CN101930979A - 控制器件阈值电压的CMOSFETs结构及其制造方法 - Google Patents

控制器件阈值电压的CMOSFETs结构及其制造方法 Download PDF

Info

Publication number
CN101930979A
CN101930979A CN2009100878072A CN200910087807A CN101930979A CN 101930979 A CN101930979 A CN 101930979A CN 2009100878072 A CN2009100878072 A CN 2009100878072A CN 200910087807 A CN200910087807 A CN 200910087807A CN 101930979 A CN101930979 A CN 101930979A
Authority
CN
China
Prior art keywords
gate dielectric
layer
thin
threshold voltage
cmosfets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2009100878072A
Other languages
English (en)
Other versions
CN101930979B (zh
Inventor
王文武
朱慧珑
陈世杰
陈大鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN200910087807.2A priority Critical patent/CN101930979B/zh
Priority to PCT/CN2010/074387 priority patent/WO2010149058A1/zh
Priority to US12/937,444 priority patent/US8410555B2/en
Publication of CN101930979A publication Critical patent/CN101930979A/zh
Application granted granted Critical
Publication of CN101930979B publication Critical patent/CN101930979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823857Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate insulating layers, e.g. different gate insulating layer thicknesses, particular gate insulator materials or particular gate insulator implants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构及其制造方法。结构包括:硅衬底;在硅衬底上生长的SiO2界面层;在SiO2界面层上沉积的高k栅介质层;在高k栅介质层上沉积的极薄金属层;在极薄金属层结构上沉积的高k栅介质层;在高k栅介质叠层结构上沉积的金属栅层。制造方法是在NMOS和PMOS器件区域的高k栅介质层内部分别沉积极薄金属层,利用该极薄金属层在高k栅介质层内部形成的正或负电荷来调整器件的平带电压,进而控制器件的阈值电压。利用本发明,不仅可以增强CMOS器件中高k栅介质和SiO2界面层间的界面偶极子,而且还可以很好的控制高k栅介质层内部的固定电荷类型和数量,有效地控制器件的阈值电压。

