掺杂结构219。在一实施例中,第一离子布植218包含形成井区如n型井区或p型井区的井区离子布植、调整临界电压的离子布植、反贯穿(anti-punch through)离子布植或上述的组合。布植掩模层217可为图案化光阻层或其它合适材料,如氮化硅。在一实施例中,布植掩模层217选用图案化光阻层。图案化光阻层形成于基板210上以覆盖对准区212,且图案化光阻层的开口会露出部分或全部的组件区214。当第一离子布植218施加于组件区214时,掺质将形成多个掺杂结构219。在一实例中,当采用p型掺质形成一或多个p型井区于部份组件区214时,布植掩模层217将覆盖对准区与其它作为n型井区的部份组件区214。当布植掩模层217为图案化光阻层时,其形成方法为如下的微影工艺:涂布光阻、软烤(soft baking)、曝光、曝光后烘烤(post-exposure baking)、显影及硬烤(hard baking)。之后,可采用适当工艺来移除图案化光阻,比如湿式剥除法或等离子灰化法。在其它实施例中,可额外使用硬掩模层。此时图案化光阻将用以图案化硬掩模层,并以图案化硬掩模层作为布植掩模层。
如图1、3及4所示,接着进行方法100的步骤106,以于组件区214与对准区212中形成栅极堆叠。在一实施例中,于半导体基板210上形成多种栅极材料层,如图3所示。栅极材料层包含介电材料层220与硅层222,如多晶硅。在此实施例中,硅层222可为非掺杂硅,且介电材料层220可为高介电常数的介电材料。在其它实施例中,硅层222可为非晶硅或额外包含非晶硅。当硅层222采用非掺杂的非晶硅或多晶硅时,其形成方法为化学气相沉积法,并采用硅烷或其它硅为主化合物作为前趋物。非掺杂的非晶硅的沉积条件可为较高温度。
当介电材料层220具有高介电常数时,其介电常数高于热氧化硅的介电常数(约3.9)。在一实施例中,高介电常数的介电材料层220可为氧化铪。在各种实例中,高介电常数的介电材料层220包含金属氧化物、金属氮化物或上述的组合。在一实例中,高介电常数的介电材料层220的厚度介于约10埃至约100埃之间。在多种实施例中,介电材料层220包含多层结构的介电层,比如界面层(如氧化硅)与位于界面层上的高介电常数材料层。在多种实施例中,界面层的形成方法包含化学氧化法、热氧化法、原子层沉积法或化学气相沉积法。高介电常数之介电材料层的形成方法包含原子层沉积法、化学气相沉积法、等离子增强式化学气相沉积法或等离子增强式原子层沉积法。
在另一实施例中,用以图案化栅极的硬掩模层224(如氮化硅或氧化硅)是进一步形成于栅极材料层上。硬掩模层如氮化硅与氧化硅的形成方法可为化学气相沉积法或其它合适技术。
接着如图4所示,图案化栅极材料层以形成一或多个栅极堆叠,如对准区212中的栅极堆叠226及228,并于组件区214中形成一或多个栅极堆叠229(如虚置栅极)。图案化栅极材料层的方法可为微影工艺及/或蚀刻工艺。举例来说,先形成图案化光阻层于硬掩模层224上以定义多种电阻区与栅极区。图案化光阻层的形成方法包括涂布光阻、软烤、曝光、曝光后烘烤(PEB)、显影及硬烤。接着沿图案化光阻层的开口蚀刻硬掩模层224,形成图案化的硬掩模层224。接着以图案化的硬掩模层224蚀刻栅极材料层,形成多种电阻与栅极堆叠。之后以适当工艺移除图案化光阻层,比如湿式剥除法或等离子灰化法。在其它实施例中,若省略硬掩模层224的话,可直接以图案化光阻层作为蚀刻栅极材料层的蚀刻掩模。
上述的栅极堆叠226与228将构成对准标记。在一实施例中,对准区212的栅极堆叠226与228将构成周期性结构,其可作为光栅对准标记。举例来说,光栅对准标记可具有周期性平行排列的两个、三个、四个或更多个栅极堆叠。在另一实施例中,对准标记之栅极堆叠可为框式的盒中盒或框中框设计,以构成框式对准标记。在另一实施例中,形成于组件区214的栅极堆叠229可作为场效晶体管(field-effect transistor;FET),比如金属氧化物半导体(MOS)晶体管。场效晶体管可为n型场效晶体管(nFET)或p型场效晶体管(pFET)。在其它实施例中,形成于组件区214的栅极堆叠229可作为影像侦测器。
如图1、5及6所示,方法100的步骤108接着进行第二离子布植230至半导体基板210中,使掺质布植入组件区214与对准区212。第二离子布植230的顺序在步骤106形成栅极堆叠226、228及229之后。第二离子布植230可包含多种布植步骤以分别形成掺杂结构。在一实施例中,第二离子布植230包含淡掺杂漏极(lightly-doped drain;LDD)离子布植与重掺杂源极/漏极(S/D)布植。由于第二离子布植230的顺序在形成栅极堆叠226、228及229的步骤106之后,因此其形成的掺杂结构实质上位于栅极堆叠226、228及229侧壁旁的半导体基板210中,而非位于栅极堆叠226、228及229下方的通道区。
在进一步的实施例中,第二离子布植230包含LDD布植以于对准区212及组件区214中形成LDD结构232,如图5所示。在一实例中,n型掺质如磷或砷被布植入半导体基板210的组件区214与对准区212,以形成n型LDD结构。上述布植的掺杂剂量大于约1×1014离子数/cm2,以有效改变半导体基板210的折射率。在一实施例中,n型LDD布植可让硅基板的折射率由3.89下降至3.0。在对准区212中,位于栅极堆叠下的硅基板(未布植)与LDD布植过的硅基板之间的折射率差异,可增加对准标记在对准步骤中的对比。在一实施例中,LDD布植的剂量约为1015离子数/cm2。在另一实例中,LDD布植的能量介于约50keV至约100keV之间。在一实施例中,具有LDD布植图案的光罩具有额外开口来对应对准区。举例来说,若对准区212的尺寸为50微米×882微米,则对应的光罩具有额外开口,其尺寸为50微米*882微米,以于对准区212中形成LDD结构。在另一实施例中,可采用p型掺质(如硼),于对准区212中形成p型LDD结构。
第二离子布植230可进一步在LDD布植后进行另一布植步骤,以形成重掺杂源极/漏极(S/D)结构。如此一来,组件区214与对准区212中的每一栅极堆叠均具有LDD结构与S/D结构,统称为源极/漏极区。当组件区214同时包含n型FET(nFET)与p型FET(pFET)时,将采用适当的掺质分别形成nFET与pFET的源极区与漏极区。
在一实施例中,以nFET为例,是以淡掺杂剂量进行离子布植以形成LDD结构232。在沉积介电层后进行非等向蚀刻如等离子蚀刻,即形成间隙壁234。接着以重掺杂剂量进行离子布植236以形成重掺杂S/D结构。其它p型FET的源极/漏极结构亦可由类似工艺完成,差异在采用相反的掺杂型态。
在一实施例中,形成多种n型源极与漏极结构的掺杂工艺,亦于对准区212中形成对应结构如LDD与S/D结构,如图6所示。同样地,间隙壁234亦可形成于对准区212中的栅极堆叠的侧壁上。在一实施例中,之后可进行高温回火工艺以活化组件区214中的源极与漏极结构中的不同掺质。在另一实施例中,第二离子布植230可额外进行或直接置换为环形离子布植工艺(pocketion implantation),其掺质型态与源极/漏极相反,形成的掺杂区位于半导体基板210中并与通道区相邻。
如图1、7及8所示,接着进行方法100的步骤110以形成金属栅极于组件区214及对准区212中。在一实施例中,先形成层间介电层242于半导体基板210上。层间介电层242可为氧化硅、低介电常数的介电材料、其它合适的介电材料或上述的组合。在另一实施例中,层间介电层242由下往上依序可为缓冲氧化硅层、接触蚀刻停止层(contact etch stop layer;CESL)以及其它介电材料层。层间介电层242的形成方法将叙述如下。
层间介电层242可由合适技术(如化学气相沉积法)形成。举例来说,可采用高密度等离子化学气相沉积法形成层间介电层242。在一实施例中,形成于半导体基板210上的层间介电层242,将填入对准区212与组件区214的栅极堆叠226、228及229之间的空隙。在进一步的实施例中,形成于半导体基板210上的层间介电层242其表面高度将高于栅极堆叠如226、228及229的上表面。接着以化学机械研磨工艺减少层间介电层242的厚度,直到露出栅极堆叠226、228及229的上表面为止。为了部分移除并平坦化层间介电层242,可调整CMP工艺的条件与参数,如研磨浆组成与研磨压力。CMP工艺可部分或完全地移除硬掩模层224。
在形成层间介电层242后,将进行蚀刻工艺以移除组件区214及对准区212中栅极堆叠226、228及229的硅层222,其可为多晶硅层或非晶硅层。若前述CMP步骤未移除硬掩模层224,则此蚀刻工艺亦将移除硬掩模层224。在一实施例中,蚀刻工艺包含两个步骤,前段蚀刻是用以移除硬掩模层224,而后段蚀刻是用以移除组件区214与对准区212中栅极堆叠的硅层222。当堆叠结构中的硅层222被移除后,将形成沟槽(称作栅极沟槽)于层间介电层242中。
在一实施例中,若硬掩模层224含有氮化硅,用以移除硬掩模层224的前段蚀刻可采用磷酸、氢氟酸或缓冲氢氟酸。在另一实施例中,用以移除栅极堆叠226、228及229的硅层222的后段蚀刻可为适当的干蚀刻、湿蚀刻或上述的组合。在一实例中,用以移除多晶硅或非晶硅的蚀刻溶液可为硝酸、氢氟酸水溶液或氨水溶液。在另一实施例中,氯为主的等离子可用以选择性移除多晶硅。
在形成栅极沟槽后,于栅极沟槽中形成一或多个金属栅极材料层。在一实施例中,将具有适当功函数的金属层246(称作功函数金属)与导电材料层248填入栅极沟槽中。在一实施例中,功函数金属层246与导电材料层248将依序填入组件区214与对准区212的栅极沟槽中,以形成nFET的栅极。用于nFET之功函数金属246被称为n型金属。n型金属可为金属为主的导电材料,其功函数与nFET兼容。举例来说,n型金属的功函数小于或等于约4.2eV。在一实施例中,n型金属可为钽。在另一实施例中,n型金属可为氮化钛铝。在其它实施例中,n型金属可为钽、钛铝合金、氮化钛铝或上述的组合。n型金属亦可为多种金属为主的堆叠结构,以改良组件效能及工艺兼容度。n型金属层可由合适工艺如物理气相沉积法形成。导电材料层248可为铝、钨或其它合适金属。接着进行CMP工艺以移除多余的功函数金属246与导电材料248。在一实施例中,组件区214同时包含nFET与pFET。在此实施例中,将以适当工艺分别形成nFET与pFET的金属栅极。举例来说,在移除栅极堆叠226、228及229的硅层222后,可先以图案化光阻层保护pFET,接着沉积n型金属246、沉积导电材料层248以及进行CMP工艺移除多余的n型金属层246与导电材料层248,即形成nFET与对准标记的金属栅极。之后沉积p型金属层246、沉积导电材料层248、以及进行CMP工艺移除多余的p型金属层246及导电材料层248,即形成pFET的金属栅极。在其它实施例中,先以图案化光阻层保护nFET,再沉积pFET的p型金属层。当pFET被图案化光阻层保护时,再沉积nFET与对准标记的n型金属层。之后沉积导电材料层以填满nFET、pFET与对准标记的栅极沟槽。接着进行CMP工艺移除多余的n型金属层、p型金属层、以及导电材料层,即完成nFET、pFET、以及对准标记的金属栅极。
p型金属可为金属为主的导电材料,其功函数与pFET兼容。举例来说,p型金属的功函数大于或等于约5.2eV。在一实施例中,p型金属可为氮化钛或氮化钽。在其它实施例中,p型金属可为氮化钛、氮化钨、氮化钽或上述的组合。p型金属亦可为多种金属为主的堆叠结构,以改良组件效能及工艺兼容度。p型金属层可由适当工艺形成,比如物理气相沉积法(PVD)、化学气相沉积法、ALD、PE化学气相沉积法或PEALD。之后将导电材料实质上填入栅极沟槽中。导电材料可依据不同实施例采用铝或钨。导电材料的形成方法可为PVD、化学气相沉积法、ALD、PE化学气相沉积法、PEALD或旋转涂布法。接着可进行CMP工艺移除多余的功函数金属与导电材料,以形成金属栅极。虽然图标中的半导体结构200的组件区214只具有单一场效晶体管,但可于组件区214中形成多个场效晶体管与其它组件。用以形成金属栅极的工艺可置换为其它工艺。举例来说,nFET与pFET的金属栅极可由其它工艺或顺序完成。
在一实施例中,形成金属栅极的方法包含于栅极沟槽中的氧化层220上沉积高介电常数材料层244,接着形成功函数金属层246与导电材料层248于高介电常数材料层上224。上述方法被称作后制高介电常数材料工艺(high-k last)。在其它后制高介电常数材料的工艺中,在形成功函数金属层246与导电材料层248之前,先移除氧化硅层220。在这种情况下,会先形成新的界面层如氧化硅层,接着再形成高介电常数的介电材料层、功函数金属层与导电材料层于对应的栅极沟槽中。
如前所述,对准区212中的对准标记其栅极堆叠226与228会被置换成金属栅极。更明确的说,与组件区214中的nFET的金属栅极类似,栅极堆叠226与228中的硅层222会被置换为金属栅极。如此一来,对准区212的栅极堆叠将具有n型金属层与导电材料层。在另一实例中,与组件区214中的pFET的金属栅极类似,栅极堆叠226与228中的硅层222会被置换为金属栅极。在此例中,对准区212的栅极堆叠将具有p型金属层与导电材料层。
在另一实施例中,作为对准区212中对准标记的栅极堆叠仍为多晶硅栅极堆叠而不进行上述置换成金属栅极的工艺。在此例中,当组件区214中的组件,其栅极因置换栅极工艺改变为金属时,图案化掩模如图案化光阻层或图案化硬掩模层将覆盖对准区212使其不受栅极置换工艺影响,如图9所示。
如图1及10所示,方法100的步骤112接着形成接点孔(contact hole,未示于图上)作为电性内连线。在一实施例中,接触蚀刻停止层(CESL)250形成于层间介电层242上,而另一层间介电层252形成于接触蚀刻停止层250之上。接着涂布光阻层(未图标)于半导体结构上以进行微影工艺,并软烤涂布的光阻层。接着将具有接点孔图案的光罩置于微影曝光装置上,并将半导体结构固定于微影曝光装置的晶片平台上。在曝光涂布后的光阻层之前,先将光罩对准半导体结构200。对准步骤是依据对准区212中的对准标记,比如栅极堆叠226与228。对准标记将搭配图11作更详细的说明。图11是图8的半导体结构的对准标记(亦即对准区212)上视图。在图11中,对准标记的标号为260。对准标记260是形成于图8的对准区212中。对准标记260除了栅极堆叠226与228以外,还可包含额外栅极堆叠以组成光栅对准标记。在一实施例中,栅极堆叠的厚度为约1.6微米,而两个相邻的栅极堆叠间距为约1.6微米。
在另一实施例中,对准标记260可包含第二组的栅极堆叠构成类似的光栅结构,且第二组栅极堆叠是用于垂直方向的对准步骤。在一实施例中,第二组栅极堆叠的方向垂直于栅极堆叠226与228的方向。在另一实施例中,第二组栅极堆叠的方向与栅极堆叠226及228相同,差异在于相邻的栅极堆叠的间距。
由于半导体基板210经过一或多道掺杂工艺如LDD掺杂、重掺杂S/D及/或环形掺杂,其折射率已不同于掺杂前的半导体基板210,这将实质上增加对准信号的强度。所谓的晶片质量(wafer quality;WQ)可由对准信号的质量定量。WQ是实际上的信号强度与基准标记产生的信号比值。在一实施例中,WQ的定义如下式:
WQ=(SSalign/Gainalign)/(SSref/Gainref)
在上式中,SSalign为来自对准标记的对准信号强度。Gainalign为对准信号的增益信号强度。SSref为来自基准标记的标准信号强度。Gainref为标准信号的增益强度。
一般来说,为了得到可信赖的对准结果,WQ的值需大于1%。在一实例中,现有的对准结构其WQ小于1%,比如0.3%。在上述揭露的对准标记结构中,WQ被提升到大于1%。在另一实例中,当对准光源的波长为约633nm时,WQ是大于3%。在又一实施例中,当对准源的波长为约532nm时,WQ是大于8%。
在对准步骤中,半导体结构200(或晶片)是置于晶片平台上,并采用上述的对准结构对准光罩与晶片。在对准后即曝光涂布的光阻。在对准光罩的接点图案与其它结构如栅极堆叠、源极与漏极结构后,接着可进行其它微影工艺如曝光后烘烤(PEB)、显影与硬烤以形成图案化光阻层。之后进行蚀刻工艺至层间介电层242与252,以形成接点孔于层间介电层中。接着可进行其它工艺步骤。在另一实施例中,可将导电材料如钨填入接点孔中以形成接点。在一实施例中,可先形成金属硅化物于半导体基板上以降低接点电阻后,再将导电材料填入接点孔中以形成接点。之后可进行化学机械研磨工艺以移除额外的导电材料层。
虽然未图示,但本发明的其它实施例仍可采用其它特征或工艺步骤。在一实施例中,组件区214包含其它组件如静态随机存取内存(SRAM)单元。在一实例中,SRAM单元具有交叉耦合的nFET与pFET,并可进一步具有其它晶体管作为通道栅极。在另一实施例中,FET可设计并作为其它应用,比如影像侦测器。在另一实施例中,半导体基板200具有多个对准区。举例来说,每一个晶粒(die)区域均具有一个对准标记。在曝光工艺中,每一个晶粒区域中的对准标记将用以对准光阻与晶粒区域。接着以微影光源曝光晶粒区域。上述工艺将重复进行于晶片的其它晶粒区域。在另一实施例中,可形成两个或多个对准标记于晶片的不同位置,而对准工艺将通过不同对准标记传回的对准信号平均值来进行。接着,整片晶片将以步进方式进行扫描或曝光。在另一实施例中,组件区214中的nFET包含p型井区,而pFET则包含n型井区。在另一实施例中,组件区214包含p型单元与n型单元的离子布植结构,以应用于SRAM组件。P型单元和n型单元的离子布植结构与p型井区和n型井区类似,差异在于掺杂剂量和浓度不同。在另一实施例中,对准标记是形成于半导体基板210上。举例来说,对准标记包含多个STI结构形成于对准区中,且STI结构可作为光栅,其组态类似于图11所示的对准标记260。
在另一实施例中,p型金属层与n型金属层的形成顺序不同,比如先形成n型金属层再形成p型金属层。在另一实施例中,pFET具有应力结构以增加其载子移动率并改善组件效能。在进一步的实施例中,可形成硅锗合金(SiGe)于pFET的源极/漏极区,使其具有适当的应力效应。在形成上述具有应力的pFET的实施例中,以一或多道蚀刻步骤蚀刻pFET的源极/漏极区的硅基板,使其凹陷。接着磊晶成长SiGe于凹陷区中,并形成重掺杂源极/漏极区于磊晶成长的SiGe结构中。在另一实例中,在形成LDD结构后接着形成虚置间隙壁,并在形成SiGe结构后移除虚置间隙壁。接着在对应的栅极堆叠侧壁上形成主要间隙壁。主要间隙壁与虚置间隙壁之间的厚度差异可让SiGe结构补偿重掺杂源极/漏极。举例来说,主要间隙壁比虚置间隙壁厚,因此重掺杂源极/漏极会形成于SiGe结构中。
在另一实施例中,nFET具有应力结构以增加载子移动律并改善组件效能。在进一步的实施例中,可形成碳化硅(SiC)于nFET的源极/漏极区,使其具有适当的应力效应。使nFET具有应力的方法与使pFET具有应力的方法类似。在另一实施例中,n型金属层与p型金属层各自具有适当的金属或合金。在另一实施例中,n型金属层与p型金属层各自具有多层结构,以最佳化其功函数并降低其临界电压。
在形成栅极堆叠(如226及228)之前、之中及(或)之后可进行其它工艺步骤。举例来说,在步骤112之后可进一步形成多层内连线。多层内连线包含垂直内连线如已知导孔,以及水平内连线如金属线路。上述内连线结构可采用多种导电材料如铜、钨或金属硅化物。在一实施例中,可采用镶嵌工艺以形成含铜的多层内连线结构。
在一实例中,高介电常数的介电材料层可由其它合适方法形成,比如有机金属化学气相沉积法(metal organic chemical vapor deposition;MOCVD)或分子束磊晶(molecular beam epitaxy;MBE)。在一实施例中,高介电常数的介电材料包含氧化铪。在另一实施例中,高介电常数的介电材料包括氧化铝。在其它实施例中,高介电常数的介电材料层包含金属氮化物、金属硅酸盐或其它金属氧化物。在另一实例中,界面层如氧化硅可形成于半导体基板上,其形成方法可为热氧化法、ALD、紫外线-臭氧氧化法或其它合适方法。在另一实例中,盖层可形成于高介电常数的介电材料层与n型金属层(或p型金属层)之间。
在前述的又一实施例中,在移除多晶硅层后可形成高介电常数的介电材料层于栅极堆叠中。举例来说,图1的步骤106所形成的介电材料层220如氧化硅层可视作虚置氧化层,接着形成高介电常数的介电层-金属栅极的堆叠,将高介电常数的介电材料层及金属层填入栅极沟槽。如此一来,高介电常数的介电层-金属栅极的堆叠亦称作完全置换栅极。
多种图案化工艺可包含以微影工艺形成图案化光阻层。举例来说,微影工艺可包含旋转涂布光阻、软烤、对准光罩、曝光、曝光后烘烤、显影与硬烤。微影工艺亦可加入或置换为其它合适方法如无光罩微影工艺、电子束直写、离子束直写、热微影或分子转印。
本发明并不限于半导体结构如FET(金属氧化物半导体晶体管)或SRAM,并可进一步应用于其它具有金属栅极堆叠与对准标记的集成电路。举例来说,半导体结构可包含动态随机存取内存(DRAM)单元、影像侦测器、电容及/或其它通称为微电子组件的组件。在另一实施例中,半导体结构包含鳍状场效晶体管(FinFET)。可以确定的是,本发明亦可应用于其它种类的晶体管如单栅极晶体管、双栅极晶体管或其它多栅极晶体管,亦可应用于其它组件如侦测单元、存储单元、逻辑单元或其它单元。
虽然本发明已以实施方式揭露如上,然其并非用以限定本发明,任何熟习此技艺者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。

Claims (3)

1.一种半导体结构的形成方法,其特征在于,包括:
提供一半导体基板,其具有一组件区与一对准区;
进行一第一离子布植至该半导体基板的该组件区中,同时以一布植掩模层覆盖该对准区,该第一离子布植是择自井区布植、临界电压布植与上述的组合;
接着形成一第一多晶硅栅极堆叠于该组件区中,与一第二多晶硅栅极堆叠于该对准区中;以及
接着进行一第二离子布植至该半导体基板的该组件区与该对准区,该第二离子布植的步骤会调整该半导体基板的折射率,且会将来自该对准区的对准信号的晶片质量提升至大于1%,其中所述的晶片质量(WQ)的定义如下式:
WQ=(SSalign/Gainalign)/(SSref/Gainref)
在上式中,SSalign为来自对准标记的对准信号强度,Gainalign为对准信号的增益信号强度,SSref为来自基准标记的标准信号强度,Gainref为标准信号的增益强度。
2.根据权利要求1所述的半导体结构的形成方法,其特征在于,还包括:
形成一层间介电材料层于该半导体基板上;
将该第一与第二多晶硅栅极堆叠置换为金属栅极堆叠;
形成一接触蚀刻停止层于该第一层间介电材料层上;
形成一另一层间介电材料层于该接触蚀刻停止层上;
涂布一光阻层于该另一层间介电材料层上;
根据来自对准区的对准信号,将光罩对准该半导体基板;以及
以该光罩的接点图案曝光该光阻层。
3.根据权利要求1所述的半导体结构的形成方法,其特征在于,该第二离子布植的掺杂剂量大于1014离子数/cm2
CN201010527199.5A 2010-05-19 2010-10-19 具有对准标记的半导体结构及其形成方法 Active CN102254899B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/783,200 2010-05-19
US12/783,200 US9000525B2 (en) 2010-05-19 2010-05-19 Structure and method for alignment marks

Publications (2)

Publication Number Publication Date
CN102254899A CN102254899A (zh) 2011-11-23
CN102254899B true CN102254899B (zh) 2014-05-14

Family

ID=44971809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010527199.5A Active CN102254899B (zh) 2010-05-19 2010-10-19 具有对准标记的半导体结构及其形成方法

Country Status (2)

Country Link
US (3) US9000525B2 (zh)
CN (1) CN102254899B (zh)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024213A1 (ja) * 2009-08-25 2011-03-03 株式会社 東芝 不揮発性半導体記憶装置
US9000525B2 (en) 2010-05-19 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for alignment marks
US9543406B2 (en) * 2010-11-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for overlay marks
US8481415B2 (en) * 2010-12-02 2013-07-09 International Business Machines Corporation Self-aligned contact combined with a replacement metal gate/high-K gate dielectric
US9117775B2 (en) * 2011-05-25 2015-08-25 Texas Instruments Incorporated Alignment to multiple layers
JP5890709B2 (ja) * 2011-06-30 2016-03-22 株式会社東芝 テンプレート用基板及びその製造方法
US9129856B2 (en) * 2011-07-08 2015-09-08 Broadcom Corporation Method for efficiently fabricating memory cells with logic FETs and related structure
US9698229B2 (en) * 2012-01-17 2017-07-04 United Microelectronics Corp. Semiconductor structure and process thereof
US9159626B2 (en) 2012-03-13 2015-10-13 United Microelectronics Corp. FinFET and fabricating method thereof
CN102646599B (zh) * 2012-04-09 2014-11-26 北京大学 一种大规模集成电路中FinFET的制备方法
US8790973B2 (en) * 2012-04-12 2014-07-29 Globalfoundries Inc. Workfunction metal stacks for a final metal gate
US8786025B2 (en) * 2012-04-19 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method for forming same
KR20150088813A (ko) * 2012-11-26 2015-08-03 피에스5 뤽스코 에스.에이.알.엘. 장치 및 그 제조 방법
JP2015008226A (ja) * 2013-06-25 2015-01-15 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US10276562B2 (en) * 2014-01-07 2019-04-30 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with multiple threshold voltage and method of fabricating the same
US9209186B1 (en) * 2014-06-26 2015-12-08 Globalfoundries Inc. Threshold voltage control for mixed-type non-planar semiconductor devices
US9281372B2 (en) * 2014-07-17 2016-03-08 Taiwan Semiconductor Manufacturing Company Ltd. Metal gate structure and manufacturing method thereof
TWI653762B (zh) 2014-10-08 2019-03-11 聯華電子股份有限公司 具有金屬閘極之半導體元件之製作方法
US9343374B1 (en) * 2014-10-29 2016-05-17 Globalfoundries Inc. Efficient main spacer pull back process for advanced VLSI CMOS technologies
CN105990145B (zh) * 2015-02-04 2019-06-28 中芯国际集成电路制造(上海)有限公司 一种半导体器件及其制作方法和电子装置
US9983257B2 (en) * 2015-10-15 2018-05-29 Taiwan Semiconductor Manufacturing Co., Ltd. Test line patterns in split-gate flash technology
US10163522B2 (en) * 2015-10-15 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Test line letter for embedded non-volatile memory technology
US9793278B1 (en) * 2016-04-27 2017-10-17 United Microelectronics Corp. Structure of memory cell with asymmetric cell structure and method for fabricating the same
KR102543181B1 (ko) * 2016-11-04 2023-06-15 삼성전자주식회사 반도체 소자
US11114347B2 (en) * 2017-06-30 2021-09-07 Taiwan Semiconductor Manufacturing Co., Ltd. Self-protective layer formed on high-k dielectric layers with different materials
US11393769B2 (en) * 2020-02-19 2022-07-19 Taiwan Semiconductor Manufacturing Company, Ltd. Alignment structure for semiconductor device and method of forming same
DE102020112753A1 (de) 2020-02-19 2021-08-19 Taiwan Semiconductor Manufacturing Co., Ltd. Ausrichtungsstruktur für halbleitervorrichtung und verfahren zu ihrer herstellung
TWI809384B (zh) * 2020-04-28 2023-07-21 台灣積體電路製造股份有限公司 積體電路結構及其形成方法
US20210335991A1 (en) * 2020-04-28 2021-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrated circuit with feol resistor
CN114843176B (zh) * 2022-07-06 2022-09-16 晶芯成(北京)科技有限公司 一种半导体结构的制造方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005755B2 (en) * 2000-03-09 2006-02-28 Fujitsu Limited Semiconductor device and fabrication process thereof

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7604986A (nl) * 1976-05-11 1977-11-15 Philips Nv Werkwijze voor het vervaardigen van een halfgeleider- inrichting, en inrichting vervaardigd door toe- passing van de werkwijze.
JPS63244776A (ja) * 1987-03-31 1988-10-12 Toshiba Corp 絶縁ゲ−ト型電界効果トランジスタの製造方法
US4874713A (en) * 1989-05-01 1989-10-17 Ncr Corporation Method of making asymmetrically optimized CMOS field effect transistors
US5240865A (en) * 1990-07-30 1993-08-31 Texas Instruments Incorporated Method of forming a thyristor on an SOI substrate
DE69233305T2 (de) * 1991-11-20 2004-07-08 Fujitsu Ltd., Kawasaki Halbleiterspeichervorrichtung
JP2689888B2 (ja) * 1993-12-30 1997-12-10 日本電気株式会社 半導体装置及びその製造方法
US5627624A (en) * 1994-10-31 1997-05-06 Lsi Logic Corporation Integrated circuit test reticle and alignment mark optimization method
US5580804A (en) * 1994-12-15 1996-12-03 Advanced Micro Devices, Inc. Method for fabricating true LDD devices in a MOS technology
US6221709B1 (en) * 1997-06-30 2001-04-24 Stmicroelectronics, Inc. Method of fabricating a CMOS integrated circuit device with LDD N-channel transistor and non-LDD P-channel transistor
JP4187808B2 (ja) * 1997-08-25 2008-11-26 株式会社ルネサステクノロジ 半導体装置の製造方法
JP3519579B2 (ja) * 1997-09-09 2004-04-19 株式会社ルネサステクノロジ 半導体装置及びその製造方法
US6124610A (en) * 1998-06-26 2000-09-26 Advanced Micro Devices, Inc. Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
JP3175700B2 (ja) * 1998-08-24 2001-06-11 日本電気株式会社 メタルゲート電界効果トランジスタの製造方法
US6153455A (en) * 1998-10-13 2000-11-28 Advanced Micro Devices Method of fabricating ultra shallow junction CMOS transistors with nitride disposable spacer
TW411509B (en) * 1999-06-05 2000-11-11 United Microelectronics Corp Integrated manufacturing method of high voltage and low voltage device
US6117723A (en) * 1999-06-10 2000-09-12 Taiwan Semiconductor Manufacturing Company Salicide integration process for embedded DRAM devices
US6171910B1 (en) * 1999-07-21 2001-01-09 Motorola Inc. Method for forming a semiconductor device
JP3415551B2 (ja) * 2000-03-27 2003-06-09 日本電気株式会社 半導体装置の製造方法
JP2001308205A (ja) * 2000-04-19 2001-11-02 Nec Corp 不揮発性半導体記憶装置及びその製造方法
US6303418B1 (en) * 2000-06-30 2001-10-16 Chartered Semiconductor Manufacturing Ltd. Method of fabricating CMOS devices featuring dual gate structures and a high dielectric constant gate insulator layer
JP2002043412A (ja) * 2000-07-24 2002-02-08 Sanyo Electric Co Ltd 半導体装置及びその製造方法
JP3589168B2 (ja) * 2000-09-04 2004-11-17 セイコーエプソン株式会社 半導体装置
US20090287179A1 (en) 2003-10-01 2009-11-19 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus, including the use of magnetic tools
TW546698B (en) * 2000-11-02 2003-08-11 Macronix Int Co Ltd Alignment method of photolithography process
US6656815B2 (en) * 2001-04-04 2003-12-02 International Business Machines Corporation Process for implanting a deep subcollector with self-aligned photo registration marks
JP3665275B2 (ja) * 2001-05-28 2005-06-29 沖電気工業株式会社 位置合わせマークの形成方法
US6605493B1 (en) * 2001-08-29 2003-08-12 Taiwan Semiconductor Manufacturing Company Silicon controlled rectifier ESD structures with trench isolation
JP2003174101A (ja) * 2001-12-04 2003-06-20 Toshiba Corp 半導体装置および半導体装置の製造方法
US6521487B1 (en) * 2001-12-05 2003-02-18 United Microelectronics Corp. Method for making a thyristor
US6670226B2 (en) * 2002-03-08 2003-12-30 Taiwan Semiconductor Manufacturing Co., Ltd Planarizing method for fabricating gate electrodes
US6673635B1 (en) * 2002-06-28 2004-01-06 Advanced Micro Devices, Inc. Method for alignment mark formation for a shallow trench isolation process
TWI280674B (en) * 2002-08-06 2007-05-01 Vanguard Int Semiconduct Corp High voltage device manufacturing process capable of matching low voltage device manufacturing process
JP3958199B2 (ja) * 2002-12-10 2007-08-15 株式会社東芝 半導体装置及び半導体装置の製造方法
JP2005026586A (ja) * 2003-07-04 2005-01-27 Semiconductor Leading Edge Technologies Inc 半導体装置及びその製造方法
KR100558201B1 (ko) * 2003-07-10 2006-03-10 삼성전자주식회사 포토 정렬키 및 포토 정렬키를 포함하는 반도체 소자 제조방법
JP4497872B2 (ja) 2003-09-10 2010-07-07 キヤノン株式会社 撮像装置
JP3793190B2 (ja) * 2003-09-19 2006-07-05 株式会社東芝 半導体装置の製造方法
JP2005150251A (ja) * 2003-11-12 2005-06-09 Renesas Technology Corp 半導体装置の製造方法および半導体装置
TWI283476B (en) * 2003-11-12 2007-07-01 Vanguard Int Semiconduct Corp Electrostatic discharge protection device for high voltage integrated circuit
US7164161B2 (en) * 2003-11-18 2007-01-16 Micron Technology, Inc. Method of formation of dual gate structure for imagers
KR100593732B1 (ko) * 2003-11-18 2006-06-28 삼성전자주식회사 얼라인 키를 갖는 반도체 소자 및 그 제조방법
US7265050B2 (en) * 2003-12-12 2007-09-04 Samsung Electronics Co., Ltd. Methods for fabricating memory devices using sacrificial layers
JP4439935B2 (ja) * 2004-02-02 2010-03-24 Okiセミコンダクタ株式会社 半導体装置の製造方法
JP4397248B2 (ja) * 2004-02-20 2010-01-13 Okiセミコンダクタ株式会社 半導体装置及びその製造方法
TWI248115B (en) * 2004-06-09 2006-01-21 Nanya Technology Corp Semiconductor device with multi-layer hard mask and method for contact etching thereof
TWI245325B (en) * 2004-06-09 2005-12-11 Nanya Technology Corp Semiconductor device with partially recessed hard mask and method for contact etching thereof
US7038222B1 (en) * 2004-06-16 2006-05-02 National Semiconductor Corporation System and method for using areas near photo global alignment marks or unpatterned areas of a semiconductor wafer to create structures for SIMS or E-Beam or XRD testing
JP4537834B2 (ja) * 2004-11-16 2010-09-08 富士通セミコンダクター株式会社 半導体装置の製造方法
DE102005007822B4 (de) * 2005-02-21 2014-05-22 Infineon Technologies Ag Integrierte Schaltungsanordnung mit Tunnel-Feldeffekttransistor
US7435659B2 (en) * 2005-02-28 2008-10-14 Texas Instruments Incorporated Method for manufacturing a semiconductor device having an alignment feature formed using an N-type dopant and a wet oxidation process
JP4777731B2 (ja) * 2005-03-31 2011-09-21 富士通セミコンダクター株式会社 半導体装置の製造方法
TWI248117B (en) * 2005-04-19 2006-01-21 Nanya Technology Corp Alignment mark and alignment method for the fabrication of trench-capacitor dram devices
US7315066B2 (en) * 2005-06-01 2008-01-01 International Business Machines Corporation Protect diodes for hybrid-orientation substrate structures
JP2007036126A (ja) * 2005-07-29 2007-02-08 Fujitsu Ltd 半導体装置とその製造方法
US7288836B2 (en) * 2005-08-29 2007-10-30 United Microelectronics Corp. Stacked alignment mark and method for manufacturing thereof
US7323374B2 (en) * 2005-09-19 2008-01-29 International Business Machines Corporation Dense chevron finFET and method of manufacturing same
JP2007103424A (ja) * 2005-09-30 2007-04-19 Oki Electric Ind Co Ltd メモリセル及びそのメモリセルを有する半導体不揮発性メモリの構造。
US7226831B1 (en) * 2005-12-27 2007-06-05 Intel Corporation Device with scavenging spacer layer
KR100741857B1 (ko) * 2006-05-03 2007-07-24 삼성전자주식회사 계면 저항을 줄일 수 있는 게이트 콘택 구조체를 구비하는반도체 장치 및 그 제조 방법
JP4167707B2 (ja) * 2006-08-08 2008-10-22 エルピーダメモリ株式会社 半導体装置の製造方法
KR100791336B1 (ko) * 2006-08-10 2008-01-07 삼성전자주식회사 이미지 센서 제조 방법
JP4487266B2 (ja) * 2006-08-30 2010-06-23 エルピーダメモリ株式会社 半導体装置
JP5425363B2 (ja) * 2006-11-28 2014-02-26 ルネサスエレクトロニクス株式会社 半導体装置、及び表示装置
US7611961B2 (en) * 2006-12-20 2009-11-03 Macronix International Co., Ltd. Method for fabricating semiconductor wafer with enhanced alignment performance
US7851861B2 (en) * 2007-01-22 2010-12-14 Taiwan Semiconductor Manufacturing Co., Ltd. MIM capacitor and metal gate transistor
JP2008181970A (ja) * 2007-01-23 2008-08-07 Sharp Corp アライメントマーク形成方法、アライメント方法、半導体装置の製造方法および固体撮像装置の製造方法
US7718475B2 (en) * 2007-04-13 2010-05-18 Qimonda Ag Method for manufacturing an integrated circuit including a transistor
US7960243B2 (en) * 2007-05-31 2011-06-14 Freescale Semiconductor, Inc. Method of forming a semiconductor device featuring a gate stressor and semiconductor device
US8072035B2 (en) * 2007-06-11 2011-12-06 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US7550773B2 (en) * 2007-06-27 2009-06-23 International Business Machines Corporation FinFET with top body contact
US7915111B2 (en) * 2007-08-08 2011-03-29 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device with high-K/dual metal gate
US7709331B2 (en) * 2007-09-07 2010-05-04 Freescale Semiconductor, Inc. Dual gate oxide device integration
US8022458B2 (en) * 2007-10-08 2011-09-20 Taiwan Semiconductor Manufacturing Company, Ltd. Capacitors integrated with metal gate formation
KR100936577B1 (ko) * 2007-12-03 2010-01-13 주식회사 동부하이텍 반도체 소자 및 그 제조방법
JP5288789B2 (ja) * 2007-12-28 2013-09-11 株式会社東芝 半導体装置及びその製造方法
US7776680B2 (en) * 2008-01-03 2010-08-17 International Business Machines Corporation Complementary metal oxide semiconductor device with an electroplated metal replacement gate
US7678634B2 (en) * 2008-01-28 2010-03-16 International Business Machines Corporation Local stress engineering for CMOS devices
US20090194804A1 (en) * 2008-02-04 2009-08-06 Atmel Corporation Non-volatile memory cell
JP5259211B2 (ja) * 2008-02-14 2013-08-07 ルネサスエレクトロニクス株式会社 半導体装置
US8211786B2 (en) * 2008-02-28 2012-07-03 International Business Machines Corporation CMOS structure including non-planar hybrid orientation substrate with planar gate electrodes and method for fabrication
US7942097B1 (en) * 2008-03-06 2011-05-17 Sandia Corporation Modular initiator with integrated optical diagnostic
US7838946B2 (en) * 2008-03-28 2010-11-23 United Microelectronics Corp. Method for fabricating semiconductor structure and structure of static random access memory
US7943468B2 (en) * 2008-03-31 2011-05-17 Intel Corporation Penetrating implant for forming a semiconductor device
EP2113940A1 (en) * 2008-04-30 2009-11-04 Imec A method for producing NMOS and PMOS devices in CMOS processing
US8017474B2 (en) * 2008-06-05 2011-09-13 Freescale Semiconductor, Inc. Process of forming an electronic device including a resistor-capacitor filter
US8193586B2 (en) * 2008-08-25 2012-06-05 Taiwan Semiconductor Manufacturing Company, Ltd. Sealing structure for high-K metal gate
US8084824B2 (en) * 2008-09-11 2011-12-27 United Microelectronics Corp. Metal gate transistor and method for fabricating the same
US8980706B2 (en) * 2008-09-15 2015-03-17 Taiwan Semiconductor Manufacturing Company, Ltd. Double treatment on hard mask for gate N/P patterning
US7817265B2 (en) * 2008-09-25 2010-10-19 United Microelectronics Corp. Alignment mark and defect inspection method
US8120086B2 (en) * 2008-09-30 2012-02-21 Taiwan Semiconductor Manufacturing Co., Ltd Low leakage capacitors including portions in inter-layer dielectrics
US8598630B2 (en) * 2008-10-06 2013-12-03 Taiwan Semiconductor Manufacturing Company, Ltd. Photo alignment mark for a gate last process
US8329545B1 (en) * 2008-12-30 2012-12-11 Micron Technology, Inc. Method of fabricating a charge trap NAND flash memory
US8163619B2 (en) * 2009-03-27 2012-04-24 National Semiconductor Corporation Fabrication of semiconductor structure having asymmetric field-effect transistor with tailored pocket portion along source/drain zone
US8030197B2 (en) * 2009-05-04 2011-10-04 Intel Corporation Recessed channel array transistor (RCAT) in replacement metal gate (RMG) logic flow
US9000534B2 (en) * 2009-06-17 2015-04-07 Globalfoundries Inc. Method for forming and integrating metal gate transistors having self-aligned contacts and related structure
US20100330728A1 (en) * 2009-06-26 2010-12-30 Mccarten John P Method of aligning elements in a back-illuminated image sensor
US8890260B2 (en) * 2009-09-04 2014-11-18 Taiwan Semiconductor Manufacturing Company, Ltd. Polysilicon design for replacement gate technology
US8129234B2 (en) * 2009-09-09 2012-03-06 International Business Machines Corporation Method of forming bipolar transistor integrated with metal gate CMOS devices
US8637936B2 (en) * 2009-09-25 2014-01-28 United Microelectronics Corp. Metal gate transistor with resistor
US8227890B2 (en) * 2009-12-18 2012-07-24 United Microelectronics Corporation Method of forming an electrical fuse and a metal gate transistor and the related electrical fuse
US8361848B2 (en) * 2010-04-29 2013-01-29 Taiwan Semiconductor Manufacturing Company, Ltd. Precise resistor on a semiconductor device
US8551874B2 (en) * 2010-05-08 2013-10-08 International Business Machines Corporation MOSFET gate and source/drain contact metallization
US9000525B2 (en) 2010-05-19 2015-04-07 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for alignment marks
US8148232B2 (en) * 2010-08-11 2012-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Overlay mark enhancement feature
US9543406B2 (en) * 2010-11-30 2017-01-10 Taiwan Semiconductor Manufacturing Company, Ltd. Structure and method for overlay marks
US8334198B2 (en) * 2011-04-12 2012-12-18 Taiwan Semiconductor Manufacturing Company, Ltd. Method of fabricating a plurality of gate structures

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005755B2 (en) * 2000-03-09 2006-02-28 Fujitsu Limited Semiconductor device and fabrication process thereof

Also Published As

Publication number Publication date
US11121128B2 (en) 2021-09-14
US20110284966A1 (en) 2011-11-24
US10665585B2 (en) 2020-05-26
US9000525B2 (en) 2015-04-07
CN102254899A (zh) 2011-11-23
US20150214225A1 (en) 2015-07-30
US20200286887A1 (en) 2020-09-10

Similar Documents

Publication Publication Date Title
CN102254899B (zh) 具有对准标记的半导体结构及其形成方法
US10163738B2 (en) Structure and method for overlay marks
US9305846B2 (en) Device isolation in FinFET CMOS
CN101661939B (zh) 可增加通道应力的集成电路
TW201608615A (zh) 半導體裝置與其形成方法
CN101714507A (zh) 具有金属栅极堆叠的半导体装置及其制造方法
US10475904B2 (en) Methods of forming merged source/drain regions on integrated circuit products
US9177986B2 (en) Isolation for semiconductor devices
US20160035728A1 (en) Retrograde doped layer for device isolation
US7067370B2 (en) Method of manufacturing a MOS transistor of a semiconductor device
US20070224808A1 (en) Silicided gates for CMOS devices
US7939896B2 (en) SOI substrate contact with extended silicide area
US20090096023A1 (en) Method for manufacturing semiconductor device
JP2004356621A (ja) フラッシュメモリ素子の高電圧トランジスタの製造方法
US8809172B2 (en) Self-aligned patterning for deep implantation in a semiconductor structure
US8673696B2 (en) SOI semiconductor device comprising a substrate diode with reduced metal silicide leakage
US20130307112A1 (en) Substrate diode formed by angled ion implantation processes
US20140021552A1 (en) Strain Adjustment in the Formation of MOS Devices
US7767511B2 (en) Semiconductor device manufactured using a method to improve gate doping while maintaining good gate profile
US9871035B2 (en) Semiconductor device with metal silicide blocking region and method of manufacturing the same
US9029255B2 (en) Semiconductor device and fabrication method therof
US20080237740A1 (en) Semiconductor device and the manufacturing method thereof
US20080042198A1 (en) Demos structure
US8058136B2 (en) Self-alignment method for recess channel dynamic random access memory
US20090093092A1 (en) Soi substrate contact with extended silicide area

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant