CN101523528B - 多层陶瓷电容器和制造多层陶瓷电容器的方法 - Google Patents

多层陶瓷电容器和制造多层陶瓷电容器的方法 Download PDF

Info

Publication number
CN101523528B
CN101523528B CN2006800461162A CN200680046116A CN101523528B CN 101523528 B CN101523528 B CN 101523528B CN 2006800461162 A CN2006800461162 A CN 2006800461162A CN 200680046116 A CN200680046116 A CN 200680046116A CN 101523528 B CN101523528 B CN 101523528B
Authority
CN
China
Prior art keywords
ceramic capacitor
electrode
internal
shield
outside terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006800461162A
Other languages
English (en)
Other versions
CN101523528A (zh
Inventor
J·巴尔蒂图德
J·江
J·罗杰斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vishay Sprague Inc
Original Assignee
Vishay Sprague Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vishay Sprague Inc filed Critical Vishay Sprague Inc
Publication of CN101523528A publication Critical patent/CN101523528A/zh
Application granted granted Critical
Publication of CN101523528B publication Critical patent/CN101523528B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/012Form of non-self-supporting electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/43Electric condenser making
    • Y10T29/435Solid dielectric type

Abstract

一种电容器包括具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体以及附着于所述陶瓷电容器主体的第一和第二外部端子。以交替方式配置所述陶瓷电容器主体内的内部活性电极。使用所述陶瓷电容器主体内的内部电极屏蔽,以有助于提供对弧络的抵抗力。所述屏蔽可以包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于多个内部活性电极的相对侧上,并且每个内部电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽。使用侧屏蔽。所述电容器提高了对弧络的抵抗力,在空气中具有高击穿电压,并且允许小的外壳尺寸。

Description

多层陶瓷电容器和制造多层陶瓷电容器的方法
背景技术
多层陶瓷电容器通常具有交替的陶瓷电介质材料层和导电电极层。可以使用各种类型的电介质材料,并且已经使用了各种物理构造。利用“串联设计”生产高压性能的电容器已经很多年了。在串联设计中,在浮置电极和连接到两侧端子的电极之间存储电荷,如图1针对单个浮置电极的设计所示。这与图2所示的标准电容器设计相比有所不同,在标准电容器设计中,电极交替连接到不同的端子,且电荷存储在这些电极之间。这些设计的电容由下式给出:
Figure GSB00000549090000011
其中C=电容,F
=自由空间的介电常数=8.854×10-12Fm-1
Figure GSB00000549090000013
=陶瓷材料的介电常数,为取决于材料的无量纲常数
A=电极的有效重叠面积,m2
N=电极数-1
T=分隔各层的陶瓷的烧结后活性厚度
然而,对于串联设计来说,有效重叠面积显著减小。串联设计的优点是对于单个浮置电极而言作用于电极的内电压减半。可以进一步分隔浮置电极以便为每层赋予不止一个浮置电极,但这也减小了有效重叠面积,从而减小了电容。图3示出了27批外壳尺寸1812MLCC、47nF±10%标准设计以及同样批数的外壳尺寸1812、22nF±10%单浮置电极串联设计的平均击穿电压(n=50)。在所有这些情况下,分隔电极的烧结活性厚度(fired activethickness)为0.0023″,即58微米,标准设计的总厚度为0.051±0.003″(1.30±0.08mm),串联电容器的总厚度为0.068±0.003″(1.73±0.08mm)。对于所有这些1812外壳尺寸的电容器而言,长度和宽度尺寸分别为0.177±0.010″(4.50±0.25mm)和0.126±0.008″(3.20±0.20mm)。分别在图4和5中示出了1812标准设计和单电极串联设计的截面。
除了这些MLCC的耐内电压的能力之外,这些部件对来自电容器端子的弧络(arc-over)有抵抗力也很关键。McLarney的美国专利No.4731697公开了一种表面电极,其边缘部分被另一电介质层覆盖,以防止需要进行激光微调的弧络。然而,重要的是要注意暴露的电极会被腐蚀。而且,暴露电极的特性受环境因素(例如湿度)的影响很大,从而限制可以使用这些电容器的应用。
Duva的美国专利No.6627509公开了一种通过以下方式制造抗表面闪络(surface flashover)的电容器的方法:向多层陶瓷电容器的表面施加聚对二甲苯涂层,随后从端子修整过剩材料。在这种情况下,与电容器涂层相关的成本很高。此外,该涂层可能不和电路板组装工艺兼容,而且在诸如卫星的一些电子应用中,因为渗气问题而使有机涂层的存在受到限制。
因此,尽管为了制造具有高击穿电压的电容器并使弧络的发生最小化做出了各种努力,但问题仍然存在。需要一种改进的高压电容器。
发明内容
因此,本发明的主要目的、特征或优点是在目前工艺水平上做出改进。
本发明的另一目的、特征或优点是提供一种抗弧络的多层陶瓷电容器。
本发明的另一目的、特征或优点是提供一种在空气中具有高击穿电压的多层陶瓷电容器。
本发明的另一目的、特征或优点是提供一种其设计可以维持高电容的多层陶瓷电容器。
本发明的另一目的、特征或优点是将在把电容器并入到电子电路中时由于弧络而发生的不希望的破坏降到最小。
本发明的另一目的、特征或优点是提供一种具有耐高压能力、较小外壳尺寸的电容器,其允许对电路进行微型化。
本发明的另一目的、特征或优点是提供一种改进的电容器,可以方便和经济地制造所述电容器。
通过以下说明书和权利要求可以使本发明的这些和/或其他目的、特征或优点中的一个或多个变得显而易见。
根据本发明的一个方面,提供一种多层陶瓷电容器组件。该电容器组件包括具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体。该电容器组件还包括附着于陶瓷电容器主体的第一和第二外部端子。该电容器组件还包括陶瓷电容器主体内的多个内部活性电极,以交替方式配置所述多个内部活性电极,使得所述多个内部活性电极中的第一个从陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从陶瓷电容器主体的相对端向内延伸。在陶瓷电容器主体内还有多个内部电极屏蔽,由此有助于提供对弧络的抵抗力。所述多个内部电极屏蔽包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于所述多个内部活性电极的相对侧上,并且每个内部电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽。还有侧屏蔽。每个侧屏蔽从电容器主体的一端向内延伸,并且配置所述侧屏蔽以进一步屏蔽活性电极,由此进一步抵抗活性电极和端子之间的弧络。
根据本发明的另一方面,提供一种用于提供改进的高压特性的多层陶瓷电容器组件。该电容器包括具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体。第一和第二外部端子附着于陶瓷电容器主体。所述多个电极层包括:顶层,其具有向内延伸到或延伸超过第一端子的电极屏蔽;底层,其具有向内延伸到或延伸超过第二端子的电极屏蔽;以及多个交替的活性电极层,其从陶瓷电容器主体的交替端向内延伸。所述交替的活性电极层中的每一个还包括侧屏蔽。
根据本发明的另一个方面,提供一种制造多层陶瓷组件的方法。所述方法包括由多个电极层和电介质层形成陶瓷电容器主体以及在陶瓷电容器主体的相对端上附着第一和第二外部端子。所述多个电极层包括活性电极层和屏蔽电极层,并且其中以交替方式配置所述活性电极层,使得所述多个活性电极中的第一个从陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从陶瓷电容器主体的相对端向内延伸。所述屏蔽电极层包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于所述多个活性电极的相对侧上,并且每个电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽。所述活性电极层还包括在所述活性电极的相对侧上的侧屏蔽层,由此提供额外的屏蔽。
附图说明
图1是具有单浮置电极的串联电容器设计的截面图;
图2是标准电容器设计的截面图;
图3示出串联和标准电容器设计的平均击穿电压;
图4A示出1812MLCC标准设计的截面照片;
图4B示出1812MLCC标准设计的端视照片;
图5A是1812MLCC单浮置电极串联设计的截面照片;
图5B示出1812MLCC单浮置电极串联设计的端视照片;
图6是根据本发明的若干实施例的电容器设计图;
图7是示出图6的电容器设计的平均电容和尺寸的表格;
图8A是实例1的侧视截面图;
图8B是实例1的端视截面图;
图9A是实例2的侧视截面图;
图9B是实例2的端视截面图;
图10A是实例3的侧视截面图;
图10B是实例3的端视截面图;
图11示出实例1、2和3的击穿电压;
图12A是实例1的截面照片;
图12B是实例1的截面的端视照片;
图13A是实例2的截面照片;
图13B是实例2的截面的端视照片;
图14A是实例3的截面照片;
图14B是实例3的截面的端视照片。
具体实施方式
本发明描述了一种内部电极的新颖布置,该布置获得了空气中的击穿电压非常高的抗电弧多层陶瓷电容器。此外,这些设计维持了高电容。为帮助描述本发明,描述三种设计中的每一种和MLCC性能,然后参考附图提供对每个实例的更详细的描述。在以下实例中描述设计和MLCC性能。
实例1
使用生产用MLCC X7R材料系统C-153制造标准外壳尺寸1206电容器设计。
实例2
利用在顶部和底部上具有屏蔽电极的生产用MLCC X7R材料系统C-153制造外壳尺寸1206电容器设计。这些屏蔽电极的目的是防止端子和具有相反极性的内部电极之间或跨在极性相反的端子之间的电容器的顶表面或底表面上的弧络。因此,在下方的活性电极具有相反极性的情况下,在外壳中只需要有一个屏蔽电极。然而,在通过屏蔽电容器的顶部和底部处的两个端子区域来制造具有不同值的电容器期间,不必改变对不同数量的电极的筛选(screen),从而提高了可制造性。
实例3
利用生产用MLCC X7R材料系统C-153制造外壳尺寸1206电容器设计,该系统除了顶部和底部上的屏蔽电极之外,还在活性电极的任意一侧具有侧屏蔽电极。侧屏蔽电极的目的是防止端子和具有相反极性的不同内部电极层之间或跨在极性相反的端子之间的电容器的侧面上的弧络。至于顶部和底部侧屏蔽电极,在每一侧上使用两个侧屏蔽电极,但是在具有相反极性的端子的每一层的侧面仅需要具有一个侧屏蔽电极。每一侧上的两个侧屏蔽电极容许精确检查电极堆(electrode stack)的对准情况。
图6示出了所有三个实例的设计和电极图案。将多个端子应用于这些实例,其由厚膜烧结银膏构成,然后用镍随后用锡对这些端子进行过电镀(over plate)。通过1000VHi-Pot筛选这些部件并进行IR检验。测量平均电容(n=100)和尺寸(n=5),如图7所示。
可以看出,对于所有这些实例而言,电极数-1(N)几乎相同,都是27±1。对于全部三个实例而言,分隔各层的陶瓷的烧结活性厚度(T)也是相同的,并且由于使用相同的陶瓷材料系统来制造所有的电容器,因此介电常数
Figure GSB00000549090000061
是相同的。因此,影响电容的唯一变量是电极的有效重叠面积(A)。由于侧屏蔽的存在,这对于实例3而言是较低的。在图12A和12B(实例1)、图13A和13B(实例2)以及图14A和14B(实例3)中示出了实例1、2和3的实际截面。
根据EIA 198-2-E的方法103,通过施加缓变率(ramp rate)为500V/s的电压,对实例1、2和3的50个电容器样本进行失效测试。图11中示出了结果。用于测试的仪器为Associated Research 7512DT HiPot。图11的数据表示电介质击穿电压电平,其包括弧络和/或物理破坏。IR测试后,实例1的部件具有13/50的绝缘电阻(IR)失效,实例2和3分别具有48/50和50/50的IR失效,表明在实例3中未观察到因弧络造成的失效。同样重要的是要注意施加电压时弧络的重复发生最终会导致IR失效。
可以清楚地看出,在所提到的实例中,实例3具有>2.5kV的最高平均击穿电压。实例3中的1206外壳尺寸的电容器的击穿电压和电容类似于在现有技术中描述的1812 1000V标称单浮置电极串联电容器。因此,实例3中描述的电容器允许使处理高压所需的电路显著微型化。
图1示出了现有技术的电容器设计。在图1中,所示的电容器10具有第一端子12以及位于电容器主体16的相对端上的相对第二端子14。示出了浮置电极18。图2示出了另一现有技术的电容器设计。在图2中,不是浮置电极,而是使电极交替布置。图3对串联设计和标准设计进行了比较。具体而言,图3示出了27批外壳尺寸1812MLCC、47nF±10%标准设计以及同样批数的外壳尺寸1812、22nF±10%单浮置电极串联设计的平均击穿电压(n=50)。在所有这些情况下,分隔电极的烧结活性厚度为0.0023″,即58微米,标准设计的总厚度为0.051±0.003″(1.30±0.08mm),串联电容器的总厚度为0.068±0.003″(1.73±0.08mm)。对于所有这些1812外壳尺寸的电容器而言,长度和宽度尺寸分别为0.177±0.010″(4.50±0.25mm)和0.126±0.008″(3.20±0.20mm)。分别在图4A-4B和5A-5B中示出了1812标准设计和单电极串联设计的截面。
图6是示出三种不同电容器设计实例的表格。第一实例为用于比较的标准设计。第二实例是本发明的一个实施例,其中使用了顶部和底部屏蔽。第三实例是本发明的另一实施例,其中使用了顶部和底部屏蔽以及侧屏蔽。
如图6所示,在标准设计中,电容器的烧结活性厚度为0.0020英寸或51微米。标准设计包括26个活性电极。在顶部/底部屏蔽设计中,电容器的烧结活性厚度也是0.0020英寸或51微米。顶部/底部屏蔽设计包括27个活性电极。在顶部/底部和侧屏蔽设计中,烧结活性厚度是0.0020英寸或51微米。在顶部/底部侧屏蔽设计中,有28个活性电极。
图6还示出了各种设计的电极布局规划。根据标准设计,有第一电极20和交错的第二电极22。第三电极24与第一电极20对准。第四电极26与第二电极22对准。这种交替图案继续下去,不断出现额外的交替电极,直到倒数第二电极N-1和最后一个电极30。
在顶部/底部屏蔽设计中,第一电极层包括第一顶部屏蔽32和第二顶部屏蔽34以及第一底部屏蔽36和第二底部屏蔽38。特别要注意的是仅第一顶部屏蔽32和第二底部屏蔽38是活性的-甚至不需要存在其他屏蔽。第一顶部屏蔽32和第二底部屏蔽38是防止来自极性相反的终端(termination)的弧络所必需的,而屏蔽34和26是为了制造方便而存在的。
在顶部/底部和侧屏蔽实施例中,有第一顶部屏蔽32和第二顶部屏蔽34以及第一底部屏蔽36和第二底部屏蔽38。对于每个活性电极,还有侧屏蔽40、42、44、46、48、50、52、54、56、58、60、62、64、66、68和70。侧屏蔽40、42、52、54、56、58、68和70是保护内部活性电极不受来自极性相反的端子的弧络影响所必需的,而其他侧屏蔽是为了测试部件内的电极对准而提供的。
在图8A到10B中进一步示出了图6所示的设计。图8A是实例1(标准设计)的截面图,而图8B是实例1的截面端视图。在图8A中,示出了多层陶瓷电容器组件48,其具有第一端子12和多层陶瓷电容器组件16的相对端上的第二端子14。以交替的方式配置陶瓷电容器主体的内部活性电极,使得第一内部活性电极20从陶瓷电容器主体的一端向内朝陶瓷电容器主体的相对端上的端子延伸。下一个内部活性电极22从陶瓷电容器主体的相对端向内朝陶瓷主体的相对端上的端子延伸。图8B的端视截面图示出了电极。
图9A是实例2(顶部/底部屏蔽)的侧视截面图,而图9B是实例2的截面端视图。在图9A中,示出了多层陶瓷电容器组件50。注意,在陶瓷电容器主体内存在内部电极屏蔽有助于对端子和内部电极之间的弧络提供抵抗力。所示的内部电极屏蔽包括顶部内部电极屏蔽32和相对的底部内部电极屏蔽38。顶部内部电极屏蔽32和相对的底部内部电极屏蔽38位于多层陶瓷电容器主体16的相对侧上。每个内部电极屏蔽32、38向内延伸到或延伸超过相应的端子12、14,由此提供屏蔽。如前所述,提供额外的结构34和36,但它们不是必需的,因为由于端子的极性而使它们不提供实际的屏蔽。包括它们是为了制造过程中的方便。
图10A是实例3(顶部/底部屏蔽和侧屏蔽)的侧视截面图,而图10B是实例3的截面端视图。图10A的多层陶瓷电容器不仅包括顶部屏蔽32和相对的底部屏蔽38,而且还包括侧屏蔽。在示出电容器的截面的图10B中最好地显示出侧屏蔽。所讨论的侧屏蔽取决于截面的深度,因此所示的侧屏蔽为40、42、48和50。
图7提供了用于将标准设计与根据本发明的两种设计进行比较的表格。该表示出了图6的电容器设计的平均电容和尺寸。
图11示出了实例1、2和3的击穿电压。注意在图11中,顶部/底部屏蔽实施例(实例2)提供的击穿电压相对于标准设计(实例1)提高了。顶部/底部和侧屏蔽实施例(实例3)提供了进一步提高的击穿电压。因此,可以使用本发明制造击穿电压在1000V、1500V、2000V、2500V甚至3000V以上的多层陶瓷电容器。
因此,公开了一种改进的高压电容器。本发明不限于这里所示的具体实施例。例如,本发明在所用电介质的类型、所用导体的类型、尺寸、尺度、封装上构思了很多变化以及其他变化。

Claims (16)

1.一种多层陶瓷电容器,其包括:具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体;附着于所述陶瓷电容器主体的第一外部端子和第二外部端子,所述第一外部端子电耦合到第一电极层并且所述第二外部端子电耦合到第二电极层;其中所述多个电极层包括位于所述陶瓷电容器主体内的多个内部活性电极,以交替方式配置所述多个内部活性电极,使得所述多个内部活性电极中的第一个从所述陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从所述陶瓷电容器主体的相对端向内延伸;所述陶瓷电容器主体内的多个内部电极屏蔽,由此有助于提供对弧络的抵抗力;所述多个内部电极屏蔽包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于所述多个内部活性电极的相对侧上,并且每个内部电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽;所述多个内部电极屏蔽还包括多个侧屏蔽,每个侧屏蔽从所述电容器主体的一端向内延伸,并且每个侧屏蔽被配置成进一步屏蔽活性电极,由此进一步抵抗活性电极和端子之间的弧络。
2.根据权利要求1所述的多层陶瓷电容器,其中所述多个内部活性电极中的每一个从所述陶瓷电容器主体的一端延伸到附着于所述陶瓷电容器主体的相对端的外部电极。
3.根据权利要求1所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于1500伏。
4.根据权利要求1所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于2000伏。
5.根据权利要求1所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于2500伏。
6.根据权利要求1所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于3000伏。
7.一种用于提供改进的高压特性的多层陶瓷电容器,其包括:具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体;附着于所述陶瓷电容器主体的第一外部端子和第二外部端子,所述第一外部端子电耦合到第一电极层并且所述第二外部端子电耦合到第二电极层;其中所述多个电极层包括:顶层,其具有向内延伸到或延伸超过所述第一外部端子的电极屏蔽;底层,其具有向内延伸到或延伸超过所述第二外部端子的电极屏蔽;以及多个交替的活性电极层,其从所述陶瓷电容器主体的交替端向内延伸;并且其中所述多个交替的活性电极层中的每一个还包括侧屏蔽。
8.根据权利要求7所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于1500伏。
9.根据权利要求7所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于2000伏。
10.根据权利要求7所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于2500伏。
11.根据权利要求7所述的多层陶瓷电容器,其中所述多层陶瓷电容器的击穿电压大于3000伏。
12.根据权利要求7所述的多层陶瓷电容器,其中确定所述陶瓷电容器主体的尺寸以使其安装在外壳尺寸1206封装之内。
13.一种制造多层陶瓷电容器的方法,其包括:由多个电极层和电介质层形成陶瓷电容器主体;在所述陶瓷电容器主体的相对端上附着第一外部端子和第二外部端子,所述第一外部端子电耦合到第一电极层并且所述第二外部端子电耦合到第二电极层;其中所述多个电极层包括活性电极层和屏蔽电极层,并且其中以交替方式配置所述活性电极层,使得所述多个活性电极中的第一个从所述陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从所述陶瓷电容器主体的相对端向内延伸;其中所述屏蔽电极层包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于所述多个内部活性电极的相对侧上,且每个电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽;其中所述活性电极层还包括在所述活性电极的相对侧上的侧屏蔽层,由此提供额外的屏蔽。
14.一种多层陶瓷电容器,其包括:具有相对端并由多个电极层和电介质层构成的陶瓷电容器主体;附着于所述陶瓷电容器主体的第一外部端子和第二外部端子,所述第一外部端子电耦合到第一电极层并且所述第二外部端子电耦合到第二电极层;其中所述多个电极层包括位于所述陶瓷电容器主体内的多个内部活性电极,以交替方式配置所述多个内部活性电极,使得所述多个内部活性电极中的第一个从所述陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从所述陶瓷电容器主体的相对端向内延伸;所述陶瓷电容器主体内的多个内部电极屏蔽,由此有助于提供对弧络的抵抗力;所述多个内部电极屏蔽包括多个侧屏蔽,每个侧屏蔽从所述电容器主体的一端向内延伸,并且所述侧屏蔽被配置成屏蔽相应的活性电极,由此抵抗活性电极和端子之间的弧络。
15.根据权利要求14所述的多层陶瓷电容器,其中所述多个内部电极屏蔽还包括顶部内部电极屏蔽和相对的底部内部电极屏蔽,其中所述顶部内部电极屏蔽和所述相对的底部内部电极屏蔽位于所述多个内部活性电极的相对侧上,并且每个内部电极屏蔽向内延伸到或延伸超过相应的外部端子,由此提供屏蔽。
16.一种制造多层陶瓷电容器的方法,其包括:由多个电极层和电介质层形成陶瓷电容器主体;在所述陶瓷电容器主体的相对端上附着第一外部端子和第二外部端子,所述第一外部端子电耦合到第一电极层并且所述第二外部端子电耦合到第二电极层;其中所述多个电极层包括活性电极层和屏蔽电极层,并且其中以交替方式配置所述活性电极层,使得所述多个活性电极中的第一个从所述陶瓷电容器主体的一端向内延伸,并且下一内部活性电极从所述陶瓷电容器主体的相对端向内延伸;其中所述活性电极层还包括在所述活性电极的相对侧上的侧屏蔽层,由此提供屏蔽。
CN2006800461162A 2006-02-22 2006-06-15 多层陶瓷电容器和制造多层陶瓷电容器的方法 Expired - Fee Related CN101523528B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/359,711 2006-02-22
US11/359,711 US7336475B2 (en) 2006-02-22 2006-02-22 High voltage capacitors
PCT/US2006/023338 WO2007117257A1 (en) 2006-02-22 2006-06-15 Improved high voltage capacitors

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN2011103107488A Division CN102509611A (zh) 2006-02-22 2006-06-15 改进的高压电容器

Publications (2)

Publication Number Publication Date
CN101523528A CN101523528A (zh) 2009-09-02
CN101523528B true CN101523528B (zh) 2011-12-07

Family

ID=38427954

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2006800461162A Expired - Fee Related CN101523528B (zh) 2006-02-22 2006-06-15 多层陶瓷电容器和制造多层陶瓷电容器的方法
CN2011103107488A Pending CN102509611A (zh) 2006-02-22 2006-06-15 改进的高压电容器

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN2011103107488A Pending CN102509611A (zh) 2006-02-22 2006-06-15 改进的高压电容器

Country Status (8)

Country Link
US (2) US7336475B2 (zh)
EP (1) EP1987524A4 (zh)
JP (3) JP5043046B2 (zh)
KR (1) KR100991311B1 (zh)
CN (2) CN101523528B (zh)
HK (1) HK1136084A1 (zh)
TW (1) TWI319884B (zh)
WO (1) WO2007117257A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7336475B2 (en) * 2006-02-22 2008-02-26 Vishay Vitramon, Inc. High voltage capacitors
US8238075B2 (en) * 2006-02-22 2012-08-07 Vishay Sprague, Inc. High voltage capacitors
DE102007044453A1 (de) * 2007-09-18 2009-03-26 Epcos Ag Elektrisches Vielschichtbauelement
US7545626B1 (en) 2008-03-12 2009-06-09 Samsung Electro-Mechanics Co., Ltd. Multi-layer ceramic capacitor
EP2107578B1 (en) * 2008-03-31 2016-05-11 Samsung Electro-Mechanics Co., Ltd Multi-layer ceramic capacitor
US8125762B2 (en) * 2008-08-11 2012-02-28 Vishay Sprague, Inc. High voltage capacitors
US20100188799A1 (en) * 2009-01-28 2010-07-29 Avx Corporation Controlled esr low inductance capacitor
JP2012532455A (ja) 2009-07-01 2012-12-13 ケメット エレクトロニクス コーポレーション 高電圧能力を有する高静電容量の多層
TWI478186B (zh) * 2009-08-11 2015-03-21 Hermes Epitek Corp 耐高壓電極結構及其製造方法
JP2011151224A (ja) * 2010-01-22 2011-08-04 Murata Mfg Co Ltd 積層セラミックコンデンサおよびその製造方法
JP5672162B2 (ja) * 2010-07-21 2015-02-18 株式会社村田製作所 電子部品
DE102011010611A1 (de) 2011-02-08 2012-08-09 Epcos Ag Elektrisches Keramikbauelement mit elektrischer Abschirmung
TW201234394A (en) * 2011-02-09 2012-08-16 Yageo Corp Multi-layer varistor component
CN102543429A (zh) * 2012-03-01 2012-07-04 广东风华邦科电子有限公司 一种高压陶瓷电容器
KR101761936B1 (ko) * 2012-03-13 2017-07-26 삼성전기주식회사 적층 세라믹 전자 부품
DE112013001679B4 (de) 2012-03-26 2023-03-09 Kemet Electronics Corporation Asymmetrischer Hochspannungskondensator
DE102012104033A1 (de) 2012-05-08 2013-11-14 Epcos Ag Keramischer Vielschichtkondensator
JP2014027255A (ja) 2012-06-22 2014-02-06 Murata Mfg Co Ltd セラミック電子部品及びセラミック電子装置
KR101452049B1 (ko) * 2012-11-09 2014-10-22 삼성전기주식회사 적층 세라믹 커패시터, 적층 세라믹 커패시터의 회로 기판 실장 구조 및 적층 세라믹 커패시터의 포장체
WO2016098624A1 (ja) 2014-12-18 2016-06-23 ソニー株式会社 固体撮像素子、撮像装置、および電子機器
JP6459717B2 (ja) * 2015-03-31 2019-01-30 Tdk株式会社 積層セラミックコンデンサ
TWI580141B (zh) * 2016-04-27 2017-04-21 Inpaq Technology Co Ltd 積層式電子衝擊保護電磁干擾濾波元件及其製造方法
US10410794B2 (en) * 2016-07-11 2019-09-10 Kemet Electronics Corporation Multilayer ceramic structure
US11031183B2 (en) 2018-03-06 2021-06-08 Avx Corporation Multilayer ceramic capacitor having ultra-broadband performance
US10943735B2 (en) 2018-03-06 2021-03-09 Avx Corporation Multilayer ceramic capacitor having ultra-broadband performance
JP7437871B2 (ja) * 2018-08-23 2024-02-26 太陽誘電株式会社 積層セラミックコンデンサおよびその製造方法
US11270842B2 (en) 2019-01-28 2022-03-08 KYOCERA AVX Components Corporation Multilayer ceramic capacitor having ultra-broadband performance
CN116612991A (zh) 2019-01-28 2023-08-18 京瓷Avx元器件公司 具有超宽带性能的多层陶瓷电容器
US11495406B2 (en) 2019-01-28 2022-11-08 KYOCERA AVX Components Corporation Multilayer ceramic capacitor having ultra-broadband performance
CN113316829B (zh) 2019-01-28 2023-07-18 京瓷Avx元器件公司 具有超宽带性能的多层陶瓷电容器
CN113330527B (zh) 2019-01-28 2022-07-05 京瓷Avx元器件公司 具有超宽带性能的多层陶瓷电容器
US11705280B2 (en) 2019-04-25 2023-07-18 KYOCERA AVX Components Corporation Multilayer capacitor having open mode electrode configuration and flexible terminations
KR20190116128A (ko) * 2019-07-05 2019-10-14 삼성전기주식회사 커패시터 부품
US11670453B2 (en) * 2020-07-20 2023-06-06 Knowles UK Limited Electrical component having layered structure with improved breakdown performance
KR102594641B1 (ko) * 2020-12-09 2023-10-26 삼화콘덴서공업주식회사 Eos 강화형 적층 세라믹 콘덴서

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312023A (en) * 1979-03-23 1982-01-19 L.C.C.-C.I.C.E. Compagnie Europeenne De Composants Electroniques Ceramic power capacitor
CN1574129A (zh) * 2003-05-27 2005-02-02 株式会社村田制作所 多层陶瓷电子元件及其安装结构和方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3683469A (en) * 1970-08-14 1972-08-15 Zenith Radio Corp Method of fabricating multilayer ceramic capacitors
US4731697A (en) * 1987-05-05 1988-03-15 Avx Corporation Arc resistant trimable ceramic capacitor
JPH01281717A (ja) * 1988-05-09 1989-11-13 Murata Mfg Co Ltd Cr複合部品
US4918570A (en) * 1988-12-20 1990-04-17 Murata Manufacturing Co., Ltd. Electronic component and its production method
JP2874380B2 (ja) * 1991-03-28 1999-03-24 三菱マテリアル株式会社 チップ型積層セラミックコンデンサ
US5657199A (en) * 1992-10-21 1997-08-12 Devoe; Daniel F. Close physical mounting of leaded amplifier/receivers to through holes in monolithic, buried-substrate, multiple capacitors simultaneous with electrical connection to dual capacitors otherwise transpiring, particularly for hearing aid filters
JPH07169649A (ja) * 1993-12-16 1995-07-04 Tdk Corp 積層貫通型コンデンサアレイ
DE4425815C1 (de) * 1994-07-21 1995-08-17 Demetron Gmbh Edelmetallhaltige Resinatpaste zur Herstellung von keramischen Vielschichtkondensatoren
JPH09180956A (ja) * 1995-10-03 1997-07-11 Tdk Corp 積層型セラミックコンデンサ
MY120414A (en) * 1995-10-03 2005-10-31 Tdk Corp Multilayer ceramic capacitor
JPH09129476A (ja) * 1995-10-30 1997-05-16 Murata Mfg Co Ltd セラミック電子部品
JP2000106322A (ja) * 1998-09-29 2000-04-11 Kyocera Corp 積層セラミックコンデンサ
JP3463161B2 (ja) * 1998-10-26 2003-11-05 Tdk株式会社 積層セラミックチップコンデンサ
JP3548821B2 (ja) * 1999-05-10 2004-07-28 株式会社村田製作所 積層コンデンサ、ならびにこれを用いた電子装置および高周波回路
US6515842B1 (en) * 2000-03-30 2003-02-04 Avx Corporation Multiple array and method of making a multiple array
KR100483944B1 (ko) * 2000-04-14 2005-04-15 마쯔시다덴기산교 가부시키가이샤 적층체, 콘덴서, 전자부품 및 이들의 제조 방법과 제조 장치
JP2001358032A (ja) * 2000-06-12 2001-12-26 Matsushita Electric Ind Co Ltd チップ型電子部品
DE10120517B4 (de) * 2001-04-26 2013-06-06 Epcos Ag Elektrischer Vielschicht-Kaltleiter und Verfahren zu dessen Herstellung
US6760215B2 (en) * 2001-05-25 2004-07-06 Daniel F. Devoe Capacitor with high voltage breakdown threshold
US6627509B2 (en) * 2001-11-26 2003-09-30 Delaware Capital Formation, Inc. Surface flashover resistant capacitors and method for producing same
CN1459811A (zh) * 2002-05-22 2003-12-03 松下电器产业株式会社 陶瓷层压器件、通信设备和制造陶瓷层压器件的方法
JP2004111608A (ja) * 2002-09-18 2004-04-08 Murata Mfg Co Ltd 積層セラミックコンデンサ及びその製造方法
JP2004186344A (ja) * 2002-12-02 2004-07-02 Kyocera Corp セラミック積層体及びその製法
US6940707B2 (en) * 2003-07-03 2005-09-06 Matsushita Electric Industrial Co., Ltd. Differential capacitor, differential antenna element, and differential resonator
US6842327B1 (en) * 2003-08-05 2005-01-11 Impinj, Inc. High-voltage CMOS-compatible capacitors
JP2005136132A (ja) * 2003-10-30 2005-05-26 Tdk Corp 積層コンデンサ
US6903918B1 (en) * 2004-04-20 2005-06-07 Texas Instruments Incorporated Shielded planar capacitor
US7206187B2 (en) * 2004-08-23 2007-04-17 Kyocera Corporation Ceramic electronic component and its manufacturing method
TWI399765B (zh) * 2005-01-31 2013-06-21 Tdk Corp 積層電子零件
US7336475B2 (en) * 2006-02-22 2008-02-26 Vishay Vitramon, Inc. High voltage capacitors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4312023A (en) * 1979-03-23 1982-01-19 L.C.C.-C.I.C.E. Compagnie Europeenne De Composants Electroniques Ceramic power capacitor
CN1574129A (zh) * 2003-05-27 2005-02-02 株式会社村田制作所 多层陶瓷电子元件及其安装结构和方法

Also Published As

Publication number Publication date
US20070195484A1 (en) 2007-08-23
JP2012248882A (ja) 2012-12-13
JP2012142596A (ja) 2012-07-26
CN102509611A (zh) 2012-06-20
TWI319884B (en) 2010-01-21
CN101523528A (zh) 2009-09-02
HK1136084A1 (en) 2010-06-18
TW200733157A (en) 2007-09-01
JP5043046B2 (ja) 2012-10-10
KR20080081928A (ko) 2008-09-10
WO2007117257A1 (en) 2007-10-18
JP2009527919A (ja) 2009-07-30
US7336475B2 (en) 2008-02-26
EP1987524A4 (en) 2013-10-30
US7715173B2 (en) 2010-05-11
EP1987524A1 (en) 2008-11-05
US20090052112A1 (en) 2009-02-26
KR100991311B1 (ko) 2010-11-01

Similar Documents

Publication Publication Date Title
CN101523528B (zh) 多层陶瓷电容器和制造多层陶瓷电容器的方法
US8238075B2 (en) High voltage capacitors
CN110853919B (zh) 多层电容器
CN102473522A (zh) 具有高电压容量的高电容多层
CN104900405A (zh) 多层陶瓷电子组件和具有该多层陶瓷电子组件的组装板
US8125762B2 (en) High voltage capacitors
CN110875137B (zh) 多层陶瓷电子组件
US7646584B2 (en) Multilayer feedthrough capacitor
CN111180201B (zh) 多层陶瓷电子组件
CN112151273B (zh) 多层陶瓷电子组件
CN111312515B (zh) 多层陶瓷电子组件
KR102126414B1 (ko) 적층 세라믹 전자부품
KR102620524B1 (ko) 적층형 커패시터
CN112151272A (zh) 多层陶瓷电子组件
KR20200075287A (ko) 커패시터 부품
KR102391579B1 (ko) 적층형 커패시터
CN114974884A (zh) 多层电容器和其上安装有多层电容器的板组件
CN116994878A (zh) 多层电气组件
CN112242249A (zh) 多层陶瓷电子组件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1136084

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1136084

Country of ref document: HK

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20130615