CN102112656B - 用于在低压气相中沉积薄层聚合物的方法 - Google Patents

用于在低压气相中沉积薄层聚合物的方法 Download PDF

Info

Publication number
CN102112656B
CN102112656B CN200980130318.9A CN200980130318A CN102112656B CN 102112656 B CN102112656 B CN 102112656B CN 200980130318 A CN200980130318 A CN 200980130318A CN 102112656 B CN102112656 B CN 102112656B
Authority
CN
China
Prior art keywords
temperature
bearing
gas
matrix
admission gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980130318.9A
Other languages
English (en)
Other versions
CN102112656A (zh
Inventor
马库斯.格斯多夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aixtron SE
Original Assignee
Aixtron SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aixtron SE filed Critical Aixtron SE
Publication of CN102112656A publication Critical patent/CN102112656A/zh
Application granted granted Critical
Publication of CN102112656B publication Critical patent/CN102112656B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/60Deposition of organic layers from vapour phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种用于沉积一个或多个薄层的方法,其中,形成聚合物的过程气体与载气体一起借助于进气机构(3)流入沉积腔(8),以便在基体(7)的位于承接器(4)的与进气机构(3)间隔相对的支承面(4`)上的表面(7`)上沉积尤其是形式为聚合物的薄层。为了能够在仅略高于承接器的支承面的温度的基体温度下进行涂层过程,本发明建议,这样地设定进气机构(3)和/或支承面(4`)的温度,使得支承面(4`)的温度(TS)低于进气机构(3)的温度(TG),其中,在过程气体进入沉积腔(8)之前,在沉积腔(8)在第一压力(P1)下,位于支承面(4`)上的基体(7)通过向承接器(4)的热量排放稳定于一个基体温度(TD),该基体温度仅略高于支承面(4`)的温度(TS)但明显低于进气机构(3)的温度(TG),接着,沉积腔(8)内的压力(P1)减小到过程压力(P2),并且在达到过程压力(P2)时,过程气体进入沉积腔(8)内。

