US6627509B2 - Surface flashover resistant capacitors and method for producing same - Google Patents
Surface flashover resistant capacitors and method for producing same Download PDFInfo
- Publication number
- US6627509B2 US6627509B2 US09/994,328 US99432801A US6627509B2 US 6627509 B2 US6627509 B2 US 6627509B2 US 99432801 A US99432801 A US 99432801A US 6627509 B2 US6627509 B2 US 6627509B2
- Authority
- US
- United States
- Prior art keywords
- capacitor
- coating
- conductive
- portions
- insulative coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title description 2
- 239000011248 coating agents Substances 0.000 claims abstract description 40
- 238000000576 coating method Methods 0.000 claims abstract description 40
- 239000010410 layers Substances 0.000 claims abstract description 30
- 229920000642 polymers Polymers 0.000 claims abstract description 8
- 238000000608 laser ablation Methods 0.000 claims abstract description 4
- 239000000126 substances Substances 0.000 claims description 6
- 238000007740 vapor deposition Methods 0.000 claims description 6
- 239000003989 dielectric materials Substances 0.000 abstract description 13
- 239000003985 ceramic capacitor Substances 0.000 abstract description 7
- 238000005019 vapor deposition process Methods 0.000 abstract description 4
- 239000000919 ceramics Substances 0.000 description 17
- 229920000052 poly(p-xylylene)s Polymers 0.000 description 12
- 239000000463 materials Substances 0.000 description 11
- 239000000539 dimer Substances 0.000 description 5
- 239000010408 films Substances 0.000 description 5
- 238000000034 methods Methods 0.000 description 5
- 238000005516 engineering processes Methods 0.000 description 3
- 229910052751 metals Inorganic materials 0.000 description 3
- 239000002184 metals Substances 0.000 description 3
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound   ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 2
- 238000007792 addition Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910003726 AI2O3 Inorganic materials 0.000 description 1
- 229910001316 Ag alloys Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N Barium titanate Chemical compound   [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 281000012466 Electronic Arts companies 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229910001252 Pd alloys Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000000903 blocking Effects 0.000 description 1
- 229910010293 ceramic materials Inorganic materials 0.000 description 1
- 238000006243 chemical reactions Methods 0.000 description 1
- 238000003776 cleavage reactions Methods 0.000 description 1
- 239000011247 coating layers Substances 0.000 description 1
- 239000004020 conductors Substances 0.000 description 1
- 230000001808 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reactions Methods 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000011521 glasses Substances 0.000 description 1
- 229910052736 halogens Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound   [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 239000002905 metal composite materials Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 239000000203 mixtures Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reactions Methods 0.000 description 1
- 239000006072 pastes Substances 0.000 description 1
- -1 polyparaxylylene Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N silane Chemical compound   [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 229910000679 solders Inorganic materials 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titan oxide Chemical compound   O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 229910000504 titanium dioxide Inorganic materials 0.000 description 1
- 230000001052 transient Effects 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 239000006200 vaporizer Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/12—Protection against corrosion
Abstract
Description
The present invention relates to electrical capacitors and more particularly to improved ceramic capacitors able to withstand surface flashover and a method for the manufacture of these devices.
Ceramic capacitor technology covers a wide range of product types based on a multitude of dielectric materials and physical configurations. Regardless of the particular composition of a capacitor, all such devices are capable of storing electrical energy and find many applications in the field of electronics including: discharging stored energy, blocking direct current, coupling AC circuit components, bypassing AC signals, discriminating among frequencies, suppressing transient voltages, etc.
Multilayer ceramic capacitors are available in two general configurations. They are sold as bare leadless (chip) components, or encapsulated leaded devices. Traditionally, the chip version has been used in densely packed hybrid and delay line circuits, while the leaded capacitor has dominated the high volume printed circuit board market, which is tooled for the automatic insertion of axial or radial lead components of all types. The need for higher packing densities of components on printed circuit boards led to the development of surface mount technology which involves high speed automatic placement of leadless components. Components destined for surface mount are usually packed in tape and reel format and subsequently fed into placement machines that remove individual components from the tape and tack them to the surface of the printed circuit board with a non-conductive epoxy. Subsequent electrical attachment to conductive sites on the printed circuit board is typically accomplished with traditional solder wave processing. The greatly expanded use of surface mount technology has dramatically increased the importance of the physical size of surface mount components, such as multilayer ceramic chip capacitors. Smaller components yield higher component densities on the printed circuit boards and in turn smaller electronic devices. Thus, reducing the size of surface mount components is of great import.
The body of a multilayer ceramic capacitor is composed of alternating layers of ceramic dielectric material and conductive electrodes. The chip version of the device is completed by the addition of a pair of external conductive end caps or terminals placed at opposite ends of the body of the device. The leaded version of the device begins with the same multilayer ceramic and metal composite body as the chip version of the component but is completed by the addition of a pair of protruding conductive leads attached to opposite ends of the body and a nonconductive layer. The nonconductive layer is applied to the entire external surface of the body and leads with the exception of those portions of the leads which extend beyond the body (see e.g., U.S. Pat. No. 5,888,590).
Surface flashover is a common problem associated with ceramic chip capacitors. It represents a failure of the component and may destroy the component itself or damage electronic equipment of which the component is a part. Surface flashover is characterized by an electrical arc between the metal end caps that travels across the external surface of the outermost layer of ceramic dielectric material. The distance between the metal end caps and the voltage across the capacitor are the dominant factors in determining whether surface flashover will occur. Some other characteristics of the capacitor that may affect the size/voltage level at which surface flashover will occur include: surface contamination, properties inherent to the ceramic dielectric material, and polarization within the ceramic dielectric material. Although insulative coatings could help to alleviate surface flashover, known applications are relatively bulky in comparison to the size of ceramic chip capacitors and may impede the ability of placement machines to handle such parts during high-speed surface mount operations. Additionally, the conductive end caps of multilayer ceramic chip capacitors must be exposed in order for them to be attached by soldering to a printed circuit board. Preventing the coating of these end caps while facilitating the coating of the remainder of the chip capacitor is difficult given the nature of current capacitor coating application processes and the relatively small size of the end caps that must remain free of the coating material.
“Parylene” is a general term used to describe a class of poly-para-xylylenes which are derived from a dimer having the structure:
wherein X is typically hydrogen or a halogen. Common forms of parylene dimers include the following:
Parylene films are formed from their related dimers by means of a well-known vapor deposition process in which the dimer is vaporized, pyrolized and passed into a deposition chamber, wherein the monomer molecules deposit and polymerize onto the contents of the deposition chamber according to the following reaction:
Parylene films (see e.g., U.S. Pat. No. 4,500,562) are well known in the electronic arts and are typically employed due to their ability to conform to items with varied geometries and withstand environmental conditions. For example, they have been used to protect electronic devices, sensors and batteries from adverse environmental conditions (see U.S. Pat. Nos. 6,138,349, 3,676,754 and 5,561,004 respectively). Parylene films have also been employed to insulate wire leads to prevent short-circuits when the leads are physically deformed (see U.S. Pat. No. 5,656,830), to form internal dielectric layers in capacitors embedded in printed circuit boards (U.S. Pat. No. 6,068,782) and as a portion of the internal dielectric layer of discrete capacitors (U.S. Pat. Nos. 3,333,169 and 3,397,085). One useful way to form these films is via vapor deposition (see e.g., U.S. Pat. Nos. 5,534,068, 5,536,319, 5,536,321, 5,536,322).
It is desirable for a ceramic chip capacitor, which will be employed as a safety capacitor, to be as small as possible yet able to withstand high voltage levels. Typically such parts are certified to industry or international standards to ensure reliability. These standards define, among other things, the voltage level that a capacitor of a given physical size must be able to withstand. For example, one such standard defines a ceramic chip capacitor measuring 0.18 inches in length able to withstand 2700 VDC and another defines a ceramic chip capacitor measuring 0.22 inches in length able to withstand 5000 VDC.
The present invention is directed to a surface flashover resistant multilayer ceramic capacitor. The capacitor has a plurality of layers of dielectric material and a plurality of electrodes disposed between the layers of dielectric material. End caps are located at either end of the capacitor and are connected to one or more of the internal electrodes. A coating comprising one or more insulative layers is applied to the outer surface of the capacitor and selected portions of the coating are subsequently removed. The coating of insulative layer comprises a polymer, and specifically a poly-para-xylylene. Preferably, the insulative coating is applied through a vapor deposition process. The selected portions of the insulating layer are removed preferably by laser ablation.
FIG. 1A is a cross sectional view of a coated capacitor in accord with one embodiment of the present invention.
FIG. 1B is a cross sectional view of a coated capacitor in accord with an alternative embodiment of the present invention.
FIG. 1C is a cross sectional view of a coated capacitor in accord with another alternative embodiment of the present invention.
FIG. 2 is an exemplary process by which the capacitors of FIGS. 1A-1C are formed in accord with one embodiment of the present invention.
The capacitors of the present invention are shown in FIGS. 1A-1C which illustrates three cross-sectional views of a coated multilayer ceramic capacitor according to the present invention. The capacitor comprises a body, the body further comprising a plurality of layers of dielectric material 10 and a plurality of internal electrodes 11. The capacitor further comprises a pair of conductive end caps 12 placed at opposite ends of the body with each end cap electrically connected to one or more of the internal electrodes. The capacitor further comprises an insulative coating 13.
The dielectric material 10 may be any suitable material such as mica, glass, alumina, titania, barium titanate, a formulated ceramic or other material having dielectric properties. Though capacitors that contain dielectric materials formed from these substances derive benefit from the application of an insulative coating material, more benefit may be realized by devices that have exposed ceramic dielectric materials and closely spaced conductive terminals. Prior to the application of the insulative coating according as described below, uncoated ceramic chip capacitors are prone to the surface flashover phenomenon described above. An insulative coating layer covering the body of the capacitor or the body and selected portions of the conductive end caps enhances the capacitor's ability to tolerate applied voltages. Generally, a capacitor having an insulative coating will be able to withstand higher voltage levels without experiencing surface flashover than an otherwise identical capacitor without an insulative coating.
The internal electrodes 11 and conductive end caps 12 and 14 may be formed of any suitable material but will typically be formed of a conductive metal. For example, a silver and palladium alloy is commonly used to form both the internal electrodes 11 and the conductive end caps 12 and 14. The internal electrodes 11 are typically formed by a screen printing process in which the conductive material is applied to a ceramic layer in a manner that will allow its electrical connection to only one end caps 12 or 14. An additional ceramic layer is applied above the screen printed layer and the process is repeated as many times as desired to with the capacitance of the resulting device being proportional to the number of layers. The sheets of layered conductive and ceramic material are then cut into individual pieces that comprise the body of the capacitor. Opposite ends of the body are then dipped into a conductive thick film paste to form the conductive end caps 12 and 14.
In one embodiment of the present invention a primer 18 (FIG. 2) is applied to the entire outer surface of the body of the capacitor and selected portions of the conductive end caps 12 and 14. The primer aids in the deposition insulative coating 13 later applied to the outer surface of the capacitor. A number of suitable primers are known in the art. For example, a primer from a group of chemicals collectively known as silane will aid in the deposition of certain polymers. One embodiment of the present invention contemplates dipping 19 (FIG. 2) the capacitor bodies in such a primer before applying the insulative coating 13.
The present invention includes an insulative coating 13 applied to the body of the capacitor and selected portions of the conductive end caps 12 and 14. In one embodiment of, the insulative coating 13 is comprised of a material chosen from the group of materials collectively referred to by the trade name parylene. Parylene coating materials are commercially available as dimers and include parylene N (polyparaxylylene), parylene C (monochloropolyparaxylylene) and parylene D (dichloropolyparaxylylene). Each of these materials is suitable for use in the coating 13 of the present invention. The first embodiment of the present invention employed parylene C as the coating material.
As shown in FIG. 2, application of the coating begins with the optional step of applying 19 a primer to the entire outer surface of the capacitor. The remainder of the insulative coating is typically applied by a vapor deposition method such as shown in FIG. 2. According to the first step of the vapor deposition process, an insulative coating material, for example the parylene dimer 20, is vaporized by the vaporizer 21. In the case of a parylene dimer, the vaporization will typically occur at about 150 degrees C. This is followed by quantitative cleavage of the dimer at about 680 degrees C. in the pyrolytic chamber 23 to yield the stable monomeric diradical, para-xylylene 22. The monomer then enters a roughly room temperature deposition chamber 25 where it simultaneously adsorbs and polymerizes on the capacitor forming a parylene polymer 24. The parts typically remain in the deposition chamber until a coating 13 of a suitable thickness has formed on the outer surface of each part. Deposition via this process is advantageous in that the capacitor is not placed under thermal stress as it never rises more than a few degrees above ambient.
Next, selected portions of the insulative coating 13 are removed. In one embodiment of the present invention, selected portions of the coating 13 are removed by laser ablation 27 to expose a.portion (FIG. 1B) or all (FIG. 1C) of the conductive end caps following the vapor deposition of the insulative coating, Coated capacitors are fed from a vibratory bowl 28 onto a sheet 30 where they are held in a vertical position. The sheet moves beneath a stationary laser 32 which ablates selected portions of the coating 13 from the exposed end cap 12 or 14. The capacitors are then reoriented in such a manner that the previously unexposed end cap 12 or 14 is now exposed. Selected portions of the conductive coating are then removed from the newly exposed conductive end cap.
Although the present invention is described and illustrated with respect to the embodiments and method described herein, it is to be understood that the invention is not to be limited thereto since changes and modifications can be made without departing from the scope of the invention as hereinafter claimed.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/994,328 US6627509B2 (en) | 2001-11-26 | 2001-11-26 | Surface flashover resistant capacitors and method for producing same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/994,328 US6627509B2 (en) | 2001-11-26 | 2001-11-26 | Surface flashover resistant capacitors and method for producing same |
US10/242,204 US6683782B2 (en) | 2001-11-26 | 2002-09-12 | Surface flashover resistant capacitors and method for producing same |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/242,204 Division US6683782B2 (en) | 2001-11-26 | 2002-09-12 | Surface flashover resistant capacitors and method for producing same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030099084A1 US20030099084A1 (en) | 2003-05-29 |
US6627509B2 true US6627509B2 (en) | 2003-09-30 |
Family
ID=25540545
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/994,328 Expired - Fee Related US6627509B2 (en) | 2001-11-26 | 2001-11-26 | Surface flashover resistant capacitors and method for producing same |
US10/242,204 Expired - Fee Related US6683782B2 (en) | 2001-11-26 | 2002-09-12 | Surface flashover resistant capacitors and method for producing same |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/242,204 Expired - Fee Related US6683782B2 (en) | 2001-11-26 | 2002-09-12 | Surface flashover resistant capacitors and method for producing same |
Country Status (1)
Country | Link |
---|---|
US (2) | US6627509B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018080A1 (en) * | 2004-07-26 | 2006-01-26 | Schnetker Ted R | Use of parylene coating in an electric device |
US20070195484A1 (en) * | 2006-02-22 | 2007-08-23 | Vishay Vitramon Inc. | High voltage capacitors |
US7280343B1 (en) | 2006-10-31 | 2007-10-09 | Avx Corporation | Low profile electrolytic capacitor assembly |
US20090052111A1 (en) * | 2006-02-22 | 2009-02-26 | Vishay Sprague, Inc. | High voltage capacitors |
US20100033894A1 (en) * | 2008-08-11 | 2010-02-11 | Vishay Sprague, Inc. | High voltage capacitors |
US20120313489A1 (en) * | 2011-06-09 | 2012-12-13 | Tdk Corporation | Electronic component and method of manufacturing electronic component |
US20160118187A1 (en) * | 2014-10-22 | 2016-04-28 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic capacitor |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7705432B2 (en) * | 2004-04-13 | 2010-04-27 | Vertical Circuits, Inc. | Three dimensional six surface conformal die coating |
US7215018B2 (en) * | 2004-04-13 | 2007-05-08 | Vertical Circuits, Inc. | Stacked die BGA or LGA component assembly |
US7534899B2 (en) * | 2005-11-25 | 2009-05-19 | Smasung Electronics Co., Ltd. | Aromatic enediyne derivatives, organic semiconductor thin films using the same and manufacturing methods thereof, and electronic devices incorporating such films |
KR101121204B1 (en) | 2005-11-25 | 2012-03-23 | 삼성전자주식회사 | Method for Preparing Organic Semiconductor Thin Film using Aromatic Enediyne Derivatives, Organic Semiconductor Thin Film using Method Thereof and Electronic Device using the Same |
US7283350B2 (en) * | 2005-12-02 | 2007-10-16 | Vishay Sprague, Inc. | Surface mount chip capacitor |
KR101315012B1 (en) * | 2006-11-17 | 2013-10-04 | 삼성전자주식회사 | Novel Aromatic Enediyne Derivatives, Organic Semiconductor Thin Film using the Same, and Electronic Device |
US9153517B2 (en) | 2008-05-20 | 2015-10-06 | Invensas Corporation | Electrical connector between die pad and z-interconnect for stacked die assemblies |
US8723332B2 (en) * | 2007-06-11 | 2014-05-13 | Invensas Corporation | Electrically interconnected stacked die assemblies |
WO2008157722A1 (en) * | 2007-06-19 | 2008-12-24 | Vertical Circuits, Inc. | Wafer level surface passivation of stackable integrated circuit chips |
WO2009035849A2 (en) | 2007-09-10 | 2009-03-19 | Vertical Circuits, Inc. | Semiconductor die mount by conformal die coating |
US8178978B2 (en) | 2008-03-12 | 2012-05-15 | Vertical Circuits, Inc. | Support mounted electrically interconnected die assembly |
US7863159B2 (en) * | 2008-06-19 | 2011-01-04 | Vertical Circuits, Inc. | Semiconductor die separation method |
JP2012501555A (en) * | 2008-08-29 | 2012-01-19 | ヴァーティカル・サーキツツ・インコーポレーテッド | Image sensor |
US20100117224A1 (en) * | 2008-08-29 | 2010-05-13 | Vertical Circuits, Inc. | Sensor |
JP5211970B2 (en) * | 2008-09-17 | 2013-06-12 | 株式会社村田製作所 | Manufacturing method of ceramic electronic component |
WO2010151578A2 (en) * | 2009-06-26 | 2010-12-29 | Vertical Circuits, Inc. | Electrical interconnect for die stacked in zig-zag configuration |
CN102473522A (en) * | 2009-07-01 | 2012-05-23 | 凯米特电子公司 | High capacitance multilayer with high voltage capability |
US9147583B2 (en) | 2009-10-27 | 2015-09-29 | Invensas Corporation | Selective die electrical insulation by additive process |
TWI544604B (en) | 2009-11-04 | 2016-08-01 | 英維瑟斯公司 | Stacked die assembly having reduced stress electrical interconnects |
JP2013026392A (en) * | 2011-07-20 | 2013-02-04 | Tdk Corp | Electronic component and manufacturing method therefor |
KR101525645B1 (en) * | 2011-09-02 | 2015-06-03 | 삼성전기주식회사 | Multilayer ceramic capacitor |
DE112013001679T5 (en) | 2012-03-26 | 2015-05-21 | Kemet Electronics Corporation | Asymmetric high voltage capacitor |
FR2989007B1 (en) * | 2012-04-04 | 2015-05-15 | M U L Micro Usinage Laser | Method for metallizing a connecting leg of an electrical component |
KR101412950B1 (en) * | 2012-11-07 | 2014-06-26 | 삼성전기주식회사 | Multilayer ceramic capacitor |
KR101422934B1 (en) * | 2012-11-29 | 2014-07-23 | 삼성전기주식회사 | Multi-layered ceramic electronic component |
KR101452058B1 (en) * | 2012-12-06 | 2014-10-22 | 삼성전기주식회사 | Multi-layered ceramic electronic component |
KR101422946B1 (en) * | 2012-12-11 | 2014-07-23 | 삼성전기주식회사 | Multi-layered ceramic capacitor and method of manufacturing the same |
KR101422949B1 (en) * | 2012-12-12 | 2014-07-23 | 삼성전기주식회사 | Multi-layered ceramic electronic component |
KR101388690B1 (en) * | 2012-12-20 | 2014-04-24 | 삼성전기주식회사 | Multi-layered ceramic electronic component |
US9287049B2 (en) * | 2013-02-01 | 2016-03-15 | Apple Inc. | Low acoustic noise capacitors |
US9396879B2 (en) | 2013-10-29 | 2016-07-19 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic capacitor and board having the same |
US20150114704A1 (en) * | 2013-10-31 | 2015-04-30 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic capacitor and board having the same |
US10513433B2 (en) * | 2014-11-28 | 2019-12-24 | Hongik University Industry-Academic Corporation Foundation | Laminated ceramic chip component including nano thin film layer, manufacturing method therefor, and atomic layer vapor deposition apparatus therefor |
KR102109634B1 (en) * | 2015-01-27 | 2020-05-29 | 삼성전기주식회사 | Power Inductor and Method of Fabricating the Same |
US9871019B2 (en) | 2015-07-17 | 2018-01-16 | Invensas Corporation | Flipped die stack assemblies with leadframe interconnects |
US9825002B2 (en) | 2015-07-17 | 2017-11-21 | Invensas Corporation | Flipped die stack |
US9490195B1 (en) | 2015-07-17 | 2016-11-08 | Invensas Corporation | Wafer-level flipped die stacks with leadframes or metal foil interconnects |
US9508691B1 (en) | 2015-12-16 | 2016-11-29 | Invensas Corporation | Flipped die stacks with multiple rows of leadframe interconnects |
US10186384B2 (en) * | 2015-12-31 | 2019-01-22 | Honeywell Federal Manufacturing & Technologies, Llc | Carbon fiber and parylene structural capacitor |
US10566310B2 (en) | 2016-04-11 | 2020-02-18 | Invensas Corporation | Microelectronic packages having stacked die and wire bond interconnects |
US9595511B1 (en) | 2016-05-12 | 2017-03-14 | Invensas Corporation | Microelectronic packages and assemblies with improved flyby signaling operation |
US9728524B1 (en) | 2016-06-30 | 2017-08-08 | Invensas Corporation | Enhanced density assembly having microelectronic packages mounted at substantial angle to board |
JP2018160613A (en) * | 2017-03-23 | 2018-10-11 | Tdk株式会社 | Ceramic electronic component |
KR20180110448A (en) * | 2017-03-29 | 2018-10-10 | 삼성전기주식회사 | Electronic Component and System in Package |
US10319527B2 (en) | 2017-04-04 | 2019-06-11 | Samsung Electro-Mechanics Co., Ltd. | Multilayer capacitor |
KR101922879B1 (en) * | 2017-04-04 | 2018-11-29 | 삼성전기 주식회사 | Multilayered capacitor |
US10840027B2 (en) | 2017-09-08 | 2020-11-17 | Avx Corporation | High voltage tunable multilayer capacitor |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3333169A (en) | 1966-05-18 | 1967-07-25 | Union Carbide Corp | Electrical capacitor with a linear p-xylylene polymer dielectric |
US3397085A (en) | 1962-12-27 | 1968-08-13 | Union Carbide Corp | Thin film capacitors |
US3676754A (en) | 1971-07-13 | 1972-07-11 | Nasa | Thin-film temperature sensor and method of making same |
US4500562A (en) | 1983-03-02 | 1985-02-19 | The United States Of America As Represented By The United States Department Of Energy | Di-p-xylylene polymer and method for making the same |
US4700457A (en) * | 1985-03-29 | 1987-10-20 | Mitsubishi Denki Kabushiki Kaisha | Method of making multilayer capacitor memory device |
JPH03278511A (en) | 1990-03-28 | 1991-12-10 | Mitsubishi Electric Corp | Chip-type laminated ceramic capacitor |
US5424097A (en) | 1993-09-30 | 1995-06-13 | Specialty Coating Systems, Inc. | Continuous vapor deposition apparatus |
US5534068A (en) | 1995-10-27 | 1996-07-09 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a tapered deposition chamber and dual vacuum outlet pumping arrangement |
US5536322A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a heated and cooled support platen and an electrostatic clamping device |
US5536321A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a post-pyrolysis filtering chamber and a deposition chamber inlet filter |
US5536319A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including an atmospheric shroud and inert gas source |
US5538758A (en) | 1995-10-27 | 1996-07-23 | Specialty Coating Systems, Inc. | Method and apparatus for the deposition of parylene AF4 onto semiconductor wafers |
US5556473A (en) | 1995-10-27 | 1996-09-17 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including dry vacuum pump system and downstream cold trap |
US5561004A (en) | 1994-02-25 | 1996-10-01 | Bates; John B. | Packaging material for thin film lithium batteries |
US5583359A (en) * | 1995-03-03 | 1996-12-10 | Northern Telecom Limited | Capacitor structure for an integrated circuit |
US5641358A (en) | 1995-10-10 | 1997-06-24 | Stewart; Jeffrey | Modular parylene deposition apparatus having vapor deposition chamber extension |
US5656830A (en) | 1992-12-10 | 1997-08-12 | International Business Machines Corp. | Integrated circuit chip composite having a parylene coating |
US5709753A (en) | 1995-10-27 | 1998-01-20 | Specialty Coating Sysetms, Inc. | Parylene deposition apparatus including a heated and cooled dimer crucible |
US5888590A (en) * | 1996-09-16 | 1999-03-30 | Vishay Sprague, Inc. | Apparatus and method for conformally coating a capacitor |
US6021582A (en) | 1998-03-16 | 2000-02-08 | Novellus Systems, Inc. | Temperature control of parylene dimer |
US6068782A (en) | 1998-02-11 | 2000-05-30 | Ormet Corporation | Individual embedded capacitors for laminated printed circuit boards |
US6138349A (en) | 1997-12-18 | 2000-10-31 | Vlt Corporation | Protective coating for an electronic device |
US20010021086A1 (en) | 2000-02-01 | 2001-09-13 | Hideki Kuwajima | Head support mechanism and thin film piezoelectric actuator |
US6381117B1 (en) | 1999-09-08 | 2002-04-30 | Murata Manufacturing Co., Ltd. | Ceramic electronic component |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3833864B2 (en) * | 2000-02-16 | 2006-10-18 | 太陽誘電株式会社 | Laminated displacement element displaced by electrostriction |
JP3460683B2 (en) * | 2000-07-21 | 2003-10-27 | 株式会社村田製作所 | Chip-type electronic component and method of manufacturing the same |
-
2001
- 2001-11-26 US US09/994,328 patent/US6627509B2/en not_active Expired - Fee Related
-
2002
- 2002-09-12 US US10/242,204 patent/US6683782B2/en not_active Expired - Fee Related
Patent Citations (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397085A (en) | 1962-12-27 | 1968-08-13 | Union Carbide Corp | Thin film capacitors |
US3333169A (en) | 1966-05-18 | 1967-07-25 | Union Carbide Corp | Electrical capacitor with a linear p-xylylene polymer dielectric |
US3676754A (en) | 1971-07-13 | 1972-07-11 | Nasa | Thin-film temperature sensor and method of making same |
US4500562A (en) | 1983-03-02 | 1985-02-19 | The United States Of America As Represented By The United States Department Of Energy | Di-p-xylylene polymer and method for making the same |
US4700457A (en) * | 1985-03-29 | 1987-10-20 | Mitsubishi Denki Kabushiki Kaisha | Method of making multilayer capacitor memory device |
JPH03278511A (en) | 1990-03-28 | 1991-12-10 | Mitsubishi Electric Corp | Chip-type laminated ceramic capacitor |
US5656830A (en) | 1992-12-10 | 1997-08-12 | International Business Machines Corp. | Integrated circuit chip composite having a parylene coating |
US5424097A (en) | 1993-09-30 | 1995-06-13 | Specialty Coating Systems, Inc. | Continuous vapor deposition apparatus |
US5908506A (en) | 1993-09-30 | 1999-06-01 | Specialty Coating Systems, Inc. | Continuous vapor deposition apparatus |
US5561004A (en) | 1994-02-25 | 1996-10-01 | Bates; John B. | Packaging material for thin film lithium batteries |
US5583359A (en) * | 1995-03-03 | 1996-12-10 | Northern Telecom Limited | Capacitor structure for an integrated circuit |
US5641358A (en) | 1995-10-10 | 1997-06-24 | Stewart; Jeffrey | Modular parylene deposition apparatus having vapor deposition chamber extension |
US5536321A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a post-pyrolysis filtering chamber and a deposition chamber inlet filter |
US5538758A (en) | 1995-10-27 | 1996-07-23 | Specialty Coating Systems, Inc. | Method and apparatus for the deposition of parylene AF4 onto semiconductor wafers |
US5536319A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including an atmospheric shroud and inert gas source |
US5536322A (en) | 1995-10-27 | 1996-07-16 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a heated and cooled support platen and an electrostatic clamping device |
US5534068A (en) | 1995-10-27 | 1996-07-09 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including a tapered deposition chamber and dual vacuum outlet pumping arrangement |
US5709753A (en) | 1995-10-27 | 1998-01-20 | Specialty Coating Sysetms, Inc. | Parylene deposition apparatus including a heated and cooled dimer crucible |
US5556473A (en) | 1995-10-27 | 1996-09-17 | Specialty Coating Systems, Inc. | Parylene deposition apparatus including dry vacuum pump system and downstream cold trap |
US5888590A (en) * | 1996-09-16 | 1999-03-30 | Vishay Sprague, Inc. | Apparatus and method for conformally coating a capacitor |
US6138349A (en) | 1997-12-18 | 2000-10-31 | Vlt Corporation | Protective coating for an electronic device |
US6068782A (en) | 1998-02-11 | 2000-05-30 | Ormet Corporation | Individual embedded capacitors for laminated printed circuit boards |
US6021582A (en) | 1998-03-16 | 2000-02-08 | Novellus Systems, Inc. | Temperature control of parylene dimer |
US6381117B1 (en) | 1999-09-08 | 2002-04-30 | Murata Manufacturing Co., Ltd. | Ceramic electronic component |
US20010021086A1 (en) | 2000-02-01 | 2001-09-13 | Hideki Kuwajima | Head support mechanism and thin film piezoelectric actuator |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018080A1 (en) * | 2004-07-26 | 2006-01-26 | Schnetker Ted R | Use of parylene coating in an electric device |
US7350281B2 (en) * | 2004-07-26 | 2008-04-01 | Hamilton Sundstrand Corporation | Method of protecting a capacitor |
US20070195484A1 (en) * | 2006-02-22 | 2007-08-23 | Vishay Vitramon Inc. | High voltage capacitors |
US8238075B2 (en) | 2006-02-22 | 2012-08-07 | Vishay Sprague, Inc. | High voltage capacitors |
US7336475B2 (en) | 2006-02-22 | 2008-02-26 | Vishay Vitramon, Inc. | High voltage capacitors |
US20090052111A1 (en) * | 2006-02-22 | 2009-02-26 | Vishay Sprague, Inc. | High voltage capacitors |
US20090052112A1 (en) * | 2006-02-22 | 2009-02-26 | Vishay Sprague, Inc. | High voltage capacitors |
US7715173B2 (en) | 2006-02-22 | 2010-05-11 | Vishay Sprague, Inc. | High voltage capacitors |
US7280343B1 (en) | 2006-10-31 | 2007-10-09 | Avx Corporation | Low profile electrolytic capacitor assembly |
US20100033894A1 (en) * | 2008-08-11 | 2010-02-11 | Vishay Sprague, Inc. | High voltage capacitors |
US8125762B2 (en) | 2008-08-11 | 2012-02-28 | Vishay Sprague, Inc. | High voltage capacitors |
US20120313489A1 (en) * | 2011-06-09 | 2012-12-13 | Tdk Corporation | Electronic component and method of manufacturing electronic component |
US9202627B2 (en) * | 2011-06-09 | 2015-12-01 | Tdk Corporation | Electronic component and method of manufacturing electronic component |
US9496088B2 (en) | 2011-06-09 | 2016-11-15 | Tdk Corporation | Electronic component and method of manufacturing electronic component |
US20160118187A1 (en) * | 2014-10-22 | 2016-04-28 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic capacitor |
US9627131B2 (en) * | 2014-10-22 | 2017-04-18 | Samsung Electro-Mechanics Co., Ltd. | Multilayer ceramic capacitor having an intermitting part |
Also Published As
Publication number | Publication date |
---|---|
US6683782B2 (en) | 2004-01-27 |
US20030099084A1 (en) | 2003-05-29 |
US20030099085A1 (en) | 2003-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20170084396A1 (en) | Plated terminations | |
US8174816B2 (en) | Ceramic electronic component | |
DE3705279C2 (en) | Process for manufacturing resistors in chip form | |
US6818469B2 (en) | Thin film capacitor, method for manufacturing the same and printed circuit board incorporating the same | |
KR100553635B1 (en) | Co-fired ceramic capacitor and method for forming ceramic capacitor for use in printed wiring boards | |
US6400556B1 (en) | Solid electrolytic capacitor and method of fabricating the same | |
US5621608A (en) | Solid electrolytic capacitor having two solid electrolyte layers and method of manufacturing the same | |
US8553390B2 (en) | Ceramic electronic component | |
US7605683B2 (en) | Monolithic electronic component | |
JP3520776B2 (en) | Electronic components | |
JP5043046B2 (en) | Improved high voltage capacitor | |
US6541137B1 (en) | Multi-layer conductor-dielectric oxide structure | |
US6785147B2 (en) | Circuit module | |
US3909680A (en) | Printed circuit board with silver migration prevention | |
US6381117B1 (en) | Ceramic electronic component | |
US9779876B2 (en) | Ceramic electronic component and method for producing the same | |
CN1178230C (en) | Paster type resistor and making method thereof | |
US6909596B2 (en) | Solid electrolytic capacitor and method of manufacturing the same | |
JP4324615B2 (en) | Printed circuit embedded capacitors | |
US4571664A (en) | Solid electrolyte capacitor for surface mounting | |
TWI686825B (en) | Multilayer ceramic electronic component and printed circuit board having the same | |
US6803116B2 (en) | Method of bonding a conductive adhesive and an electrode, and a bonded electrode obtained thereby | |
US5021921A (en) | Monolithic ceramic capacitor | |
CN1866428B (en) | Stacked capacitor and method of fabricating the same | |
JP4184409B2 (en) | Printed circuit dielectric foil and embedded capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DELAWARE CAPITAL FORMATION, INC., DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DUVA, FRANK A.;REEL/FRAME:012327/0343 Effective date: 20011115 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20110930 |