CN102226270A - 沉积栅介质的方法、制备mis电容的方法及mis电容 - Google Patents

沉积栅介质的方法、制备mis电容的方法及mis电容 Download PDF

Info

Publication number
CN102226270A
CN102226270A CN2011101103389A CN201110110338A CN102226270A CN 102226270 A CN102226270 A CN 102226270A CN 2011101103389 A CN2011101103389 A CN 2011101103389A CN 201110110338 A CN201110110338 A CN 201110110338A CN 102226270 A CN102226270 A CN 102226270A
Authority
CN
China
Prior art keywords
gate dielectric
dielectric layer
layer
electric capacity
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011101103389A
Other languages
English (en)
Inventor
程新红
徐大伟
王中健
夏超
何大伟
宋朝瑞
俞跃辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN2011101103389A priority Critical patent/CN102226270A/zh
Priority to PCT/CN2011/075440 priority patent/WO2012145952A1/zh
Priority to US13/256,435 priority patent/US20120273861A1/en
Publication of CN102226270A publication Critical patent/CN102226270A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors having potential barriers
    • H01L29/94Metal-insulator-semiconductors, e.g. MOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28194Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation by deposition, e.g. evaporation, ALD, CVD, sputtering, laser deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/511Insulating materials associated therewith with a compositional variation, e.g. multilayer structures
    • H01L29/513Insulating materials associated therewith with a compositional variation, e.g. multilayer structures the variation being perpendicular to the channel plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/66181Conductor-insulator-semiconductor capacitors, e.g. trench capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提供一种沉积栅介质的方法、制备MIS电容的方法及MIS电容。其中,在沉积栅介质的方法中,首先采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层;接着,采用等离子增强原子层沉积法在所述含氮的氧化层表面生长高介电常数的栅介质层,且在该栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层,在此基础上,再在已形成的半导体结构上下表面形成金属电极,由此便制备形成了MIS电容。本发明的优点在于:缓冲层的存在可以有效改善半导体材料与高k的栅介质层之间的界面特性,而且可以减少等效栅氧厚度(EOT)的增加,提高电学性能。

Description

沉积栅介质的方法、制备MIS电容的方法及MIS电容
技术领域
本发明涉及一种半导体领域,特别涉及一种沉积栅介质的方法、制备MIS电容的方法及MIS电容。
背景技术
随着微电子技术的飞速发展,SiO2栅介质层的厚度越来越薄,当SiO2栅氧化层厚度小于1nm时,由直接隧穿引起的漏电流将大到使器件失效的程度,而且,超薄SiO2栅介质层在长期可靠性、硼穿透以及均匀性等方面也受到限制。目前,克服这些限制的有效方法之一是采用高介电常数的新型绝缘介质材料(high-k材料)。采用high-k材料以后,在保证对沟道有相同控制能力的条件下,可使栅介质层的物理厚度增大,从而可以有效克服这些限制。氧化铪(HfO2)因其具有较大的介电常数K(~25)、与衬底Si之间具有良好的热稳定性以及相对较大的禁带宽度而成为最具有前景的栅氧化物之一。
原子层淀积(ALD)是最有可能淀积高质量High-k栅介质层的方法,主要是因为它有自限制的薄膜生长特性,能精确地控制生长薄膜的厚度和化学组分,而且淀积的薄膜具有很好的均匀性和保形性,因而被业内普遍认为是生长栅介质材料的首选方法。等离子体增强原子层沉积(PEALD)与常规的ALD热生长模式相比,其可以利用等离子体提高反应物的活性,且具有更宽的反应温度窗口,使沉积获得的薄膜更加致密。然而,现有采用常规ALD或PEALD生长的HfO2薄膜,其与衬底之间不可避免的存在一层低介电常数的SiO2层,并且该层SiO2会在退火过程中进一步生长。此外,HfO2薄膜中通常会存在大量的氧空位,这些因素将导致等效栅氧厚度(EOT)的增加及电学特性的恶化。
因此,急需要解决现有制备栅介质层所存在的问题。
发明内容
本发明的目的在于提供一种沉积栅介质的方法,以减小等效栅氧厚度,提高电学性能。
本发明的另一目的在于提供一种MIS电容及制备MIS电容的方法。
为了达到上述目的及其他目的,本发明提供的等离子体增强原子层沉积栅介质的方法,包括步骤:1)采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层;2)采用等离子增强原子层沉积法在所述含氮的氧化层表面生长高介电常数的栅介质层,在该栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层。
本发明提供一种制备MIS电容的方法,包括步骤:a)采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层;b)采用等离子增强原子层沉积法在包含所述氧化层的半导体结构表面生长高介电常数的栅介质层,在该栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层;c)在沉积有栅介质层的半导体结构的上下表面分别形成金属电极。
本发明提供一种MIS电容,其特征在于:在两金属电极之间依序包含有半导体衬底、介电常数高于SiO2的缓冲层以及栅介质层。
综上所述,本发明的等离子体增强原子层沉积栅介质的方法利用O2等离子体和含氮的等离子体对Si衬底进行预处理,以便在在栅介质层的界面处形成一层介电常数相对较高的缓冲层(BL),由此可有效减小等效栅氧厚度,提高电学性能。
附图说明
图1a与1b为本发明的等离子体增强原子层沉积栅介质的方法的流程图。
图2为本发明的MIS电容结构示意图。
具体实施方式
以下将结合附图来对本发明进行详细描述。
本发明的等离子体增强原子层沉积栅介质的方法包括以下步骤:
首先,对一半导体衬底进行清洗。例如,将一切割好的Si衬底放入(NH4OH∶H2O2∶H2O=2∶1∶7)溶液中超声清洗15分钟,以去除Si衬底表面的金属污染物,接着再用去离子水漂洗,然后将Si衬底放入稀释的HF溶液中(HF∶H2O=1∶50)3min左右,以去除Si衬底表面氧化物,随后再用去离子水清洗Si衬底表面,最后用酒精脱水,由此,完成对该Si衬底的清洗。
接着,将清洗过的半导体衬底采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层。
例如,将前述已经酒精脱水的Si衬底立即装入已经加热到75℃的PEALD反应腔内,并通入Ar气作为保护气体,并调节PEALD反应腔中横向及纵向的载气气流匹配;接着,在PEALD系统中以O2等离子体对Si衬底进行预处理,以去除Si衬底表面吸附的杂质气体,并在Si衬底表面形成超薄的SiO2层。优选的,O2等离子体功率控制在75w-100w之间,作用时间控制在5s以内,以控制所形成的SiO2层的厚度,避免在Si衬底表面形成较厚的SiO2,不利于后续获得较低EOT的栅介质薄膜;接着,再将PEALD反应腔升温至150℃,并以NH3等离子体对衬底Si衬底进行预处理,优选的,功率控制在150w-200w之间,作用时间控制在30s以上,以保证氮元素有效的掺入,由此,经过上述预处理的Si衬底表面就形成了一层含氮的氧化层,如图1a所示。
接着,采用等离子增强原子层沉积法在包含所述氧化层的半导体结构表面生长高介电常数的栅介质层,在栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层。作为一种优选,所述栅介质层包括HfO2栅介质层,所述缓冲层包括含氮的铪硅酸盐层。
例如,对前述形成了含氮的氧化层的Si衬底,利用PEALD方法沉积3~5nm厚的HfO2栅介质层,而PEALD反应的第一个循环应先通入足够的铪源(TEMAH),以保证在界面处生成含氮的铪硅酸盐层,也就是使含氮的SiO2层转变为含氮的铪硅酸盐层,从而在HfO2栅介质层下部形成了缓冲层,如图1b所示。
作为一种优选,在形成了所述栅介质层后,还可对所述栅介质层进行O2等离子体后处理,以填充所述栅介质层中的氧空位,以减小栅介质中的缺陷密度及降低栅介质的漏电流。
例如,对前述已形成的HfO2栅介质层原位进行O2等离子体后处理,处理功率为150w,作用时间控制在30~60s之间,使该HfO2栅介质层的缺陷密度及漏电流降低。
此外,继续在上述已形成了栅介质层的半导体结构的上下表面分别形成金属电极,由此即可制备形成MIS电容。
例如,如图2所示,在前述具有HfO2栅介质层的Si衬底结构的上表面,利用直径为100um的金属掩膜溅射生长100nm厚的Au作为MIS电容的上电极,随后再在Si衬底结构的背面溅射生长100nm厚的AL作为MIS电容的背电极。
由此,形成的MIS电容的结构如图2所示,所述MIS电容包括:金属铝电极、Si衬底层作为缓冲层的铪硅酸盐层、HfO2栅介质层以及金电极。
其中,作为一种优选,MIS电容的HfO2栅介质层的厚度为3~5nm,铪硅酸盐层的厚度在1nm以下。
综上所述,本发明的等离子体增强原子层沉积栅介质的方法通过对清洁的Si衬底表面进行O2等离子体处理,从而在Si衬底表面形成一层超薄SiO2,接着采用氨等离子体处理Si衬底表面并随后采用PEALD模式生长HfO2栅介质层,此时Si衬底表面与HfO2栅介质层之间将会形成一层由含氮的铪硅酸盐组成的缓冲层(BL),这层BL将改善HfO2Si衬底与Si衬底之间的界面特性及阻止EOT的增加,并采用氧等离子体后处理来填充HfO2Si栅介质层中存在的大量氧空位,经过氧等离子体后处理的HfO2栅介质层具有较小的缺陷密度以及漏电流密度。
上述实施例仅列示性说明本发明的原理及功效,而非用于限制本发明。任何熟悉此项技术的人员均可在不违背本发明的精神及范围下,对上述实施例进行修改。因此,本发明的权利保护范围,应如权利要求书所列。

Claims (14)

1.一种等离子体增强原子层沉积栅介质的方法,其特征在于包括步骤:
1)采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层;
2)采用等离子增强原子层沉积法在所述含氮的氧化层表面生长高介电常数的栅介质层,在该栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层。
2.如权利要求1所述的等离子体增强原子层沉积栅介质的方法,其特征在于还包括步骤:
3)对所述栅介质层进行O2等离子体后处理,以填充所述栅介质层中的氧空位。
3.如权利要求1或2所述的等离子体增强原子层沉积栅介质的方法,其特征在于:步骤1)中,采用O2等离子体及NH3等离子体对对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层。
4.如权利要求1或2所述的等离子体增强原子层沉积栅介质的方法,其特征在于:所述栅介质层包括HfO2栅介质层,所述缓冲层包括含氮的铪硅酸盐层。
5.一种制备MIS电容的方法,其特征在于包括步骤:
a)采用O2等离子体及包含氮元素的等离子体对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层;
b)采用等离子增强原子层沉积法在包含所述氧化层的半导体结构表面生长高介电常数的栅介质层,在该栅介质层生长过程中,所述氧化层转变为介电常数高于SiO2的缓冲层;
c)在沉积有栅介质层的半导体结构的上下表面分别形成金属电极。
6.如权利要求5所述的制备MIS电容的方法,其特征在于:在步骤b)中还包括:对所述栅介质层进行O2等离子体后处理,以填充所述栅介质层中的氧空位的步骤。
7.如权利要求5或6所述的制备MIS电容的方法,其特征在于:步骤a)中,采用O2等离子体及NH3等离子体对对半导体衬底表面进行预处理,以便在所述半导体表面形成含氮的氧化层。
8.如权利要求5或6所述的制备MIS电容的方法,其特征在于:所述栅介质层包括HfO2栅介质层,所述缓冲层包括含氮的铪硅酸盐层。
9.如权利要求5或6所述的制备MIS电容的方法,其特征在于:在沉积有栅介质层的半导体结构的栅介质层表面形成的金属电极为金电极,在沉积有栅介质层的半导体结构的另一表面形成金属电极为铝电极。
10.一种MIS电容,其特征在于:
在两金属电极之间依序包含有半导体衬底、介电常数高于SiO2的缓冲层以及栅介质层。
11.如权利要求10所述的MIS电容,其特征在于:所述栅介质层包括HfO2栅介质层,其厚度为3~5nm。
12.如权利要求10或11所述的MIS电容,其特征在于:所述缓冲层为含氮的铪硅酸盐层,其厚度在1nm以下。
13.如权利要求10或11所述的MIS电容,其特征在于:与所述半导体衬底接触的金属电极的材料包括铝。
14.如权利要求10或11所述的MIS电容,其特征在于:与所述栅介质层接触的金属电极的材料包括金。
CN2011101103389A 2011-04-29 2011-04-29 沉积栅介质的方法、制备mis电容的方法及mis电容 Pending CN102226270A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2011101103389A CN102226270A (zh) 2011-04-29 2011-04-29 沉积栅介质的方法、制备mis电容的方法及mis电容
PCT/CN2011/075440 WO2012145952A1 (zh) 2011-04-29 2011-06-08 沉积栅介质的方法、制备mis电容的方法及mis电容
US13/256,435 US20120273861A1 (en) 2011-04-29 2011-06-08 Method of depositing gate dielectric, method of preparing mis capacitor, and mis capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011101103389A CN102226270A (zh) 2011-04-29 2011-04-29 沉积栅介质的方法、制备mis电容的方法及mis电容

Publications (1)

Publication Number Publication Date
CN102226270A true CN102226270A (zh) 2011-10-26

Family

ID=44807266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011101103389A Pending CN102226270A (zh) 2011-04-29 2011-04-29 沉积栅介质的方法、制备mis电容的方法及mis电容

Country Status (2)

Country Link
CN (1) CN102226270A (zh)
WO (1) WO2012145952A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569070A (zh) * 2012-03-20 2012-07-11 中国科学院上海微系统与信息技术研究所 一种mis电容的制作方法
CN102664147A (zh) * 2012-05-14 2012-09-12 中国科学院上海微系统与信息技术研究所 一种在GaAs衬底上制备Hf基高K栅介质薄膜的方法
CN102760657A (zh) * 2012-07-27 2012-10-31 中国科学院上海微系统与信息技术研究所 在InP衬底上制备高K栅介质薄膜和MIS电容的方法
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质
CN105679661A (zh) * 2016-01-07 2016-06-15 厦门大学 一种减小氧化铪栅介质漏电流的方法
CN109509788A (zh) * 2017-09-15 2019-03-22 金巨达国际股份有限公司 高介电常数介电层、其制造方法及执行该方法的设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930979A (zh) * 2009-06-26 2010-12-29 中国科学院微电子研究所 控制器件阈值电压的CMOSFETs结构及其制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6511873B2 (en) * 2001-06-15 2003-01-28 International Business Machines Corporation High-dielectric constant insulators for FEOL capacitors
JP2003332566A (ja) * 2002-05-14 2003-11-21 Fujitsu Ltd 半導体装置およびその製造方法
US7767262B2 (en) * 2006-09-29 2010-08-03 Tokyo Electron Limited Nitrogen profile engineering in nitrided high dielectric constant films

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930979A (zh) * 2009-06-26 2010-12-29 中国科学院微电子研究所 控制器件阈值电压的CMOSFETs结构及其制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《ANALYTICAL SCIENCES》 20100210 Kenji Kimura等 Analysis of ultra-thin HfO2/SiON/Si(001):Comparison of Three different Techniques 第223-226页 第26卷, *
KENJI KIMURA等: "Analysis of ultra-thin HfO2/SiON/Si(001):Comparison of Three different Techniques", 《ANALYTICAL SCIENCES》 *
肖祁陵等: "沉积工艺和离子后处理对HfO2薄膜残余应力的影响", 《光子学报》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103247679A (zh) * 2012-02-09 2013-08-14 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质
CN103247679B (zh) * 2012-02-09 2016-08-24 国际商业机器公司 石墨烯器件用的具有低等效氧化物厚度的双层栅极电介质
CN102569070A (zh) * 2012-03-20 2012-07-11 中国科学院上海微系统与信息技术研究所 一种mis电容的制作方法
CN102569070B (zh) * 2012-03-20 2015-06-24 中国科学院上海微系统与信息技术研究所 一种mis电容的制作方法
CN102664147A (zh) * 2012-05-14 2012-09-12 中国科学院上海微系统与信息技术研究所 一种在GaAs衬底上制备Hf基高K栅介质薄膜的方法
CN102760657A (zh) * 2012-07-27 2012-10-31 中国科学院上海微系统与信息技术研究所 在InP衬底上制备高K栅介质薄膜和MIS电容的方法
CN105679661A (zh) * 2016-01-07 2016-06-15 厦门大学 一种减小氧化铪栅介质漏电流的方法
CN109509788A (zh) * 2017-09-15 2019-03-22 金巨达国际股份有限公司 高介电常数介电层、其制造方法及执行该方法的设备
CN109509788B (zh) * 2017-09-15 2022-03-08 陈敏璋 高介电常数介电层、其制造方法及执行该方法的设备

Also Published As

Publication number Publication date
WO2012145952A1 (zh) 2012-11-01

Similar Documents

Publication Publication Date Title
CN102226270A (zh) 沉积栅介质的方法、制备mis电容的方法及mis电容
US20130078793A1 (en) Method for depositing a gate oxide and a gate electrode selectively
TW201411839A (zh) 用於半導體表面氣相硫鈍化之系統及方法
CN101752236B (zh) 一种调控GaAs半导体与栅介质间能带补偿的原子层沉积Al2O3/HfO2方法
EP2058844A1 (en) Method of forming a semiconductor device
CN1784773A (zh) 原子层沉积的电介质层
TWI456666B (zh) 具有金屬閘極堆疊之半導體裝置之製造方法
CN102206799B (zh) 一种锗基mos器件衬底的表面钝化方法
CN103367408B (zh) 基于硅衬底高介电常数的栅介质材料及其制备方法
CN102306625A (zh) 一种锗基mos器件衬底的表面钝化方法
US20120273861A1 (en) Method of depositing gate dielectric, method of preparing mis capacitor, and mis capacitor
CN114300533A (zh) 一种栅氧结构和制备方法
CN1282255C (zh) 半导体器件及其制造方法
Yamada et al. Interface reaction of a silicon substrate and lanthanum oxide films deposited by metalorganic chemical vapor deposition
CN101800178A (zh) 一种铪硅铝氧氮高介电常数栅介质的制备方法
JP2006253440A (ja) 半導体装置の製造方法および半導体装置
CN102024707A (zh) 一种GaAs基MOS器件的制备方法
US10192963B2 (en) Composite gate dielectric layer applied to group III-V substrate and method for manufacturing the same
CN101950757A (zh) 基于soi衬底的高介电常数材料栅结构及其制备方法
TW201014926A (en) Method for producing metallic oxide film having high dielectric constant
CN102779845A (zh) 一种叠层金属氧化物栅介质层及其制备方法
CN115295407A (zh) 一种SiC功率器件的栅氧结构制备方法和栅氧结构
CN1404113A (zh) 一种氮化氧化膜的制备方法
Zhou et al. Performance promotion of aluminum oxide capping layer through interface engineering for tunnel oxide passivating contacts
CN114334627A (zh) 氧化层的形成方法及半导体结构

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20111026