Description

用于在低压气相中沉积薄层聚合物的方法
技术领域
本发明涉及一种用于沉积一个或多个薄层的方法,其中,尤其是形成聚合物的过程气体与载气体一起借助于进气机构流入沉积腔,以便在基体的位于承接器的与进气机构间隔相对的支承面上的表面上沉积尤其是形式为聚合物的薄层。
背景技术
前述类型的方法由US4945856公开。在此,固态的对二甲苯基(Para-Xylylen)聚合物被制为气体形式。气体通过气体导管导入热解腔(Pyrolysekammenr),在该热解腔中二聚物(Dimer)被分解为单体。单体与载气体一起通过带有进气机构的另一气体导管导入沉积腔,在该处,气体聚合在位于冷却的承接器上的基体上。US3288728记载了对二甲苯基共聚物。在此,涉及聚对二甲苯族的C-,N-,D-聚合物,所述聚合物在室温下呈固态粉末状或者液态。
由″CharacterizationofParyleneDepositionProcessforthePassivationofOrganicLightEmmitingDiodes″,KoreanJ.Chem.Eng.,19(4),722-727(2002)公开了用聚对二甲苯及其衍生物层来钝化、尤其是包封有机发光二极管(OLED)。此外公知的是,在真空中为各种大面积的基体配设聚对二甲苯涂层。因此,例如玻璃、金属、纸、漆、塑料、陶瓷、铁氧体(Ferrit)和硅通过从气相凝结而涂敷无孔且透明的聚合物薄膜。在此,人们利用聚合物涂层疏水的、耐化学并电绝缘的特性。
US5554220记载了一种所谓的OVPD过程,通过该过程能够制造所谓的OLEDs(有机发光二极管)。在此作为原材料还提到了DAST。
DE10136858记载了一种用于制造涂层的基体的装置和方法,其中,层借助于冷凝方法被涂敷在基体上。作为基体考虑玻璃、薄膜或塑料。通过在此所述的装置能够制造发光的部件、尤其是薄膜发光部件,如OLED。有机层大面积地沉积在带有掩膜的基体上。装置具有形式为大面积气体分配器的加温进气机构和位于进气机构下面的、用于承接被冷却的基体的承接器。
EP0862664B1公开了一种用于在半导体基体上沉积聚对二甲苯的方法和装置。聚对二甲苯在蒸发腔中被气化。气化的聚对二甲苯在热解腔中被分解。分解产物通过进气机构到达过程腔,并且在冷却到15℃以下的基体上形成层。基体支架可以借助于加热器被加热到直至400℃。
US2006/0113507A1同样描述了真空条件下的聚对二甲苯沉积方法。在该方法中,要在一步方法中沉积液晶聚合物层。过程在三区反应器中发生,该反应器具有升华区、热解区和运行温度在450℃到700℃的冷凝区。升华将在15℃到100℃之间的温度下进行。冷凝和同时的聚合将在210℃至290℃之间的温度下发生。
US6709715B1,US6362115B1和US5958510记载了一种在使用装置的情况下沉积聚对二甲苯层的方法,其中,聚合的原材料首先被气化,然后分解,分解产物通过大面积的气体分配器导入被加热的过程腔中。冷凝发生在冷却的承接器上的基体上。
US3908046记载了一种对二甲苯基聚合物沉积方法,其同样包括升华、热解和沉积的过程步骤。在此,基体温度保持在25℃到30℃的范围内。
用于沉积OLED或聚合物的涂层方法在沉积腔内进行,其中,存在气相中的垂直温度梯度。进气机构具有比基体更高的温度。因此,基体必须通过支承在承接器上而被冷却。通过辐射从进气机构传递到基体的热量必须传递到承接器上。因为涂层过程通常在毫巴以下的范围的压力下进行,热量排出可以仅通过基体和承接器的支承面之间的接触面部分实现。自然,在支承面和基体底侧的两个相互贴靠的面中仅偶尔存在可能实现热传递的真实接触。由于两个面不可避免的不平度,形成间隙宽度直至100μm的间隙空间。在过程压力小于1毫巴时,在该间隙中不再通过对流发生热传递。这导致待涂层的基体的表面通过由加热的进气机构发出的辐射加热到一个明显高于承接器温度的温度。
发明内容
因此,本发明所要解决的技术问题是,提供一种方法,通过该方法能够在仅略高于承接器的支承面的温度的基体温度下进行涂层过程。
该技术问题通过在权利要求中给出的发明解决,其中,基本上每个权利要求都是本发明的一个独立方案,其中,优选将从属权利要求与独立权利要求相组合。
首先并基本上规定,这样地设定进气机构和/或支承面的温度,使得支承面的温度低于进气机构的温度,其中,在过程气体进入沉积腔之前,在沉积腔(优选在毫巴范围内)的第一压力下,位于支承面上的基体通过向承接器的热量排放稳定于一个基体温度,该基体温度仅略高于支承面的温度但明显低于进气机构的温度,接着,将沉积腔内的压力减小到一个(优选毫巴以下的)过程压力,并且在达到该过程压力时,过程气体进入沉积腔。该方法尤其适于沉积一个或多个由聚合材料、尤其是对二甲苯基聚合物制成的薄层,其中,固态或液态的,尤其是由聚合物、尤其是二聚物形成的原材料在蒸发器中被气化,并且原材料,尤其是二聚物借助于载气从蒸发器通过载气输送管被输送到热解腔,在热解腔中热解、尤其是分解为单体,分解产物、尤其是单体由载气从热解腔输送到沉积腔中,在该处通过进气机构流入沉积腔,并且作为薄层聚合在位于承接器的支承面上的基体表面上,并且其中,载气和分解产物未聚合的部分,尤其是单体经气体流出口从过程腔流出。该方法同样特别适用于沉积OLED。通常是液态或者固态的原材料在该OVPD过程中例如通过蒸发成气相转化为所谓的源(Quelle),并且然后在使用载气的情况下通过气体导管输送到沉积腔。进气机构位于该沉积腔中。进气机构并尤其是由进气机构形成的气体流出面优选是镀金的或者至少高度抛光。因此,气体流出面的镀金的、高度抛光的表面具有小于0.04范围内的发射率ε。因此,加热到150℃到250℃的范围内的温度下的进气机构的辐射功率被最小化。尽管如此,还是向基体传递了热量,该热量必须排到冷却的承接器上。承接器的温度在-30℃到100℃之间。因此,支承面和进气机构之间的温差在至少50℃,常常甚至在至少100℃。本发明基本上涉及基体的预热(Vorthermalisierung),其在原来的涂层过程之前进行。涂层过程在亚毫巴范围,也就是尤其在0.5到0.05毫巴之间的压力下,并优选在约0.1毫巴的总压力下进行,而在涂层过程之前的热过程在沉积腔中的总压力>1毫巴的情况下进行,例如在约5毫巴的总压力下进行。之后,基体被置于过程腔之中,首先是载气通过进气机构流入过程腔,其中,载气可以是稀有气体或其它反应惰性的,并尤其是惰性气体。载气通过气体出口再次从过程腔流出。载气由真空泵抽出。通过设置在真空泵上游的阀调节沉积腔内的过程压力。首先设定大于1毫巴并优选为约5毫巴的过程压力。在该热压力下,调节沉积腔中的温度分布。这意味着,进气机构并尤其是指向支承面的气体流出面被置于150℃到250℃的范围内的过程温度。承接器的温度被调节到-30℃到100℃范围内的承接器温度。在这样的压力下实现了气体分子的平均自由程明显小于基体的底侧和支承面之间的间隙的间隙宽度,因此在间隙中能够出现从基体到承接器的对流的热传递。在该第一过程步骤中,基体温度稳定在仅比支承面的温度高几度。基体温度和承接器温度之间的温差小于10℃。基体表面上的侧面(lateral)温度波动最大在1℃的范围内。温度稳定过程可以以高温测定法或者另外地监控。设置有温度传感器,通过该温度传感器优选能通过测量从基体发出的温度辐射测量其表面温度。也可以通过恰当的测量元件(在此也可以是热元件)来测量其它的温度、也即进气机构的温度和承接器的温度。如果到达了稳定的状态,其中基体表面的温度达到额定值,借助于设置在真空泵前的调节阀使沉积腔压力非常迅速地下降。通常,沉积腔压力在二至十秒内到达约为0.1毫巴的稳定过程压力。在该过程压力下,载气的分子具有这样一个平均的自由程,该自由程过大,以至于在基体和支承面之间的间隙内不能够发生对流的热传递。除了基体底侧在承接器上的统一的接触点,基体在该压力下基本上与承接器热隔绝。这导致由基体吸收的来自进气机构的辐射热不再能充分地排出,因此基体和承接器之间的温度差不断增大。然而,沉积过程的生长率这样大,使得生长时间仅为数秒,例如1至4秒。因为生长时间小于10秒,所以由于对流冷却失效加热基体剩余的时间小于20秒。基体的热容量足够大,使得在该时间内获得的基体温度的升高可以被忽略(toleriert)。该方法尤其适于应用在这样的装置中,其中,载气从进气机构的气体流出面的气体流出口流出,其中,载气和由载气输送的、形式为“气体束”的过程气体流入过程腔。气体束通过多个气体流出口流入过程腔并且连结成在整个支承面上延伸的、朝向支承面的体积气体流。在此,气体流出面具有大于支承面的面积延伸并尤其大于基体的面积延伸的面积延伸。进气机构发出辐射的面积相应大。但是,由气体流出面发出的辐射由于通过表面镀金和高度抛光导致的发射率减小而得以最小化。优选使用分解为单体的对二甲苯基聚合物或者取代的对二甲苯基聚合物作为过程气体。该过程气体应当作为聚合物沉积在基体表面上。生长率在100纳米/秒的范围内。在该生长率下,可以在数秒内沉积100纳米至1000纳米的所需层厚度。
附图说明
以下根据附图说明本发明的实施例。在附图中示出:
图1示意示出了涂层装置的主要部件并尤其是沉积腔的内部结构,
图2是图1中的局部截面图II的明显放大的视图,以示意地示出支承面4`和基体7的底侧7″之间的间隙。
具体实施方式
未示出的气体供应装置提供载气,例如氦、氩或氮气,其通过质量流控制器10计量分配。载气通过可与阀连接的气体导管11流入蒸发器1,液态或固态的原材料保存在该蒸发器中。原材料是聚合物。例如可以是这样的聚合物,例如对二甲苯基聚合物或者取代的对二甲苯基聚合物,如C-,N-,D-对二甲苯基聚合物(C-,N-,D-Para-Xylylene)。粉末或液体被加热到50℃到200℃的源温度。在该温度下,原材料蒸发为二聚物的形式。二聚物通过可由阀10关闭的气体导管13导入热解腔2。热解腔2中的温度在350℃到700℃之间。在该温度下,二聚物热分解为单体。载气与过程气体一起通过同样加热的输送管15经过输入分配器9导入进气机构3。
这样设计整个系统中的流动阻力,使得在热解腔内部存在小于1毫巴的气体压力。这样设定流动速度,使得原材料在热解腔中的滞留时间足以使原材料几乎完全分解。
用附图标记17表示输送导管,通过该输送导管同样可以将气体导入进气分配器9。但是,通过导管17仅仅可以将载气导入进气分配器9中。可以设置未示出的通风/循环系统,以便在进入进气分配器9之前稳定气流。
进气机构3具有带有中心腔的喷淋头状的构造,气体通过进气分配器9均匀分布地进入腔室中。腔室的底部由板形成,其具有通孔6,所述孔筛状地均匀分布。在以底侧形成气体流出面3`的板中设置有加热丝或加热通道19,电流或者热流体可以流过其中。通过电阻加热器或者其它加热器可以将进气机构并尤其是气体流出面3`加热到150℃到250℃范围内的温度。在此,全部相同构造的气体流出口6的直径这样选择,使得经过通孔的压力损失小于0.5毫巴。
承接器4以间距A位于气体流出面3`下方,间距A远远小于气体流出面3`的特征直径或特征对角线。承接器4的指向气体流出面3`的水平支承面4`的面积延伸小于气体流出面3`的面积延伸。承接器4构造为冷却模块,并且具有由冷却剂流过的通道18。
在气体流出面3`和气体支承面4`之间延伸的沉积腔8位于反应器内,其壳壁用8`表示。壳壁具有装载口16和气体流出孔5,载气和剩余的过程气体通过该气体流出孔由真空泵抽出。
承接器4被这样地冷却,使得其表面4`具有在0℃至-50℃的范围内的承接器温度TS。进气机构3的温度TG比承接器温度TS至少高50℃,优选甚至高100℃。为了使从进气机构3到承接器4的热传输最小化,至少气体流出面3`被高度抛光并且尤其是镀金,使得其发射率小于0.04。
基体7位于由不锈钢、铝或铜制成的承接器4上。基体以25mm至50mm的间隔A位于气体流出面3`下方。在此可以是绝缘的,但也可以是非绝缘的基体,例如显示器、硅晶片,也或者是纸或塑料膜。
如果基体是平面的柔性构造,则可以额外地支承在基体支架上。此外设置有未示出的暗调蒙片(Schattenmasken),以便在侧面使涂层结构化(strukturieren)。基体也可以是预涂层的。
图2示意示出了基体的底侧7`在承接器4的支承面4`上的接触。尽管两个面基本上平坦地延伸,在底侧7″和支承面4`之间不可避免地出现间隙空间20。这是由于制造造成的或者由于热变形而出现。该间隙20的间隙宽度的大小在20μm到100μm之间。间隙要求比基体7的底侧7″在支承面4`的接触区域面积更大。因此,基体具有仅一个单独的相对承接器的面支承。
在通常的过程条件下,进气机构3的温度TG约为200℃,而支承面4`的温度TS在0℃到-50℃的范围内,但优选在约0℃。基体7的表面的温度TD应当尽可能仅略高于支承面4`的温度TS。温差最大应在10℃的范围内。但是,加热到200℃的气体流出面3`延伸超出基体7的表面,并因此通过热辐射向基体7传输显著的热能。尽管由于气体流出面3`镀金的表面的高度抛光,辐射功率被最小化。但是其导致显著的热流进入基体。这种热流必须通过尽可能大面积的热传递传输路径排出到承接器4上。基体7和承接器4之间的温差应当最小化。
由于基体7和承接器4之间的直接接触面较小,需要通过间隙20传输较大的热量。在通常为0.1毫巴的过程压力P2下,实际上是隔热的环境,因为气体分子的自由程过大,以致于在两个相互间隔的面7`和4`之间不能够发生对流的热传递。
因此,根据本发明在原来的涂层过程之前,将整个沉积装置3,4包括位于支承面4`上的基体7在提高的压力P1下达到稳定,其中,进气机构3达到温度TG,承接器4以及尤其是支承面4`达到温度TS,基体7的表面达到基体温度TD。在此,基体温度TD仅略高于温度TS。温差小于10℃。由此实现温度稳定,即,在此使用的加热压力大于1毫巴并且约为5毫巴,也就是具有这样一个值,在该值下气体分子的平均自由程足够小,以便保证基体7和支承面4`之间的间隙20的对流热传输。
如果达到稳定状态,借助于设置在真空泵前面的调节阀迅速提高真空泵的抽吸功率,使得在2至10秒内将沉积腔8中的总压力减小到过程压力P2。过程压力在亚毫巴范围内并且约为0.1毫巴。一旦达到过程压力P2,接着就以约100nm/秒的生长速度进行原来的涂层,直至实现典型地为约200nm的层厚。
在此要考虑的是,随着总压力开始下降,基体7和承接器4之间的对流冷却机制失效,然后基体7被加热。温升由于仅持续数秒的压力减小阶段和生长阶段而可忽略。
通过前述的方法可以涂敷大面积的基体。支承面4`例如可以具有一平方米的面积。
按本发明的方法的另一种实施例涉及所谓的OLED(有机发光二极管)的沉积。在此也是热的真空方法。通常是液态或固态的原料被保存在加热的容器(即,所谓的源)中。原料通过蒸发转化为气体形式,该气体然后借助于载气通过气体导管15,17输送到沉积腔8中。用于分配和计量在载气中输送的过程气体的进气机构3位于该处。过程气体通过通孔6进入过程腔8并且在该过程腔处冷凝在冷却的基体7上。基体位于冷却的承接器4上。层的沉积在明显低于200℃的温度下进行。这需要所使用的原料非常温度不稳定。因此,在基体温度TS具有低值时,进气温度TG具有明显较高的值,例如原料蒸发的温度。为了避免基体表面由于进气机构3的热辐射加热到过高的值,过程腔在原来的沉积过程之前保持在一个压力P1下,该压力P1明显超过进行过程步骤的压力P2。在压力P1下,基体底侧和基体支架上侧之间的空隙中通过热传递发生基体和基体支架之间的热交换。过程在明显较小的过程压力P2下进行。在该过程压力P2下,通过基体底侧和承接器上侧之间的间隙内的热传递发生明显减小的热输送。
所有已公开的特征(本身)均为发明的实质内容。因此相关/附加优先权文件的公开内容(在先申请副本)完全被引入本申请的公开内容中,也为此将这些文件所述的特征包含在本申请的权利要求中。

Claims (15)

1.一种用于沉积一个或多个薄层的方法,其中,用于形成聚合物的过程气体与载气体一起借助于进气机构(3)流入沉积腔(8),以便在基体(7)的位于承接器(4)的与进气机构(3)间隔相对的支承面(4`)上的表面(7`)上沉积形式为聚合物的薄层,其特征在于,这样地设定进气机构(3)和/或支承面(4`)的温度,使得支承面(4`)的温度(TS)低于进气机构(3)的温度(TG),其中,在过程气体进入沉积腔(8)之前,在沉积腔(8)内在第一压力(P1)下,基体的温度处于稳定的状态,来自进气机构(3)的辐射热传递至基体,在基体(7)和支承面(4`)之间的缝隙中发生对流式热传递,位于支承面(4`)上的基体(7)通过向承接器(4)的热量排放稳定于一个基体温度(TD),该基体温度高于支承面(4`)的温度(TS)但低于进气机构(3)的温度(TG),接着,沉积腔(8)内的压力(P1)减小到过程压力(P2),并且在达到过程压力(P2)时,过程气体进入沉积腔(8),所述过程压力(P2)小于1毫巴。
2.如权利要求1所述的方法,其特征在于,所述载气或过程气体从高度抛光的气体流出面的孔流出。
3.如权利要求1所述的方法,其特征在于,形成所述气体流出面的、喷淋头状构造的进气机构(3)被加热。
4.如权利要求1所述的方法,其特征在于,所述进气机构(3)借助于电加热丝或者由流体流过的通道(19)加热。
5.如权利要求4所述的方法,其特征在于,所述电加热丝或者流体流过的通道(19)设置在进气机构(3)的形成气体流出面的前板上。
6.如权利要求1所述的方法,其特征在于,由冷却模块形成的承接器(4)被主动冷却。
7.如权利要求1所述的方法,其特征在于,所述气体流出面(3`)的温度(T)比支承面(4`)的温度(TS)高至少50℃。
8.如权利要求7所述的方法,其特征在于,所述气体流出面(3`)的温度(T)在150℃到250℃之间。
9.如权利要求1所述的方法,其特征在于,所述承接器的温度在-30℃到100℃的范围内。
10.如权利要求1所述的方法,其特征在于,温度稳定在基体温度(TD)小于100℃,热压力(P1)大于1毫巴。
11.如权利要求1所述的方法,其特征在于,所述过程气体是聚合的原材料的气化的单体。
12.如权利要求1所述的方法,其特征在于,过程气体是气化的液态或固态原材料,该原材料作为发光层或者光伏层冷凝在基体(7)上。
13.一种用于沉积由聚合的材料制成的一个或多个薄层的方法,其中,固态或液态的原材料在蒸发器(1)中被气化,原材料借助于载气从蒸发器(1)通过载气输送管(13)被输送到热解腔(2),在热解腔(2)中热解,分解产物由载气从热解腔(2)输送到沉积腔(8)中,在该处通过进气机构(3)流入沉积腔(8)内,并且作为薄层聚合在基体(7)的支承在承接器(4)的支承面(4`)上的表面上,并且,载气和分解产物未聚合的部分从气体流出口(5)流出过程腔(8),其特征在于,这样地设定进气机构(3)和/或支承面(4`)的温度,使得支承面(4`)的温度(TS)低于进气机构(3)的温度(TG),其中,在过程气体进入沉积腔(8)之前,在沉积腔(8)内在第一压力(P1)下,基体的温度处于稳定的状态,来自进气机构(3)的辐射热传递至基体,在基体(7)和支承面(4`)之间的缝隙中发生对流式热传递,位于支承面(4`)上的基体(7)通过向承接器(4)的热量排放稳定于一个基体温度(TD),该基体温度高于支承面(4`)的温度(TS)但低于进气机构(3)的温度(TG),接着,沉积腔(8)内的压力(P1)减小到过程压力(P2),并且在达到过程压力(P2)时,过程气体进入沉积腔(8),所述过程压力(P2)小于1毫巴。
14.如权利要求13所述的方法,其特征在于,分解产物与载气一起从由进气机构(3)形成的气体面分配器的气体流出面的气体流出口朝垂直于基体表面的方向以紧密相邻的、连接成一个在整个支承面上延伸的体积气流的“气体束”的形式流入沉积腔(8)内,其中气体流出口分布在整个平行于支承面延伸的气体流出面上。
15.如权利要求13所述的方法,其特征在于,所述气体流出面(3)的面积延伸大于所述支承面或所述基体的面积延伸。
CN200980130318.9A 2008-06-03 2009-05-14 用于在低压气相中沉积薄层聚合物的方法 Active CN102112656B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE102008026973 2008-06-03
DE102008026973.5 2008-06-03
DE102009003781A DE102009003781A1 (de) 2008-06-03 2009-04-14 Verfahren zum Abscheiden eines dünnschichtigen Polymers in einer Niederdruckgasphase
DE102009003781.0 2009-04-14
PCT/EP2009/055795 WO2009147005A1 (de) 2008-06-03 2009-05-14 Verfahren zum abscheiden eines dünnschichtigen polymers in einer niederdruckgasphase

Publications (2)

Publication Number Publication Date
CN102112656A CN102112656A (zh) 2011-06-29
CN102112656B true CN102112656B (zh) 2016-06-22

Family

ID=41268953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200980130318.9A Active CN102112656B (zh) 2008-06-03 2009-05-14 用于在低压气相中沉积薄层聚合物的方法

Country Status (9)

Country Link
US (1) US8685500B2 (zh)
EP (1) EP2294246B1 (zh)
JP (1) JP5492196B2 (zh)
KR (1) KR101671401B1 (zh)
CN (1) CN102112656B (zh)
DE (1) DE102009003781A1 (zh)
RU (1) RU2502831C2 (zh)
TW (1) TWI480413B (zh)
WO (1) WO2009147005A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000447A1 (de) * 2010-02-17 2011-08-18 Aixtron Ag, 52134 Beschichtungsvorrichtung sowie Verfahren zum Betrieb einer Beschichtungsvorrichtung mit einer Schirmplatte
CN103031535B (zh) * 2011-09-28 2015-12-09 核心能源实业有限公司 薄膜工艺设备及其制作方法
TWI458843B (zh) 2011-10-06 2014-11-01 Ind Tech Res Inst 蒸鍍裝置與有機薄膜的形成方法
US9299956B2 (en) * 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
DE102014115497A1 (de) * 2014-10-24 2016-05-12 Aixtron Se Temperierte Gaszuleitung mit an mehreren Stellen eingespeisten Verdünnungsgasströmen
CN104716077A (zh) * 2015-03-25 2015-06-17 上海华力微电子有限公司 可控温加热式传送腔及其工艺装置和控温加热方法
KR102369676B1 (ko) 2017-04-10 2022-03-04 삼성디스플레이 주식회사 표시 장치의 제조장치 및 표시 장치의 제조방법
KR102122639B1 (ko) * 2018-03-22 2020-06-15 (주)씨엔원 3차원 구조물 코팅장치
JP7093667B2 (ja) 2018-04-11 2022-06-30 東京エレクトロン株式会社 成膜装置及び成膜方法
US20190386256A1 (en) * 2018-06-18 2019-12-19 Universal Display Corporation Sequential material sources for thermally challenged OLED materials
WO2020129702A1 (ja) * 2018-12-21 2020-06-25 国立大学法人 東京大学 有機電界発光素子
GB201913140D0 (en) * 2019-09-12 2019-10-30 Ucl Business Plc Methods and apparatuses for fabricating polymeric conformal coatings, parts coated with polymeric conformal coatings, and optical apparatus
US20220033958A1 (en) * 2020-07-31 2022-02-03 Applied Materials, Inc. Evaporation source, vapor deposition apparatus, and method for coating a substrate in a vacuum chamber
CN116759297B (zh) * 2023-08-23 2023-11-03 上海陛通半导体能源科技股份有限公司 一种连续制备低温氮化硅薄膜中降低晶圆表面温度的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133148A (en) * 1997-11-24 2000-10-17 Samsung Electronics Co., Ltd. Method of depositing film for semiconductor device in single wafer type apparatus using a lamp heating method
CN1344817A (zh) * 2000-10-02 2002-04-17 日本派欧尼股份株式会社 化学气相沉积装置和化学气相沉积方法
DE10136858A1 (de) * 2001-02-15 2002-09-05 Aixtron Ag Beschichtungsvorrichtung

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3288728A (en) 1966-02-18 1966-11-29 Union Carbide Corp Para-xylylene copolymers
US3908046A (en) 1974-02-25 1975-09-23 Xerox Corp P-xylene vapor phase polymerization coating of electrostatographic particles
US4945856A (en) 1988-06-23 1990-08-07 Jeffrey Stewart Parylene deposition chamber
US5554220A (en) 1995-05-19 1996-09-10 The Trustees Of Princeton University Method and apparatus using organic vapor phase deposition for the growth of organic thin films with large optical non-linearities
EP0862664B1 (en) 1995-10-27 2003-01-02 Specialty Coating Systems, Inc. Method and apparatus for the deposition of parylene af4 onto semiconductor wafers
US5958510A (en) 1996-01-08 1999-09-28 Applied Materials, Inc. Method and apparatus for forming a thin polymer layer on an integrated circuit structure
US5804259A (en) * 1996-11-07 1998-09-08 Applied Materials, Inc. Method and apparatus for depositing a multilayered low dielectric constant film
JP3788835B2 (ja) * 1996-12-06 2006-06-21 株式会社アルバック 有機薄膜製造方法
KR100498050B1 (ko) * 1998-10-09 2005-10-14 삼성전자주식회사 열압축방식 잉크젯프린터헤드의 제작방법 및 그 잉크젯프린터헤드
US6362115B1 (en) 1998-12-09 2002-03-26 Applied Materials, Inc. In-situ generation of p-xylyiene from liquid precursors
US6709715B1 (en) 1999-06-17 2004-03-23 Applied Materials Inc. Plasma enhanced chemical vapor deposition of copolymer of parylene N and comonomers with various double bonds
DE10007059A1 (de) * 2000-02-16 2001-08-23 Aixtron Ag Verfahren und Vorrichtung zur Herstellung von beschichteten Substraten mittels Kondensationsbeschichtung
RU2164047C1 (ru) * 2000-07-26 2001-03-10 Гадалова Ольга Евгеньевна Способ получения композиционных металлокерамических мембран cvd-методом и устройство для его реализации
KR100348893B1 (ko) * 2000-07-31 2002-08-30 학교법인 영남학원 패릴린박막 증착장치, 유기발광소자 제조방법 및유기발광소자
US6921556B2 (en) * 2002-04-12 2005-07-26 Asm Japan K.K. Method of film deposition using single-wafer-processing type CVD
US20040006621A1 (en) * 2002-06-27 2004-01-08 Bellinson Craig Adam Content filtering for web browsing
KR100749375B1 (ko) * 2003-07-01 2007-08-14 동경 엘렉트론 주식회사 플라즈마 화학 증착 장치
JP4596803B2 (ja) * 2004-03-25 2010-12-15 キヤノン株式会社 減圧蒸着装置
JP2006009041A (ja) * 2004-06-22 2006-01-12 Canon Inc プラズマ処理装置
JP4664637B2 (ja) * 2004-09-22 2011-04-06 三菱重工業株式会社 基板冷却装置及び基板の冷却方法
RU2317313C2 (ru) 2004-10-28 2008-02-20 Самсунг Электроникс Ко., Лтд Способ получения жидкокристаллической полимерной пленки
JP2007023350A (ja) * 2005-07-19 2007-02-01 Sharp Corp ポリパラキシリレン膜の形成方法、ポリパラキシリレン膜、インクジェットヘッド
US20100034970A1 (en) * 2006-07-28 2010-02-11 Daisankasei Co., Ltd. Apparatus and method for chemical vapor deposition
JP2008053489A (ja) * 2006-08-25 2008-03-06 Hitachi Kokusai Electric Inc 基板処理装置
US7867560B2 (en) * 2007-03-28 2011-01-11 Tokyo Electron Limited Method for performing a vapor deposition process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133148A (en) * 1997-11-24 2000-10-17 Samsung Electronics Co., Ltd. Method of depositing film for semiconductor device in single wafer type apparatus using a lamp heating method
CN1344817A (zh) * 2000-10-02 2002-04-17 日本派欧尼股份株式会社 化学气相沉积装置和化学气相沉积方法
DE10136858A1 (de) * 2001-02-15 2002-09-05 Aixtron Ag Beschichtungsvorrichtung

Also Published As

Publication number Publication date
US8685500B2 (en) 2014-04-01
CN102112656A (zh) 2011-06-29
WO2009147005A1 (de) 2009-12-10
JP2011522129A (ja) 2011-07-28
KR20110039437A (ko) 2011-04-18
JP5492196B2 (ja) 2014-05-14
TWI480413B (zh) 2015-04-11
TW201005119A (en) 2010-02-01
RU2010152839A (ru) 2012-07-20
EP2294246A1 (de) 2011-03-16
EP2294246B1 (de) 2018-02-28
US20110081504A1 (en) 2011-04-07
DE102009003781A1 (de) 2009-12-10
KR101671401B1 (ko) 2016-11-01
RU2502831C2 (ru) 2013-12-27

Similar Documents

Publication Publication Date Title
CN102112656B (zh) 用于在低压气相中沉积薄层聚合物的方法
CN102056679B (zh) 聚对苯二亚甲基或聚取代的对苯二亚甲基薄层的沉积方法和装置
US6562405B2 (en) Multiple-nozzle thermal evaporation source
US7238389B2 (en) Vaporizing fluidized organic materials
KR101232910B1 (ko) 유기물 공급장치, 이를 이용한 유기물 증착장치 및 방법
TWI683019B (zh) 用數種液態或固態起始材料為cvd裝置或pvd裝置產生蒸汽之裝置及方法
US9428832B2 (en) Heat equalizer
JP2013091857A (ja) 温度に敏感な材料の気化
TW202020217A (zh) 用於提供多種材料至處理腔室的噴淋頭
TW202012048A (zh) 用於多重前驅物的均勻遞送的分段式噴淋頭
TW201842224A (zh) 鍍膜裝置以及用於在真空下於基板上進行反應性氣相沉積的方法
JP6549835B2 (ja) 蒸着装置、及び有機el装置の製造方法
KR100460304B1 (ko) 유기이엘 디스플레이의 박막형성 시스템
KR102027655B1 (ko) 저방사 유기 기상 젯프린팅 방법 및 장치
JP2022112316A (ja) 蒸着装置
KR20220068061A (ko) 유기 기상 전달 증착 반응로
Schwambera Optimizing OVPD technology towards lowest OLED manufacturing cost
TWM543876U (zh) 線性蒸鍍裝置
KR20070022759A (ko) 기화 온도 감수성 물질

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant