CN101484502B - 化学固化多效合一的温热的边缘隔垫和密封件 - Google Patents

化学固化多效合一的温热的边缘隔垫和密封件 Download PDF

Info

Publication number
CN101484502B
CN101484502B CN2007800253766A CN200780025376A CN101484502B CN 101484502 B CN101484502 B CN 101484502B CN 2007800253766 A CN2007800253766 A CN 2007800253766A CN 200780025376 A CN200780025376 A CN 200780025376A CN 101484502 B CN101484502 B CN 101484502B
Authority
CN
China
Prior art keywords
composition
compsn
randomly
sheet glass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2007800253766A
Other languages
English (en)
Other versions
CN101484502A (zh
Inventor
E·B·斯科特
A·T·沃尔夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Silicones Corp
Original Assignee
Dow Corning Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning Corp filed Critical Dow Corning Corp
Publication of CN101484502A publication Critical patent/CN101484502A/zh
Application granted granted Critical
Publication of CN101484502B publication Critical patent/CN101484502B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/02Polysilicates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/08Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds
    • C08L51/085Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained otherwise than by reactions only involving unsaturated carbon-to-carbon bonds on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • C08L2312/08Crosslinking by silane
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes

Abstract

将用量足以固化组合物的在施加温度范围内释放水的水释放剂加入到可固化组合物中,所述组合物含有10-65wt%湿气可固化的硅烷官能的弹性体有机聚合物;0.1-3wt%缩合催化剂;和(C)15-25wt%物理干燥剂。当在IG单元内用作边缘密封剂时,该组合物的固化产物行使密封、粘结、间隔和干燥的功能。

Description

化学固化多效合一的温热的边缘隔垫和密封件
相关申请的交叉参考
本申请要求2006年7月3日提交的美国临时申请序列号60/818046的权益。美国临时申请序列号60/818046在此通过参考引入。关于联邦资助研究和开发的声明
无。
发明背景
技术领域
可用于绝缘玻璃单元的“多效合一”隔垫(spacer)和密封件是基于硅烷官能的弹性体有机聚合物(例如,硅可固化的聚异丁烯或硅可固化的丁基橡胶)技术。这一化学交联(固化)的挠性热固性隔垫和密封件提供克服目前可商购的热塑性隔垫材料缺点的解决方法。热固性材料固化,产生粘合性,并提供强度,以支持绝缘玻璃单元的玻璃面板。隔垫和密封件提供边缘密封(亦即封接),粘结,间隔和干燥这四种功能,因此是一种“多效合一”解决方法。
背景技术
绝缘玻璃(IG)单元是本领域已知的。在典型的IG单元中,玻璃板通过隔垫保持彼此平行并相隔固定的距离。主要的密封剂用作玻璃板之间的阻挡层。可使用主要的密封剂防止水蒸气进入到玻璃板之间的空间(玻璃板间的空间)内。也可使用主要的密封剂防止惰性气体例如氩气移出玻璃板间的空间。使用辅助密封剂粘合玻璃板到彼此和隔垫上。可添加干燥剂到隔垫上,以便从玻璃板间的空间中除去湿气。可由金属(例如,铝、不锈钢)、塑料、塑料涂布的金属、泡沫体(例如,EPDM、硅酮)或其他合适的材料形成隔垫。待解决的问题
希望更加有效的生产IG单元的方法。希望行使主要密封剂、辅助密封剂、隔垫和干燥剂的一种以上的功能,亦即封接、粘结、间隔和干燥的单一密封剂组合物。优选地,希望行使所有这些性能的单一密封剂组合物,因此“多效合一”的解决方法。
发明简述
公开了可用于IG应用的“多效合一”密封剂组合物。该组合物包含:(A)湿气可固化的硅烷官能的弹性体有机聚合物;(B)缩合催化剂;(C)干燥剂;和(D)在施加温度范围内释放水的水释放剂。
本发明人令人惊奇地发现,可在干燥剂和水释放剂同时存在下固化湿气可固化的硅烷官能的弹性体有机聚合物。
附图简述
图1是IG单元的部分截面。
图2是IG单元的部分截面。
发明详述
本发明涉及可用于IG应用的“多效合一”密封剂组合物。该组合物可以是单部分或多部分组合物。该组合物包含:(A)10-65重量份湿气可固化的硅烷官能的弹性体有机聚合物;(B)0.1-3重量份缩合催化剂;(C)15-25重量份物理干燥剂;(D)5-30重量份在施加温度范围内释放水的水释放剂;(E)0-30重量份除了成分(C)和(D)以外的填料;(F)0-30重量份非反应性的弹性体有机聚合物;(G)0-5重量份交联剂;(H)0-5重量份除了成分(G)以外的化学干燥剂;(I)0-5重量份除了成分(G)和(H)以外的粘合促进剂;(J)0-20重量份微晶蜡,所述微晶蜡在25℃下为固体和具有选择的熔点使得该蜡在所需的施加温度范围的下限端熔融;(K)0-3重量份抗老化添加剂;和(L)0-20重量份增粘剂。
成分(A)湿气可固化的硅烷官能的弹性体有机聚合物
成分(A)是湿气可固化的硅烷官能的弹性体有机聚合物。为了本申请的目的,“弹性体”是指由成分(A)赋予组合物的橡胶状稠度,和成分(A)不同于半晶和无定形聚烯烃(例如α-烯烃),常常称为热塑性聚合物。
成分(A)可包括异单烯烃和乙烯基芳族单体的硅烷化共聚物,二烯烃和乙烯基芳族单体的硅烷化共聚物,烯烃和二烯烃的硅烷化共聚物(例如,由聚异丁烯和异戊二烯制备的任选地卤化的硅烷化丁基橡胶),或其组合(硅烷化共聚物),异单烯烃的硅烷化均聚物,乙烯基芳族单体的硅烷化均聚物,二烯烃的硅烷化均聚物(例如,硅烷化聚丁二烯或硅烷化氢化聚丁二烯),或其组合(硅烷化均聚物),或硅烷化共聚物和硅烷化均聚物的组合。为了本申请的目的,硅烷化共聚物和硅烷化均聚物统称为“硅烷化聚合物”。硅烷化聚合物可任选地含有一个或多个卤素基团,尤其是溴基。
成分(A)可以是下式的含硅烷官能团的硅烷化聚合物:
Figure G2007800253766D00031
其中D表二价有机基团,每一X独立地表示可水解基团,每一R独立地表示单价烃基,下标e表示0、1、2或3,下标f表示0、1或2,和下标g的数值范围为0-18,条件是e+f之和为至少1。
或者,D可以是二价烃基,例如亚乙基、亚丙基、亚丁基和亚己基。或者,每一X可以选自烷氧基;链烯基氧基;酰胺基,例如乙酰胺基、甲基乙酰胺基或苯甲酰胺基;酰氧基,例如乙酰氧基;氨基;氨氧基;羟基;巯基;肟基;和酮肟基。或者,每一R可以独立地选自1-20个碳原子的烷基,6-20个碳原子的芳基,和7-20个碳原子的芳烷基。或者,下标g是0。
合适的单异烯烃的实例包括但不限于异烯烃,例如异丁烯、异戊烯、异己烯和异庚烯;或者异丁烯。合适的乙烯基芳族单体的实例包括但不限于烷基苯乙烯,例如α-甲基苯乙烯、叔丁基苯乙烯和对甲基苯乙烯;或者对甲基苯乙烯。合适的烷基的实例包括甲基、乙基、正丙基、异丙基、正丁基、异丁基和叔丁基;或者甲基。合适的链烯基的实例包括乙烯基、烯丙基、丙烯基、丁烯基和己烯基;或者乙烯基。成分(A)的平均分子量(Mn)范围为20,000-100,000,或者25,000-50,000,和或者28,000-35,000。成分(A)可含有用量范围为0.2%-10%,或者0.5%-5%,和或者0.5%-2.0%的硅烷官能团。
硅烷化共聚物的合适实例及其制备方法是本领域已知的,和例举在EP 0320259B1(Dow Corning)、DE 19,821,356 A1(Metallgesellschaft)、和美国专利4,900,772(Kaneka)、4,904,732(Kaneka)、5,120,379(Kaneka)、5,262,502(Kaneka)、5,290,873(Kaneka)、5,580,925(Kaneka)、4,808,664(Dow Corning)、6,380,316(Dow Corning/ExxonMobil)、和6,177,519(Dow Corning/ExxonMobil)中公开的硅烷化共聚物。美国专利6,380,316和6,177,519在此通过参考引入。简而言之,美国专利6,177,519中制备硅烷化共聚物的方法包括使i)具有至少50mol%4-7个碳原子的异单烯烃和乙烯基芳族单体的烯烃共聚物;ii)具有至少两个可水解有机基团和至少一个烯键式不饱和烃或烃氧基的硅烷;和iii)自由基生成剂接触。
或者,可包括通过已知方法(例如,与异氰酸酯官能的烷氧基硅烷反应;在Na存在下与烯丙基氯反应,接着氢化硅烷化),转化可商购的羟化聚丁二烯(例如,以商品名Poly BD商购于Sartomer的那些)的方法来制备硅烷化共聚物。
基于组合物的重量,成分(A)的用量范围可以是10-65份,或者10-35份,和或者15-35份。成分(A)可以是一种湿气可固化的硅烷官能的弹性体有机聚合物。或者,成分(A)可包括至少一种下述性能不同的两种或更多种湿气可固化的硅烷官能的弹性体有机聚合物:结构、粘度、平均分子量、聚合物单元和顺序。
成分(B)缩合催化剂
成分(B)是缩合催化剂。合适的缩合催化剂包括锡(IV)化合物,锡(II)化合物和钛酸酯。锡(IV)化合物的实例包括二月桂酸二丁锡(DBTDL)、二月桂酸二甲锡、双酮酸(bis-ketonate)二-(正丁基)锡、二乙酸二丁锡、马来酸二丁锡、二乙酰基丙酮酸二丁锡、二甲氧化二丁锡、三-uberate甲氧羰基苯基锡、三铈酸(ceroate)异丁锡、二丁酸二甲锡、二新癸酸二甲锡、酒石酸三乙锡、二苯甲酸二丁锡、三-2-乙基己酸丁锡、二乙酸二辛锡、辛酸锡、油酸锡、丁酸锡、环烷酸锡、二氯化二甲锡、及其组合。锡(IV)化合物是本领域已知的且可商购,例如Metatin 740和Fascat 4202。
锡(II)化合物的实例包括有机羧酸的锡(II)盐,例如二乙酸锡(II),二辛酸锡(II),二乙基己酸锡(II),二月桂酸锡(II),羧酸的亚锡盐,例如辛酸亚锡,油酸亚锡,乙酸亚锡,月桂酸亚锡,及其组合。
有机官能的钛酸盐(酯)的实例包括双(乙基乙酰乙酸)1,3-丙二氧基钛;双(乙酰丙酮酸)1,3-丙二氧基钛;双(乙酰丙酮酸)二异丙氧基钛;2,3-二异丙氧基双(乙基乙酸)钛;环烷酸钛;钛酸四丙酯;钛酸四丁酯;钛酸四乙基己酯;钛酸四苯酯;钛酸四(十八烷)酯;四丁氧基钛;四异丙氧基钛;乙基三乙醇胺钛酸酯;β二羰基钛化合物,例如双(乙酰基丙酮基)二异丙基钛酸酯;或其组合。甲硅烷氧基钛酸酯例举四(三甲基甲硅烷氧基)钛,双(三甲基甲硅烷氧基)双(异丙氧基)钛、或其组合。
成分(B)的用量足以固化该组合物。基于组合物的重量,成分(B)的用量范围可以是0.1-3份,或者0.2-2份。成分(B)可以是一种缩合催化剂。或者,成分(B)可包括两种或更多种不同的缩合催化剂。
成分(C)干燥剂
成分(C)是干燥剂。干燥剂结合来自各种来源的水。在IG应用中,干燥剂可结合水,所述水是在制造IG单元时玻璃板之间的IG单元含有的和/或在IG单元的使用寿命期间扩散到玻璃板间的空间内的水。干燥剂可结合固化反应的副产物例如水和醇。干燥剂通过物理方式结合水和副产物。例如,干燥剂可通过物理吸附或吸收而结合水和副产物。成分(C)可加入到组合物中,以在IG单元内行使边缘密封的干燥功能并降低或消除固化反应的副产物可能引起的IG单元的化学发雾。
用于成分(C)的合适的吸附剂的实例可以是无机粒状物。吸附剂的粒度可以是小于或等于10微米,或者小于或等于5微米。吸附剂的平均孔径可足以吸附水和醇,例如小于或等于10埃,或者小于或等于5埃,和或者小于或等于3埃。吸附剂的实例包括:沸石,例如菱沸石、丝光沸石和方沸石;分子筛,例如碱金属硅铝酸盐,硅胶,二氧化硅-氧化镁凝胶,活性炭,活性氧化铝,氧化钙,及其组合。本领域的技术人员在没有过度实验的情况下能选择成分(C)的合适的干燥剂。本领域的技术人员会意识到一些干燥剂例如硅胶将结合水,而其他干燥剂例如分子筛可结合水、醇或这二者。
可商购的干燥剂的实例包括干燥分子筛,例如3埃分子筛,它以商品名SYLOSIV
Figure G2007800253766D00061
商购于Grace Davidson和以商品名PURMOL商购于Zeochem of Louisville,Kentucky,U.S.A.,和4埃分子筛,例如获自Ineos Silicas of Warrington,英国的Doucil zeolite 4A。其他有用的分子筛包括MOLSIV ADSORBENT TYPE 13X、3A、4A和5A,所有这些可商购于UOP of Illinois,U.S.A.;商购于Atofina ofPhiladelphia,Pennsylvania,U.S.A.的SILIPORITE NK 30AP和65xP;和商购于W.R.Grace of Maryland,U.S.A.的分子筛。
成分(D)水释放剂
成分(D)是在施加温度范围内释放水的水释放剂。选择成分(D),以便成分(D)含有足以固化该组合物的水量,和以便当在足够的时间下暴露于施加温度范围内的温度下时,例如通过本文参考例2的方法,成分(D)释放足量的水以固化该组合物。然而,成分(D)充分地结合水,以防止在加工过程中太多地释放。例如,在配混组合物的过程中,成分(D)充分地结合水,以便在其中使用组合物的施加工艺之中或之后,获得充足的水来固化组合物。这一“控释”性能也可提供在施加工艺过程中确保没有太快地释放太多的水,因为在通过固化组合物形成的密封剂内这可引起起泡或孔隙。例如,当在IG应用中使用组合物时,应用温度范围可以是组合物施加或者置于玻璃板之间时的温度范围。应用温度范围取决于各种因素,其中包括IG单元制造者的特定制造工艺。当应用温度范围为80-120℃,或者90-110℃,和或者90-100℃时,沉淀碳酸钙可用作成分(D)。然而,当在连续(例如双螺杆)配混器上制备组合物时,可在应用温度范围以上20-30℃的温度下配混各成分短的时间段。因此,选择成分(D),以确保在配混过程中并非释放全部的含水量,然而,当暴露于应用温度范围内足够的时间段时,成分(D)释放足量的水以固化组合物。沉淀碳酸钙以商品名WINOFIL
Figure G2007800253766D00071
SPM获自Solvay。所选水释放剂取决于各种因素,其中包括针对组合物而选择的其他成分,其中包括催化剂的类型和用量;和配混、包装和施加过程中的工艺条件。在双螺杆配混器中,停留时间可以小于数分钟,典型地小于1-2分钟。快速地加热各成分,因为在机筒内和沿着螺杆的表面/体积之比高,且通过剪切各成分诱导加热。从成分(D)中除去多少水取决于水结合能力,温度,暴露时间(耐久时间),和汽提该材料穿过配混器所使用的真空程度。即使在最多200℃的配混温度和完全的操作真空汽提情况下,在约3周的环境储存之后,当之后在90℃下暴露约30分钟时,在沉淀CaCO3上仍保留足够的水以固化该组合物。在不希望束缚于理论的情况下,认为采用120℃的双螺杆配混温度下,当在90℃下施加组合物时,仍在沉淀CaCO3上保留足够的水,以便在室温下在1-2周的时间段内固化该组合物。组合物内成分(D)的用量取决于各种因素,其中包括成分(A)、(B)和(C),和是否存在任何任选的成分,然而,基于组合物的重量,成分(D)的用量范围可以是5-30份。在不希望束缚于理论的情况下,认为若基于组合物的100重量成分(D)的用量小于5重量份,则成分(D)可能含有不足的水来固化该组合物。
本发明人令人惊奇地发现,在成分(C)干燥剂存在下,当存在水源时,本发明的组合物将固化。在不希望束缚于理论的情况下,认为当在诸如IG单元之类的应用中使用所述组合物时,由成分(A)(和若存在的话,成分(F))赋予的低透湿率可防止组合物因暴露于大气湿气下合理的时间段而固化。添加成分(D)来解决这一问题。在不希望束缚于理论的情况下,认为当加热组合物到施加温度时,热量将使水释放,水将与成分(A)上的可水解基团反应,以固化该组合物,和在组合物内残留的任何副产物例如醇和/或水可被成分(C)结合,从而允许缩合反应(它是平衡反应)进行完全并防止例如IG单元内的玻璃板之间的固化副产物缩合(称为“化学发雾”)。
对于本申请的目的来说,成分(D)水释放剂可排除液态水、水合金属盐,例如美国专利6025445中公开的那些,及其组合。在不希望束缚于理论的情况下,认为在配混工艺以制备组合物过程中,在施加组合物到基底的工艺过程中,或这两个过程中,添加液态水到组合物中可形成蒸汽。在不希望束缚于理论的情况下,认为特别地当粘合性需要耐受包括水或水蒸气的环境条件时,水合金属盐可对组合物的粘合性具有负面影响。
成分(E)填料
组合物可任选地进一步包含额外的成分(E)。成分(E)是除了成分(C)和(D)以外的填料。成分(E)通常没有显著影响在固化组合物之中和之后存在的水量。成分(E)可包括增强填料、增量填料、触变填料、颜料、或其组合。本领域的技术人员在没有过度实验情况下能选择合适的额外的填料。合适的额外的填料的实例包括但不限于粉碎的碳酸钙、炭黑、热解法二氧化硅、沉淀二氧化硅、滑石、二氧化钛、塑料粉末、玻璃或塑料(例如SaranTM)微球、高长径比的填料例如云母或剥落的云母、及其组合。填料可任选地用处理剂例如脂肪酸(例如硬脂酸)处理。
合适的填料是本领域已知的且可商购。粉碎的碳酸钙以商品名Imerys Gammasperse获自QCI Britannic of Miami,Florida,U.S.A.。炭黑例如1011商购于Williams。二氧化硅商购于CabotCorporation。
成分(E)在组合物内的用量取决于各种因素,其中包括所选的特定水释放剂和是否存在任何额外的填料。然而,基于组合物的重量,成分(E)的用量范围可以是0-30份,或者5-30份。成分(E)可以是一种填料。或者,成分(E)可包括至少一种下述性能不同的两种或更多种填料:组成、粒度和表面处理。
成分(F)非反应性粘合剂
成分(F)是非反应性的弹性体有机聚合物,即不与成分(A)反应的弹性体有机聚合物。成分(F)与成分(A)相容,即成分(F)与成分(A)没有形成两相体系。成分(F)可具有足够低的透气率和透湿率,例如若在I G应用中使用该组合物。成分(F)的Mn范围可以是30,000-75,000。或者,成分(F)可以是较高分子量的非反应性弹性体有机聚合物与较低分子量的非反应性弹性体有机聚合物的共混物。在这一情况下,较高分子量聚合物的Mn范围可以是100,000-600,000,和较低分子量聚合物的Mn范围可以是900-10,000,或者900-3000。可选择Mn范围的下限端值,以便成分(F)可与成分(A)和组合物中的其他成分相容,以最小化其中使用组合物的IG单元中的化学发雾。
成分(F)可包括聚异丁烯。聚异丁烯是本领域已知的且可商购。适合于用作成分(F)的实例包括以商品名
Figure G2007800253766D00091
由德国BASFCorporation市售的聚异丁烯。下表中概述了这种聚异丁烯。
Figure G2007800253766D00092
其他聚异丁烯包括不同Parleam等级,例如获自NOF CORPORATIONFunctional Chemicals&Polymers Div.,Yebisu Garden Place Tower,20-3 Ebisu 4-chome,Shibuya-ku,Tokyo 150-6019,日本)的最高分子量的氢化聚异丁烯PARLEAMSV(POLYSYNLANE SV)(运动粘度(98.9℃)4700)。其他聚异丁烯可商购于美国ExxonMobil ChemicalCo.of Baytown,Texas且包括以商品名VISTANEX
Figure G2007800253766D00102
市售的聚异丁烯,例如MML-80、MML-100、MML-120和MML-140。VI STANEX
Figure G2007800253766D00103
聚异丁烯是烷属烃聚合物,它由仅仅含链端烯属键的长的直链大分子组成。VISTANEX
Figure G2007800253766D00104
MM聚异丁烯的粘均分子量范围为70,000-90,000。较低分子量的聚异丁烯包括VISTANEX
Figure G2007800253766D00105
LM,例如LM-MS(粘均分子量范围为8,700-10,000,同样由ExxonMobil Chemical Co.制造)和VISTANEXLM-MH(粘均分子量范围为10,000-11,700),以及获自Amoco的Soltex PB-24(Mn 950)和IndopolH-100(Mn 910)和Indopol
Figure G2007800253766D00107
H-1200(Mn 2100)。其他聚异丁烯以商品名NAPVIS
Figure G2007800253766D00108
和HYVIS由英国BP Chemicals of London市售。这些聚异丁烯包括NAPVIS
Figure G2007800253766D001010
200、D10和DE3;和HYVIS200。NAPVIS聚异丁烯的Mn范围可以是900-1300。或者,成分(F)可包括丁基橡胶。或者,成分(F)可包括苯乙烯-乙烯/丁烯-苯乙烯(SEBS)嵌段共聚物,苯乙烯-乙烯/丙烯-苯乙烯(SEPS)嵌段共聚物,或其组合。SEBS和SEPS嵌段共聚物是本领域已知的且以Kraton
Figure G2007800253766D001013
G聚合物商购于Kraton Polymers U.S.LLC ofHouston,Texas,U.S.A,和以Septon聚合物商购于Kuraray America,Inc.,New York,NY,U.S.A.。或者,成分(F)可包括聚烯烃塑性体。聚烯烃塑性体是本领域已知的且以AFFINITY
Figure G2007800253766D001014
GA 1900和AFFINITY
Figure G2007800253766D001015
GA 1950商购于Dow Chemical Company,Elastomers&SpecialtyProducts Division,Midland,Michigan,U.S.A.。
基于组合物的重量,成分(F)的用量范围为0-50份,或者10-40份,或者5-35份。成分(F)可以是一种非反应性的弹性体有机聚合物。或者,成分(F)可包括至少一种下述性能不同的两种或更多种非反应性的弹性体有机聚合物:结构、粘度、平均分子量、聚合物单元和顺序。
成分(G)交联剂
成分(G)是交联剂。成分(G)可以是硅烷、硅烷的低聚反应产物、或其组合。烷氧基硅烷交联剂的通式可以是R1 aSiR2 (4-a),其中每一R1独立地为单价有机基团,例如烷基、链烯基或芳基,每一R2是可水解基团;和a是1、2或3。低聚交联剂的通式可以是R1Si(OSi(R2)3)3,其中R1和R2如上所述。
在上式中,针对R1的合适的单价有机基团包括但不限于单价取代和未取代的烃基。针对R1的单价未取代的烃基的实例包括但不限于:烷基,例如甲基、乙基、丙基、戊基、辛基、十一烷基和十八烷基;环烷基,例如环己基;链烯基,例如乙烯基、烯丙基和丙烯基;芳基,例如苯基、甲苯基、二甲苯基、苄基和2-苯乙基。针对R1的单价取代烃基的实例包括但不限于:单价卤代烃基,例如氯化烷基,例如氯甲基和氯丙基;氟化烷基,例如氟代甲基、2-氟丙基、3,3,3-三氟丙基、4,4,4-三氟丁基、4,4,4,3,3-五氟丁基、5,5,5,4,4,3,3-七氟戊基、6,6,6,5,5,4,4,3,3-九氟己基和8,8,8,7,7-五氟辛基;氯化环烷基,例如2,2-二氯环丙基、2,3-三氯环戊基;和氟化环烷基,例如2,2-二氟环丙基、2,3-二氟环丁基、3,4-二氟环己基、和3,4-二氟-5-甲基环庚基。针对R1的单价取代烃基的实例包括但不限于被氧原子取代的烃基,例如环氧丙氧烷基,和被氮原子取代的烃基,例如氨烷基,和氰基官能的基团,例如氰乙基和氰丙基。或者,每一R1可以是烷基、链烯基或芳基。
每一R2可独立地选自烷氧基;链烯基氧基;酰胺基,例如乙酰胺基、甲基乙酰胺基或苯甲酰胺基;酰氧基,例如乙酰氧基;氨基;氨氧基;羟基;巯基;肟基;和酮肟基。或者,每一R2可以是烷氧基。针对R2的合适的烷氧基包括但不限于甲氧基、乙氧基、丙氧基和丁氧基。
成分(G)可包括烷氧基硅烷,其中例举二烷氧基硅烷,例如二烷基二烷氧基硅烷或三烷氧基硅烷,例如烷基三烷氧基硅烷或链烯基三烷氧基硅烷,或其部分或完全水解产物,或它们的其他组合。合适的三烷氧基硅烷的实例包括甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙基三甲氧基硅烷、乙基三乙氧基硅烷、苯基三乙氧基硅烷、苯基三甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、及其组合。在美国专利4,962,076、5,051,455和5,053,442中公开了烷氧基硅烷交联剂的实例。
或者,成分(G)可包括二烷氧基硅烷,其选自氯代甲基甲基二甲氧基硅烷、氯代甲基甲基二乙氧基硅烷、二甲基二甲氧基硅烷、甲基-正丙基二甲氧基硅烷、(2,2-二氯环丙基)-甲基二甲氧基硅烷、(2,2-二氟环丙基)-甲基二乙氧基硅烷、(2,2-二氯环丙基)-甲基二乙氧基硅烷、氟代甲基-甲基二乙氧基硅烷、氟代甲基-甲基二甲氧基硅烷、或其组合。
或者,成分(G)可包括三烷氧基硅烷,其选自甲基三甲氧基硅烷、乙基三甲氧基硅烷、丙基三甲氧基硅烷、异丁基三甲氧基硅烷、环戊基三甲氧基硅烷、己基三甲氧基硅烷、苯基三甲氧基硅烷、2-乙基-己基三甲氧基硅烷、2,3-二甲基环己基三甲氧基硅烷、环氧丙氧丙基三甲氧基硅烷、氨乙基氨丙基三甲氧基硅烷、(乙二胺丙基)三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、氯代甲基三甲氧基硅烷、3-氯丙基三甲氧基硅烷、三氯苯基三甲氧基硅烷、3,3,3-三氟丙基三甲氧基硅烷、4,4,4,3,3-五氟丁基三甲氧基硅烷、2,2-二氟环丙基三乙氧基硅烷、甲基三乙氧基硅烷、环己基三乙氧基硅烷、氯代甲基三乙氧基硅烷、四氯苯基三乙氧基硅烷、氟代甲基三乙氧基硅烷、甲基三异丙氧基硅烷、甲基-三(甲氧基乙氧基)硅烷、正丙基-三(3-甲氧基乙氧基)硅烷、苯基三-(甲氧基乙氧基)硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、或其组合。
或者,成分(G)可包括四烷氧基硅烷,其选自四乙氧基硅烷、四丙氧基硅烷、四丁氧基硅烷、或其组合。
成分(G)的用量取决于所选的特定交联剂。然而,基于组合物的重量,成分(G)的用量范围可以是0-5份,或者0.1-5份。成分(G)可以是一种交联剂。或者,成分(G)可包括两种或更多种不同的交联剂。
成分(G)可包括酰氧基硅烷,例如乙酰氧基硅烷。乙酰氧基硅烷包括四乙酰氧基硅烷、有机基三乙酰氧基硅烷、二有机基二乙酰氧基硅烷、或其组合。乙酰氧基硅烷可含有:烷基,例如甲基、乙基、丙基、异丙基、丁基和叔丁基;链烯基,例如乙烯基、烯丙基或己烯基;芳基,例如苯基、甲苯基或二甲苯基;芳烷基,例如苄基或2-苯乙基;和氟化烷基,例如3,3,3-三氟丙基。或者,成分(G)可包括有机基三乙酰氧基硅烷,例如含甲基三乙酰氧基硅烷和乙基三乙酰氧基硅烷的混合物。
或者,成分(G)可包括酮肟基硅烷。用于成分(G)的酮肟基硅烷的实例包括但不限于四(甲基乙基酮肟基)硅烷、甲基三(甲基乙基酮肟基)硅烷、乙烯基三(甲基乙基酮肟基)硅烷、及其组合。
或者,成分(G)可包括化学式R4 3Si-D-SiR4 3的二硅烷,其中R4和D如此处所述。这种二硅烷的实例包括双(三乙氧基甲硅烷基)己烷、1,4-双[三甲氧基甲硅烷基(乙基)]苯,和双[3-(三乙氧基甲硅烷基)丙基]四硫化物,如在美国专利6130306中所述。
成分(H)化学干燥剂
或者,除了成分(G)以外,加入到组合物中的交联剂的用量可充当化学干燥剂。在不希望束缚于理论的情况下,认为可将化学干燥剂加入到多部分组合物的干部分内,以保持组合物不含水,并在一起混合组合物的各部分之后,辅助结合来自成分(D)的水。例如,适合于用作干燥剂的烷氧基硅烷包括乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、及其组合。
成分(H)的用量取决于所选的特定干燥剂。然而,成分(H)的用量范围可以是0-5份,或者0.1-0.5份。成分(H)可以是一种化学干燥剂。或者,成分(H)可包括两种或更多种不同的化学干燥剂。
成分(I)粘合促进剂
成分(I)是粘合促进剂。成分(I)可以是除了成分(G)以外的有机基官能的硅烷。该有机基官能的硅烷的通式为R3 bSiR4 (4-b),其中每一R3独立地为单价有机基团;每一R4是烷氧基;和b为0、1、2或3,或者b可以是0或1。
或者,粘合促进剂可包括化学式为R5 cR6 dSi(OR5)4-(c+d)的有机官能的硅烷,其中每一R5独立地为具有至少3个碳原子的取代或未取代的单价烃基,和每一R6含有具有粘合促进基的至少一个SiC键合的基团,例如氨基、环氧基、巯基或丙烯酸酯基,c的数值为0-2,和d是1或2,且c+d之和不大于3。粘合促进剂也可以是上述硅烷的部分缩合物。
成分(I)的实例包括三烷氧基硅烷,例如γ-氨丙基三乙氧基硅烷、(乙二胺丙基)三甲氧基硅烷、乙烯基三乙氧基硅烷,(甲基丙烯酰氧基丙基)三甲氧基硅烷、乙烯基三甲氧基硅烷,和四烷氧基硅烷,例如四乙氧基硅烷,及其组合。
或者,成分(I)可包括二烷氧基硅烷,例如乙烯基、甲基、二甲氧基硅烷;乙烯基、甲基、二乙氧基硅烷;乙烯基、乙基、二甲氧基硅烷;乙烯基、乙基、二乙氧基硅烷,或其组合。
或者,成分(I)可包括三烷氧基硅烷,其选自环氧丙氧丙基三甲氧基硅烷、氨乙基氨丙基三甲氧基硅烷、(乙二胺丙基)三甲氧基硅烷、3-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、或其组合。
或者,成分(I)可包括四烷氧基硅烷,其选自四乙氧基硅烷、四丙氧基硅烷、四丁氧基硅烷、或其组合。
或者,成分(I)可包括如上所述的环氧基官能的硅烷与氨基官能的硅烷的反应产物,和例举在美国专利4,602,078和5,405,889中公开的那些。或者,成分(I)可包括由环氧基官能的硅烷与胺化合物衍生的杂氮硅三环,其中例举在美国专利5,936,110中例举的那些。
或者,成分(I)可包括化学式R4 3Si-D-SiR4 3的二硅烷,其中R4和D如上所述。这种二硅烷的实例包括双(三乙氧基甲硅烷基)己烷、1,4-双[三甲氧基甲硅烷基(乙基)]苯和双[3-(三乙氧基甲硅烷基)丙基]四硫化物,如在美国专利6,130,306中所述。
成分(I)的用量取决于所选的特定粘合促进剂。本领域的技术人员会意识到;成分(G)和(I)的一些实例可兼有交联和粘合促进性能。本领域的技术人员会意识到,加入到组合物中的成分(I)的用量是除了成分(G)的用量以外的用量,和当添加成分(I)时,所选粘合促进剂可与交联剂相同或不同。然而,基于组合物的重量,成分(I)的用量范围可以是0-5份,或者0-2份,或者0.5-1.5份。成分(I)可以是一种粘合促进剂。或者,成分(I)可包括两种或更多种不同的粘合促进剂。
有机基官能的烷氧基硅烷交联剂和粘合促进剂是本领域已知的且可商购。例如,乙烯基三乙氧基硅烷、乙烯基三甲氧基硅烷、苯基三甲氧基硅烷、四乙氧基硅烷、异丁基三甲氧基硅烷、(乙二胺丙基)三甲氧基硅烷和(甲基丙烯酰氧基丙基)三甲氧基硅烷可商购于Dow Corning Corporation of Midland,Michigan,U.S.A.。氨丙基三乙氧基硅烷和γ-异氰酸丙酯基三乙氧基硅烷以牌号SILQUEST
Figure G2007800253766D00151
(分别为A-1100和A-1310)获自于Momentive Performance Materials,187 Danbury Road,Wilton,CT USA。
本领域的技术人员会意识到,当选择成分(G)、(H)和(I)时,在交联剂(它影响固化产物的物理性能)、粘合促进剂(它影响固化产物的粘合性)和化学干燥剂(它影响货架稳定性)之间存在重叠。本领域的技术人员基于各种因素,其中包括组合物的打算用途和以单部分还是多部分组合物形式制备组合物,能区分并选择成分(G)、(H)和/或(I)。
成分(J)微晶蜡
成分(J)是在25℃下为固体的微晶蜡(石蜡)。可选择熔点,以便蜡的熔点在所需的施加温度范围的下限。例如,当在IG单元中使用组合物时,蜡的熔点范围可以是80-100℃。在不希望束缚于理论的情况下,认为成分(J)充当加工助剂,所述加工助剂改进流动性能,同时当冷却组合物数度时,例如在组合物施加到基底上之后,允许形成快速的原始强度(即粘度显著增加,这对应于随着温度下降,由组合物制备的密封件的负载携带能力增加)。在不希望束缚于理论的情况下,认为掺入蜡也可促进填料的掺入、配混和脱气(在生产组合物的过程中),和混合(在施加两部分组合物中的两个部分的过程中,静态或动态混合)。认为当蜡熔融时,它充当加工助剂,从而在配混过程中、配混工艺本身以及脱气步骤中显著容易地掺入填料到密封剂内。熔点在100℃以下的蜡可加速在施加之前、甚至在简单的静态混合器内混合两部分密封剂组合物中的两部分。蜡也可有助于在范围为80-110℃或者90-100℃的温度下施加密封剂且具有良好的流变性。
适合于用作成分(J)的蜡可以是非极性烃。蜡可具有支化结构、环状结构或其组合。例如,石油微晶蜡获自Strahl&Pitsch,Inc.,of West Babylon,NY,U.S.A.,且包括SP 96(熔点范围为62-69℃),SP 18(熔点范围为73-80℃),SP 19(熔点范围为76-83℃),SP 26(熔点范围为76-83℃),SP 60(熔点范围为79-85℃),SP 617(熔点范围为88-93℃),SP 89(熔点范围为90-95℃),和SP 624(熔点范围为90-95℃)。其他石油微晶蜡包括以商标Multiwax
Figure G2007800253766D00161
由CromptonCorporation of Petrolia,Pennsylvania,U.S.A.市售的蜡。这些蜡包括180-W,所述180-W包括不饱和的支化和环状的非极性烃且熔点范围为79-87℃;Multiwax
Figure G2007800253766D00162
W-445,所述Multiwax
Figure G2007800253766D00163
W-445包括不饱和的支化和环状非极性烃且熔点范围为76-83℃;和Multiwax
Figure G2007800253766D00164
W-835,所述Multiwax
Figure G2007800253766D00165
W-835包括不饱和的支化和环状非极性烃且熔点范围为73-80℃。
成分(J)的用量取决于各种因素,其中包括所选特定的蜡,和成分(C)和(D)以及成分(E)(若存在的话)的选择。然而,基于组合物的重量,成分(J)的用量范围可以是0-20份,或者1-15份,或者1-5份。成分(J)可以是一种蜡。或者,成分(J)可以包括两种或更多种不同的蜡。
成分(K)抗老化添加剂
成分(K)是抗老化添加剂。成分(K)可包括抗氧化剂、UV吸收剂、UV稳定剂、热稳定剂、或其组合。UV吸收剂的实例包括苯酚,2-(2H-苯并三唑-2-基)-6-十二烷基-4-甲基-,支链和直链(TINU VIN
Figure G2007800253766D00166
571)。UV稳定剂的实例包括双(1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯;甲基1,2,2,6,6-五甲基-4-哌啶基癸二酸酯;及其组合(TINUVIN
Figure G2007800253766D00167
272)。这些TINUVIN
Figure G2007800253766D00168
添加剂商购于Ciba Specialty Chemicals ofTarrytown,NY,U.S.A。合适的抗氧化剂是本领域已知的且可商购。合适的抗氧化剂包括酚类抗氧化剂和酚类抗氧化剂与稳定剂的组合。酚类抗氧化剂包括完全位阻的酚类和部分受阻的酚类。稳定剂包括有机基磷衍生物,例如三价有机基磷化合物,亚磷酸酯,膦酸酯,及其组合;硫代协同剂,例如有机基硫化合物,其中包括硫化物,二烷基二硫代氨基甲酸酯,二硫代二丙酸酯,及其组合;和位阻胺,例如四甲基哌啶衍生物。Zweifel,Hans在″Effect of Stabilization ofPolypropylene During Processing and Its Influence on Long-TermBehavior under Thermal Stress″Polymer Durability,Ciba-GeigyAG,Additives Division,CH-4002,Basel,Switzerland,AmericanChemical Society,vol.25,pp.375-396,1996中公开了合适的抗氧化剂和稳定剂。合适的酚类抗氧化剂包括维生素E和获自CibaSpecialty Chemicals,U.S.A的IRGANOX
Figure G2007800253766D00171
1010。IRGANOX
Figure G2007800253766D00172
1010包括季戊四醇四(3-(3,5-二叔丁基-4-羟基苯基)丙酸酯)。可使用低聚(较高分子量)的稳定剂以最小化IG单元的化学发雾与迁移可能性。低聚抗氧化剂稳定剂(具体地,受阻胺光稳定剂(HALS))的实例是CibaTinuvin 622,它是与4-羟基-2,2,6,6-四甲基-1-哌啶乙醇共聚的丁二酸的二甲酯。
成分(K)的用量取决于所选的特定抗老化添加剂。然而,基于组合物的重量,成分(K)的用量范围可以是0-5份,或者0.5-3份。成分(K)可以是一种抗老化添加剂。或者,成分(K)可包括两种或更多种不同的抗老化添加剂。
成分(L)增粘剂
合适的增粘剂是本领域已知的。例如,增粘剂可包括脂族烃树脂,例如具有6-20个碳原子的氢化聚烯烃,氢化萜烯树脂,松香酯,氢化松香甘油酯,或其组合。增粘剂可商购。脂族烃树脂可例举获自Exxon Chemical的ESCOREZ 1102、1304、1310、1315和5600,以及获自Eastman的Eastotac树脂,例如环球软化点为100℃的Eastotac H-100,环球软化点为115℃的Eastotac H-115E,和环球软化点为130℃的Eastotac H-130L。氢化萜烯树脂例举获自ArakawaChemicals的Arkon P 100和获自Goodyear的Wingtack 95。氢化松香甘油酯例举获自Hercules的Staybelite Ester 10和Foral。可商购的聚萜烯的实例包括获自Hercules的Piccolyte A125。脂族/芳族或脂环族/芳族树脂的实例包括获自Exxon Chemical的ECR 149B或ECR 179A。
另外,包括基于中成分(L)的重量最多20重量份或者10重量份与成分(A)和(F)相容的固体增粘剂(即环球软化点为25℃以上的增粘剂)。合适的增粘剂包括任何相容树脂或其混合物,例如(1)天然或改性松香,例如树胶松香、木松香、妥尔油松香、蒸馏松香、氢化松香、二聚松香和聚合松香;(2)天然或改性松香的甘油和季戊四醇的酯,例如内稃(pale)、木松香的甘油酯,氢化松香的甘油酯,聚合松香的甘油酯,氢化松香的季戊四醇酯,和松香的酚改性的季戊四醇酯;(3)天然萜烯的二元共聚物和三元共聚物,例如苯乙烯/萜烯和α-甲基苯乙烯/萜烯;(4)根据ASTM方法E28,58T测定的软化点范围为60-150℃的聚萜烯树脂;后一聚萜烯树脂通常得自于在Friedel-Crafts催化剂存在下在适中的低温下聚合萜烯烃例如称为蒎烯的双环单萜烯;还包括氢化聚萜烯树脂;(5)酚改性的萜烯树脂及其氢化衍生物,例如得自于在酸性介质内缩合双环萜烯和苯酚的树脂产物;(6)环球软化点范围为60-135℃的脂族石油烃树脂;后一树脂得自于聚合主要由烯烃和二烯烃组成的单体;也包括氢化脂族石油烃树脂;(7)脂环族石油烃树脂及其氢化衍生物;和(8)脂族/芳族或脂环族/芳族共聚物及其氢化衍生物。
成分(L)的用量取决于各种因素,其中包括所选的特定增粘剂和成分(I)的选择。然而,基于组合物的重量,成分(L)的用量范围可以是0-20份。成分(L)可以是一种增粘剂。或者,成分(L)可包括两种或更多种不同的增粘剂。
制备组合物
该工艺可以是间歇配混工艺或连续配混工艺。连续配混工艺可允许更好地控制汽提条件且可最小化组合物的热暴露持续时间,从而改进组合物中水含量的控制。在不希望束缚于理论的情况下,认为改进水含量的控制提供组合物改进的固化。
可将本发明的组合物配制为单部分组合物或多部分组合物,例如两部分组合物。可通过包括在剪切下混合各成分的工艺,制备单部分组合物。可在真空下或者干燥的惰性气体下或这两种条件下混合各成分。可在环境或升高温度或其组合下混合各成分。
可在添加成分(D)和(C)之前,通过加热成分(A)和(F)和若存在的成分(J),制备单部分组合物。在升高的温度下结合这些成分之后,可添加成分(B)和若存在的话的额外成分例如(E)、(G)、(H)、(I)、(K)和(L)。或者,可结合成分(E)和(J),和之后可添加成分(A)、(F)、(G)、(E)、(H)、(I)、(C)和(B)。
或者,可制备多部分组合物形式的组合物,例如以下所述的两部分组合物。本领域的技术人员将意识到如何通过在单独的部分内储存成分(B)缩合催化剂和成分(D)水释放剂来制备多部分组合物。例举的两部分组合物包括湿(含水)部分和干部分。可通过在剪切下混合包括(F)非反应性的弹性体有机聚合物和(D)水释放剂和一种或多种下述任选的成分:(J)蜡,(L)增粘剂,(E)填料例如增强填料(例如,炭黑)、增量填料或这两种成分的成分,来制备湿部分。
可通过在剪切下混合包括(A)湿气可固化的硅烷官能的弹性体有机聚合物,(F)非反应性的弹性体有机聚合物,(B)缩合催化剂,(C)干燥剂和一种或多种下述任选的成分:(J)蜡,(L)增粘剂,(G)交联剂,(H)化学干燥剂,(K)稳定剂,和(I)粘合促进剂的成分,来制备干部分。
或者,可通过在剪切下混合包括(A)湿气可固化的硅烷官能的弹性体有机聚合物,(F)非反应性的弹性体有机聚合物,和(D)水释放剂的成分,来制备湿部分。当湿部分包括成分(A)时,必须注意在湿部分内没有其他成分无意地可充当缩合催化剂。在这一情况下,应当考虑水释放剂(D)的性质。可通过在剪切下混合包括(A)湿气可固化的硅烷官能的弹性体有机聚合物,和(B)缩合催化剂,(C)物理干燥剂,任选地(G)交联剂,任选地(H)化学干燥剂,任选地(I)粘合促进剂的成分来制备干部分。湿部分和干部分中的每一个可任选地进一步包括选自(F)非反应性的弹性体有机聚合物,(J)在25℃下为固体的微晶蜡,(K)抗老化添加剂和(L)增粘剂中的一种或多种额外的成分。选择剪切和加热的工艺条件,以便在配混操作制备组合物的过程中足以固化组合物的水量保留在成分(D)水释放剂内。为了在这一操作过程中(特别是在聚合物和粉末组分例如干燥剂和水释放剂的情况下)实现充分均匀地混合,本领域的技术人员可选择配混温度接近于施加温度,以便聚合物组分为充分地液体,从而允许有效地掺入粉末组分。然而,由于这一操作所要求的机械剪切,实际的配混温度常常显著高于施加温度。例如,当采用双螺杆配混器制备组合物时,温度可在施加温度以上20-30℃(例如,当在IG单元内,组合物在80-100℃下施加时,为110-120℃)和有时高达施加温度以上100-110℃。尽管组合物没有暴露于这一温度下长的时间段,但“结合的”水仍然需要经受这一配混步骤。在不希望束缚于理论的情况下,认为成分(D)是水释放剂,其中水足够紧密地结合,以便充足量的水经受了配混步骤,且与此同时,水没有足够紧密地结合到防止在引发固化的施加温度下足量的水使组合物固化的程度。
使用方法
成分(A)允许组合物借助缩合反应固化。成分(A)和(F)被视为渗透率低的聚合物,即这些聚合物将最小化组合物的固化产物的透湿率和透气率。因此,在施加温度范围内将释放水的成分(D)水释放剂包括在组合物内,以固化该组合物。在两部分组合物中,添加水释放剂例如沉淀碳酸钙到单部分组合物中是一旦混合这两部分、当加热组合物到释放足量来自成分(D)的水的温度下时诱导固化的合适方式。由于在施加设备内,组合物暴露于施加温度下仅仅有限的持续时间,因此,可选择水释放剂,以便甚至在组合物施加之后再次冷却组合物之后,它释放足量的水以诱导充分快速地固化。例如,当组合物在室温或低于40-60℃下混合时,对于IG单元的工业制备工艺来说,组合物可能太缓慢地固化。
可在IG应用中使用本发明的组合物。图1(单一密封)和2(双重密封)是显示部分IG单元的截面视图。每一IG单元包括第一玻璃板101、与第一玻璃板101隔开一定距离的第二玻璃板102。在图1中,以上所述的组合物的固化产物103插在第一玻璃板101和第二玻璃板102之间的玻璃板间的空间内。固化产物103可充当一体化的边缘密封件,即充当水蒸气阻挡层、气体阻挡层、玻璃板之间的密封剂、隔垫、粘合剂和干燥剂基体。图2示出了以上所述的组合物的固化产物103作为主要密封剂的用途。辅助密封剂104例如多硫化物、聚氨酯或硅酮粘合到主要密封剂和玻璃板101、102上。在双重密封(图2)的情况下,固化产物103可充当一体化的边缘密封件,即充当水蒸气阻挡层、气体阻挡层、在玻璃板之间的密封剂,隔垫,粘合剂,和干燥剂基体。辅助密封剂104然后进一步支持固化产物103的密封和粘结(粘合)功能。
施加两部分组合物的方法可包括熔融这两部分并通过合适的机构(例如常规的设备,例如热熔泵或挤出机)喂入它们到加热的静态或动态混合器内,并从那儿经加热软管到达施加喷嘴。从喷嘴施加密封剂到玻璃上形成边缘密封件并制备IG单元的方法提供使用目前制备常规TPS
Figure G2007800253766D00211
IG单元所使用的相同或类似设备的优势,例外的是当使用两部分组合物,可改性该设备,以处理两部分(双原料),和以上所述的组合物还允许制备单一密封件。制备TPS
Figure G2007800253766D00212
单元所使用的一种方法包括作为长丝密封件在第一玻璃周边窗周围施加组合物,紧密接近于第一玻璃板在平行位置上移动第二玻璃板,任选地用气体(例如氩气)填充玻璃板间的体积,和通过对在第一玻璃板上形成的长丝密封件挤压第二玻璃板(参见,例如EP 0,805,254B1、WO 95/11,363、WO96/09,456)。或者,玻璃板可保持在平行的间隔位置上,并在玻璃板之间挤出该组合物(参见WO 90/02,696),或者可首先挤出组合物到支持件上,其中组合物对所述支持件的粘合性远远小于玻璃,然后从支持件中转移组合物到一个玻璃板上,使这两个玻璃板完全相合,然后挤压在一起(参见WO 95/11,364)。
可通过包括下述步骤的方法制备IG单元:i)将第一玻璃板101和第二玻璃板102放入通过玻璃板间的空间隔开的平行位置内,ii)沿着第一玻璃板101和第二玻璃板102的周边,施加以上所述的组合物到玻璃板间的空间内,和iii)固化该组合物。
或者,可通过包括下述步骤的方法制备IG单元:i)在第一玻璃板101的周边周围以长丝密封件形式施加以上所述的组合物,ii)移动第二玻璃板102到与第一玻璃板101平行的位置内,以便第一玻璃板101和第二玻璃板102通过玻璃板间的空间隔开,任选地iii)用气体例如氩气或干燥空气填充玻璃板间的空间,iv)对着在第一玻璃板101上形成的长丝密封件挤压第二玻璃板102,和v)固化该组合物。
或者,可通过包括下述步骤的方法制备IG单元:i)在支持件上以长丝密封件形式施加以上所述的组合物,其中组合物对所述支持件的粘合性远远小于玻璃;ii)从支持件上转移长丝密封件到第一玻璃板101上;iii)将处于平行位置的第一玻璃板101和第二玻璃板102挤压在一起,和iv)固化该组合物。
在制备IG单元的方法的任何一种中,可使用以上所述的单部分或两部分组合物。当使用两部分组合物时,可在工艺步骤i)或工艺步骤ii)之前不久混合这两部分。制备IG单元的这些方法可提供下述优势:可在不存在大气湿气的情况下进行组合物的固化。对于本申请的目的来说,“不存在大气湿气”是指在大气氛围内存在的任何量的湿气不足以在3-4周的时间段内固化本发明。可通过加热组合物到施加温度范围,进行固化,从而从成分(D)中释放水。可在施加组合物到玻璃板之中或之后进行固化。在制备IG单元的方法中,可在范围为80-140℃的温度下进行组合物的施加。可在室温下进行固化3-4周,以达到最终性能的80%。
实施例
对于本领域的技术人员来说,包括下述实施例以阐述本发明。然而,本领域的技术人员要理解,鉴于本发明的公开内容,可在没有脱离权利要求书列出的本发明的精神和范围的情况下,在所公开的具体的实施方案中作出许多变化,且仍然获得相同或类似的结果。所有用量、比值和百分数以重量计,除非另有说明。在下述实施例中使用表1中所述的成分。
Figure G2007800253766D00251
Figure G2007800253766D00261
参考例1-性能评价方法
Ares流变仪
在动态剪切中使用Ares流变仪,以使用复数模量组分测固化分布型,和测时间与温度累积的粘度和模量。
当进行固化分布型时,所使用的条件为25mm的平行板几何形状,1Hz的频率,和95℃的温度。软件测定当在这一点处的G′储能模量交叉G″损耗模量(即G′=G″)时的时间点。然后将这一时间加合到它在该仪器内获得该材料时花费的时间上,且总的时间认定为固化的开始。这一点常常称为凝胶点(Melt Rheology and Its Role inPlastics Processing,Dealy,J and Wissbrun,K,1990pg.420)和固化开始的有限可测量的点。
还使用流变仪,通过将固化样品置于板之间,并注意没有过载称量池或转换器,然后使用25mm的平行板和1Hz的频率,在所需的温度下测量G′值,从而测定固化程度。
在混合之后立即还进行样品的温度扫描,和数天之后测定硬化点以及温度对新鲜混合的材料的粘度的影响,从而提供用于混合和清除(clean out)目的的流变学曲线。采用25mm的平行板或10mm的平行板和1Hz的频率,取决于待测试的样品,在-20℃到145℃的温度范围内进行这些。
硬度计-材料的硬度
通过ASTM D 2240的变通方案,测量材料的硬度。为了测试材料,使用具有Conveloader的获自Shore Instrument andManufacturing的Durometer Type A。所测试的材料厚度通常为3mm。在单独的一组试验中,示出了当将样品始终放置在Conveloader表面上时,3mm的厚度足以实现可再现的结果。关于任何粘弹性材料,该样品表明硬度计测量对硬度计针和样品表面之间的接触时间的依赖性。认为这一效果主要归因于在样品内包含的蜡。将样品置于Conveloader表面上,且由于1kg重量,允许硬度计头以其预定的速度下落。由于这一样品的性质不同,因此当硬度计针与表面紧密接触时,启动计时器5秒。不久之后,在仪器上观察到高的读数并记录为起始值。然后在过去5秒之后,记录在仪器上的第二次读数作为5秒数值。记录最少3个读数,并报道起始值和5秒值的中值。在其中蜡在样品内的情况下,在加热样品板之后,硬度计头通常留下仅仅返回到其起始形状的一个孔穴,并在测试之前使板固化。
粘合剂(T/A)接合处结构
制备粘合剂(T/A)接合处结构,以测试在两个玻璃基底之间的粘合性。采用熔融样品,制备具有组合物的T/A接合处的一般组件,并在借助Hauschild混合器在97℃下混合样品之后,强制进入具有最好的无孔隙样品的接合处内,然后脱气,并再次借助Hauschild混合器在97℃下混合,或者如以下实施例中,以体积计,借助在两部分的混合中列出的方法,制备样品。在允许材料挤压或分配到接合处结构内的95℃炽热工作空间和/或高的空气流烘箱内,进行分配和T/A接合处的组装,其方式使得没有空气捕获在材料内。在填充组件之后,允许它们冷却到室温,但通常在它们冷却并获得原始强度之后的任何时间,从夹子中取出组件。由于样品的粘合剂性质,因此在特氟隆隔垫和样品之间放置一片剥离衬垫以容易从组件中剥离样品。在固化或完全冷却时,可除去这一剥离衬垫。发现当在冷冻器内进行组件的进一步冷却和进行剥离衬垫的快速牵引以除去它时,衬垫提高的剥离是可能的。
还制备具有商业等级TPS材料(非反应性的热塑性隔垫/密封件-对比例1)的粘合剂(T/A)接合处结构,但组装略有不同之处在于使用预挤出的材料,以产生2″×0.5″×0.5″的结构。在这一情况下,将三片TPS放置在一起。将TPS材料(Koemmerling Koedimelt
Figure G2007800253766D00281
TPS)挤压到该结构夹具内,然后在120℃下加热30分钟。从烘箱中取出该结构,并使用Arbor压机将TPS材料挤压到玻璃结构内,从而除去孔隙和确保TPS与玻璃之间良好接触。紧固该组件,允许冷却过夜,然后在测试样品之前拆卸并修整掉过量的TPS,因为不需要固化时间。溶胀凝胶
利用抗溶剂甲苯的性质测定固化的完全程度,所述溶剂甲苯常用于溶解未固化状态下的材料。允许样品固化5天,之后将已知的重量置于具有甲苯的1盎司的小瓶内。每数天用新鲜甲苯替代所述甲苯。在一周之后,取出样品,滗析掉溶剂本体,然后将其置于预称重的盘子内以干燥。测量在干燥成稳定水平之后留下的量,并与起始样品的重量比较,以测定聚合物、填料和其他可固化材料的固化的网络量。
耐溶剂性
将标称为64mm2×3mm厚的小片样品置于1盎司的小瓶内并用甲苯覆盖,观察样品是否溶解。在短时间之后,发现样品具有不同程度的溶剂化,和根据混合物变得多黑来修正评价体系,其中所述变黑是由于当聚合物溶剂化时炭黑游离出来导致的。“最好”的材料没有被溶剂化,和溶剂保持清澈,没有变黑,评价体系建议0值。采用1-10来测定从灰色到黑色的变化程度,其中10是完全溶解的样品。在设定的间隔处进行这些评价,采用在较短的时间内能鉴别多种组合物相互作用的不同组合物,以鉴别固化和固化程度。在翻转小瓶一次并观察甲苯的颜色之后,确定评价值。
弹性恢复
利用ASTM C 736-00的思想,研究弹性恢复,但当在95℃下进行时,变为使用与粘合质量相比更体现本体性能的样品。在固化的弹性体和TPS上进行试验(对比例)。在所有情况下,挤压样品或铸塑成片材。然后模切这些片材(“狗骨头”形状的试样),以具有较小截面积的区域和较大的用于固定/夹持的区域。在这一情况下,用于切割拉伸样品的模头与Arbor压机联合使用,然后将棒切割成一半以在试验中使用。制备试样用于在95℃的高空气流烘箱内垂直测试。采用机械夹具和在样品和夹具之间的掩蔽胶带,将试样保持在原地,其中掩蔽胶带用以辅助耗散在样品上的夹持压力,防止机械夹具使样品粉碎,从而引起在固定点处过早破坏。测量样品的起始距离,并记录为起始长度。将夹持样品放置在高空气流的烘箱内,和在样品本身重量下单独测试样品的耐热性预定的时间,有时20小时。从烘箱中取出样品,并垂直悬挂,直到冷却,其中再次测量样品并记录。然后这些样品被第二夹具和重物固定。基于截面积和提供给定力的量来预定重物。然后将这一装置垂直放回到95℃烘箱内设定的时间量,然后在处于垂直位置的同时取出以冷却。一旦冷却,再次测量长度。使用这一数值,与起始长度相比,推导伸长率百分数。然后,取下第二夹具或底部的夹具,并经10分钟的恢复时间,将样品放回到烘箱内。一旦取出并冷却样品,再次测量长度,然后比较这一恢复的长度与拉伸的长度,以测恢复或弹性恢复百分数。
静载荷测试
进行静载荷测试,以寻求在延长的时间段内样品支持给定重物的能力。按照与前面所述的弹性恢复类似的方式,进行样品制备,但从开始在两端处夹持。还在整个弹性恢复测量的测试中,在这些样品上进行长度测量。在固化样品上进行试验。在所有情况下,挤压样品或铸塑成片材和允许固化给定的时间段,和在一些情况下,为了增加的强度,进行后固化。使用Arbor压机,从拉伸模中模切样品,并使用较小截面积的区域测定传输所需的外加力2psi和3.45psi必需的重物,分别标称为18.2g和31.4g。在材料和夹具之间,采用机械夹具和掩蔽胶带组装样品,以辅助在样品的两端处耗散夹持压力。拉伸棒的笔直区域为在半径之间34mm,和这是在弹性恢复的拉伸过程中判断的区域。在所有情况下,在高空气流的烘箱内,在95℃下在样品上首先进行2psi试验3小时的时间段,之后取出样品,冷却并测量。然后取出重物和底部夹具,并将样品垂直放回到95℃下的高空气流烘箱内1小时,然后取出以冷却和测量以测定弹性恢复。然后给样品负载以进行3.45psi测试并置于烘箱内17小时(过夜);之后,取出样品,冷却并测量。然后取下重物和底部夹具,并将样品垂直放回到95℃下的高空气流烘箱内1小时,然后取出以冷却和测量,以测定弹性恢复。
湿气分析
借助热重分析法,使用设定在150℃下的Mark 4 MoistureAnalyzer,测定原材料的水含量。这一装置测量填料或其他物质的重量损失且确实假设出来的物质仅仅是水,和在这一情况下有效的假设应当是纯成分(D)。
固化深度
在样品中,如果不存在足够的内部湿气,则发生仅仅暴露表面的固化。使用在固化7和6天之后的材料,采用在甲苯内浸渍1天的样品,进行耐溶剂性试验。然后取出样品并允许甲苯蒸发,以测量留下了什么。若进行重量测量的话,则这类试验类似于在典型的溶胀凝胶试验之后留下的那些。然而,从甲苯蒸发之后留下的膜的厚度可看出样品固化的情况。在留下非常少材料的情况下,表明非常小的固化网络和最可能仅仅来自暴露的表面,而具有足够的湿气固化材料本体且耐甲苯的样品非常厚且表明可获得合适的湿气源制备固化网络。
搭接剪切测试
根据ASTM D3164-97,使用1″×3″玻璃板并在加热区域内施加加热的样品,产生0.25英寸的粘合层,从而制备搭接剪切样品。允许样品固化预定的时间,然后使用Alliance RT/5 Tensiometer牵拉样品并获得搭接剪切值。在95℃的工作空间内,施加样品挤压并在两个玻璃板之间,然后测试。全部在室温下测量这些值,或者在测试之前,在-31℃的冷冻器内放置30分钟,并在从冷冻器中取出之后立即测试。
挠性
在-30℃下进行芯轴弯曲试验ASTM 3111。将芯轴和样品放置在-30℃下的冷冻器内30分钟。每一样品的尺寸为8mm×22mm和3mm厚。当取出样品和棒时,立即在棒上弯曲样品,并观察任何龟裂或变化。记录龟裂或变化的任何迹象。
霜白点测试
使用ASTM E546-88 Standard Test Method for Frost Pointof Sealed Insulating Glass(IG)units(密封的绝缘玻璃(IG)单元的ASTM E546-88霜白点的标准试验方法)作为指导,产生实验室工序以测试霜白点。在小的实验室单元(3″×6″)上进行试验。采用以1∶1体积比混合的样品,在高空气流烘箱内,使用MixPac S-50手持枪和维持在94℃下的静态混合器,制备该单元。分配样品,其方式使得在玻璃板上产生完整的圆形、椭圆形或矩形形状,然后将第二玻璃板置于分配的样品之上,从而产生密封的环境。然后干燥样品在玻璃板之间的空间。允许该单元在室温下固化4天。固化之后,将实验室I G单元置于直接在IG单元一侧上的干冰上10分钟。然后除去干冰,并用异丙醇喷洒外表面,以耗散在外表面上冷凝的湿气,从而使得窗户单元的内部空间可见。若没有可见的冷凝,则认为样品的霜白点低于-78℃,即干冰固体CO2的温度。
参考例2
为了在施加组合物之后3-4周内实现前面所述的固化程度,组合物需要含有足量水,所述水将在给定的施加温度下释放(可获得)。优选在两部分组合物的“湿”部分上而不是在水释放剂本身或混合组合物上测定在施加温度下水的可获得性。在水释放剂本身上水的可获得性的测量忽略了由于各种其他因素例如在组合物的聚合物成分内水的溶解度导致的在组合物内水的任何可获得性。忽略在混合组合物内水的可获得性的测量,以计算水与硅烷、硅反应性聚合物和其他水清除剂成分的反应,这些反应可导致水转化成反应产物例如醇。
可使用Karl-Fischer-Coulometer和精度为0.1mg的分析天平,通过改性Annex C of EN 1279 Glass in Building-InsulatingGlass Units,Part 2,Long-Term Test Method and Requirements forMoisture Penetration中所述的方法,测定在2部分组合物内的湿部分中施加温度下水的可获得性。与标准试验方法相反,采用猛增的温度。以下描述了试验工序的细节:起始温度:50℃最终温度 250℃温度梯度 2℃/min气流:50ml/min工序:
从组合物湿部分的本体(非表面)中取出0.5g样品和之后立即转移到Karl-Fischer-Coulometer小瓶内。将该小瓶转移到Karl-Fischer-Coulometer的烘箱样品处理器内,并基于在该Coulometer的操作软件中设定的工序参数,开始测量。在三个样品上进行独立的测量。Karl-Fischer方法然后测定在组合物的湿部分中释放的水的绝对量。基于样品的重量,这一绝对量然后可转化成所释放的水量wt%。基于这一读数,可基于组合物中两个组分之间的混合比,测定在混合的可固化组合物内的水量。
各自基于全部混合组合物的重量,当在施加温度下释放的水量在0.015%以上或者在0.02%以上或者在0.025%以上时,可获得良好的固化性(如上所定义的)。
实施例1-3  比较水释放剂
实施例1含有沉淀碳酸钙作为唯一的水释放剂。实施例2含有沉淀碳酸钙和水合分子筛这二者。实施例3不含水释放剂。通过使用获自德国Hauschild,Waterkamp 1,Hamm 59075的UniversalMixing Machine-Model AM 501 T,以所列的顺序,混合表2的成分,制备单部分组合物形式的实施例1-3。
为了制备样品,通过在Hauschild混合杯内放置25.2g成分(J2)蜡与18g成分(E1)炭黑,然后在97℃下加热30分钟,并混合26秒,从而制备第一预混物。用手搅拌该混合物并再次混合。取出该混合物并在两块剥离衬垫之间挤压和冷却。然后在母炼胶内以干燥组分形式添加这一预混物。因此,使用3.6g预混物导致在组合物内1.5g炭黑含量。
在Hauschild混合杯内结合成分(A1)硅烷化共聚物,(F2)聚异丁烯,以上制备的预混物,和(J2)蜡,在高气流烘箱内在97℃下加热1小时,然后混合26秒。然后,将成分(G2)乙烯基三甲氧基硅烷加入到该杯中并混合另外26秒。
然后按照下述顺序添加下述成分:(D1)沉淀碳酸钙,(E2)粉碎碳酸钙,(I1)正硅酸四乙酯,(I2)γ-氨丙基三乙氧基硅烷,和(C1)分子筛。在每一次添加之后,将该杯放置在97℃下的高气流烘箱内10-15分钟,并混合杯子的内容物26秒。
在这一阶段,该材料被视为随后工作的母炼胶。为了保留该材料并允许额外的测试,使用10g母炼胶基础物,并配制成最终组合物。在较小的混合杯内,添加母炼胶,并混合(D2)水合分子筛,如果有的话。紧跟着添加(B2)锡催化剂并混合。在添加锡之后,混合器启动时的时间被视为反应性的开始且被视为固化的开始。表2-单部分组合物
Figure G2007800253766D00341
如参考例1中所述,测量物理性能硬度计硬度和耐溶剂性,且结果在表3中。实施例1和2表明,在这一单部分组合物中,存在(D2)水合分子筛没有对原始强度作出显著贡献,这通过起始的硬度计结果来显示。表3表明,来自水合分子筛的水(实施例2)确实轻微地有助于这一组合物产生5秒的硬度计硬度(本体)和耐溶剂性,尽管在没有来自沉淀碳酸钙(实施例3)的水的情况下,对于IG工业认为必须的快速加工循环来说,固化没有足够地快。借助Ares Rheometer的固化还表明,内部的固化水允许这一配制剂实现充分快速的固化。表3-结果
  实施例#   1   2   3
  固化天数   6   6   6
  硬度计,肖氏A,起始   57   56   37
  硬度计,肖氏A,5秒   25   30   6
  固化的天数   6   6   6
  甲苯溶解度,液体澄清度
  15min   10
  1hr   0   0   10
  2hr   0   0   10
  4hr   0   0   10
  过夜   0   0   10
  20天   1   0   10
  Ares Rheometer
  95℃下的起始固化
  G′交叉G″,min   <4   <4   >130
  G′,dyn/cm2,95℃下   74720   60520   -6000
实施例1和2进一步表明,在这一组合物内,可在相对低的硅烷化共聚物含量下实现弹性网络的形成。这是令人惊奇的,因为不会发生交联不充分的网络,从而导致差的弹性体性能例如耐溶剂性,溶胀/凝胶级分,弹性恢复。
实施例4-7固化能力
使用实施例4-7以证明固化的能力。以与以上实施例1所述类似的工艺,借助Hauschild混合器在97℃下加热之后通过混合材料,制备组合物。为了区分水源,使用尽可能少的组分。一旦添加锡催化剂,则开始固化时间。下表4示出了没有通过一些方式添加水的组合物,实施例4在允许测试的至少1小时内没有固化。沉淀碳酸钙样品实施例5在4.5分钟处显示出最快的凝胶点,该时间是实施例7高含量的水合分子筛配制剂的一半。表4-单部分组合物
  实施例   4   5   6   7
  (A1)硅烷化共聚物   20   20   20   20
  (F1)聚异丁烯   2   2   2   2
  (D1)沉淀碳酸钙   0   0   20   0
  (D2)水合分子筛   0   2.4   0   9.6
  (B2)DBTDL   0.7   0.7   0.7   0.7
  在材料上的数据
  %填料   0   9.6   46.8   29.7
  %水   0   1.41   0.28   4.37
  Ares Rheometer
  G′交叉G″,min   没有固化   11.7   4.5   8.5
  G′,dyn/cm2,交叉时   313   7185   237300   13200
借助热重分析方法,使用设定在150℃下的Mark 4Moisture Analyzer,在原材料和非实际组合物上测定水合分子筛和沉淀碳酸钙的水含量。这一装置测量重量损失,并假设出来的唯一物质是水,在这一情况下,有效的假设应当是对原材料作出。
这些实验表明,在100℃的施加温度下,在这一组合物内,沉淀碳酸钙是比水合分子筛显著更加有效的水源。储能模量(G′)涉及组合物的固化产物的弹性性能。损耗模量(G″)涉及固化产物的粘性流动性能。在短的时间段内实现G′交叉G″模量的重叠可解释为组合物开始更加快速地固化。实施例5表明,在这一组合物内采用沉淀碳酸钙比在实施例6和7中采用水合分子筛开始固化更快,即使在实施例6和7中组合物内的水%高于实施例5。实施例5具有最高的G′值,这对应于比较快速的固化(发生更多的固化,与对比例相比,在实施例5中此刻形成更加固化的网络)。在不希望束缚于理论的情况下,认为本发明的组合物提供的优点是,与含有在水合分子筛上携带的较大量水的组合物相比,在水含量下降的情况下改进固化,和这可改进组合物的储存稳定性,且可降低湿气扩散到IG单元的玻璃板间的空间内的危险。基于实施例1-7的结果,对于范围为90-110℃的施加温度范围来说,沉淀碳酸钙而不是分子筛可用作水源。然而,在不希望束缚于理论的情况下,认为在较高的施加温度范围下,例如在120-140℃下,饱和分子筛可用于成分(D)。此外,在不希望束缚于理论的情况下,认为本发明的组合物可提供的优点是,不需要水合盐作为水源,从而避免与之相关的缺点,例如对粘合性的负面影响。
为了进一步研究通过湿含量引起的固化,根据参考例1,测试实施例4-7的耐溶剂性。在固化7和6天之后测试样品。尽管难以观察到样品是否溶解,因为不存在炭黑有效地使样品着色,但在每一情况下,样品看起来仍然完整,尽管不同。在甲苯内1天之后,取出样品,并允许甲苯蒸发,以测定留下什么,这是典型的溶胀凝胶试验。没有进行重量测量,结果没得到凝胶或未反应的材料的百分数。然而,可根据在甲苯蒸发之后留下的膜的厚度来观察样品固化的情况。在对比例2中,在0.07mm的膜厚下留下很少的材料,从而表明形成非常少的固化网络,和仅仅在暴露表面处发生最可能的固化。对比例3和4以及实施例3全部具有足够的湿气来固化材料本体,且耐甲苯,这表明若固化时间充分的话则各自是合适的湿气源。结果在表5中。表5-耐溶剂性
Figure G2007800253766D00371
实施例8-10在混合比以体积计为1∶1和以重量计为2∶1下的两部分体系内配制产物的能力
实施例8-10表明,可以具有1∶1或接近于1∶1(例如1∶2或2∶1)的混合比的两部分组合物形式制备组合物。在不希望束缚于理论的情况下,认为这是有益的,因为这些混合比在混合比的容限方面比RTV两部分产品更宽大,其中后者典型地具有10∶1的基础成分与催化剂的混合比。
当以1∶1的体积或2∶1的重量混合比混合时,实施例8(混合)、9(混合)和10(混合)得到良好的产物。在1∶1体积比的实施例中,没有列出配制剂数据,因为数据是未知的,但可以重量为基础制备各部分,且认为在1∶1体积基础下混合被视为这两部分的比重。表6-两部分组合物
  实施例   8(混合)   8(混合)   9(混合)   9(混合)   10(混合)   10(混合)
  成分   2∶1重量混合   1∶1体积混合   2∶1重量混合   1∶1体积混合   2∶1重量混合   1∶1体积混合
  (A1)硅烷化共聚物   25   20   15
  (F3)聚异丁烯   32.4   37.4   42.4
  (J2)蜡   10   10   10
  (E1)炭黑   1.3   1.3   1.3
  (G2)VTM   0.067   0.067   0.067
  (D1)沉淀碳酸钙   14.67   14.67   14.67
  (I2)粘合促进剂   0.33   0.33   0.33
  (C1)3A分子筛   15   15   15
  (K1)Tinuvin 292   0.25   0.25   0.25
  (K2)Tinuvin 571   0.25   0.25   0.25
  (B1)锡,Metatin 740
  (B2)锡,DBTDL   0.7   0.7   0.7
  固化天数   4   7   4   7   4   7
  硬度计,肖氏A,起始   32   48   38   46   32   45
  硬度计,肖氏A,5秒   4   21   7   15   5   13
  固化天数   6   56   6   56   6   56
  硬度计,肖氏A,起始   32   55   42   56   32   53
  硬度计,肖氏A,5秒   4   24   8   22   5   18
  固化天数   6   6   1   6
  甲苯溶解度,液体澄清度
  15min   2
  1hr   5   6   5   6
  2hr   8   8   8   8
  4hr   10   10   10
  过夜   10   10   10   10
  固化天数   41   56   40   56   40   56
  甲苯溶解度,液体澄清度
  15min   0   0   0   0   0   0
  1hr   0   0   0
  2hr   0   0   0
  4hr   0   0   0
  过夜   0   0   0
还测试以1∶1的体积为基础混合的实施例8、9和10的挠性。在-30℃下进行芯轴弯曲试验,ASTM 3111。将芯轴和每一样品的试样放置在-30℃下的冷冻器内30分钟。每一试样的尺寸为8×22mm和厚度为3mm。一旦取出样品和棒,则在棒上立即弯曲样品并观察任何裂纹或变化。所有样品容易弯曲且没有显示出龟裂迹象。
实施例11和12-可商购的“可固化”和“结构”PIB/丁基材料
实施例11 Delchem D-2000(以反应性Hot Melt Butyl IGSealant形式作广告)、实施例12 Delchem D130 HM Butyl(以针对Intercept
Figure G2007800253766D00391
隔垫体系来说具有改进的结构性能的Hot Melt Butyl IGSealant形式作广告),二者均商购于Delchem,Inc.,P.O.Box10703,Wilmington,DE 19850,U.S.A,和实施例13获自德国Pirmasens的
Figure G2007800253766D00393
TPS(不可固化的)TPS材料的甲苯溶解度表明,甚至在分配和允许固化3年之后,这些材料没有很好地交联。基于表7报道的数据,Delchem D-2000的甲苯溶解度数据低,甚至当储存过夜时,然而,该材料崩解且破碎。在前的溶胀凝胶测试中,大多数Delchem D-2000溶解,和HM Butyl(它是非交联体系的代表)完全溶解。类似地,是不可固化的,甚至在储存3年之后,该材料溶解在甲苯内。表7-可商购的TPS材料
Figure G2007800253766D00401
*色差没有被证实,和认为不存在溶剂变色是由于在配制剂内不含炭黑填料所致。
实施例14-17-形成原始强度
快速形成原始强度是理想的,因为它可允许在生产线最后和早期运输IG单元时处理密封的IG单元(可使该单元有序和快速地运输)。在不希望束缚于理论的情况下,认为微晶蜡提供密封剂优良的原始强度,即随着温度下降,组合物的粘度强烈增加。
实施例15意证明在没有影响固化开始,从而扰乱原始强度的情况下,材料的原始强度或固化之前的强度的形成。因此,实施例15是没有添加锡催化剂来延迟固化开始的另一可固化的配制剂。根据ASTM D816-82(1993)e1,D1002-94,使用玻璃板并在加热区域内施加加热的材料,测量搭接剪切强度。样品产生20.4psi的搭接剪切值。在没有锡催化剂的情况下制备实施例16,并得到22.7psi的搭接剪切值。实施例14与实施例16相同,所不同的是添加锡催化剂。实施例14在固化7天之后,产生36.7psi的搭接剪切值。相比之下,获自
Figure G2007800253766D00402
Figure G2007800253766D00403
TPS的实施例17得到13.7psi的搭接剪切值。因此,实施例13的组合物的原始强度足以制备IG单元。均在室温下测量这些值。表8
Figure G2007800253766D00411
*)在冷却到实验室环境温度(约23℃)之后立即测试。
实施例18-尽管存在蜡时的冷挠性
以1∶1体积为基础混合A和B部分的实施例18在7天固化之后显示出78.4psi的搭接剪切值和甚至在-31℃下4.6%应变。类似于前面的实施例8-10中所述的方法,再次使用炭黑的母炼胶,在单独的部分内制备样品,但在此处的情况下,还添加抗氧化剂到这一共混物中。根据ASTM D816-82(1993)e1,D1002-94,在1英寸×3英寸的两片玻璃上通过标准的方式制备搭接剪切试样,其中粘合剂的粘合层厚度为0.25英寸。混合该材料,并在于94℃的烘箱内加热的同时,通过两部分的50cc混合体系,施加到玻璃上,所述混合体系使用17个元件的静态混合器。表9-两部分组合物
  实施例   18A   18B
  成分   份   份
  (A1)硅烷化聚异丁烯   42.8
  (F3)聚异丁烯   19.6
  (J2)蜡   10   10
  (E1)炭黑   1
  (D1)沉淀碳酸钙   22   18
  (E2)粉碎碳酸钙   19   19
  (I4)粘合促进剂   1
  (G3)苯基三甲氧基硅烷   1
  (C1)分子筛   30
  (D2)水合分子筛   4.8
  (K1)Tinuvin 292   0.2
  (K2)Tinuvin 571   0.2
  (B2)锡催化剂,DBTDL   1.4
实施例19-在连续的配混器上制备的两部分配制剂
在COPERION 25mm共旋转的完全啮合式双螺杆挤出机,12机筒长(48∶1长度∶直径,L∶D之比)上配混表10所示的两部分组合物。表10-两部分组合物
  实施例   19A   19B
  成分   份   份
  (A1)硅烷化聚异丁烯   38.0
  (F4)聚异丁烯   38.0
  (J2)蜡   1.0   1.0
  (L1)增粘剂   9.0   2.0
  (E1)炭黑   30.0
  (D1)沉淀碳酸钙   22.0
  (14)粘合促进剂   1.0
  (G2)乙烯基三甲氧基硅烷   0.2
  (G 3)苯基三甲氧基硅烷   1.0
  (C1)分子筛   54.0
  (K1)Tinuvin 292   0.4
  (K2)Tinuvin 571   0.4
  (B2)锡催化剂,DBTDL   2.0
[0118]通过借助Bonnot泵和用于计量的齿轮泵,在挤出机的第一机筒内喂入成分(F4),制备A部分的中间体。在第三机筒内添加成分(J2)和(L1)。通过在塑料袋内摇动这些成分,制备成分(D1)和成分(E1)的预混物,并在挤出机的第九机筒内添加60%这一填料预混物(重量)。在第十一机筒内施加真空。在第十二机筒最后以中间体形式挤出所得混合物。在完成中间体的制备之后,再次借助Bonnot泵和用于计量的齿轮泵,将这一中间体喂入到第一机筒内。在挤出机的第九机筒内添加其余40%填料预混物。在第十一机筒内施加真空。在第十二机筒的末端以组合物的A部分形式挤出所得混合物。
通过在机筒1内,借助Bonnot泵和用于计量的齿轮泵,喂入成分(A1),制备B部分。在机筒3内添加成分(J2)和(L1)。在玻璃器皿内通过人工摇动,预混成分(I4)、(G2)、(G3)、(K1)、(K2)和(B2),然后借助高压双活塞(HPLC)泵添加在机筒5内。在机筒7处施加真空,以汽提掉甲醇。在机筒9内添加成分(C1)。在机筒11内施加真空。在机筒12末端挤出所得混合物。
对于A部分来说,挤出机在200-600rpm下运转,和对于B部分来说在100-400rpm下运转(机器能力为0-1200rpm)。当制备A部分时,沿着机器的长度,温度分布型90-120℃(一半的长度为90℃和其余为120℃)。当制备B部分时,对于整个机器长度来说,温度分布型典型地为90℃。
将A和B部分包装在500ml“腊肠状”容器内。通过两部分混合和计量机器,将A和B部分混合在一起。通过将两部分喂入到加热的静态混合器(长度80cm,最小15个静态混合元件)的液压机,将腊肠状容器喂入到加压至约280 105Pa的两个圆筒内,并从那儿进入到齿轮泵,然后进入到Bystronic TPS施涂头(它具有5.8mm x 18mm的挤出模头)内。该设备设定在90℃的施加温度下。表11中是施加设备的进一步实验条件。表11-施加试验的实验条件
采用>15个静态混合元件,实现两部分的优良混合(通过切割经过本体混合材料约1/3,然后通过牵拉开绳股延长切割部分来肉眼判断)。在90℃下,通过混合两部分制备的组合物很好地挤出(除了在施加设备上实现的低挤出速度(约100g/min)以外)。该组合物在玻璃上具有良好的润湿性(透过玻璃,通过肉眼观察玻璃/密封剂界面来判断)和当在90℃下热施加时在玻璃上具有良好的粘性。当在较低温度(30-40℃)下施加到冷玻璃表面上时,组合物仍然显示出可接受的粘性。该组合物还具有良好的自粘合性(最新施加的热材料粘合到前面施加的冷材料上)。
在90℃和30 105Pa的压力下固化组合物的2mm厚的片材40分钟。之后,当绕芯轴弯曲90°时,所得固化产物显示出在1分钟内几乎100%的弹性恢复。当在室温下,在甲苯中且在每日反复剧烈摇动的情况下储存1周时,固化产物没有溶解。
实施例19-在连续配混器上制备的两部分配制剂
在COPERION 25mm共旋转的充分啮合式双螺杆挤出机,12个机筒长(48∶1的长度∶直径,L∶D之比)上配混表12所示的两部分组合物。表12-两部分组合物
  实施例   19A   19B
  成分   份   份
  (A1)硅烷化聚异丁烯   38.0
  (F4)聚异丁烯   38.0
  (J2)蜡   1.0   1.0
  (L1)增粘剂   9.0   2.0
  (E1)炭黑   30.0
  (D1)沉淀碳酸钙   22.0
  (I4)粘合促进剂   1.0
  (G2)乙烯基三甲氧基硅烷   0.2
  (G3)苯基三甲氧基硅烷   1.0
  (C1)分子筛   54.0
  (K1)Tinuvin 292   0.4
  (K2)Tinuvin 571   0.4
  (B2)锡催化剂,DBTDL   2.0
借助Bonnot泵和用于计量的齿轮泵,通过在挤出机的第一机筒内喂入成分(F4),制备A部分。在第三机筒内添加成分(J2)和(L1)。通过在塑料袋内摇动这些成分,制备22份成分(D1)和15份成分(E1)的预混物。在挤出机的第九机筒内添加该预混物。在第六机筒内添加其余15份成分(E1)。在第十一机筒内施加真空。在第十二机筒的末端挤出所得混合物。
借助Bonnot泵和用于计量的齿轮泵,通过在机筒1内喂入成分(A1),制备B部分。在机筒3内添加成分(J2)和(L1)。在玻璃器皿内通过人工摇动,预混成分(I4)、(G2)、(G3)、(K1)、(K2)和(B2),然后借助高压(HPLC)泵在机筒5内加入。在机筒7处施加真空,以汽提掉甲醇。在机筒9内添加成分(C1)。在机筒11内施加真空。在机筒12的末端挤出所得混合物。
对于A部分来说,挤出机在200-600rpm下运转,和对于B部分来说在100-400rpm下运转(机器能力为0-1200rpm)。当制备A部分时,沿着机器的长度,温度分布型为90-120℃(一半的长度为90℃和其余为120℃)。当制备B部分时,对于整个机器长度来说,温度曲线分布型地为90℃。
将A和B部分包装在500ml“腊肠状”容器内。通过两部分混合和计量机器,将A和B部分混合在一起。通过将这两部分喂入到加热的静态混合器(长度80cm,最小15个静态混合元件)的液压机,将腊肠状容器喂入到加压至约280 105Pa的两个圆筒内,并从那儿进入到齿轮泵,然后进入到Bystronic TPS施涂头(它具有5.8mm × 18mm的挤出模头)内。该设备设定在90℃的施加温度下。表13中是施加设备的进一步实验条件。表13-施加试验的实验条件
Figure G2007800253766D00461
Figure G2007800253766D00471
实施例20-在连续配混器上制备的两部分配制剂
在COPERION 25mm共旋转的充分啮合式双螺杆挤出机,12个机筒长(48∶1的长度∶直径,L∶D之比)上配混表14所示的两部分组合物。表14-两部分组合物
  实施例   20A   20B
  成分   份   份
  (A1)硅烷化聚异丁烯   47.8
  (F3)聚异丁烯   42.35
  (J2)蜡   1.0   1.0
  (F5)聚烯烃塑性体   5.0   7.5
  (F6)SEPS嵌段共聚物   12.5
  (E3)未处理的热解法二氧化硅   10.0   10.0
  (E1)炭黑   0.05
  (D1)沉淀碳酸钙   20
  (I4)氨乙基氨丙基三甲氧基硅烷粘合促进剂   0.8
  (G3)苯基三甲氧基硅烷   0.4
  (C3)分子筛(沸石)3A(干燥)   40
  (K1)Tinuvin 292   0.4
  (K2)Tinuvin 571   0.4
  (B2)锡催化剂,DBTDL   0.8
通过预混成分(J2)和(F5),并采用重力型单螺杆挤出机(K-Tron),将它们计量到第一机筒内,制备A部分。在头两个机筒内混合并捏和该材料,之后使用Bonnot泵结合齿轮泵,泵送并计量30-50%成分(F3)到第三机筒内。彻底混合这些成分,之后使用HPLC泵、静态混合器和高压注射阀,将成分(I4)和(B2)注入到第四机筒内。再次,彻底混合这些材料,之后添加成分(C3)和(E1),这两种成分被预混并使用双螺杆喂料器(Brabender)以及双螺杆侧供料器(Coperion)喂入。将该材料掺入到共混物内,并使用Bonnot泵结合齿轮泵,在机筒7内添加剩余50-70%成分(F3)的余量。再次使用双螺杆喂料器(K-Tron)结合双螺杆侧供料器(Coperion)添加成分(F6)到机筒9的侧面内之前,充分地分散填料。充分地分散第二填料并在机筒11上施加真空,以除去残留的副产物和空气。在第十二机筒的末端挤出所得混合物。
通过预混成分(J2)、(F5)和(F6),并采用重力型单螺杆喂料器(K-Tron),将它们计量到第一机筒内,制备B部分。在头两个机筒内混合并捏和该材料,之后使用Bonnot泵结合齿轮泵,泵送并计量30-50%成分(A1)到第三机筒内。彻底混合这些成分,之后使用HPLC泵、静态混合器和高压注射阀,将成分(G3)、(K1)和(K2)注入到第四机筒内。再次,彻底混合这些材料,之后添加成分(D1),其中使用双螺杆喂料器(Brabender)以及双螺杆侧供料器(Coperion)喂入所述成分(D1)到机筒6的侧面内。将该材料掺入到共混物内,并使用Bonnot泵结合齿轮泵,在机筒7内添加剩余50-70%成分(A1)的余量。再次使用双螺杆喂料器(K-Tron)结合双螺杆侧供料器(Coperion)添加成分(E3)到机筒9的侧面内之前,充分地分散填料。充分地分散第二填料并在机筒11上施加真空,以除去残留的副产物和空气。在第十二机筒的末端挤出所得混合物。
对于A部分来说,挤出机在200-600rpm下运转,和对于B部分来说在100-400rpm下运转(机器能力为0-1200rpm)。当制备A部分时,对于整个机器长度来说,温度分布型典型地为90℃。当制备B部分时,沿着机器长度,温度分布型为120-90℃(头三个机筒在120℃下和机器的其余部分在90℃下)。
使用长枪型填充系统,将A和B部分包装在200L转鼓内。通过两部分混合和计量机器,将A和B部分混合在一起。借助水解操作的热熔转鼓泵,使用加热的从动板,将来自转鼓的材料(A和B部分)喂入到压力圆筒(如实施例18和19中所述)内。然后通过将这两部分喂入到加热的静态混合器(长度80mm,最小15个静态混合元件)内的液压机,将这两个圆筒加压到约280 105Pa,并从那儿进入到齿轮泵内,然后进入到Bystronic TPS施涂头(它具有5.8mm×18mm的挤出模头)内。该设备设定在95℃的施加温度下。表15和16中是施加设备的进一步实验条件。表15-施加试验的实验条件
Figure G2007800253766D00501
表16-施加试验的实验条件
  齿轮泵速度rpm(l/min)   扭矩齿轮泵(Nm)   齿轮泵之前的压力(105Pa)   齿轮泵之后的压力(105Pa)   挤出速度(g/min)
  10   5.1   ~43   ~47   294
  20   6.9   37-39   78-65   574.8
  30   7.8   36-34   92-75   838.5
  40   8.7   34-32   107-82   1122
  50   9.2   29-28   119-90   1402.4
  60   9.2   29-27   128-92   1636
采用>15个静态混合元件,实现两部分的优良混合(通过切割经过本体混合材料约1/3,然后通过牵拉开绳股延长切割部分来肉眼判断)。在95℃下,通过混合两部分制备的组合物很好地挤出(在60rpm的齿轮泵旋转速度下,实现最大约1600g/min的挤出速度。该组合物在玻璃上具有良好的润湿性(透过玻璃,通过肉眼观察玻璃/密封剂界面来判断),和当在95℃下热施加时在玻璃上具有良好的粘性。当在较低温度(30-40℃)下施加到冷玻璃表面上时,组合物仍然显示出非常好的粘性。该组合物还具有良好的自粘合性(最新施加的热材料粘合到前面施加的冷材料上)。一直到12mm的挤出宽度,该珠粒根本没有显示出重陷。
在100℃和30 105Pa的压力下固化组合物的2mm厚的片材40分钟。之后,当通过绕芯轴弯曲90°时,所得固化产物显示出在1分钟内几乎100%的弹性恢复。当在室温下,在甲苯中且在每日反复剧烈摇动的情况下储存1周时,固化产物没有溶解。
制备第一绝缘玻璃(IG)单元,以便评价新施加的珠粒的负载携带能力。如下所述组装IG单元:首先将12mm宽和5.8mm厚的混合材料的珠粒沿着尺寸为50×50cm2、厚度为4mm的浮选玻璃板的周边施加。之后立即对着尺寸为100×100cm2、厚度为4mm的浮选玻璃板挤压所述玻璃板与施加的珠粒在一起,其方式使得较小的玻璃板正好在较大玻璃板中间的中心。然后固定较小的玻璃板在木制定位块上,其方式使得较大的玻璃板完全没有被承载,和混合材料的珠粒必须携带未承载的玻璃板的重量。1小时之后,观察到较大玻璃板的2.5mm的最大下沉。相比之下,在相同条件下测试的新施加的TPS/硅酮二元密封剂将导致所述未承载的玻璃板最大3-4mm的下沉。
制备第二绝缘玻璃(IG)单元,以便评价新施加的珠粒的起始粘合性(粘性)。如下所述组装IG单元:首先将12mm宽和5.8mm厚的混合材料的珠粒沿着尺寸为35×55cm2、厚度为4mm的浮选玻璃板四周施加。之后立即对着尺寸为35×55cm2、厚度为4mm的浮选玻璃板挤压所述玻璃板与施加的珠粒在一起。在允许该材料冷却1小时之后,根据欧洲标准EN 1279 Part 6(2002)的附录F4.2 Butterfly Test,通过在IG单元上进行蝶形试验,测试该材料的起始粘合性(粘性)。通过在没有观察到密封剂材料的粘合性的任何损失情况下旋转浮选玻璃的两块切片180°,进行蝶形试验。
通过保持在95℃下加热的转鼓16小时,测试材料组分(A和B部分)的稳定性。之后,在这一实施例中,如前面所述测试挤出速度。观察到挤出速度没有变化。

Claims (16)

1.一种组合物,它包含:
(A)10-65wt%湿气可固化的硅烷官能的弹性体有机聚合物;
(B)0.1-3wt%缩合催化剂;
(C)15-25wt%物理干燥剂;
(D)5-30wt%在施加温度范围内释放水的水释放剂;
(E)0-30wt%填料;
(F)0-30wt%非反应性弹性体有机聚合物;
(G)0-5wt%交联剂;
(H)0-5wt%除了成分(G)以外的化学干燥剂;
(I)0-5wt%除了成分(G)和(H)以外的粘合促进剂;
(J)0-20wt%在25℃下为固体的微晶蜡;
(K)0-3wt%抗老化添加剂;和
(L)0-20wt%增粘剂。
2.权利要求1的组合物,其中以包括(I)湿部分和(II)干部分的多部分组合物形式制备该组合物,和
(I)湿部分包括:
任选地(F)非反应性弹性体有机聚合物,
(D)在施加温度范围内释放水的水释放剂,
任选地(J)在25℃下为固体的微晶蜡,
任选地(L)增粘剂,和
任选地(E)增强和增量填料;
任选地(K)抗老化添加剂,和
(II)干部分包括
(A)湿气可固化的硅烷官能的弹性体有机聚合物,
任选地(F)非反应性弹性体聚合物,
(B)缩合催化剂,
(C)物理干燥剂,
任选地(J)在25℃下为固体的微晶蜡,
任选地(L)增粘剂,
任选地(G)交联剂,
任选地(H)除了成分(G)以外的化学干燥剂,
任选地(K)抗老化添加剂,和
任选地(I)除了成分(G)和(H)以外的粘合促进剂。
3.权利要求1的组合物,其中以包括(I)湿部分和(II)干部分的多部分组合物形式制备该组合物,和
(I)湿部分包括:
(A)湿气可固化的硅烷官能的弹性体有机聚合物,
任选地(F)非反应性弹性体有机聚合物,
(D)在施加温度范围内释放水的水释放剂,
任选地(J)在25℃下为固体的微晶蜡,
任选地(L)增粘剂,
任选地(E)增强和增量填料;
任选地(K)抗老化添加剂,和
(II)干部分包括
任选地(F)非反应性弹性体有机聚合物,
(B)缩合催化剂,
(C)物理干燥剂,
任选地(J)在25℃下为固体的微晶蜡,
任选地(L)增粘剂,
任选地(G)交联剂,
任选地(H)除了成分(G)以外的化学干燥剂,
任选地(K)抗老化添加剂,和
任选地(I)除了成分(G)和(H)以外的粘合促进剂。
4.制备权利要求2的组合物的方法,该方法包括:
1)在剪切下混合包括(A)、任选地(F)、(B)和(C)的成分,形成干部分,和
2)在剪切下混合包括(D)和(F)或(J)中至少一种的成分,形成湿部分。
5.绝缘玻璃单元201,它包括:
第一玻璃板101;
与第一玻璃板101相隔一定距离的第二玻璃板102;和
置于第一和第二玻璃板之间的权利要求1-3任一项的组合物的固化产物103,其中固化产物103在第一和第二玻璃板之间形成隔垫、密封件、湿气阻挡层、气体阻挡层和干燥剂基体。
6.制造权利要求5的绝缘玻璃单元的方法,该方法包括:
i)使第一玻璃板和第二玻璃板处于被玻璃板间的空间隔开的平行位置,
ii)沿着第一玻璃板和第二玻璃板的周边施加该组合物到玻璃板间的空间内,和
iii)固化该组合物。
7.制备权利要求5的绝缘玻璃单元的方法,该方法包括:
i)在第一玻璃板周边周围以长丝密封件形式施加组合物,
ii)将第二玻璃板移动到与第一玻璃板平行的位置,以便第一玻璃板和第二玻璃板被玻璃板间的空间隔开,
任选地iii)用气体填充玻璃板间的空间,
iv)对着在第一玻璃板上形成的长丝密封件挤压第二玻璃板,和
v)固化该组合物。
8.制备权利要求5的绝缘玻璃单元的方法,该方法包括:
i)以长丝密封件形式施加组合物到载体上,其中该组合物对所述载体的粘合性远远小于对玻璃的粘合性,
ii)从载体转移长丝密封件到第一玻璃板上,
iii)将处于平行位置的第一玻璃板和第二玻璃板挤压在一起,和
iv)固化该组合物。
9.固化权利要求1的组合物的方法,其中在施加组合物到基底上期间,在施加组合物到基底上之后,或其组合的情况下,通过在80-110℃的温度下加热组合物,进行组合物的固化。
10.权利要求1的组合物,其中成分(A)选自异单烯烃和乙烯基芳族单体的硅烷化共聚物,异单烯烃的硅烷化均聚物,乙烯基芳族单体的硅烷化均聚物,及其组合。
11.权利要求1的组合物,其中成分(A)选自异丁烯和烷基苯乙烯的硅烷化共聚物,异丁烯的硅烷化均聚物,异戊二烯和异丁烯的硅烷化共聚物,烷基苯乙烯的硅烷化均聚物,及其组合。
12.权利要求1的组合物,其中成分(B)是锡(IV)化合物。
13.权利要求1的组合物,其中成分(C)是分子筛。
14.权利要求1的组合物,其中成分(D)是沉淀碳酸钙。
15.权利要求1的组合物,其中还包含成分(E)、(F)、(G)、(H)、(I)、(J)、(K)或(L)中的至少一种,其中成分(E)选自增强填料、增量填料、触变填料、颜料、及其组合;成分(F)是聚异丁烯;成分(G)包括烷氧基硅烷,烷氧基硅烷的低聚反应产物,或其组合;成分(I)选自原硅酸四乙酯、γ-氨丙基三乙氧基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、(乙二胺丙基)三甲氧基硅烷和(γ-异氰基丙基)三乙氧基硅烷、及其组合;成分(J)在25℃下为固体的微晶蜡是非极性烃;成分(K)选自抗氧化剂、UV吸收剂、UV稳定剂、热稳定剂、及其组合;和成分(L)选自脂族烃树脂、氢化萜烯树脂、松香酯、氢化松香甘油酯、及其组合。
16.一种固化组合物的方法,它包括:
I)添加(D)5-30wt%在施加温度范围内释放水到组合物中的水释放剂,所述组合物包含:
(A)10-65wt%湿气可固化的硅烷官能的弹性体有机聚合物;
(B)0.1-3wt%缩合催化剂;
(C)15-25wt%物理干燥剂;
(E)0-30wt%填料;
(F)0-30wt%非反应性弹性体有机聚合物;
(G)0-5wt%交联剂;
(H)0-5wt%除了成分(G)以外的化学干燥剂;
(I)0-5wt%除了成分(G)和(H)以外的粘合促进剂;
(J)0-20wt%在25℃下为固体的微晶蜡;
(K)0-3wt%抗老化添加剂;和
(L)0-20wt%增粘剂;和
II)引起水从水合水释放剂中释放,从而固化步骤I)的产物。
CN2007800253766A 2006-07-03 2007-06-25 化学固化多效合一的温热的边缘隔垫和密封件 Expired - Fee Related CN101484502B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81804606P 2006-07-03 2006-07-03
US60/818,046 2006-07-03
PCT/US2007/014669 WO2008005214A2 (en) 2006-07-03 2007-06-25 Chemically curing all-in-one warm edge spacer and seal

Publications (2)

Publication Number Publication Date
CN101484502A CN101484502A (zh) 2009-07-15
CN101484502B true CN101484502B (zh) 2012-05-30

Family

ID=38895083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007800253766A Expired - Fee Related CN101484502B (zh) 2006-07-03 2007-06-25 化学固化多效合一的温热的边缘隔垫和密封件

Country Status (11)

Country Link
US (1) US8101251B2 (zh)
EP (1) EP2041204B9 (zh)
JP (1) JP5143835B2 (zh)
KR (1) KR101322672B1 (zh)
CN (1) CN101484502B (zh)
AT (1) ATE456603T1 (zh)
DE (1) DE602007004616D1 (zh)
ES (1) ES2339996T3 (zh)
PL (1) PL2041204T3 (zh)
RU (1) RU2448127C2 (zh)
WO (1) WO2008005214A2 (zh)

Families Citing this family (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115272B2 (en) 2007-09-20 2015-08-25 Adco Products Llc Edge sealants having balanced properties
WO2011047194A1 (en) * 2009-10-14 2011-04-21 Adco Products, Inc. Edge sealants having balanced properties
DE102007051610A1 (de) * 2007-10-24 2009-04-30 Lenhardt Maschinenbau Gmbh Vorrichtung zum Einspritzen eines Stranges aus einer pastösen Masse in den Zwischenraum zwischen zwei Glasplatten einer Isolierglasscheibe
CA2715337A1 (en) 2008-02-19 2009-08-27 Plus Inventia Ag Spacer having a desiccant for an insulating glass pane
WO2010094446A1 (de) 2009-02-18 2010-08-26 Plus Inventia Ag Abstandshalter für isolierglasscheiben
US8615883B2 (en) 2008-04-11 2013-12-31 Plus Inventia Ag Method for producing a corner of a frame-shaped spacer for insulating glass panes and spacer and insulating glass panes produced according the method
DE102009024939A1 (de) * 2009-06-09 2010-12-23 Bystronic Lenhardt Gmbh Verfahren und Vorrichtung zum Zubereiten einer pastösen Masse zum Versiegeln einer Isolierglasscheibe
KR20120095902A (ko) * 2009-10-14 2012-08-29 에이디씨오 프로덕츠 인코포레이티드 태양전지 모듈 적용에서 물 소거제로서 칼슘 옥사이드의 사용
JP2013518971A (ja) * 2010-02-02 2013-05-23 アドコ・プロダクツ・インコーポレーテッド 防湿ポッティングコンパウンド
CA2793476C (en) * 2010-03-27 2018-05-01 Robert S. Jones Vacuum insulating glass unit with viscous edge seal
US8629209B2 (en) * 2010-12-02 2014-01-14 3M Innovative Properties Company Moisture curable isobutylene adhesive copolymers
DK2465895T3 (da) 2010-12-15 2014-10-06 Merz & Benteli Ag Varmehærdeligt klæbemiddel, tætningsmiddel og overtræk
US20140018467A1 (en) 2011-03-31 2014-01-16 Dow Corning Corporation Compositions containing sulfonic acid catalysts and methods for the preparation and use of the compositions
CN103476870A (zh) 2011-03-31 2013-12-25 道康宁公司 包含磷酸酯催化剂的组合物以及该组合物的制备和使用方法
WO2012134784A1 (en) 2011-03-31 2012-10-04 Dow Corning Corporation Compositions containing phosphonate catalysts and methods for the preparation and use of the compositions
JP2014528158A (ja) * 2011-07-06 2014-10-23 ダウ グローバル テクノロジーズ エルエルシー 保護用フルオロポリマー組成物を含む光電子デバイス
WO2013009840A1 (en) 2011-07-12 2013-01-17 Dow Corning Corporation Lanthanide complexes with imidazole ligands for condensation reactions
JP2014530918A (ja) 2011-07-12 2014-11-20 ダウ コーニング コーポレーションDowcorning Corporation サマリウムを含有する錯体及び縮合反応触媒、この触媒を調製する方法、並びにこの触媒を含有する組成物
JP2014520949A (ja) 2011-07-19 2014-08-25 ダウ コーニング コーポレーション 銅含有錯体、その錯体を含有する縮合反応組成物、並びにその組成物の調製及び使用のための方法
US9012585B2 (en) 2011-07-20 2015-04-21 Dow Corning Corporation Zinc containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
EP2734589A1 (en) 2011-07-21 2014-05-28 Dow Corning Corporation Germanium containing complex and condensation reaction curable compositions and methods for the preparation and use of the compositions
EP2734590A1 (en) 2011-07-21 2014-05-28 Dow Corning Corporation Yttrium containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
WO2013016508A1 (en) 2011-07-28 2013-01-31 Dow Corning Corporation Nickel containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
JP6051216B2 (ja) 2011-08-05 2016-12-27 ダウ コーニング コーポレーションDow Corning Corporation 充填シリコーン組成物、その調製及び使用
WO2013025887A2 (en) 2011-08-17 2013-02-21 Dow Corning Corporation Bismuth containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
US20140213750A1 (en) 2011-09-07 2014-07-31 Dow Corning Corporation Hafnium Containing Complex and Condensation Reaction Catalysts, Methods for Preparing the Catalysts, and Compositions Containing the Catalysts
CN103781823B (zh) 2011-09-07 2016-08-17 道康宁公司 含钛络合物和缩合反应催化剂、制备该催化剂的方法以及包含该催化剂的组合物
US9228061B2 (en) 2011-09-07 2016-01-05 Dow Corning Corporation Zirconium containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
WO2013037105A1 (en) 2011-09-13 2013-03-21 Dow Corning (China) Holding Co., Ltd. Filled silicone composition, preparation and uses thereof
CN103842368B (zh) 2011-09-20 2017-02-22 道康宁公司 含铱硅氢加成催化剂及含有该催化剂的组合物
CN103814040B (zh) 2011-09-20 2016-08-31 道康宁公司 含镍硅氢加成催化剂及含有该催化剂的组合物
US9480977B2 (en) 2011-09-20 2016-11-01 Dow Corning Corporation Ruthenium containing hydrosilylation catalysts and compositions containing the catalysts
WO2013052588A1 (en) 2011-10-04 2013-04-11 Dow Corning Corporation Iron(ii) containing complex and condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
US9139699B2 (en) 2012-10-04 2015-09-22 Dow Corning Corporation Metal containing condensation reaction catalysts, methods for preparing the catalysts, and compositions containing the catalysts
US9073950B2 (en) 2011-12-01 2015-07-07 Dow Corning Corporation Hydrosilylation reaction catalysts and curable compositions and methods for their preparation and use
US20140342625A1 (en) 2011-12-06 2014-11-20 Dow Corning Corporation Curable Silicone Composition, Cured Material, Manufactured Articles, Methods And Uses
WO2013164413A1 (de) * 2012-05-03 2013-11-07 Henkel Ag & Co. Kgaa Zwei - komponenten schmelzklebstoff
US20130319598A1 (en) 2012-05-30 2013-12-05 Cardinal Ig Company Asymmetrical insulating glass unit and spacer system
US20140186250A1 (en) * 2012-07-19 2014-07-03 The United States Of America Carbonyl functionalized porous inorganic oxide adsorbents and methods of making and using the same
CN104471012B (zh) 2012-07-30 2017-03-29 道康宁公司 导热缩合反应可固化聚有机硅氧烷组合物及该组合物的制备和使用方法
WO2014051674A1 (en) 2012-09-26 2014-04-03 Dow Corning Corporation Rubber article with elastomeric silicone coating
US9441086B2 (en) 2012-12-20 2016-09-13 Dow Corning Corporation Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
WO2014150302A1 (en) 2013-03-14 2014-09-25 Dow Corning Corporation Conductive silicone materials and uses
WO2014159792A1 (en) 2013-03-14 2014-10-02 Dow Corning Corporation Curable silicone compositions, electrically conductive silicone adhesives, methods of making and using same, and electrical devices containing same
EP2978795B1 (en) 2013-03-28 2017-05-31 Dow Corning Corporation Organosiloxane compositions and coatings, manufactured articles, methods and uses
WO2015020689A1 (en) 2013-08-06 2015-02-12 Dow Corning Corporation Catalysts, compositions containing the catalysts, and methods for the preparation thereof
EP2878233B2 (de) 2013-11-28 2022-08-03 PAN-DUR Holding GmbH & Co. KG Scheibenverbund
CN105793510A (zh) * 2013-12-12 2016-07-20 法国圣戈班玻璃厂 具有改善的密封的绝缘窗玻璃
PL3212728T3 (pl) * 2014-10-29 2019-02-28 Tesa Se Masy klejące z wielofunkcyjnymi wodnymi wyłapywaczami siloksanów
JP6499490B2 (ja) * 2015-04-02 2019-04-10 アイカ工業株式会社 ホットメルトシール組成物
US20160326408A1 (en) * 2015-05-08 2016-11-10 Henkel lP & Holding GmbH Moisture curable hot melt adhesive with high adhesion strength and fast set time
WO2017019426A1 (en) 2015-07-27 2017-02-02 Dow Corning Corporation Polyorganosiloxane compositions with metal based n-heterocyclic carbene condensation reaction catalysts and methods for the preparation thereof
DE102015122882A1 (de) * 2015-12-29 2017-06-29 Bystronic Lenhardt Gmbh Verfahren zum Bilden eines geschlossenen rahmenförmigen Abstandhalters für eine Isolierglasscheibe
JP6731872B2 (ja) * 2016-03-29 2020-07-29 アイカ工業株式会社 ホットメルトシール組成物
CN110023448B (zh) * 2016-11-30 2021-03-16 日东电工株式会社 粘合剂组合物、粘合剂层及粘合片材
WO2018160373A1 (en) 2017-02-28 2018-09-07 Dow Silicones Corporation Dual cure polyorganosiloxane composition and methods for its preparation and use
EP3645608A1 (en) 2017-06-26 2020-05-06 Dow Silicones Corporation Method for hydrosilylation of aliphatically unsaturated alkoxys i lan es and hydrogen terminated organosiloxane oligomers to prepare alkoxysilyl terminated polymers useful for functionalizing polyorganosiloxanes using a cobalt catalyst
CN110770281B (zh) 2017-06-26 2022-02-22 美国陶氏有机硅公司 制备烷氧基甲硅烷基封端的聚合物的方法
US10800921B2 (en) 2017-06-26 2020-10-13 Dow Silicones Corporation Isocyanate-functional silicone-polyether copolymer, silicone-polyether-urethane copolymer formed therewith, sealants comprising same, and related methods
CN110770280B (zh) 2017-06-26 2022-02-22 美国陶氏有机硅公司 用于制备烷氧基官能有机氢硅氧烷低聚物的方法
EP3540006A1 (en) * 2018-03-16 2019-09-18 Bostik Sa Hot melt sealant composition
US11760841B2 (en) 2018-12-21 2023-09-19 Dow Silicones Corporation Silicone-polycarbonate copolymer, sealants comprising same, and related methods
EP3898780A2 (en) 2018-12-21 2021-10-27 Dow Silicones Corporation Silicone-organic copolymer, sealants comprising same, and related methods
WO2020131705A1 (en) 2018-12-21 2020-06-25 Dow Silicones Corporation Silicone-polyester copolymer, sealants comprising same, and related methods
CN113272364B (zh) 2018-12-21 2023-03-24 美国陶氏有机硅公司 硅酮-聚丙烯酸酯共聚物、包括硅酮-聚丙烯酸酯共聚物的密封剂和相关方法
JP2022542537A (ja) 2019-06-21 2022-10-05 ダウ シリコーンズ コーポレーション チキソトロピック性の硬化性シリコーン組成物の製造方法
DE102019123700A1 (de) 2019-09-04 2021-03-04 Bystronic Lenhardt Gmbh Verfahren und Vorrichtung zum Zusammenbauen von Isolierglasscheiben sowie dadurch hergestellte Isolierglasscheibe
DE102019123696A1 (de) * 2019-09-04 2021-03-04 Bystronic Lenhardt Gmbh Verfahren und Vorrichtung zum Zusammenbauen von Isolierglasscheiben sowie dadurch hergestellte Isolierglasscheibe
JP7121190B2 (ja) 2019-09-11 2022-08-17 ダウ シリコーンズ コーポレーション アルコキシ官能性オルガノハイドロジェンシロキサンオリゴマーの調製方法及び当該オリゴマーの使用
US11161939B2 (en) 2019-09-11 2021-11-02 Dow Silicones Corporation Method for the preparation use of an alkoxy-functional organohydrogensiloxane oligomer using purified starting materials an duse of the oligomer
EP3800226A1 (en) * 2019-10-04 2021-04-07 Sika Technology Ag Moisture curable hot-melt adhesive with improved curing properties
KR102300607B1 (ko) * 2020-03-23 2021-09-10 주식회사 엘티웰 몸체부 제조 장치 및 단열 간봉 제조 방법
WO2023215360A1 (en) 2022-05-04 2023-11-09 Dow Silicones Corporation Silicone-polyether copolymer, sealants comprising same, and related methods

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839872B1 (en) * 1996-11-01 2003-03-12 Kaneka Corporation Curable polymer having reactive silicon-containing functional groups
US20040132949A1 (en) * 2002-06-18 2004-07-08 Roesler Richard R. Polyether urethanes containing one reactive silane group and their use in moisture-curable polyether urethanes

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4215164A (en) 1970-06-25 1980-07-29 Ppg Industries, Inc. Multiple glazed unit
US3758996A (en) 1972-05-05 1973-09-18 Ppg Industries Inc Multiple glazed unit
FR2211413B1 (zh) 1972-12-21 1977-02-25 Saint Gobain
FR2294140A1 (fr) 1974-12-11 1976-07-09 Saint Gobain Procede et dispositif pour la mise en place d'un cordon intercalaire aux angles d'un vitrage multiple
US4186685A (en) 1974-12-11 1980-02-05 Saint-Gobain Industries Apparatus for applying a thick seal to a glass sheet
US4205104A (en) 1974-12-11 1980-05-27 Saint Gobain Industries Multiple pane window having a thick seal and a process and apparatus for applying the seal
FR2317465A1 (fr) 1975-07-10 1977-02-04 Saint Gobain Perfectionnement a la pose des joints intercalaires de vitrages multiples
GB1589878A (en) 1976-11-26 1981-05-20 Bfg Glassgroup Method of manufacturing a hollow panel
SU804669A1 (ru) 1978-07-31 1981-02-15 Научно-Исследовательский Институтстроительного Производства Госстрояукраинской Ccp Двухкомпонентный мастичный герметики СпОСОб ЕгО пОлучЕНи
CA1280568C (fr) 1984-07-10 1991-02-26 Karl Lenhardt Preparation d'une matiere plastique en vue de son extrusion notamment sous la forme d'un cordon calibre destine a servir de joint et d'intercalaire dans des vitrages multiples
EP0178751B1 (en) 1984-07-26 1988-12-07 Dow Corning Limited Silicone elastomers with good adhesion
FR2570366B1 (fr) 1984-09-17 1991-10-04 Saint Gobain Vitrage Procede et installation pour extruder une matiere plastique du type a base de caoutchouc butyl et application a la fabrication de vitrages multiples
JPS61141761A (ja) 1984-12-12 1986-06-28 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
US4622249A (en) 1985-04-15 1986-11-11 Ppg Industries, Inc. Multiple pane unit having a flexible spacing and sealing assembly
CA1274647A (en) 1986-06-25 1990-09-25 Takahisa Iwahara Curable isobutylene polymer
GB2202539B (en) 1987-01-28 1991-07-03 Du Pont Canada Polyolefin concentrate
JP2512468B2 (ja) 1987-04-13 1996-07-03 鐘淵化学工業株式会社 硬化性樹脂組成物
CA1312409C (en) 1987-10-16 1993-01-05 Masayoshi Imanaka Sealant for double-layered glass
US5162445A (en) 1988-05-27 1992-11-10 Exxon Chemical Patents Inc. Para-alkylstyrene/isoolefin copolymers and functionalized copolymers thereof
US4808664A (en) 1987-12-11 1989-02-28 Dow Corning Corporation Moisture curable polyisobutylenes
US5250607A (en) 1988-01-05 1993-10-05 Norton Company Moisture cured elastomeric interpenetrating network sealants
DE3809301A1 (de) 1988-03-19 1989-09-28 Ver Glaswerke Gmbh Isolierglasscheibe
SU1706986A1 (ru) * 1988-05-27 1992-01-23 А.А.Воробьев Состав дл получени внутренней полимерной прослойки в многослойных стеклах
US5459174A (en) 1988-05-27 1995-10-17 Merrill; Natalie A. Radiation curable isoolefin copolymers
DE3830866A1 (de) 1988-09-10 1990-03-15 Lenhardt Maschinenbau Verfahren zum zusammenbauen von zwei glastafeln zu einer isolierglasscheibe
US4962076A (en) 1988-11-28 1990-10-09 Dow Corning Corporation Silicone sealants having reduced color
DE3843400A1 (de) 1988-12-23 1990-06-28 Ppg Glastechnik Gmbh Isolierglasscheibe
JP2717719B2 (ja) 1989-02-28 1998-02-25 鐘淵化学工業株式会社 有機重合体、その製造方法及びそれを用いた硬化性組成物
FR2646425B1 (fr) 1989-04-26 1991-08-30 Neosystem Sa Peptides synthetiques du conjugue de l'ubiquitine et de l'histone h2a
CA2029907C (en) 1989-07-10 2000-02-22 Kazuhiko Murata Process for preparing thermoplastic elastomer compositions and thermoplastic elastomer compositions
US5075387A (en) 1989-12-22 1991-12-24 Exxon Chemical Patents Inc. Partially crosslinked elastomeric polymers and process for producing the same
US5053442A (en) 1990-01-16 1991-10-01 Dow Corning Corporation Low modulus silicone sealants
US5051455A (en) 1990-01-16 1991-09-24 Dow Corning Corporation Adhesion of silicone sealants
US5290873A (en) 1990-04-16 1994-03-01 Kanegafuchi Chemical Industry Co., Ltd. Isobutylene polymer having unsaturated group and preparation thereof
JPH06504628A (ja) 1990-12-20 1994-05-26 エクソン・ケミカル・パテンツ・インク リソグラフィー及び腐食防止コーティング用途向けのuv/eb硬化性ブチルコポリマー
US5270091A (en) 1991-06-04 1993-12-14 Tremco, Inc. Window mastic strip having improved, flow-resistant polymeric matrix
DE4227217A1 (de) 1991-08-24 1993-02-25 Basf Ag Langkettenverzweigte olefinpolymerisate
JP3154529B2 (ja) 1991-10-14 2001-04-09 鐘淵化学工業株式会社 官能基を有するイソブチレン系重合体及びその製造法
US5405889A (en) 1991-10-31 1995-04-11 Dow Corning Toray Silicone Co., Ltd. Room-temperature-curable organopolysiloxane composition
EP0577276B1 (en) 1992-06-30 1997-08-20 Dow Corning Corporation High strength elastomeric desiccant
US5632122A (en) 1993-03-15 1997-05-27 H.B. Fuller Licensing & Financing, Inc. Pumpable desiccated mastic
US5855972A (en) 1993-11-12 1999-01-05 Kaeding; Konrad H Sealant strip useful in the fabrication of insulated glass and compositions and methods relating thereto
DE4407892A1 (de) 1994-03-10 1995-09-14 Mecalit Gmbh Glas-Verbundscheibe und Verfahren zu ihrer Herstellung
DE4433749C2 (de) 1994-09-22 2002-11-21 Lenhardt Maschinenbau Verfahren und Vorrichtung zum Auftragen eines plastischen Abstandhalters auf eine Glastafel
FR2726316B1 (fr) 1994-10-27 1996-12-13 Saint Gobain Vitrage Vitrage multiple a joint en matieres plastiques
JPH08127724A (ja) 1994-11-01 1996-05-21 Asahi Glass Co Ltd 硬化性組成物およびその用途
JPH08198644A (ja) 1995-01-13 1996-08-06 Kanegafuchi Chem Ind Co Ltd 複層ガラス用組成物
US6136446A (en) 1995-05-19 2000-10-24 Prc-Desoto International, Inc. Desiccant matrix for an insulating glass unit
US5849832A (en) 1995-10-25 1998-12-15 Courtaulds Aerospace One-component chemically curing hot applied insulating glass sealant
WO1997019962A1 (fr) 1995-11-27 1997-06-05 Kaneka Corporation Processus de production de polymeres comportant des groupes fonctionnels
DE19617198A1 (de) 1996-04-29 1997-11-13 Lenhardt Maschinenbau Verfahren zum Herstellen von Isolierglasscheiben mit thermoplastischem Abstandhalter
US20040059069A1 (en) 1996-06-18 2004-03-25 Sefan Grimm Reactive hotmelt adhesive composition for insulating glass
DE19624236A1 (de) 1996-06-18 1998-01-08 Henkel Teroson Gmbh Reaktive Schmelzklebstoff-Zusammensetzung für Isolierglas
DE19632062C1 (de) 1996-08-09 1998-03-05 Lenhardt Maschinenbau Verfahren und Vorrichtung zum Auftragen eines plastischen Abstandhalters auf eine Glastafel
DE19634983C1 (de) 1996-08-29 1998-05-20 Lenhardt Maschinenbau Verfahren und Vorrichtung zum Auftragen eines plastischen Abstandhalters für Isolierglasscheiben auf eine Glastafel
EP0827994B1 (de) 1996-09-04 2002-12-18 Degussa AG Verwendung von silangepfropften amorphen Poly-alpha-Olefinen als feuchtigkeitsvernetzender Klebrohstoff oder Klebstoff
US6286288B1 (en) 1996-12-05 2001-09-11 Vertical Ventures V-5, Llc Integrated multipane window unit and sash assembly and method for manufacturing the same
EP0857847B1 (de) 1997-02-12 2002-04-24 Lenhardt Maschinenbau GmbH Verfahren zum Zusammenbauen von Isolierglasscheiben mit thermoplastischem Abstandhalter und mit eingesetztem Sprossenrahmen, Sprossenrahmen dafür und damit gebildete Isolierglasscheiben
JPH11116832A (ja) 1997-08-14 1999-04-27 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
DE69816395T2 (de) 1997-10-13 2004-05-13 Dow Corning Toray Silicone Company, Ltd. Silatranderivate und diese enthaltende härtbare Silikonzusammensetzungen
GB9724077D0 (en) 1997-11-15 1998-01-14 Dow Corning Sa Insulating glass units
JP3941988B2 (ja) 1997-12-04 2007-07-11 株式会社カネカ アルケニル基含有イソブチレン系ブロック共重合体及びその製造方法
JPH11209539A (ja) * 1998-01-29 1999-08-03 Kanegafuchi Chem Ind Co Ltd 複層ガラス用シーリング材
JPH11217243A (ja) 1998-01-30 1999-08-10 Kanegafuchi Chem Ind Co Ltd 複層ガラス用ゴム質スペーサおよび複層ガラス
DE19821356B4 (de) 1998-05-13 2005-09-15 Chemetall Gmbh Verfahren zur Herstellung von silanmodifiziertem Butylkautschuk und Verwendung des Verfahrensproduktes
JP2000129133A (ja) 1998-05-28 2000-05-09 Kanegafuchi Chem Ind Co Ltd 硬化性組成物
AT406788B (de) 1998-11-06 2000-09-25 Lisec Peter Verfahren zum auftragen von abstandhaltern für isolierglasscheiben aus thermoplastischem werkstoff
RU2162064C2 (ru) * 1998-12-23 2001-01-20 Открытое акционерное общество "Саратовский институт стекла" Способ производства многослойного стекла сложных конфигураций
AT406979B (de) 1999-01-08 2000-11-27 Lisec Peter Verfahren zum auftragen eines thermoplastischen abstandhalters auf eine glasscheibe im zuge der herstellung von isolierglasscheiben und zum durchführen des verfahrens verwendbare düse
DE10080292D2 (de) 1999-02-11 2002-01-31 Jowat Lobers U Frank Gmbh & Co Mehrkomponenten Beschichtungs- und Klebstoffmaterial
US6380316B1 (en) 1999-03-02 2002-04-30 Dow Corning Corporation Polyisobutylene copolymers having reactive silyl grafts
US6177519B1 (en) 1999-03-02 2001-01-23 Exxon Chemical Patents, Inc. Silane grafted copolymers of an isomonoolefin and a vinyl aromatic monomer
US6130306A (en) 1999-03-11 2000-10-10 Dow Corning S. A. Moisture curable oxyalkylene polymer containing composition
EP1057861B1 (en) 1999-05-31 2004-11-24 Kaneka Corporation Use of a crosslinked product as a heat-sensitive elastic adhesive
WO2000075226A1 (fr) 1999-06-04 2000-12-14 Kaneka Corporation Composition durcissable et son procede d'utilisation
ATE345317T1 (de) 1999-09-01 2006-12-15 Prc Desoto Int Inc Isolierscheibeneinheit mit strukturellem, primärem dichtungssystem
DE10015290A1 (de) 2000-03-28 2001-10-11 Henkel Teroson Gmbh Reaktives Schmelzstoff-Granulat für Isoliergals
JP4229575B2 (ja) * 2000-06-12 2009-02-25 横浜ゴム株式会社 シーリング材組成物およびそれを用いた複層ガラス
US6492281B1 (en) 2000-09-22 2002-12-10 Advanced Micro Devices, Inc. Method of fabricating conductor structures with metal comb bridging avoidance
US7267854B2 (en) 2001-01-11 2007-09-11 Seal-Ops, Llc Sealing strip composition
DE10142285A1 (de) 2001-08-29 2003-03-20 Basf Ag Polymerzusammensetzung, enthaltend wenigstens ein mittelmolekulares reaktives Polyisobuten
JP2003077385A (ja) * 2001-09-04 2003-03-14 Japan Science & Technology Corp 電界電子放出素子
US6686432B2 (en) 2002-02-15 2004-02-03 Ppg Industries Ohio, Inc. Alternating copolymers of isobutylene type monomers
US6784248B2 (en) 2002-02-15 2004-08-31 Ppg Industries Ohio, Inc. Thermosetting compositions containing alternating copolymers of isobutylene type monomers
US6777026B2 (en) 2002-10-07 2004-08-17 Lord Corporation Flexible emissive coatings for elastomer substrates
DE10253376A1 (de) 2002-11-16 2004-05-27 Spezial Polymer Mannheim Gmbh Polymere Zusammensetzung
US6894115B2 (en) 2002-12-17 2005-05-17 Equistar Chemicals, Lp Dual-functionalized adhesive compositions
CA2510860C (en) 2002-12-20 2012-10-09 Exxonmobil Chemical Patents Inc. Polymerization process utilizing hydrofluorocarbons as diluents
ATE469178T1 (de) 2002-12-20 2010-06-15 Exxonmobil Chem Patents Inc Polymere mit neuen sequenzverteilungen
US8080308B2 (en) 2003-03-11 2011-12-20 H.B. Fuller Company One-part moisture curable hot melt silane functional poly-alpha-olefin sealant composition
US7189781B2 (en) 2003-03-13 2007-03-13 H.B. Fuller Licensing & Finance Inc. Moisture curable, radiation curable sealant composition
EP1462500A1 (en) 2003-03-28 2004-09-29 Le Joint Francais Single component, chemically curing warm applied sealant for durable insulating glazing units
JP2004307723A (ja) 2003-04-09 2004-11-04 Shin Etsu Chem Co Ltd 室温速硬化性飽和炭化水素系重合体組成物及び複層ガラス
JP4226379B2 (ja) 2003-04-21 2009-02-18 三井化学株式会社 オレフィン系重合体組成物及びその架橋体
WO2004106690A1 (en) 2003-05-28 2004-12-09 H.B. Fuller Licensing & Financing, Inc. Insulating glass assembly including a polymeric spacing structure
JP2005105017A (ja) * 2003-09-29 2005-04-21 Aica Kogyo Co Ltd 湿気硬化型樹脂組成物とその硬化促進方法
JP3764744B2 (ja) 2004-02-06 2006-04-12 横浜ゴム株式会社 熱可塑性樹脂組成物およびそれを用いる複層ガラス
JP2005281404A (ja) * 2004-03-29 2005-10-13 Aica Kogyo Co Ltd 湿気硬化型樹脂組成物とその硬化促進方法
DE102004052417B4 (de) 2004-10-28 2010-09-02 Infineon Technologies Ag Schaltung und Verfahren zur Weiterleitung von Datenpaketen in einem Netzwerk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0839872B1 (en) * 1996-11-01 2003-03-12 Kaneka Corporation Curable polymer having reactive silicon-containing functional groups
US20040132949A1 (en) * 2002-06-18 2004-07-08 Roesler Richard R. Polyether urethanes containing one reactive silane group and their use in moisture-curable polyether urethanes

Also Published As

Publication number Publication date
EP2041204A2 (en) 2009-04-01
CN101484502A (zh) 2009-07-15
EP2041204B1 (en) 2010-01-27
PL2041204T3 (pl) 2010-07-30
JP2009542846A (ja) 2009-12-03
ATE456603T1 (de) 2010-02-15
WO2008005214A3 (en) 2008-03-27
RU2448127C2 (ru) 2012-04-20
US20090291238A1 (en) 2009-11-26
JP5143835B2 (ja) 2013-02-13
ES2339996T3 (es) 2010-05-27
KR101322672B1 (ko) 2013-10-30
KR20090038886A (ko) 2009-04-21
EP2041204B9 (en) 2010-07-21
RU2009103298A (ru) 2010-08-10
US8101251B2 (en) 2012-01-24
WO2008005214A2 (en) 2008-01-10
DE602007004616D1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
CN101484502B (zh) 化学固化多效合一的温热的边缘隔垫和密封件
JP5421240B2 (ja) ヒドロシリル化硬化性組成物
JP5509312B2 (ja) 化学硬化性一体型ウォームエッジスペーサ及びシール
US6291571B1 (en) Lap edge roofing sealant
CN1759159A (zh) 单部分可湿固化的带有硅烷官能团的聚-α-烯烃单成份热熔密封组合物
WO2009032869A1 (en) Hot melt desiccant matrix composition based on plasticized polyolefin binder
AU605035B2 (en) High strength fluorosilicone sealants
US6258878B1 (en) One-part moisture-curable hydrocarbon polymer composition
EP3765564B1 (en) High performance single-component hot melt sealant composition
US8637605B1 (en) UV resistant, clear, moisture curable silane functional polyolefin-based compositions, articles including the same, and methods of using the same
EP3448920B1 (en) Improved method for producing moisture-sensitive products
EP3448922B1 (en) Production of moisture-sensitive products with pressure changes
EP3448921B1 (en) Method of making moisture-sensitive products in a mixing vessel
CA3116911A1 (en) Moisture curable hot melt sealant composition including silane functional polyurethane
EP3336165A1 (en) Cleaning composition for reactive adhesives and use thereof for cleaning production of application devices
KR101793487B1 (ko) 점착성 및 작업성이 우수한 부틸 실란트 조성물
JPH108020A (ja) オキシモケイ素変性シリコーンシーラント組成物
JP2003073617A (ja) プライマー組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120530

Termination date: 20140625

EXPY Termination of patent right or utility model