Description

控制器件阈值电压的CMOSFETs结构及其制造方法
技术领域
本发明涉及纳米工艺CMOS技术中的高k栅介质和金属栅结构技术领域,尤其涉及一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构及其制造方法。
背景技术
22纳米及以下工艺集成电路关键核心技术的应用是集成电路发展的必然趋势,也是国际上主要半导体公司和研究组织竞相研发的课题之一。以“高k栅介质/金属栅”技术为核心的CMOS器件栅工程研究是22纳米及以下技术中最有代表性的关键核心工艺,与之相关的材料、工艺及结构研究已在广泛的进行中。
对于具有高k栅介质/金属栅结构的CMOS器件,其漏电流可以比具有多晶硅栅/SiO2结构的传统CMOS器件至少低一个数量级,即静态功耗可以大大减少。但随之而来的是CMOS器件的阈值电压控制问题。由于CMOS工艺需要同时具备NMOS与PMOS器件,所以为最大限度的优化器件性能,要求NMOS和PMOS器件的阈值电压在保持绝对值大致相等的前提下,要尽可能的降低阈值电压的数值。
目前优化CMOS器件阈值电压特性的方法包括,采用具有不同带边功函数的金属栅材料,在栅叠层中引入高k介质帽层,以产生界面偶极子等。另一方面,由于费米能级钉扎效应,Vfbroll-off效应等问题的存在,利用以上方法对NMOS器件及PMOS器件的阈值电压的调节也只能被限制在一定的范围内。
因此,新的栅叠层结构及加工工艺仍需进一步探索。
发明内容
(一)要解决的技术问题
有鉴于此,本发明的主要目的是提供一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构及其制造方法,该工艺是在NMOS和PMOS器件区域的高k栅介质层内部分别沉积极薄金属层,利用该极薄金属层在高k栅介质层内部形成的正或负电荷,以及由于金属原子热扩散引起的界面偶极子改变来调整器件的平带电压,进而控制器件的阈值电压。
(二)技术方案
为达到上述目的的一个方面,本发明提供了一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构,该结构包括:
硅衬底;
在硅衬底上生长的SiO2界面层;
在SiO2界面层上沉积的高k栅介质层;
在高k栅介质层上沉积的极薄金属层;
在极薄金属层结构上沉积的高k栅介质层;
在高k栅介质叠层结构上沉积的金属栅层。
上述方案中,所述SiO2界面层的厚度为0.3~1nm。
上述方案中,所述极薄金属层是被沉积于两层或多层同类或不同类的高k栅介质中间,所使用的沉积方法包括,物理沉积、化学气相沉积或原子层沉积。
上述方案中,对NMOS器件和PMOS器件,极薄金属层的材料不同,对于NMOS器件,极薄金属层的材料包括稀土金属Y、La、Dy、和Gd中的任一种;对PMOS器件,极薄金属层的材料包括金属Al、Mg和Hf中的任一种。
上述方案中,所述高k栅介质层包含一层高k栅介质结构或多层高k栅介质结构。
上述方案中,所述金属栅层包含一层栅电极结构或多层栅电极结构,是TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅和金属硅化物中的至少一种或多种的组合。
上述方案中,所述高k栅介质层是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中的至少一种,或者是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中至少一种的氮化物、氮氧化物、其他稀土元素氧化物、其他稀土元素氮化物、SiNx和SiON中的至少一种或多种的组合。
为达到上述目的的另一个方面,本发明提供了一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,该方法包括:
在硅衬底上生长SiO2界面层;
在SiO2界面层上沉积高k栅介质层;
在高k栅介质层上沉积极薄金属层,形成高k栅介质层/极薄金属层结构;
在高k栅介质层/极薄金属层结构上沉积高k栅介质层,形成高k栅介质层/极薄金属层/高k栅介质叠层结构;
在高k栅介质层/极薄金属层/高k栅介质叠层结构上沉积金属栅层;
涂胶和刻蚀,形成利用栅叠层结构控制器件阈值电压的CMOSFETs结构。
上述方案中,所述在硅衬底上生长SiO2界面层的步骤中,生长的SiO2界面层的厚度为0.3~1nm。
上述方案中,所述在高k栅介质层上沉积极薄金属层的步骤中,极薄金属层是被沉积于两层或多层同类或不同类的高k栅介质中间,所使用的沉积方法包括,物理沉积、化学气相沉积和原子层沉积。
上述方案中,对NMOS器件和PMOS器件,所述极薄金属层的材料不同,对于NMOS器件来说,极薄金属层的材料包括稀土金属Y、La、Dy和Gd中的任一种;对PMOS器件来说,极薄金属层的材料包括金属Al、Mg和Hf中的任一种。
上述方案中,所述高k栅介质层包含一层高k栅介质结构或多层高k栅介质结构。
上述方案中,所述在高k栅介质层/极薄金属层/高k栅介质叠层结构上沉积金属栅层的步骤中,金属栅层包含一层栅电极结构或多层栅电极结构,是TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅和金属硅化物中的至少一种或多种的组合。
上述方案中,所述高k栅介质层是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中的至少一种,或者是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中至少一种的氮化物、氮氧化物、其他稀土元素氧化物、其他稀土元素氮化物、SiNx和SiON中的至少一种或多种的组合。
(三)有益效果
本发明提供的这种利用栅叠层结构控制器件阈值电压的CMOSFETs结构及其制造方法,是在NMOS和PMOS器件区域的高k栅介质层内部分别沉积极薄金属层,利用该极薄金属层在高k栅介质层内部形成的正或负电荷来调整器件的平带电压,进而控制器件的阈值电压。利用本发明,不仅可以增强CMOS器件中高k栅介质和SiO2界面层间的界面偶极子,而且还可以很好的控制高k栅介质层内部的固定电荷类型和数量,可以有效地控制器件的阈值电压。
附图说明
图1是本发明提供的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的示意图;
图2是本发明提供的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法流程图;
图3至图8是依照本发明实施例利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法工艺流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
本发明提供的这种利用栅叠层结构控制器件阈值电压的CMOSFETs结构及其制造方法,是在NMOS和PMOS器件区域的高k栅介质层内部分别沉积极薄金属层,利用该极薄金属层在高k栅介质层内部形成的正或负电荷来调整器件的平带电压,进而控制器件的阈值电压。通过采取该工艺,不仅可以增强CMOS器件中高k栅介质和SiO2界面层间的界面偶极子,而且还可以很好的控制高k栅介质层内部的固定电荷类型和数量,可以有效地控制器件的阈值电压。
如图1所示,图1是本发明提供的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的示意图,该结构包括:
硅衬底;
在硅衬底上生长的SiO2界面层;
在SiO2界面层上沉积的高k栅介质层;
在高k栅介质层上沉积的极薄金属层;
在极薄金属层结构上沉积的高k栅介质层;
在高k栅介质叠层结构上沉积的金属栅层。
其中,SiO2界面层的厚度为0.3~1nm。极薄金属层是被沉积于两层或多层同类或不同类的高k栅介质中间,所使用的沉积方法包括,物理沉积、化学气相沉积或原子层沉积。对NMOS器件和PMOS器件,极薄金属层的材料不同,对于NMOS器件,极薄金属层的材料包括稀土金属Y、La、Dy、和Gd中的任一种;对PMOS器件,极薄金属层的材料包括金属Al、Mg和Hf中的任一种。高k栅介质层包含一层高k栅介质结构或多层高k栅介质结构。
金属栅层包含一层栅电极结构或多层栅电极结构,是TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅和金属硅化物等中的至少一种或多种的组合。
高k栅介质层是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx等中的至少一种,或者是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx等中至少一种的氮化物、氮氧化物、其他稀土元素氧化物、其他稀土元素氮化物、SiNx和SiON中的至少一种或多种的组合。
基于图1所示的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,图2示出了本发明提供的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法流程图,该方法包括:
步骤201:在硅衬底上生长SiO2界面层;
步骤202:在SiO2界面层上沉积高k栅介质层;
步骤203:在高k栅介质层上沉积极薄金属层,形成高k栅介质层/极薄金属层结构;
步骤204:在高k栅介质层/极薄金属层结构上沉积高k栅介质层,形成高k栅介质层/极薄金属层/高k栅介质叠层结构;
步骤205:在高k栅介质层/极薄金属层/高k栅介质叠层结构上沉积金属栅层;
步骤206:涂胶和刻蚀,形成利用栅叠层结构控制器件阈值电压的CMOSFETs结构。
图3至图8是依照本发明实施例利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法工艺流程图。
步骤1:如图3所示,在已做好前期工艺处理的硅衬底上生长0.5nm厚的SiO2界面层和3nm厚的第一层高k栅介质层HfO2
步骤2:如图4所示,在第一区域的HfO2/SiO2结构上沉积一层极薄的金属层1。
步骤3:如图5所示,在第二区域的HfO2/SiO2结构上沉积一层极薄的金属层2。
步骤4:如图6所示,在第一区域和第二区域的极薄金属层上沉积第二层高k栅介质层(第一层高k栅介质层和第二层高k栅介质层可以是同种材料,也可以是不同种材料。)。
步骤5:如图7所示,在第二层高k栅介质层上分别沉积金属栅电极层1和金属栅电极2(金属栅电极1和金属栅电极2可以是同种材料,也可以是不同种材料。)。
步骤6:如图8所示,分别对第一区域和第二区域进行图形、涂胶和刻蚀等工艺,制备CMOSFETs器件。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,该结构包括:
硅衬底;
在硅衬底上生长的SiO2界面层;
在SiO2界面层上沉积的高k栅介质层;
在高k栅介质层上沉积的极薄金属层;
在极薄金属层结构上沉积的高k栅介质层;
在高k栅介质叠层结构上沉积的金属栅层。
2.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,所述SiO2界面层的厚度为0.3~1nm。
3.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,所述极薄金属层是被沉积于两层或多层同类或不同类的高k栅介质中间,所使用的沉积方法包括,物理沉积、化学气相沉积或原子层沉积。
4.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,对NMOS器件和PMOS器件,极薄金属层的材料不同,对于NMOS器件,极薄金属层的材料包括稀土金属Y、La、Dy、和Gd中的任一种;对PMOS器件,极薄金属层的材料包括金属Al、Mg和Hf中的任一种。
5.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,所述高k栅介质层包含一层高k栅介质结构或多层高k栅介质结构。
6.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,所述金属栅层包含一层栅电极结构或多层栅电极结构,是TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅和金属硅化物中的至少一种或多种的组合。
7.根据权利要求1所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构,其特征在于,所述高k栅介质层是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中的至少一种,或者是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中至少一种的氮化物、氮氧化物、其他稀土元素氧化物、其他稀土元素氮化物、SiNx和SiON中的至少一种或多种的组合。
8.一种利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,该方法包括:
在硅衬底上生长SiO2界面层;
在SiO2界面层上沉积高k栅介质层;
在高k栅介质层上沉积极薄金属层,形成高k栅介质层/极薄金属层结构;
在高k栅介质层/极薄金属层结构上沉积高k栅介质层,形成高k栅介质层/极薄金属层/高k栅介质叠层结构;
在高k栅介质层/极薄金属层/高k栅介质叠层结构上沉积金属栅层;
涂胶和刻蚀,形成利用栅叠层结构控制器件阈值电压的CMOSFETs结构。
9.根据权利要求8所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,所述在硅衬底上生长SiO2界面层的步骤中,生长的SiO2界面层的厚度为0.3~1nm。
10.根据权利要求8所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,所述在高k栅介质层上沉积极薄金属层的步骤中,极薄金属层是被沉积于两层或多层同类或不同类的高k栅介质中间,所使用的沉积方法包括,物理沉积、化学气相沉积和原子层沉积。
11.根据权利要求10所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,对NMOS器件和PMOS器件,所述极薄金属层的材料不同,对于NMOS器件来说,极薄金属层的材料包括稀土金属Y、La、Dy和Gd中的任一种;对PMOS器件来说,极薄金属层的材料包括金属Al、Mg和Hf中的任一种。
12.根据权利要求8所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,所述高k栅介质层包含一层高k栅介质结构或多层高k栅介质结构。
13.根据权利要求8所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,所述在高k栅介质层/极薄金属层/高k栅介质叠层结构上沉积金属栅层的步骤中,金属栅层包含一层栅电极结构或多层栅电极结构,是TiN、TaN、MoN、HfN、TaAlN、TiAlN、MoAlN、HfAlN、TaYbN、TaErN、TaTbN、TaC、HfC、TaSiC、HfSiC、Pt、Ru、Ir、W、Mo、Re、RuOx、RuTax、HfRux、多晶硅和金属硅化物中的至少一种或多种的组合。
14.根据权利要求8所述的利用栅叠层结构控制器件阈值电压的CMOSFETs结构的制造方法,其特征在于,所述高k栅介质层是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中的至少一种,或者是HfO2、HfSiOx、HfON、HfSiON、HfAlOx、Al2O3、ZrO2、ZrSiOx、Ta2O5、La2O3、HfLaOx、LaAlOx和LaSiOx中至少一种的氮化物、氮氧化物、其他稀土元素氧化物、其他稀土元素氮化物、SiNx和SiON中的至少一种或多种的组合。
CN200910087807.2A 2009-06-26 2009-06-26 控制器件阈值电压的CMOSFETs结构及其制造方法 Active CN101930979B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200910087807.2A CN101930979B (zh) 2009-06-26 2009-06-26 控制器件阈值电压的CMOSFETs结构及其制造方法
PCT/CN2010/074387 WO2010149058A1 (zh) 2009-06-26 2010-06-24 控制器件阀值电压的cmosfet结构及其制造方法
US12/937,444 US8410555B2 (en) 2009-06-26 2010-06-24 CMOSFET device with controlled threshold voltage and method of fabricating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910087807.2A CN101930979B (zh) 2009-06-26 2009-06-26 控制器件阈值电压的CMOSFETs结构及其制造方法

Publications (2)

Publication Number Publication Date
CN101930979A true CN101930979A (zh) 2010-12-29
CN101930979B CN101930979B (zh) 2014-07-02

Family

ID=43370045

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910087807.2A Active CN101930979B (zh) 2009-06-26 2009-06-26 控制器件阈值电压的CMOSFETs结构及其制造方法

Country Status (3)

Country Link
US (1) US8410555B2 (zh)
CN (1) CN101930979B (zh)
WO (1) WO2010149058A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102226270A (zh) * 2011-04-29 2011-10-26 中国科学院上海微系统与信息技术研究所 沉积栅介质的方法、制备mis电容的方法及mis电容
CN102299110A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 一种半导体器件的形成方法及其半导体器件
CN103325787A (zh) * 2012-03-21 2013-09-25 中国科学院微电子研究所 Cmos器件及其制造方法
CN103594350A (zh) * 2013-10-22 2014-02-19 溧阳市东大技术转移中心有限公司 一种减小界面层生长的方法
CN106847918A (zh) * 2015-12-04 2017-06-13 Imec 非营利协会 Ge场效应晶体管(FET)和制造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050034087A1 (en) * 2003-08-04 2005-02-10 Hamlin Christopher L. Method and apparatus for mapping platform-based design to multiple foundry processes
JP5427148B2 (ja) * 2010-09-15 2014-02-26 パナソニック株式会社 半導体装置
CN102983156A (zh) * 2011-09-06 2013-03-20 联华电子股份有限公司 金属栅极结构及其工艺
US20130277766A1 (en) * 2012-04-23 2013-10-24 Globalfoundries Inc. Multiple high-k metal gate stacks in a field effect transistor
KR101929384B1 (ko) 2012-05-24 2018-12-14 삼성전자주식회사 선택적으로 질화처리된 게이트 절연막을 갖는 반도체 장치의 제조 방법
CN103681274B (zh) * 2012-09-12 2016-12-28 中国科学院微电子研究所 半导体器件制造方法
CN113078112B (zh) * 2021-03-29 2023-03-31 电子科技大学 一种氧化物基耗尽型负载反相器的制备方法
US11735593B2 (en) 2021-11-04 2023-08-22 International Business Machines Corporation Gate stack dipole compensation for threshold voltage definition in transistors

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI258811B (en) * 2003-11-12 2006-07-21 Samsung Electronics Co Ltd Semiconductor devices having different gate dielectrics and methods for manufacturing the same
CN1949532A (zh) 2005-10-12 2007-04-18 财团法人工业技术研究院 半导体结构及其制造方法
US7432567B2 (en) 2005-12-28 2008-10-07 International Business Machines Corporation Metal gate CMOS with at least a single gate metal and dual gate dielectrics
US20070152276A1 (en) * 2005-12-30 2007-07-05 International Business Machines Corporation High performance CMOS circuits, and methods for fabricating the same
US7425497B2 (en) * 2006-01-20 2008-09-16 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes
US20070178634A1 (en) * 2006-01-31 2007-08-02 Hyung Suk Jung Cmos semiconductor devices having dual work function metal gate stacks
JP2007251066A (ja) * 2006-03-17 2007-09-27 Toshiba Corp 半導体装置の製造方法
TWI492367B (zh) 2007-12-03 2015-07-11 Renesas Electronics Corp Cmos半導體裝置之製造方法
US8309419B2 (en) * 2009-02-04 2012-11-13 Freescale Semiconductor, Inc. CMOS integration with metal gate and doped high-K oxides

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299110A (zh) * 2010-06-22 2011-12-28 中国科学院微电子研究所 一种半导体器件的形成方法及其半导体器件
CN102226270A (zh) * 2011-04-29 2011-10-26 中国科学院上海微系统与信息技术研究所 沉积栅介质的方法、制备mis电容的方法及mis电容
CN103325787A (zh) * 2012-03-21 2013-09-25 中国科学院微电子研究所 Cmos器件及其制造方法
CN103594350A (zh) * 2013-10-22 2014-02-19 溧阳市东大技术转移中心有限公司 一种减小界面层生长的方法
CN103594350B (zh) * 2013-10-22 2016-04-06 溧阳市东大技术转移中心有限公司 一种减小界面层生长的方法
CN106847918A (zh) * 2015-12-04 2017-06-13 Imec 非营利协会 Ge场效应晶体管(FET)和制造方法
CN106847918B (zh) * 2015-12-04 2022-01-07 Imec 非营利协会 Ge场效应晶体管(FET)和制造方法

Also Published As

Publication number Publication date
US8410555B2 (en) 2013-04-02
WO2010149058A1 (zh) 2010-12-29
CN101930979B (zh) 2014-07-02
US20110169097A1 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
CN101930979B (zh) 控制器件阈值电压的CMOSFETs结构及其制造方法
CN101964345B (zh) 控制阈值电压特性的CMOSFETs器件结构及其制造方法
KR101928147B1 (ko) 원자층 성막 방법 및 그 구조체
CN102104042B (zh) 一种半导体器件
CN101675513B (zh) 高k栅极介电质互补金属氧化物半导体结构的阈值调整
EP1661177B1 (en) Method for integrating metals having different work functions to form cmos gates having a high-k gate dielectric and related structure
KR100662850B1 (ko) 복수 개의 금속층을 적층한 반도체 소자
US20120261761A1 (en) Semiconductor device and method of manufacturing the same
US20060289920A1 (en) Composite gate structure in an integrated circuit
US8624325B2 (en) Semiconductor device and method of manufacturing the same
WO2013138316A1 (en) Use of band edge gate metals as source drain contacts
US11749739B2 (en) Method of forming multiple-Vt FETS for CMOS circuit applications
CN106531618B (zh) 具有金属栅极结构的半导体元件的功函数调整方法
TW201318169A (zh) 具有金屬閘極及高介電常數介電材料之半導體裝置及其製造方法
US20120135590A1 (en) Silicon removal from surfaces and method of forming high k metal gate structures using same
CN102299155A (zh) 一种半导体器件及其制造方法
CN101494200B (zh) 双功函数半导体装置及其制造方法
CN104051252A (zh) 高k金属栅结构的制备方法
CN102044442B (zh) 一种改善高介电常数栅介质界面特性的方法
CN101494236A (zh) Cmos器件金属栅极及其形成方法
US20140183648A1 (en) Semiconductor Structures and Methods of Forming the Same
CN101599436A (zh) 用于mos器件的金属栅极结构及其制作方法
US8846474B2 (en) Dual workfunction semiconductor devices and methods for forming thereof
US20180269106A1 (en) Semiconductor device having multiple work functions and manufacturing method thereof
CN102104024A (zh) 一种制作CMOSFETs器件结构的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant