CN101427372A - 用于多个相机装置的设备和操作该设备的方法 - Google Patents

用于多个相机装置的设备和操作该设备的方法 Download PDF

Info

Publication number
CN101427372A
CN101427372A CNA2005800323740A CN200580032374A CN101427372A CN 101427372 A CN101427372 A CN 101427372A CN A2005800323740 A CNA2005800323740 A CN A2005800323740A CN 200580032374 A CN200580032374 A CN 200580032374A CN 101427372 A CN101427372 A CN 101427372A
Authority
CN
China
Prior art keywords
digital camera
photodetector array
array
lens
wavelength light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800323740A
Other languages
English (en)
Other versions
CN101427372B (zh
Inventor
理查德·扬·奥尔森
达里尔·L·萨托
博登·默勒
奥利韦拉·维托米罗夫
杰弗里·A·布拉迪
费里·古纳万
雷姆济·奥滕
孙风清
詹姆斯·盖茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Newport Imaging Corp
Original Assignee
Newport Imaging Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Newport Imaging Corp filed Critical Newport Imaging Corp
Publication of CN101427372A publication Critical patent/CN101427372A/zh
Application granted granted Critical
Publication of CN101427372B publication Critical patent/CN101427372B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/69Control of means for changing angle of the field of view, e.g. optical zoom objectives or electronic zooming
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/12Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having three components only
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B13/00Viewfinders; Focusing aids for cameras; Means for focusing for cameras; Autofocus systems for cameras
    • G03B13/18Focusing aids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/207Image signal generators using stereoscopic image cameras using a single 2D image sensor
    • H04N13/214Image signal generators using stereoscopic image cameras using a single 2D image sensor using spectral multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/254Image signal generators using stereoscopic image cameras in combination with electromagnetic radiation sources for illuminating objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/13Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
    • H04N23/16Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/40Circuit details for pick-up tubes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/73Circuitry for compensating brightness variation in the scene by influencing the exposure time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/41Extracting pixel data from a plurality of image sensors simultaneously picking up an image, e.g. for increasing the field of view by combining the outputs of a plurality of sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment
    • H04N5/262Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
    • H04N5/265Mixing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N2209/00Details of colour television systems
    • H04N2209/04Picture signal generators
    • H04N2209/041Picture signal generators using solid-state devices
    • H04N2209/048Picture signal generators using solid-state devices having several pick-up sensors
    • H04N2209/049Picture signal generators using solid-state devices having several pick-up sensors having three pick-up sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Color Television Image Signal Generators (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Studio Devices (AREA)

Abstract

在此描述了很多发明。在一个方面,公开了一种包括多个光电检测器阵列的数码相机,所述光电检测器阵列包括用以对第一波长光的强度采样的第一光电检测器阵列以及用以对第二波长光的强度采样的第二光电检测器阵列。该数码相机还可以包括:设置在所述第一光电检测器阵列的光学路径中的第一透镜,其中所述第一透镜包括对所述第一波长光的预定光学响应;以及设置在所述第二光电检测器阵列的光学路径中的第二透镜,其中所述第二透镜包括对所述第二波长光的预定光学响应。此外,该数码相机可以包括与所述第一和第二光电检测器阵列耦合的信号处理电路,用以利用(i)表示由所述第一光电检测器阵列采样的光强度的数据,和(ii)表示由所述第二光电检测器阵列采样的光强度的数据来产生合成图像;其中所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。

Description

用于多个相机装置的设备和操作该设备的方法
相关申请
本申请要求以下申请的优先权:(1)2004年8月25日提交的标题为“Solid State Camera”的美国临时申请60/604,854;和(2)2005年6月1日提交的标题为“Method and Apparatus for use in Camera and SystemsEmploying Same”的美国临时申请60/695,946(统称“临时申请”)。上述临时申请的内容通过引用全部结合于此。
技术领域
本发明的领域是数字成像。
背景技术
从胶片到“电子媒体”的近来的技术变迁刺激了成像工业的快速发展,成像工业的应用包括照相机和摄像机、蜂窝电话、其它个人通信装置、监视设备、汽车应用、基于计算机的视频通信和会议、制造和检查装置、医疗装置、玩具以及各种各样的其它的和持续扩展的应用。数码相机(无论其作为独立产品还是嵌入在其它装置中)的较低成本和尺寸是此发展和市场扩展的首要驱动力。
尽管传统的部件制造商持续缩小部件以利用电子媒体的优点,但还是难以达到数码相机制造商对更小尺寸、更低成本和更高性能的越来越苛刻的要求。还存在几个重要问题,包括:1)数码相机(例如蜂窝电话中的数码相机)的尺寸越小,图像质量就越差;2)为了使介质较高质量地成像,仍然需要复杂的“透镜”、快门和闪光灯,由此大大否定了电子媒体所提供的尺寸优点;3)电子媒体所提供的成本优点在某种程度上被传统的复杂的和高成本的透镜系统以及其它外围部件否定。
大多数应用一直在寻求更高性能(图像质量)、特征、更小尺寸和/或更低成本的所有或一些组合。这些市场需求常常可能相冲突:更高的性能常常需要更大的尺寸,改善的特征可能需要更高的成本以及更大的尺寸,相反,降低的成本和/或尺寸可能以牺牲性能和/或特征为代价来获得。例如,消费者期待其蜂窝电话产生更高质量的图像,但又不希望接受与将独立数码相机质量集成到其口袋大小的电话中相关联的尺寸或成本。
这项挑战的一个驱动力是用于数码相机的透镜系统。随着光电检测器(像素)的数量增加(这增大了图像分辨率),透镜必须变得更大,以覆盖承载光电检测器的图像传感器的增大的尺寸。可以减小像素尺寸从而在像素数量增加时维持恒定的图像传感器和光学器件尺寸,但是像素性能降低(光信号减小且像素之间的串扰增大)。而且,期望的“变焦透镜”特征向透镜系统添加了额外的可移动光学部件、尺寸和成本。如由透镜系统执行、称为“光学变焦”的变焦改变了光学器件的焦距并且是被高度期望的特征。这些属性(例如,图像传感器和光学变焦中的增大数量的像素)尽管有利于图像质量和特征,但可能不利地影响相机尺寸和成本。在某些情况下,如蜂窝电话或者其中尺寸和/或成本很关键的其它装置,用此方法来获得良好图像质量(高分辨率和高灵敏度)不是最佳的。
数码相机供应商在变焦能力的领域具有优于传统胶片供应商的优点。通过电子处理,数码相机可以提供“电子变焦”,该“电子变焦”通过裁减图像的外部区域然后将中央区域电子地放大到该图像的原始尺寸来提供变焦能力。采用类似于传统放大的方式,在执行该过程时会损失一定程度的分辨率。此外,由于不同于胶片的普通过程,数码相机捕捉分立的输入来形成图片,所以损失的分辨率更显著。因此,尽管“电子变焦”是期望的特征,但其不是“光学变焦”的直接替代品。
传统数码相机典型地使用单一的孔径和透镜系统来将景物成像到一个或多个图像传感器上。颜色分离(如果需要)如红色、绿色和蓝色(RGB)典型地通过三种方法来实现:1)在单个集成电路图像传感器上的滤色器阵列,2)多个图像传感器与光学路径中的颜色分离装置(如棱镜)一起使用,或者3)成像器与每个像素内的颜色分离和多信号采集能力一起使用。这三种颜色分离方法具有如下所述的局限。
诸如经常使用的Bayer图案的滤色器阵列改变该阵列上相邻像素之间的入射颜色,且发生阻碍原始图像的精确颜色再现的颜色串扰。由于该阵列聚集了不同颜色能力的像素,所以需要插值技术来创建合适的彩色图像。滤色器阵列还可具有降低所接收的光学信号电平并产生像素对像素的图像不均匀的低的且可变的光透射。
多个成像器与诸如棱镜的颜色分离方法的一起使用提供了精确的颜色再现,但是光学组件大且昂贵。
像素内的颜色分离方法产生了颜色的串扰和不精确的颜色再现。由于在每个像素中需要多个颜色电荷采集和读取装置,因此像素尺寸减小是有限的。
透镜光学设计和制造、集成电路成像器像素尺寸减小以及数字后处理的技术进步为形状和功能上与历史悠久的数码相机设计极为不同的相机和成像系统开拓了新的可能性。以一个紧凑的组件来使用多个相机通道(多个光学器件、图像传感器和电子器件)允许制造提高了图像质量、减小了物理厚度且增大了成像功能的数码相机,这不能用传统的单个孔径/光学系统数码相机架构来实现。
发明内容
应当理解在此描述和图解了很多发明。实际上,本发明不限于任何单独的方面及其实施例,也不限于这些方法和/或实施例的任何组合/或置换。此外,本发明的每个方面及其实施例都可以单独使用或与本发明的一个或更多其它方面和/或其实施例组合使用。为简单起见,很多置换和组合在此没有单独讨论。
在本发明的一个方面,图像传感器包括独立的第一和第二光电检测器阵列以及将来自所述阵列的信号相组合以产生合成图像的信号处理电路。
优选实施例包括3个或更多光电检测器阵列,其中信号处理电路对来自每个阵列的信号进行处理,然后将来自所有阵列的信号相组合以产生合成图像。多个阵列的如此使用允许每个阵列在某方面被优化、如针对特定颜色的接收被优化。因此,例如,所述阵列可以被优化成检测不同颜色或其它波长的光。“颜色”可以是窄带或宽带,如红色、绿色或蓝色。这些带甚至可以重叠。
优化可以以包括例如具有不同的平均像素深度、列逻辑单元、模拟信号逻辑单元、黑色电平逻辑单元、曝光控制、图像处理技术以及透镜设计和着色的任何期望方式来完成。
具有两个或更多不同阵列的传感器可以有利地在每个不同阵列上具有不同的透镜。优选的透镜可以采用压模涂层(die coating)、光学介质中的扩散染料、基本上均匀的滤色器和/或任何其它滤色技术,通过上述滤色技术,光传到在下面的阵列。
处理电路可以包括任何合适的机制和/或逻辑单元。特别感兴趣的是从不同阵列中产生多个独立的图像然后将该多个独立的图像相组合以形成单个图像的电路。在该过程中,信号处理电路可以有利地执行图像增强功能,如处理饱和、锐度、强度、色调、伪影去除和有缺陷像素的校正。
就整合而言,理想的是,各个阵列物理地位于同一个芯片上。此外,还理想的是,将框架耦合到该芯片,并将至少一个透镜耦合到该框架。透镜可以在制造过程中可独立地定位,然后使用密封剂或其它接合技术与该框架密封在一起。这些元件的整合称为“数码相机子系统”(DCS)。
优选的图像传感器包含至少几十万个光电检测器,且包括透镜和框架在内的总厚度不超过10、15或20mm。可以采用波焊、板上压模或其它技术将这样的小DCS装置合并到半导体“封装”中或直接附装到电路板(“无封装”)。然后DCS和/或板可以合并到相机或具有用户接口元件、存储从阵列得到的图像的存储器、以及至少一个向系统供电的电源的其它装置中。本发明的DCS、相机或其它装置可用于任何合适的目的,尤其包括静止和视频成像、计算距离和建立3D效果。
在本发明的另一方面,紧凑的固态相机(紧凑的数码相机)包括彼此靠近地设置的第一和第二相机通道,其中每个相机通道包含其自己的光学器件、图像传感器和信号处理电路。这两个相机通道(相同或不同)可以将其输出信号相组合以形成合成图像,或者每个相机通道可以提供独立的图像。用于将来自相机通道的任何组合的图像相组合或者单独地或组合地显示/存储/传输通道的电子器件被包括在该紧凑的固态相机组件(CSSC)中。
其它实施例包括3个或更多相机通道(相同或不同),其中信号处理电路处理来自每个通道的信号,然后将来自一些或所有通道的信号相组合以产生合成图像,或者每个相机通道可以与合成图像相结合地独自提供独立的图像。多个相机通道的使用允许每个通道在某方面被优化(如果需要的话)、如特定入射光颜色的成像方面被优化。因此,例如,阵列可以优化为检测不同颜色或其它波长的光。每个相机通道的“颜色”可以是窄带宽带,如红色、绿色或蓝色。这些带甚至可以重叠。每个相机通道可以对一个或多个颜色成像。
每个相机通道的优化可以以包括光学器件、图像传感器和信号处理电子器件的任何期望方式来完成以获得期望的图像能力,例如光学器件可以针对特定的图像传感器尺寸、波长(颜色)、焦距和f数来优化。图像传感器可以通过像素数量、像素尺寸、像素设计(光电检测器和电路)、帧速率、整合时间和该像素电路之外的外围电路来优化。信号处理电路可以针对颜色校正、图像压缩、差像素替换和其它成像功能来优化。相机通道可以是相同的或唯一的;但所有相机通道靠近地设置。
如果需要,滤色器(或其它颜色分离技术)可以作为独立的滤色器层合并到光学材料或光学表面中、在图像传感器表面上、或通过设计构建到像素半导体中。每个相机通道可以具有自己的颜色成像特性。图像传感器可以具有单颜色能力或多颜色能力;该多颜色能力可以存在于单个像素内和/或相邻像素之间。
处理电路可以包括用以优化图像质量的任何合适的机制和/或逻辑单元。特别感兴趣的是从相机通道中产生独立的图像然后将该多个独立的图像相组合以形成合成的单个图像的电路。在此过程中,信号处理电路可以有利地执行图像增强功能,如动态范围管理(自动增益/电平)、图像锐化、强度校正、色调、伪影去除、有缺陷像素的校正和其它成像优化功能。处理电路可以在模拟或数字模式下工作。
就机械整合而言,理想的是,使相机通道的各个图像传感器物理地位于同一个集成电路(芯片)上以降低制造成本和减少电互连和尺寸。此外,理想的是,将机械框架组装到芯片上,并将一个或多个透镜耦合到该框架。透镜可以在制造过程中可独立地定位,然后用密封剂或其它接合技术与该框架密封在一起。这些元件的整合称为“数码相机子系统”(DCS)。其它层与DCS的竖直整合(如相机系统电子器件和甚至显示能力)可以形成紧凑的固态相机(CSSC)。
优选的相机通道包含至少几十万个光电检测器(像素)。与只采用一个光学组件的传统相机系统(图像分辨率相等)相比,相机通道(包括图像传感器和光学器件)的厚度可以较小。可以采用波焊、板上压模或其它技术将这样的小DCS装置合并到半导体“封装”中或直接附装到电路板(“无封装”)。然后DCS和/或板可以合并到相机或者具有用户接口元件、存储从阵列得到的图像的存储器、以及至少一个向系统供电的电源的其它装置中。本发明的DCS、相机和其它装置可用于任何合适的目的,包括静止和视频成像。
值得注意的是,在某些方面,数码相机子组件将两个或更多完整的相机通道包括在单层组件中,该单层组件将所有需要的部件(光学器件、机械结构和电子器件)包含在一个异类(heterogeneous)组件或封装中。
在另一个实施例中,数码相机子组件具有多层叠层的形式。
在另一个实施例中,相机通道中的两个或更多个包括特定通道的光学器件、光学对齐结构(机械框架)、封装、滤色器和其它光学元件、图像传感器、混合信号接口、图像和/或颜色处理逻辑单元、存储器、控制和时序逻辑单元、功率管理逻辑单元和并行和/或串行器件接口。
在另一个实施例中,每个相机通道还包括以下中的一个或多个:单通道或多通道图像压缩逻辑单元和/或图像输出格式化逻辑单元、有线或无线通信、以及光学显示能力。
在另一个实施例中,每个通道的输出可以提供包括彩色图像或部分彩色图像的整合图像或者分立处理的图像。
在另一个实施例中,相机通道彼此靠近地共同位于包括一个CSSC部件层的二维焦平面上,该靠近程度由透镜系统的数量、类型、位置和光学直径约束来限定。
在另一个实施例中,每个相机通道还包含提供光子感测能力的图像传感器,其构成了使用基于半导体的检测机制(无胶片)的总的紧凑固态相机的一部分。单个组件可以由在竖直维度(与焦平面正交)上依次组装的两个或更多部件层来形成。
在另一个实施例中,包括竖直整合的部件层、具有多相机通道能力的组件提供了利用使用单个相机通道的传统相机系统无法实现的相机系统能力和性能。
在另一个实施例中,一些或全部竖直整合的部件层用层叠式组装或晶片比例整合的方法来形成,以同时产生许多相机系统的部分。
在另一个实施例中,晶片或层可以包含光学、机械和电部件,电互连和其它装置(如显示器)。
在另一个实施例中,部件层之间的电互连可以用光刻法和金属化、隆起接合(bump bonding)或其它方法来形成。有机或无机接合方法可用于联结部件层。分层组装工艺从具有用于整个相机和/或每个相机通道的电子器件的“宿主”晶片开始。然后将另一个晶片或各个芯片与宿主晶片对齐并且与宿主晶片接合。被转移晶片或芯片可具有用以进行电互联的隆起,或者连接可以在接合和减薄之后进行。来自第二晶片或各个芯片的支撑衬底被去除,只留下包含被转移电子器件的附着到宿主晶片的几微米材料厚度。然后在使用标准集成电路工艺的被接合晶片或管芯与宿主晶片或管芯之间进行电连接(如果需要)。可以多次重复该工艺。按照这种方式转移的层可以包含电、机械或光学特征/部件。该工艺允许多个层形成具有紧凑固态相机中所要求的电、机械和光学能力的异类组件。
在另一个实施例中,相机通道包括任何尺寸、格式、像素数量、像素设计或像素间距的线性或面积阵列成像器。
在另一个实施例中,相机通道在从紫外(UV)到红外(IR)的任何波长范围内提供全色、单色、多色或单色(黑和白)能力。如果需要,滤色器可以在图像传感器上和/或在光学部件层内。相机通道还可以利用像素中的半导体吸收特性来提供颜色能力。例如,像素可以通过光学吸收深度特性来提供一个或多个颜色能力。像素颜色分离特性还可以与光学路径中的滤色器相组合。
在另一个实施例中,高空间图像分辨率可以通过利用多个相机通道来从稍微不同的视角观察相同的视场来实现。
在另一个实施例中,两个或更多相机通道观察相同的视场,尽管由于这样的相机通道之间的空间偏移而从不同的视角观察。在一些这样的实施例中,来自这样的两个或更多相机通道的图像可以被组合以产生提供高空间分辨率的图像。采用视差校正算法以减小和/或消除视差效果可能是有利的。可替换的,来自两个或更多相机通道的图像(具有相同的视场但不同的视角)可以被组合以提供三维特征成像。就此而言,例如通过“逆向地”应用视差校正算法来增大和/或增强视差效果可能是有利的。三维特征成像可以例如用于指纹和/或视网膜特征成像和/或分析。任何视差校正算法,不管是目前公知或以后开发的,都可以与这里的任何实施例相结合使用。前面的实施例中的任一个可以与视差增大和/或视差减小相结合使用。
在另一个实施例中,可以向一个或多个相机通道的光学堆添加光学特征,以提供附加的成像能力,如单个、两个或可调谐的滤色器、针对增大的聚焦深度和自动聚焦深度的波前修正、以及减少眩光的偏振滤光器。值得注意的是,任何光学特征,不管是目前公知或以后开发的,都可以合并到一个或多个相机通道中以提供附加的成像能力。
在另一个实施例中,光学器件部分可以包括一个或多个滤光器、例如滤色器,以将一个或多个波长或一个或多个波长带提供给一个或多个关联的传感器阵列。这样的滤光器可以例如是单个、两个或可调谐的滤光器。在一个实施例中,用户、操作者和/或制造商可以采用可调谐滤光器来控制或确定该一个或多个波长或一个或多个波长带。
在另一个实施例中,一个或多个滤光器与一个、一些或所有相机通道相结合使用。这样的滤光器可以彼此相同或不同。例如,滤光器可以提供或可以不提供相同的波长或波长带。此外,一些滤光器可以是固定的,而其它滤光器可以是可调谐的。
在另一个实施例中,光学器件部分包括例如波前修正元件,以增大聚焦深度和/或用于实施自动聚焦。此外,在另一个实施例中,光学器件部分可包括一个或多个减少眩光的偏振滤光器,以使光偏振并由此减少“眩光”。这样的滤光器可以单独使用或与在此公开的实施例中的任一个相组合使用。
本发明的实施例中的任一个可以包括一个或多个照明单元,以改善和/或增强通过一个或多个相机通道(特别而言是一个或多个传感器阵列)的图像获取,有助于对物体的范围检测、对物体的形状检测以及转换成像(即人眼不能观察到的成像)。
照明单元可以提供被动照明(例如没有照明)、主动照明(例如恒定照明)、恒定和/或门控的主动照明(例如预定、预设或处理器控制的脉冲式照明和/或用户/操作员可编程的脉冲式照明)。该一个或多个照明单元可以设置在传感器阵列的衬底和/或支撑框架上或者集成在传感器阵列的衬底和/或支撑框架中。实际上,该一个或多个照明单元可以设置在一个或多个相机通道的任何元件或部件上或者集成在一个或多个相机通道的任何元件或部件中。
在一些实施例中,照明单元专用于一个或多个相机通道。就此而言,照明单元与一个或多个专用通道的工作协同地被“使能”。在另一个实施例中,照明单元由所有相机通道共享。这样在该实施例中,照明单元与相机通道的工作协同地被使能。实际上,在某些实施例中,一个或多个照明单元专用于一个或多个相机通道而一个或多个照明单元可以由一个或多个相机通道(包括与一个或多个专用照明单元相关联的那些通道)共享。在该实施例中,专用照明单元与一个或多个专用通道的工作协同地被“使能”,而共享照明单元与所有相机通道的工作协同地被使能。
如上所述,一个或多个相机通道可以按照该一个或多个相机通道的预定的、自适应确定的、预期的和/或期望的光谱响应来优化、修改和/或配置。例如,传感器阵列(和/或其像素)以及图像处理电路的尺度、特性、工作、响应和/或参数可以按照该一个或多个相机通道的预定的、自适应确定的、预期的和/或期望的光谱响应来配置、设计和/或定制。以此方式,可以配置、设计和/或定制本发明的数码相机的一个或多个方面,以在要采用该相机的环境下提供期望的、合适的、预定的和/或特定的响应。
在一些实施例中,每个相机通道可以被唯一地配置、设计和/或定制。例如,一个或多个相机通道可以配置为包括不同于该一个或多个相机通道的视场。这样,一个或多个相机通道具有第一视场而一个或多个其它相机通道具有第二视场。以此方式,数码相机可以同时利用不同的视场来捕捉图像。
视场可以是固定的或可编程的(例如在原位置)。视场可以利用若干技术或配置来调节,该若干技术或配置包括调节或修改光学器件焦距和/或调节或修改阵列的有效尺寸。实际上,任何调节视场的技术或配置,无论是目前公知或以后开发的,都意图落入本发明的范围。
此外,本发明的数码相机可以包括一个或多个(或所有)相机通道的可编程的(在原位置或其它位置)或固定的整合时间。就此而言,一个或多个相机通道的整合时间可以配置、设计和/或定制为有助于捕捉例如大场景动态范围。这样在该实施例中,单颜色带相机通道可用于产生组合颜色图像能力(包括例如UV和IR,如果需要)、配置和/或设计每个相机通道的整合时间以在其波长获取带中提供所需的信号采集。
而且,可以实施两个或更多整合时间以同时获取该图像中从低到高的照明水平。多个相机通道的组合动态范围提供了比来自单个相机通道的动态范围更大的动态范围(对所有通道都具有一个整合时间)。这样,每个相机通道的图像传感器或阵列可以配置和/或设计为使用特定的(预定的、预设的或可编程的)整合时间范围和照明水平来工作。
值得注意的是,相机通道的尺度、特性、工作、响应和/或参数(例如视场、整合时间、传感器阵列(和/或其像素)、和/或图像处理电路)可以按照按照一个或多个相机通道的预定的、自适应确定的、预期的和/或期望的响应来配置、设计和/或定制(在原位置或其它位置)。例如,相机通道可以配置、设计和/或定制为包括不同的视场,每一个视场都具有相同或不同的帧速率和/或整合时间。这样,在一个实施例中,本发明的数码相机可以包括用于获取物体的第一大/宽视场相机通道以及用于识别物体的第二窄视场相机通道。而且,第一大/宽视场相机通道和第二窄视场相机通道的分辨率还可以不同,以例如提供增强的图像或获取。
此外,传感器阵列和/或像素尺寸(间距)可以按照一个或多个相机通道的预定的、预期的和/或期望的响应来配置、设计和/或定制。例如,可以配置像素尺寸,以优化、增强和/或获得特定的响应。在一个实施例中,可以选择相关联的传感器阵列的像素尺寸,以提供、增强和/或优化数码相机的特定响应。就此而言,如果传感器阵列包括多个相机通道(例如UV、B、R、G和IR),则在一个或多个传感器阵列中实施不同的像素尺寸(例如,从UV(最小)到IR(最大),像素间距逐渐增大)可以提供、增强和/或优化数码相机的特定响应。
像素尺寸可以基于若干考虑,包括提供预定的、自适应确定的、预期的或期望的分辨率和/或为特定的波长(或波长带)获得预定的、增强的和/或合适的获取特征,例如,减小像素的尺寸(减小间距的尺寸)可以增强短波长光的获取。这在匹配对应的光学模糊尺寸减小时可能是有利的。可以选择和/或确定像素设计和工艺序列(总晶片工艺的子集),以优化和/或增强特定相机通道颜色的光响应。而且,可以调节、选择和/或确定传感器阵列上的像素的数量以提供相同的视场,尽管多个阵列中的像素具有不同的尺寸。
此外,可以配置、设计和/或定制图像处理电路(例如图像处理和颜色处理逻辑单元),以提供一个或多个相机通道的预定的、自适应确定的、预期的和/或期望的响应。例如,图像处理和颜色处理逻辑单元可以配置为当光学器件、传感器和图像处理被独立地分别施加到每个通道时通过使光学器件、传感器和图像处理“匹配”,来优化、加速和/或减小复杂度。全彩色或部分彩色图像的任何最终排序又可以通过消除Bayer图案插值来简化并大大提高质量。
应当注意,任何数码相机通道(例如有RGB能力的或其它滤色器组合)可以与一个或多个全色、双色、单色或B/W相机通道相组合。相机通道的组合可用于提供增大的波长范围能力、不同的同时视场、不同的同时整合时间、主动和被动成像能力、利用多个相机通道和视差校正的更高的分辨率、使用多个相机通道和增大的视差的3D成像(特征提取)、增大的色带能力。
在一些实施例中,不同颜色相机通道共享部件,例如数据处理部件。就此而言,在一个实施例中,一个相机通道可以采用获取表示第一颜色图像(例如蓝色)以及第二颜色图像(绿色)的数据的传感器阵列。其它相机通道可以采用专用于特定/预定波长或波长带(例如红色或绿色)的传感器阵列,或者这样的相机通道可以采用获取表示两种或更多预定波长或波长带(例如(i)红色和绿色或(ii)青色和绿色)的数据的传感器阵列。这些相机通道相组合可以提供全色能力。
例如,在一个实施例中,第一传感器阵列可以获取表示第一和第二预定波长或波长带(例如与红色和蓝色相关联的波长)的数据,第二传感器阵列可以获取表示第三预定波长或波长带(例如与绿色相关联的波长)的数据。在该实施例中,这些相机通道相组合可以只用两个传感器阵列提供全色图像。
值得注意的是,在上述示范实施例中,采用第三传感器阵列来获取IR可能是有利的。以此方式,可以提供“真实”的YcrCb输出相机,同时最小化和/或消除执行数字图像域内的变换所必要的成本复杂度和/或能量考虑。
如果传感器阵列获取两个或更多预定波长或波长带,则该传感器阵列的像素可以设计为在与该两个或更多预定波长或波长带相关联的半导体阵列的像素内的两个或更多深度或区域处采集光子。就此而言,针对这样的传感器阵列的颜色“选择”可以基于用以通过光学吸收深度来分离颜色的像素设计和/或色带分离。
而且,一个或多个相机通道中的二色能力可以利用设置在(例如光学组件中的)传感器阵列之前的滤色器阵列来完成或提供。值得注意的是,如果需要,可以在光学组件层中提供额外的色带分离。
可能有利的是,与获取两个或更多预定的或自适应确定的波长或波长带的传感器阵列相结合、针对一个或多个(或所有)相机通道采用可编程的(在原位置或其它位置)或固定的整合技术。就此而言,可以配置、设计和/或定制一个或多个相机通道的整合时间,以有助于捕捉例如多个预定波长或波长带,从而增强、优化和/或提供增强的、经设计的、期望的自适应确定的和/或预定的获取技术。值得注意的是,在此关于相机通道的整合时间而讨论的任何实施例可以与获取两个或更多预定波长或波长带的传感器阵列合并。为简洁起见,在此不重复该讨论。
本发明可以使用3个传感器阵列来实施(每一个传感器阵列获取一个或多个预定波长或波长带,例如与红色、蓝色和绿色相关联的波长)。在该实施例中,这3个传感器阵列可以排列为三角形配置(例如对称的、非对称的、等腰的、钝角的、锐角的和/或直角三角形)以提供全色(RGB)能力。该三角形配置将提供视差的对称,由此简化用以处理视差的算法计算。三角形配置还将为更为紧凑的组件提供三图像传感器阵列系统/装置和相关联的组件层的增强的和/或优化的布局。
在三角形配置/布局实施例中,对一个或多个(或全部)相机通道采用可编程的(在原位置或其它位置)或固定的整合技术可能是有利的。就此而言,可以配置、设计和/或定制一个或多个相机通道的整合时间,以有助于捕捉例如多个预定波长或波长带,以增强、优化和/或提供增强的、期望的、经设计的自适应确定的和/或预定的获取技术。应注意的是,在此关于相机通道的整合时间而讨论的任何实施例可以与三角形配置/布局合并。为简洁起见,在此不重复该讨论。
如上所述,按照本发明的数码相机可以包括两个或更多相机通道。在一个实施例中,数码相机包括多个传感器阵列(例如多于5个传感器阵列),每个传感器阵列获取窄的预定数量的波长或波长带(例如与4到10个色带相关联的波长)。以此方式,数码相机可以提供多光谱(例如4-10个色带)或超光谱(例如10-100个色带)同时成像能力。
在另一个实施例中,数码相机可采用获取多个宽带黑白图像的黑白(B/W)传感器阵列。B/W相机通道的组合可用于提供增大的波长范围能力、不同的同时视场、不同的同时整合时间、主动和被动成像能力、使用多个相机通道和视差校正的更高的分辨率、使用多个相机通道和增大的视差的3D成像(特征提取)。实际上,多个B/W相机通道可以与其它相机通道相组合以实现全彩色或部分彩色能力。值得注意的是,灰度传感器阵列可以与这里描述的B/W传感器阵列相结合使用或者代替这里描述的B/W传感器阵列来使用。
在另一个实施例中,数码相机子系统包括显示器。该显示器可以设置在显示器层中和/或集成在传感器阵列衬底上或传感器阵列衬底中。
在又一个实施例中,数码相机子系统提供用于与数码相机子系统通信的一个或多个接口。
在另一个实施例中,数码相机子系统包括进行有线、无线和/或光通信的能力。在一些实施例中,数码相机子系统包括用于这样的通信的一个或多个电路或其部分。所述电路可以设置在专用于这样的通信的层中和/或可以合并到其它层之一中(例如集成在传感器阵列衬底中或传感器阵列衬底上)。
在本发明的一个方面,“场景”成像到多个传感器阵列上。传感器阵列可以靠近并且可以在单个集成电路上被处理或者被独立地制造并被靠近地组装在一起。每个传感器阵列位于光学组件中或光学组件下。该光学组件可以由传感器子系统晶片加工得到、通过单独的晶片转移施加到图像晶片上、通过拾取和放置方法单独地转移、或者以管芯级(die level)附着。
如果采用滤色器,则滤色器可以构建到光学材料中、作为层或涂层沉积在相关联的传感器阵列上、作为透镜涂层或作为独立的滤色器施加在光学组件中。如果需要的话,还可以借助于滤色器或通过像素内颜色分离机制在每个成像区域上提供颜色分离机制。可以向每个传感器阵列的光学系统添加其它光学特征,以提供附加的成像能力。
在一些实施例中,优化每个传感器阵列的设计和电工作,以便感测入射到该传感器阵列的光的波长。多个光学组件与单独优化的传感器阵列的一起使用产生了能够有高分辨率、高灵敏度和优异颜色再现的紧凑相机。
在一个方面,本发明是包括多个光电检测器阵列的数码相机,光电检测器阵列包括:第一光电检测器阵列,用以对例如第一波长(其可以与第一颜色相关联)的光的光强度采样;以及第二光电检测器阵列,用以对例如第二波长(其可以与第二颜色相关联)的光的光强度采样。该数码相机可以包括与第一和第二光电检测器阵列耦合的信号处理电路,以利用(i)表示由第一光电检测器阵列采样的光强度的数据,和(ii)表示由第二光电检测器阵列采样的光强度的数据来产生合成图像。在本发明的该方面,第一光电检测器阵列、第二光电检测器阵列和信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
该数码相机还可以包括用以对第三波长(可以与第三颜色相关联)的光的光强度采样的第三光电检测器阵列。在该实施例中,信号处理电路与第三光电检测器阵列耦合,并利用(i)表示由第一光电检测器阵列采样的光强度的数据,(ii)表示由第二光电检测器阵列采样的光强度的数据,和(ii)表示由第三光电检测器阵列采样的光强度的数据来产生合成图像。第一、第二和第三光电检测器阵列可以相对排列成三角形配置(例如等腰、钝角、锐角或直角三角形配置)。
在某些实施例中,第一光电检测器阵列可以对第一波长光的强度采样长达第一整合时间;第二光电检测器阵列可以对第二波长光的强度采样长达第二整合时间。如果数码相机包括第三光电检测器阵列,则第三光电检测器阵列对第三波长光的强度采样长达第一整合时间、第二整合时间或第三整合时间。
该数码相机可以包括第一阵列,其中第一阵列的每个光电检测器包括半导体部分,在该半导体部分对光强度进行采样。此外,第二阵列的每个光电检测器包括半导体部分,在该半导体部分对光强度进行采样。在某些实施例中,第一阵列的每个光电检测器的半导体部分与第二阵列的每个光电检测器的半导体部分位于相对于每个光电检测器的表面的不同深度处。
该数码相机还可以包括设置在第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜、以及设置在第二光电检测器阵列的光学路径中并与该光学路径相关联的第二透镜。基本上均匀的滤色器片可以设置在第一检测器阵列的光学路径中。此外,第一着色透镜设置在第一检测器阵列的光学路径中并与该光学路径相关联。
值得注意的是,该数码相机还可以包括设置在第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜(使第一波长光通过并滤除第二波长光),其中第一光电检测器阵列对第一波长光的强度采样,且第二光电检测器阵列对第二波长光的强度采样。
该数码相机可以包括对第一波长光的强度和第二波长光的强度采样的第一光电检测器阵列、以及对第三波长光的强度采样的第二光电检测器阵列,其中第一波长与第一颜色相关联,第二波长与第二颜色相关联,第三波长与第三颜色相关联。第一阵列的每个光电检测器可以包括第一半导体部分,在第一半导体部分对第一波长光的强度进行采样,以及第二半导体部分,在第二半导体部分对第二波长光的强度进行采样;且第二阵列的每个光电检测器可以包括半导体部分,在该半导体部分对第三波长光的强度进行采样;且其中第一阵列的每个光电检测器的第一和第二半导体部分与第二阵列的每个光电检测器的半导体部分位于相对于彼此和相对于每个光电检测器的表面的不同深度处。
在该实施例中,该数码相机还可以包括设置在第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜、以及设置在第二光电检测器阵列的光学路径中并与该光学路径相关联的第二透镜,其中第一透镜使第一和第二波长光通过并滤除第三波长光。实际上,该数码相机可以包括设置在第一光电检测器阵列的光学路径中并与该光学路径相关联的滤光器,其中该滤光器使第一和第二波长光通过并滤除第三波长光。而且,第一光电检测器阵列可以对第一波长光的强度采样长达第一整合时间并对第二波长光的强度采样长达第二整合时间;且第二光电检测器阵列对第三波长光的强度采样长达第三整合时间。
该数码相机的信号处理电路可以利用表示由第一光电检测器阵列采样的光强度的数据来产生第一图像,和利用表示由第二光电检测器阵列采样的光强度的数据来产生第二图像。此后,信号处理电路可以利用第一图像和第二图像产生合成图像。
该数码相机还可以包括存储器,用以存储(i)表示由第一光电检测器阵列采样的光强度的数据,和(ii)表示由第二光电检测器阵列采样的光强度的数据。该存储器、第一光电检测器阵列、第二光电检测器阵列和信号处理电路可以集成在同一半导体衬底上或同一半导体衬底中。
此外,可以包括时序和控制逻辑单元,以向信号处理电路、第一光电检测器阵列和/或第二光电检测器阵列提供时序和控制信息。此外,包括通信电路(有线、无线和/或光通信电路),用以输出表示合成图像的数据。该通信电路、存储器、第一光电检测器阵列、第二光电检测器阵列和信号处理电路可以集成在同一半导体衬底上或同一半导体衬底中。
在上述实施例中的任一个中,第一光电检测器阵列可以包括第一表面区域,且第二光电检测器阵列包括第二表面区域,其中第一表面区域不同于第二表面区域。而且,第一阵列的光电检测器可以包括第一有效表面区域,且第二阵列的光电检测器可以包括第二有效表面区域,其中第一有效表面区域不同于第二有效表面区域。
此外,上述实施例中的任一个中,第一光电检测器阵列可以包括第一表面区域,且第二光电检测器阵列包括第二表面区域,其中第一表面区域与第二表面区域基本上相同。第一阵列的光电检测器可以包括第一有效表面区域,且第二阵列的光电检测器可以包括第二有效表面区域,其中第一有效表面区域不同于第二有效表面区域。
一种包括多个光电检测器阵列的数码相机,所述光电检测器阵列包括:第一光电检测器阵列,用以对第一波长(其可以与第一颜色相关联)的光的光强度采样;以及第二光电检测器阵列,用以对第二波长(其可以与第二颜色相关联)的光的光强度采样。该数码相机还可以包括:设置在第一光电检测器阵列的光学路径中的第一透镜(其可以将第一波长光传递到第一阵列的光电检测器的图像平面上,并可以滤除/减弱第二波长光),其中第一透镜包括对第一波长光的预定光学响应;以及设置在第二光电检测器阵列的光学路径中的第二透镜(其可以将第二波长光传递到第二阵列的光电检测器的图像平面上,并可以滤除/减弱第一波长光),其中第二透镜包括对第二波长光的预定光学响应。此外,该数码相机可以包括与第一和第二光电检测器阵列耦合的信号处理电路,以利用(i)表示由第一光电检测器阵列采样的光强度的数据,和(ii)表示由第二光电检测器阵列采样的光强度的数据来产生合成图像;其中第一光电检测器阵列、第二光电检测器阵列和信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
该数码相机还可以包括用以对第三波长(其可以与第三颜色相关联)的光的光强度采样的第三光电检测器阵列、以及设置在第三光电检测器阵列的光学路径中的第三透镜,其中第三透镜包括对第三波长光的预定光学响应。这样,信号处理电路与第三光电检测器阵列耦合,并利用(i)表示由第一光电检测器阵列采样的光强度的数据,(ii)表示由第二光电检测器阵列采样的光强度的数据,和(ii)表示由第三光电检测器阵列采样的光强度的数据来产生合成图像。第一、第二和第三光电检测器阵列可以相对排列成三角形配置(例如等腰、钝角、锐角或直角三角形配置)。
在一个实施例中,第一透镜滤除第二和第三波长光,第二透镜滤除第一和第三波长光,第三透镜滤除第一和第二波长光。
在一个实施例中,第一光电检测器阵列对第一波长光的强度采样长达第一整合时间;第二光电检测器阵列对第二波长光的强度采样长达第二整合时间。如果该数码相机包括第三光电检测器阵列,则第三光电检测器阵列对第三波长光的强度采样长达第三整合时间。
该数码相机还可以包括外壳,其中第一和第二透镜、第一和第二光电检测器阵列以及信号处理电路附装到该外壳,且其中第一和第二透镜相对于相关联的光电检测器阵列可独立地定位。
在一些实施例中,第一光电检测器阵列对第一波长(其与第一颜色相关联)的光的光强度以及第三波长(其与第三颜色相关联)的光的强度采样,且第二光电检测器阵列对第二波长(其与第二颜色相关联)的光的强度采样。这里,第一阵列的每个光电检测器可以包括:第一半导体部分,在该第一半导体部分对第一波长光的强度进行采样;以及第二半导体部分,在该第二半导体部分对第三波长光的强度进行采样。此外,第二阵列的每个光电检测器可以包括半导体部分,在该半导体部分对第二波长光的强度进行采样。在该实施例中,第一阵列的每个光电检测器的第一和第二半导体部分与第二阵列的每个光电检测器的半导体部分位于相对于彼此和相对于每个光电检测器的表面的不同深度处。
此外,在这些实施例中的一个或多个中,第一透镜可以使第一和第三波长光通过并滤除第二波长光。除此之外或代替之,包括设置在第一光电检测器阵列的光学路径中并与该光学路径相关联的滤光器,其中该滤光器使第一和第三波长光通过并滤除第二波长光。
而且,第一光电检测器阵列可以对第一波长光的强度采样长达第一整合时间,并对第三波长光的强度采样长达第三整合时间。第二光电检测器阵列对第三波长光的强度采样长达第二整合时间。
该数码相机的信号处理电路可以利用表示由第一光电检测器阵列采样的光强度的数据来产生第一图像,和利用表示由第二光电检测器阵列采样的光强度的数据来产生第二图像。此后,信号处理电路可以利用第一图像和第二图像产生合成图像。
该数码相机还可以包括存储器,用以存储(i)表示由第一光电检测器阵列采样的光强度的数据,和(ii)表示由第二光电检测器阵列采样的光强度的数据。该存储器、第一光电检测器阵列、第二光电检测器阵列和信号处理电路可以集成在同一半导体衬底上或同一半导体衬底中。
此外,可以包括时序和控制逻辑单元,以向信号处理电路、第一光电检测器阵列和/或第二光电检测器阵列提供时序和控制信息。此外,包括通信电路(有线、无线和/或光通信电路),以输出表示合成图像的数据。该通信电路、存储器、第一光电检测器阵列、第二光电检测器阵列和信号处理电路可以集成在同一半导体衬底上或同一半导体衬底中。
信号处理电路可以包括第一信号处理电路和第二信号处理电路,其中第一信号处理电路与第一光电检测器阵列耦合并且相关联,第二信号处理电路与第二光电检测器阵列耦合并且相关联。此外,该信号处理电路包括第一模拟信号逻辑单元和第二模拟信号逻辑单元,其中第一模拟信号逻辑单元与第一光电检测器阵列耦合并且相关联,且第二模拟信号逻辑单元与第二光电检测器阵列耦合并且相关联。而且,该信号处理电路可以包括第一黑色电平逻辑单元和第二黑色电平逻辑单元,其中第一黑色电平逻辑单元与第一光电检测器阵列耦合并且相关联,且第二黑色电平逻辑单元与第二光电检测器阵列耦合并且相关联。值得注意的是,该信号处理电路可以包括第一曝光控制电路和第二曝光控制电路,其中第一曝光控制电路与第一光电检测器阵列耦合并且相关联,且第二曝光控制电路与第二光电检测器阵列耦合并且相关联。
该数码相机可以包括框架,其中第一和第二光电检测器阵列、信号处理电路以及第一和第二透镜固定到该框架上。
在上述实施例中的任一个中,第一光电检测器阵列可以包括第一表面区域,且第二光电检测器阵列包括第二表面区域,其中第一表面区域不同于第二表面区域。而且,第一阵列的光电检测器可以包括第一有效表面区域,且第二阵列的光电检测器可以包括第二有效表面区域,其中第一有效表面区域不同于第二有效表面区域。
此外,在上述实施例中的任一个中,第一光电检测器阵列可以包括第一表面区域,且第二光电检测器阵列包括第二表面区域,其中第一表面区域与第二表面区域基本上相同。第一阵列的光电检测器可以包括第一有效表面区域,且第二阵列的光电检测器可以包括第二有效表面区域,其中第一有效表面区域不同于第二有效表面区域。
再次地,在此描述和图解了很多发明。上述发明内容没有穷尽本发明的范围。此外,该发明内容不是要限制本发明,而且不应当照此解释。因此,虽然在该发明内容中描述和/或概括了一些实施例,应当理解本发明布线这些实施例、描述和/或概括。实际上,很多其他与该发明内容中的实施例不同和/或类似的实施例,将从下面的描述、图解和/或权利要求中变得明显。
此外,尽管在发明内容中描述各种特征、属性和优点和/或因为该描述而明显,应当理解不管是在本发明的一个、多个还是所有实施例中都不要求这些特征、属性和优点,而且实际上,除非特别申明,不需要存在于本发明的任何方面和/或实施例中。
从以下描述和相似的附图标记表示相似部件的附图来看,本发明的一个或多个方面和/或实施例的各种目的、特点和/或优点将是显而易见的。但是应当理解,任何这些目的、特点和/或优点不是必需的,而且实际上除非特别申明,不需要存在于本发明的任何方面和/或实施例中。
应当理解,没有出现在后面的权利要求中的本发明的各方面和实施例被保留,以便在一个或多个分案/后续专利申请中陈述。
附图说明
下面的详细描述将参照附图进行。这些附图示出本发明的不同方面和实施例,其中不同图中的合适的、说明相似结构、部件、材料和/或元件的附图标记都相似地标注。应当理解除这里特别示出之外的这些结构、部件、材料和/或元件的各种组合也预料到了并落入本发明的范围。
图1A示出现有技术数码相机及其主要部件;
图1B-1D是图1A的现有技术数码相机的现有技术图像捕捉元件的示意图;
图1E示出图1A的现有技术相机的透镜组件在缩进模式下的工作;
图1F示出图1A的现有技术相机的透镜组件在光学变焦模式下的工作;
图2示出按照本发明方面的一个实施例的数码相机及其主要部件,包括数码相机子系统(DCS);
图3A-3B是数码相机子系统(DCS)的示意图;
图4示出具有三阵列/透镜配置的数码相机子系统;
图5A-5C是使用图2-3的数码相机子系统(DCS)的图像捕捉的示意图;
图6A是具有4个阵列的可替换数码相机子系统(DCS);
图6B是图6A的可替换数码相机子系统(DCS)的流程图;
图7A-7C是在图3的DCS中使用的四透镜系统的示意图;
图8是按照本发明方面的另一实施例的数码相机设备的示意图;
图9A是按照本发明的一个实施例的可以在数码相机设备中使用的光学器件部分的分解图;
图9B-9D是按照本发明的其它实施例的可以在数码相机设备中使用的光学器件部分的分解图;
图10A-10H是按照本发明的其它实施例的可以在数码相机设备中使用的光学器件部分的示意图;
图11A-11B分别是按照本发明另一实施例的在例如用于红色相机通道的适于使红光或红光带透射的光学器件部分中使用的透镜的示意图和侧视图;
图12A-12B分别是按照本发明另一实施例的在例如用于绿色相机通道的适于使绿光或绿光带透射的光学器件部分中使用的透镜的示意图和侧视图;
图13A-13B分别是按照本发明另一实施例的在例如用于蓝色相机通道的适于使蓝光或蓝光带透射的光学器件部分中使用的透镜的示意图和侧视图;
图14是按照本发明另一实施例的在例如用于红色相机通道的适于使红光或红光带透射的光学器件部分中使用的透镜的示意图;
图15A-15F是按照本发明的其它实施例的可以在数码相机设备中使用的透镜的示意图;
图16A是按照本发明的其它实施例的可以在数码相机设备中使用的传感器阵列和与其连接的电路的示意图;
图16B是图16A的传感器阵列的像素的示意图;
图16C是按照本发明的一个实施例的可以在图16B的像素中使用的电路的示意图;
图16D-16E示出按照本发明的其它实施例的可用于传感器阵列的参数;
图17A是按照本发明另一实施例的传感器阵列的一部分的示意图;
图17B-17K是按照本发明的其它实施例的一个或多个像素的各个实施例的横截面图;这样的像素实施例可以在这里描述和/或图示的任何实施例中实施;
图17F是按照本发明的其它实施例的传感器阵列的示意图;
图18A-18B示出按照本发明的一个实施例的由传感器阵列的一部分捕捉的图像;
图19A-19B示出按照本发明的另一实施例的由传感器阵列的一部分捕捉的图像;
图20A-20B是按照本发明的其它实施例的为光学器件部分和相应传感器阵列提供的相对定位的示意图;
图21是按照本发明的一个实施例的可以为4个光学器件部分和4个传感器阵列提供的相对定位的示意图;
图22A-22B分别是按照本发明的一个实施例的图像装置的平面图和横截面图;
图23A-23B分别是按照本发明的另一实施例的图像装置的平面图和横截面图;
图24A-24B分别是按照本发明的另一实施例的图像装置的平面图和横截面图;
图25A-25B分别是按照本发明的另一实施例的图像装置的平面图和横截面图;
图26A-26B分别是按照本发明的另一实施例的图像装置的平面图和横截面图;
图27A-27B分别是按照本发明的另一实施例的图像装置的平面图和横截面图;
图28A是按照本发明的一个实施例的支撑件和可以安装在其中的光学器件部分的透视图;
图28B是图28A的支撑件的放大的平面图;
图28C是沿着图28B的A-A方向看去的图28A的支撑件的放大的横截面图;
图28D是沿着图28B的A-A方向看去的图28A的支撑件的一部分的放大的分解横截面图;以及可以安装在其中的透镜;
图29A是按照本发明的另一个实施例的支撑件和可以安装在其中的光学器件部分的横截面图;
图29B是按照本发明的另一个实施例的支撑件和可以安装在其中的光学器件部分的横截面图;
图30A是按照本发明的另一个实施例的支撑件和可以安装在其中的光学器件部分的横截面图;
图30B是图30A的支撑件的平面图;
图30C是沿着图30B的A-A方向看去的图30A的支撑件的横截面图;
图30D是沿着图30B的A-A方向看去的图30A的支撑件的横截面图;以及可以安装在其中的透镜;
图31A是按照本发明的另一个实施例的支撑件和可以安装在其中的光学器件部分的透视图;
图31B是图31A的支撑件的平面图;
图31C是沿着图31B的A-A方向看去的图31A的支撑件的横截面图;
图31D是沿着图31B的A-A方向看去的图31A的支撑件的横截面图;以及可以安装在其中的透镜;
图32是按照本发明的一个实施例的数码相机设备和印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图33A-33F示出用于组装和安装图32的数码相机设备的一个实施例;
图33G是按照本发明的另一个实施例的数码相机设备的透视图;
图33H-33K是按照本发明的其它实施例的可以与数码相机设备关联使用的安装和电连接器配置的正视图;
图34是按照本发明的另一个实施例的可用来至少部分地支撑图11A-11B、13A-13B的光学器件部分的支撑件的横截面图;
图35A-35C示出用于将光学器件部分的3个小透镜组装在该支撑件中的一个实施例。
图36是按照本发明的一个实施例的包括图34的支撑件和图11A-11B、13A-13B的光学器件部分的数码相机设备以及印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图37是按照本发明的另一个实施例的可用来至少部分地支撑图11A-11B、13A-13B的光学器件部分的另一个支撑件的横截面图;
图38是按照本发明的另一个实施例的可用来至少部分地支撑图11A-11B、13A-13B的光学器件部分的另一个支撑件的横截面图;
图39是按照本发明的一个实施例的包括图37的支撑件和图11A-11B、13A-13B的光学器件部分的数码相机设备以及印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图40是按照本发明的一个实施例的包括图38的支撑件和图11A-11B、13A-13B的光学器件部分的数码相机设备以及印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图41A-41D是按照本发明的其它实施例的可以在数码相机设备中用来分别至少部分地支撑图15A-15D的透镜的安装配置的横截面图;
图42-44是按照本发明的其它实施例的分别采用图41B-41D的安装配置并且可以用来分别至少部分地支撑图15B-15D所示的透镜的支撑件的横截面图;
图45是按照本发明的一个实施例的包括图42的支撑件的数码相机设备和印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图46是按照本发明的一个实施例的包括图43的支撑件的数码相机设备和印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图47是按照本发明的一个实施例的包括图44的支撑件的数码相机设备和印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图48是按照本发明的另一个实施例的数码相机设备的示意图;
图49是按照本发明的另一个实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图50A-50F示出用于组装和安装图49的数码相机设备的一个实施例;
图51是按照本发明的另一个实施例的包括隔板的数码相机设备的示意图;
图52是按照本发明的另一个实施例的包括隔板的数码相机设备的示意图;
图53是按照本发明的另一个实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图54A-54F示出用于组装和安装图53的数码相机设备的一个这样的实施例;
图55是按照本发明的另一个实施例的包括第二装置和隔板的数码相机设备的示意图;
图56是按照本发明的另一个实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图57A-57F示出用于组装和安装图56的数码相机设备的一个这样的实施例;
图58-62是按照本发明的其它实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图63-67是按照本发明的其它实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图68-72是按照本发明的其它实施例的数码相机的印刷电路板和数码相机设备的横截面图,该数码相机设备可以安装在该印刷电路板上;
图73A-73B分别是按照本发明的另一个实施例的支撑件的正视图和横截面图;
图74是按照本发明的另一个实施例的支撑件的横截面图;
图75是按照本发明的另一个实施例的支撑件的平面图;
图76A是按照本发明的另一个实施例的包括一个或多个输出装置的数码相机设备的示意图;
图76B-76C分别是按照本发明的一个实施例的可以在图76A的数码相机设备中使用的显示装置的前视图和后视图;
图76D-76F是按照本发明的其它实施例的包括一个或多个输出装置的数码相机设备的示意图;
图77A是按照本发明的另一个实施例的包括一个或多个输出装置的数码相机设备的示意图;
图77B-77C分别是按照本发明的一个实施例的可以在图77A的数码相机设备中使用的输入装置的放大的前透视图和后透视图;
图77D-77L是按照本发明的其它实施例的包括一个或多个输出装置的数码相机设备的示意图;
图77M-77N分别是按照本发明的另一个实施例的支撑件的平面图和横截面图;
图77O-77P是按照本发明的其它实施例的采用图77M-77N的支撑件的数码相机设备以及数码相机的印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上;
图78A是按照本发明的另一个实施例的包括一个或多个照明装置的数码相机设备的示意图;
图78B-78C分别是按照本发明的一个实施例的可以在图78A的数码相机设备中使用的照明装置的放大的前透视图和后透视图;
图78D-78L是按照本发明的其它实施例的包括一个或多个照明装置的数码相机设备的透视图;
图78M-78N是按照本发明的其它实施例的包括一个或多个照明装置的数码相机设备的示意图;
图79A-79C是按照本发明的其它实施例的包括一个或多个输入装置以及一个或多个输出装置的数码相机设备的透视图;
图80A-80F是按照本发明的其它实施例的包括一个或多个输入装置、一个或多个显示装置以及一个或多个照明装置的数码相机设备的透视图;
图81A是按照本发明的一个实施例的包括模制塑料保装的数码相机设备的示意图;
图81B-81C是图81A的数码相机设备的分解透视图;
图82是按照本发明的另一个实施例的数码相机设备的放大的前透视图;
图83A-83C是按照本发明的其它实施例的传感器阵列和处理器配置的前透视图;
图83A-83C是按照本发明的其它实施例的传感器阵列配置的前视图;
图84A-84E是按照本发明的其它实施例的数码相机设备的示意图;
图85A-85E是按照本发明的其它实施例的数码相机设备的示意图;
图86A-86E是按照本发明的其它实施例的数码相机设备的示意图;
图87A-8B是按照本发明的其它实施例的数码相机设备的示意图;
图88A-88E是按照本发明的另一个实施例的数码相机设备的示意图;
图88A-88E是按照本发明的其它实施例的数码相机设备的示意图;
图89A-89E是按照本发明的其它实施例的数码相机设备的示意图;
图90A、91A-91B、92A-92B、93A-93B、94A-94B、95A-95B和96A-96B分别是图像装置的一些实施例的平面图和横截面图;
图90A是按照本发明的另一个实施例的图像装置的平面图;
图90A-90B分别是按照本发明的一个实施例的图像装置的平面图和横截面图;
图91A-91B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图92A-92B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图93A-93B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图94A-94B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图95A-95B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图96A-96B分别是按照本发明的另一个实施例的图像装置的平面图和横截面图;
图97A是按照本发明的一个实施例的支撑件和可以安装在其中的光学器件部分的平面图;
图97B是沿着图97B的A-A方向看去的图97A的支撑件的放大的横截面图;
图97C是图97A的支撑件的一部分以及可以安装在其中的透镜的分解横截面图;
图99A-99D是按照本发明的其它实施例的数码相机设备的示意图;
图100A-100D是按照本发明的其它实施例的数码相机设备的示意图;
图101A是按照本发明的另一个实施例的图像装置的前透视图;
图101B是按照本发明的一个实施例的可以在图101A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图101C是图101B的传感器阵列的像素的示意图;
图101D是按照本发明的一个实施例的可以在图101A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图101E是图101D的传感器阵列的像素的示意图;
图101F是按照本发明的一个实施例的可以在图101A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图101G是图101F的传感器阵列的像素的示意图;
图102A是按照本发明的另一个实施例的图像装置的前透视图;
图102B是按照本发明的一个实施例的可以在图102A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图102C是图102B的传感器阵列的像素的示意图;
图102D是按照本发明的一个实施例的可以在图102A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图102E是图102D的传感器阵列的像素的示意图;
图102F是按照本发明的一个实施例的可以在图102A的图像装置中使用的传感器阵列和与其连接的电路的示意图;
图102G是图102F的传感器阵列的像素的示意图;
图103A-103E是按照本发明的其它实施例的数码相机设备的示意图;
图104A-104E是按照本发明的其它实施例的数码相机设备的示意图;
图105A-105E是按照本发明的其它实施例的数码相机设备的示意图;
图106A-106C是按照本发明的另一个实施例的具有多个数码相机设备的系统的透视图;
图107A是按照本发明的另一个实施例的包括多个数码相机设备的系统的透视图;
图107B是可以在图107A的系统中使用的图像装置的正视图;
图108A-108B是按照本发明的其它实施例的数码相机设备的示意图;
图109A-109E是示出按照本发明实施例的数码相机设备的配置的框图;
图110A是按照本发明的一个实施例的处理器的框图;
图110B是按照本发明的一个实施例的可以在图110A的处理器中使用的通道处理器的框图;
图110C是按照本发明的一个实施例的可以在图110A的处理器中使用的图像管线的框图;
图110D是按照本发明的一个实施例的可以在图110A的处理器中使用的后处理器的框图;
图110E是按照本发明的一个实施例的数码相机设备的系统控制和其它部分的框图;
图110F是按照本发明的一个实施例的指令格式的表示;
图111A是按照本发明的另一个实施例的通道处理器的框图;
图111B是相邻像素值的图形表示;
图111C示出在双采样器的一个实施例中使用的操作的流程图;
图111D示出在有缺陷像素识别器的一个实施例中使用的操作的流程图;
图111E是按照本发明的另一个实施例的图像管线的框图;
图111F是按照本发明的一个实施例的图像平面整合器的框图;
图111G是可以在图111G的图像平面整合器中使用的多相时钟的解释性表示;
图111H-111J是示出按照本发明的一个实施例的由3个相机通道产生的图像的表示的解释图;
图111K-111Q是示出按照本发明的一个实施例的由自动图像对齐部分对图111H-111J的图像执行的过程的表示的解释图;
图111R是按照本发明的一个实施例的自动曝光控制的框图;
图111S是按照本发明的一个实施例的变焦控制器的框图;
图111T-111V是按照本发明的一个实施例的由图111S的变焦控制器执行的过程的解释图;
图111W是示出按照本发明的一个实施例的伽码校正部分的操作的实例的图形表示;
图111X是按照本发明的一个实施例采用的伽码校正部分的框图;
图111Y是按照本发明的一个实施例的颜色校正部分的框图;
图111Z是按照本发明的一个实施例的边缘增强器/锐化器的框图;
图111AA是按照本发明的一个实施例的色度噪声减小部分的框图;
图111AB是示出按照本发明的一个实施例的由白色平衡部分执行的过程的表示的解释图;
图111AC是按照本发明的一个实施例的颜色增强部分的框图;
图111AD是按照本发明的一个实施例的缩放部分的框图;
图111AE是示出按照本发明的一个实施例的上缩放的表示的解释图;
图111AF是按照本发明的另一个实施例的可以在对齐部分中使用的操作的流程图;
图112是按照本发明的另一个实施例的通道处理器的框图;
图113是按照本发明的另一个实施例的通道处理器的框图;
图114A是按照本发明的另一个实施例的图像管线的框图;
图114B是按照本发明的另一个实施例的图像管线的框图;
图114C是按照本发明的另一个实施例的色度噪声减小部分的框图;
图115A-115L是示出视差的实例的解释图;
图115M是示出按照本发明的一个实施例的在消除视差的情况下通过第一相机通道观看的图像与通过第二相机通道观看的图像的重叠的解释图。
图115N-115R是示出减小视差的实例的解释图;
图115S-115X是示出增大视差的实例的解释图;
图116示出按照本发明的另一个实施例的可以在产生与物体或其部分之间的距离的估计中采用的操作的流程图。
图117是按照本发明的一个实施例的测距器的一部分的框图;
图118是按照本发明的一个实施例的测距器的定位器部分的框图;
图119A-119C是示出3D成像的实例的解释图;
图120是另一类型的3D成像的解释图;
图121-122示出按照本发明的另一个实施例的可以在3D成像中使用的操作的流程图;
图123是按照本发明的一个实施例的3D效果发生器的框图;
图124是按照本发明的一个实施例的3D效果发生器的框图;
图125示出按照本发明的另一个实施例的可以在图像辨别中使用的操作的流程图;
图126A-126B示出按照本发明的另一个实施例的可以在图像辨别中使用的操作的流程图;
图127是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图128是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图129是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图130是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图131是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图132是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图133是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图134是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图135是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图136是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图137是按照本发明的另一个实施例的数码相机设备的一个或多个部分的框图;
图138是按照本发明的其它实施例的用于对数码相机设备的一个或多个部件实施光谱优化的一个或多个方面/技术/实施例;一个或多个方面/技术/实施例可以在这里描述和/或图示的任何实施例中实施。
具体实施方式
在图1A中,现有技术的数码相机1一般包括主图像捕捉元件—图像传感器150、滤色器片160和一系列透镜170(成透镜组件)。额外的电子部件典型地包括电路板110、外围用户接口电子器件120(在此表示为快门按钮,但还可以包括显示器、设置器、控制器等等)、电源130和电子图像存储介质140。
数码相机1还包括外壳(包括外壳部分173、174、175、176、177、178)和快门组件(未示出),该快门组件控制孔径180和光进入数码相机1的通道。机械框架181用于将透镜组件的各个部件结合在一起。透镜组件包括透镜170和一个或多个沿着轴183移动透镜170的电子机械装置182。机械框架181和一个或多个电子机械装置182可以由很多部件和/或复杂的组件组成。
滤色器片160具有排列成Bayer图案的滤色器阵列。Bayer图案过去使用红色、绿色、蓝色以及典型地为第二绿色的滤色器(例如2×2颜色矩阵,其中在一行中有交替的红色和绿色,而在另一行中有交替的绿色和蓝色,尽管也可使用其它颜色),尽管可以根据用户需要来改变图案。Bayer图案在整个滤色器阵列112中重复,如图1A-1D所示。该图案在整个阵列中如图所示地重复。
图像传感器150包含排列成矩阵的多个相同的光电检测器(有时称为“图片元素”或“像素”)。光电检测器的数量通常在几十万到上百万的范围内。透镜组件覆盖该阵列的对角线。
滤色器阵列160被放置在图像传感器150上方,使得滤色器片160中的每个滤色器被设置在图像传感器150中的相应的一个光电检测器上,由此图像传感器中的每个光电检测器接收特定带的可见光(例如红色、绿色或蓝色)。
图1B-1D示出了现有技术的数码相机1在产生彩色图像时使用的光子捕捉过程。可见光184的完整光谱射到透镜组件上,其基本上使完整光谱通过。然后该完整光谱射到滤色器片160的滤色器上,且滤色器片160的各个滤色器中的每一个将其特定的光谱带传递给其特定的像素。该过程对每个像素重复进行。每个像素提供指示其所接收的颜色强度的信号。信号处理电路(未示出)从光电检测器接收交替的颜色信号,通过将每个4个像素的组(红色/绿色/蓝色/绿色或其变种)整合为单个全色像素来以一致的方式处理所述交替的颜色信号,最后输出彩色图像。
图1E示出缩进模式(有时称为普通模式或近焦设置)下的透镜组件的工作。示出该透镜组件聚焦在远处物体186(表示为闪电)上。为便于参考,将图像传感器150的表示包括在内。相机1的视场限定在参考线188、190之间。视场的宽度例如可以是50毫米(mm)。为了实现该视场188、190,一个或多个电子机械装置182将透镜170定位得相对靠拢。透镜组件使视场通过透镜170并传递给图像传感器150,如参考线192、194所示。物体的图像(在196示出)按照与实际图像186的宽度与实际视场188、190之比相同的比率呈现在图像传感器150上。
图1F示出光学变焦模式(有时称为远焦设置)下的透镜组件110的工作。在此模式下,透镜组件的一个或多个电子机械装置182重新定位透镜170以便减小相同图像区域上的视场188、190,从而使物体186显现得更近(即更大)。该透镜组件的一个优点是该透镜组件在变焦模式下的分辨率典型地等于该透镜组件在缩进模式下的分辨率。但是一个缺点是该透镜组件可能成本高且复杂。此外,提供具有变焦能力的透镜导致光灵敏度降低,并因此增大透镜的F-光阑(F-stop),由此使该透镜在弱光条件下的效率降低。
与传统数码相机1相关联的一些其它缺点如下所述。
传统数码相机在图像传感器上采用一个大的阵列,还采用一个必须覆盖整个阵列的透镜。这产生了两个与物理尺寸相关的问题:1)覆盖大的阵列(例如3兆像素)的透镜在直径和厚度方面都将物理地大于覆盖较小阵列(例如1兆像素)的透镜;2)较大透镜/阵列组合将可能具有较长的焦距,这将增大透镜的高度。
而且,由于传统透镜必须分解可见光波长的完整光谱,因此它们是复杂的,通常具有3-8个独立的元件。这也加到光学堆叠高度、复杂度和成本上。
此外,由于传统透镜必须使所有带宽的颜色通过,因此其必须是无色透明透镜(没有滤色)。前面描述的所需滤色通过在透镜下面和图像传感器顶上沉积一片微小的滤色器来完成。例如,具有一百万个像素的图像传感器需要一片一百万个单独的滤色器。该滤色器阵列技术是高成本的(非标准的集成电路处理),对缩小像素尺寸起了限制作用(图像传感器中的像素之间的颜色串扰),而且滤色器阵列材料削弱了通过该阵列的带内光子流(即降低了光灵敏度),因为该滤色器阵列材料的带内透射低于100%。
此外,由于透镜必须相对于图像传感器前后移动,因此需要额外的时间和能量。这是数码相机的非期望方面,因为其产生了捕捉响应时间的长的延迟,并减小了电池容量。
与传统数码相机相关联的一个或多个上述缺点可以通过本发明的一个或多个方面的一个或多个实施例来解决,尽管这不是必须的。
图2示出按照本发明某些方面的一个实施例的数码相机2及其部件的例子。该数码相机包括数码相机子系统200、电路板110、外围用户接口电子器件(在此表示为快门按钮,但还可以包括显示器和/或一个或多个其它输出装置、设置控制器和/或一个或多个附加的输入装置等)120、电源130和电子图像存储介质140。
图2的数码相机还可以包括外壳和快门组件(未示出),该快门组件控制孔径180和光进入数码相机2的通道。
图3A-3B是数码相机子系统200的一个实施例的部分分解示意图。在该实施例中,数码相机子系统包括图像传感器210、框架220(图7A-7C)和透镜230A-230D。图像传感器210一般包括具有若干较高级特征的半导体集成电路或“芯片”,该半导体集成电路包括多个阵列210A-210D和信号处理电路212、214。阵列210A-210D中的每一个捕捉光子并输出电信号。在某些实施例中,信号处理电路212为各个阵列210中的每一个处理信号。信号处理电路214可以将来自信号处理212的输出组合为输出数据(通常以重组合的全色图像的形式)。每个阵列以及相关的信号处理电路可以被优选地定制以处理特定的可见光谱带。
透镜230A-230D中的每一个可以针对相应阵列的相应波长来有利地定制。透镜一般与在下面的阵列的尺寸大致相同,并因此取决于在下面的阵列的尺度而彼此尺寸和形状不同。当然,不要求给定透镜覆盖全部或仅在下面的阵列。在可替换实施例中,透镜可以仅覆盖阵列的一部分,且可以延伸超出该阵列。透镜可以包含任何适合的一种或多种材料,包括例如玻璃和塑料。透镜可以以诸如给予(impart)的任何合适的方式被掺入滤色、偏振或其它特性。透镜可以是刚性或挠性的。
框架220(图7A-7C)用于将透镜230A-230D安装到图像传感器210。
在该示例性实施例中,每个透镜、阵列和信号处理电路构成一个可见光谱带(例如红色、蓝色、绿色等)的图像产生子系统。然后用半导体芯片内的附加的信号处理电路将这些单独的图像相组合以形成用于输出的完整图像。
本领域的技术人员应理解,尽管以四阵列/透镜配置来描绘数码相机子系统210,但数码相机子系统也可以以具有任何多个数目和形状的阵列/透镜的配置来使用。
图4描绘了具有三阵列/透镜配置的数码相机子系统。
在图5A-5C中,数码相机子系统在一个图像传感器上采用独立的阵列、例如阵列210A-210来代替现有技术方法(其采用Bayer图案(或其变种),跨该阵列而工作(一次一个像素),并将来自该阵列的每个4个像素的组(例如,红色/绿色/蓝色/绿色或其变种)整合为单个全色像素)。这样的阵列中的每一个针对一特定的可见光谱带。因此,可以对每个阵列调谐,使得其捕捉和处理该特定颜色的图像更为高效。各个透镜(230A-D)可以针对阵列的光谱带来被定制。每个透镜只需要将该颜色(184A-184D)传递给图像传感器。传统的滤色器片被省去。每个阵列向信号处理电路输出信号。用于这些阵列中的每一个的信号处理电路还针对可见光谱带中的每一个来被定制。实际上,各个图像针对这些阵列中的每一个而产生。在该过程之后,将各个图像相组合以形成一个全色或黑/白图像。通过定制每个阵列和相关联的信号处理电路,可以产生比类似像素数量的传统图像传感器所产生的图像质量更高的图像。
图6A-6B示出可被有利地使用的许多处理操作中的一些。如上所述,每个阵列向信号处理电路212输出信号。在该信号处理电路中,对每个阵列单独处理以使该处理适于相应的光谱带。若干功能发生:
列逻辑单元(212.1A-D)是从像素中读取信号的信号处理电路部分。例如,列逻辑单元212.1A从阵列210A中的像素中读取信号。列逻辑单元212.1B从阵列210B中的像素中读取信号。列逻辑单元212.1C从阵列210C中的像素中读取信号。列逻辑单元212.1D从阵列210D中的像素中读取信号。
由于该阵列针对一个特定波长、多个波长、波长带或多波长带,因此列逻辑单元可以对于每个阵列具有不同的整合时间来增强动态范围和/或颜色专一性。由于逻辑单元不必在极端颜色转移之间切换,因此可以相当大地降低每个阵列的信号处理电路复杂度。
每个阵列的模拟信号逻辑单元(ASL)(212.1A-D)可以是特定颜色的。因此,ASL处理单个颜色,并因此可以针对增益、噪声、动态范围、线性等来优化。由于颜色信号分离而不需要逻辑单元和稳定时间(settlingtime)的显著转移,因为放大器和逻辑单元不是像传统Bayer图案化设计那样逐个像素(颜色到颜色)地改变的。
黑色电平逻辑单元(212.3A-D)评估信号内的噪声电平并将其滤除。每个阵列针对比传统图像传感器更窄的可见光谱带,黑色电平逻辑单元可以被更为精细地调谐以消除噪声。
曝光控制(212.4A-D)测量由该阵列捕捉的全部光量,并针对图像质量调整捕捉时间。传统相机必须全局地(为所有颜色)进行该确定。本发明使得曝光控制可以针对每个阵列和所针对的波长带而不同地进行。
然后将经过处理的图像传递给第二组信号处理电路214。首先,图像处理逻辑单元214.1将多个颜色平面整合为单个彩色图像。针对饱和度、锐度、强度、色调、伪影去除和有缺陷像素的校正来调整该图像。IPL还提供算术自动聚焦、变焦、开窗(windowing)、像素组合(pixel binning)和相机功能。
后两个操作将信号在传递给标准输出接口214.3如USB之前编码成标准协议214.2如MPEG、JPEG等。
尽管示出信号处理电路212、214位于图像传感器的特定区域,信号处理电路212、214还可以放置在芯片上的任何地方,并以任何方式细分。实际的信号处理电路可能放置在多个位置。
如前所述,图像传感器210(图3A-3B)一般包括具有若干较高级特征的半导体芯片,该半导体芯片包括多个阵列(210A-210D)和信号处理电路212,其中优选地定制每个阵列和相关的信号处理电路以处理特定的可见光谱带。如上所述,图像传感器阵列可以使用任何多个数目和形状的阵列来配置。
图像传感器210可以使用任何合适的技术、特别包括硅和锗技术来构造。像素可以以任何合适的方式形成,可以按照需要确定尺寸和尺度,并且可以以任何所需的图案分布。甚至可以使用不以任何规则图案分布的像素。
任何可见光谱范围可取决于用户的特定兴趣而应用于每个阵列。此外,红外阵列也可以用作向传感器提供弱光能力的阵列/透镜组合之一。
如上所述,阵列210A-D可以具有任何尺寸或形状。图3将阵列示出为图像传感器的单独的、分立的部分。这些阵列还可以是接触的。还可以存在一个大阵列,其配置为使得该阵列被细分为若干部分,由此每个部分针对一个光谱带,从而产生与同一芯片上的独立阵列相同的效果。
尽管跨每个单独阵列(用210A-D表示)的光电检测器的阱深(例如捕捉、采集、响应、检测和/或感测例如入射光的强度照度的光电检测器的区域或部分;在某些实施例中,该阱深是从光电检测器表面到掺杂区的距离,例如参见图17B-E)可以相同,但任何给定阵列的阱深可以不同于传感器子系统中的其它阵列中的一个或多个或全部的阱深。合适阱深的选择可取决于很多因素,最可能包括所针对的可见光谱带。由于每个整个阵列可能针对一个可见光谱带(例如红色),因此阱深可以设计为捕捉该波长而忽略其它(如蓝色、绿色)。
在特定颜色阵列中掺以半导体材料可以进一步用于增强对特定颜色波长的光子吸收的选择性。
在图7A-7C中,框架220是一薄板,其被钻孔以将各个透镜(用230A、230C表示)承载在每个阵列上方。透镜可以按照很多种方式来固定在框架上:粘合、压配合(press fit)、电子接合等)。安装孔可以在底座上具有小的“座位”以控制透镜位置的深度。该深度可以对每个透镜都不同,并且是针对每个阵列定制的特定透镜的特定焦距的结果。
图7A-7C所示的框架是为制造、材料、安装、尺寸和形状提供了许多种选择的固体装置。当然,可以容易地设计其它合适的框架,它们全部落入本发明的范围。
尽管附图示出每个阵列的各个透镜被组装到框架中,但透镜也可以制造为使得每个图像传感器的透镜都形成为一个模子或部件。此外,该一体化结构还可以用作安装到图像传感器的框架。
透镜和框架概念可应用于传统的图像传感器(而无需传统的滤色器片),以获得物理尺寸、成本和性能优点。
如图7A-7C所示,数码相机子系统可以在单个图像传感器上具有多个独立的阵列,每个阵列具有它自己的透镜(用230A、230C表示)。较小的多个阵列的简单几何结构允许较小的透镜(直径、厚度和焦距),这允许减小数码相机的堆叠高度。
每个阵列可有利地针对一个可见和/或可检测光谱带。尤其可以针对该一个特定波长带的通路而对每个透镜调谐。由于每个透镜因此不需要使整个光谱通过,所以元件的数量可以例如减少为一个或两个。
此外,由于每个透镜的所针对带宽,每个透镜可以在制造过程中针对其相应的带宽被染色(例如将针对红色可见光谱带的阵列染为红色)。可替换地,可以在每个透镜上施加单个滤色器。该过程省去了传统的滤色器(各个像素滤光器的片),由此降低了成本、提高了信号强度并消除了像素减少的障碍。
滤色器片的省去允许减小像素的物理尺寸,以便进一步减小整个DSC组件的尺寸。
尽管图2、3A-3B和5A-5C示出四阵列/透镜结构,但图4描绘了三阵列/透镜配置,任何多个数目的阵列/透镜及其各种组合都是可以的。
上述装置可以包括任何合适数目的组合,从少至二阵列/透镜到更宽的阵列。例子包括:
二阵列/透镜:红色/绿色和蓝色
二阵列/透镜:红色和蓝色/绿色
三阵列/透镜:红色、绿色、蓝色
四阵列/透镜:红色、蓝色、绿色、翠绿色(用于颜色增强)
四阵列/透镜:红色、蓝色、绿色、红外(用于弱光条件)
八阵列/透镜:对上述配置加倍,用于附加的像素数量和图像质量。
尽管图2反映的是数码照相机,但该相机旨在是包含数码相机子系统的普通装置的代表。因此图2应当被解释为照相机和摄像机、蜂窝电话、其它个人通信设备、监视设备、汽车应用、计算机、制造和检查设备、玩具以及各种各样的其它和持续扩展的应用的代表。当然该图的这些可替换解释可以包括或可以不包括如图2所示的特定部件。例如,该电路板不是只有相机功能才有的,如在蜂窝电话中,数码相机子系统可以是现有电路板的附件。
因此,应当理解,在此公开的任何或所有方法和/或设备可以在任何类型的设备或过程中使用,该设备或过程包括但不限于照相机和摄像机、蜂窝电话、其它个人通信设备、监视设备、汽车应用、计算机、制造和检查设备、玩具以及各种各样的其它和持续扩展的应用。
除非上下文需要不同的解释,如这里所使用的那样,下列术语如下所述地那样解释。
“阵列”意思是一组光电检测器,也称为像素,它们互相协作以产生一个图像。阵列捕捉光子并将数据转换为电信号。阵列将该原始数据输出到信号处理电路,信号处理电路产生图像传感器图像输出。
“数码相机”意思是接收光子、在半导体器件(“图像传感器”)上将光子转换为电信号,并将这些信号处理为产生照片图像的输出的单个组件。数码相机包含任何必要的透镜、图像传感器、快门、闪光灯、信号处理电路、存储装置、用户接口特征、电源和任何容纳这些部件的机械结构(例如电路板、外壳等)。数码相机可以是独立的产品,也可以被嵌入其它装置,如蜂窝电话、计算机、或者目前可得到的或可以在未来产生的无数其它成像平台,如由于本发明而变得可行的那些成像平台。
“数码相机子系统”(DSC)意思是接收光子、在半导体器件(“图像传感器”)上将光子转换为电信号并将这些信号处理为产生照片图像的输出的单个组件。数码相机子系统至少包括任何必要的透镜、图像传感器、信号处理电路、快门、闪光灯以及可能需要的容纳这些部件的框架。电源、存储装置和任何机械结构不必要被包括在内。
“电子媒体”意思是与胶片的使用构成对比地电子地捕捉、处理和存储图像。
“框架”或“薄板”意思是用于容纳透镜和安装到图像传感器上的DCS的部件。
“图像传感器”意思是包括光电检测器(“像素”)、处理电路和输出通道的半导体器件。输入是光子,输出是图像数据。
“透镜”意思是将光线成形在单独阵列上的单个透镜或一系列堆叠的透镜(一个透镜在另一个透镜上的列)。当在不同的阵列上采用多堆透镜时,它们称为“多个透镜(lenses)”。
“封装”意思是其上或其中安装有图像传感器(或任何半导体芯片)的盒子或框架,其保护成像器并提供密封。“无封装”是指可以直接安装至电路板而不需要封装的半导体芯片。
“光电检测器”和“像素”意思是感测并捕捉光子并将其转换为电信号的电子器件。这些极度小的器件以矩阵形式大量(几十万到上百万)地使用,以类似胶片那样捕捉图像。
“半导体芯片”意思是在硅或类似衬底上制造的分立电子器件,其在几乎所有的电子设备中普遍使用。
“信号处理电路”意思是将光子输入信息转换为电信号并最终转换为图像输出信号的图像传感器内的硬件和软件。
本发明的主题可以在特定应用中提供很多优点。例如,传统滤色器的温度范围有限,这限制了终端用户制造灵活性。波焊工艺、低成本、大批量生产焊接工艺由于滤色器的温度限制而无法使用。本发明主题的至少一些实施例没有这样的限制。实际上,在此描述和图示的一个、一些或所有实施例都不需要采用波焊工艺或其它低成本、大批量生产焊接工艺。
此外,一旦图像传感器、框架和透镜组装在一起,该组件就可以是密封的装置。该装置不需要“封装”,且这样,如果需要则可以直接安装至电路板,从而节省零件和制造成本。
由于从分开的位置(虽然同一图像传感器上的阵列之间的距离小)创建多个图像,所以产生了视差,该视差可以在信号处理电路中被消除或者为了很多目的而被利用/增强,包括例如测量与物体之间的距离和提供3-D效果。
尽管每个阵列和相关的信号处理电路优选地定制为处理特定的可见光谱带,并且为了使该特定的波长带通过而可以对每个透镜进行调谐,但应当明白,不要求每个这样的阵列和相关的信号处理电路定制为处理特定的可见光谱带。也不要求为了使特定的波长带通过而对每个透镜进行调谐,或者每个阵列位于同一半导体器件上。实际上,在此描述和图示的实施例,包括其特定部件都不需要使用特定波长的特征。例如,不需要阵列和/信号处理电路定制为处理特定的波长或波长带。
值得注意的是,在某些实施例中,其特定部件可以定制为处理特定的波长或波长带,而该实施例的其它部件不定制为处理特定的波长或波长带。例如,透镜和/或阵列可以定制为处理特定的波长或波长带,而相关联的信号处理电路不定制为处理特定的波长或波长带。而且,在其它实施例中,(相同或不同光学通道的)一个或多个透镜可以定制为处理特定的波长或波长带,而相关联的阵列和信号处理电路不定制为处理特定的波长或波长带。所有这些置换和组合都意图落入本发明的范围内。为简要起见,在此不详细讨论所有这些置换和组合。
此外,尽管数码相机子系统包括任何必要的透镜、图像传感器、信号处理电路、快门、闪光灯以及可能需要用于容纳部件的任何框架,但一些数码相机子系统可能不需要其中的一个或多个。例如,一些数码相机系统可能不需要快门、闪光灯和/或用于容纳部件的框架。此外,一些数码相机子系统可能不需要包括检测器、处理电路和输出通道中的每一个的图像传感器。例如,在一些实施例中,一个或多个检测器(或其部分)、处理电路的一个或多个部分和/或输出通道的一个或多个部分可以被包括在分开的装置中和/或设置在分开的位置。所有这些置换和组合都意图落入本发明的范围。为简要起见,在此不详细讨论所有这些置换和组合。
图8是按照本发明的另一实施例的数码相机设备300的分解透视图。数码相机设备300包括一个或多个传感器阵列例如4个传感器阵列310A-310D、一个或多个光学器件部分例如4个光学器件部分330A-330D以及处理器340。一个或多个光学器件部分例如光学器件部分330A-330D中的每一个可以包括例如但不限于透镜,且可以与一个或多个传感器阵列例如传感器阵列310A-310D中相应的一个相关联。在一些实施例中,提供支撑件320(例如参见图28A-28D)(例如但不限于框架)来至少部分地支撑一个或多个光学器件部分例如光学器件部分330A-330D。每个传感器阵列和相应的光学器件部分可以限定一个相机通道。例如,相机通道350A可以由光学器件部分330A和传感器阵列310A限定。相机通道350B可以由光学器件部分330B和传感器阵列310B限定。相机通道350C可以由光学器件部分330C和传感器阵列310C限定。相机通道350D可以由光学器件部分330D和传感器阵列310D限定。一个或多个相机通道的光学器件部分在此统称为光学器件子系统。一个或多个相机通道的传感器阵列在此统称为传感器子系统。两个或更多传感器阵列可以集成在下文中称为图像装置的公共衬底中或设置在该公共衬底上、分开的衬底上、或按这两种方式的任何组合来设置(例如,当系统包括3个或更多传感器阵列时,两个或更多传感器阵列可以集成在第一衬底中,而一个或多个其它传感器阵列可以集成在第二衬底中或设置在第二衬底上)。
就此而言,继续参照图8,一个或多个传感器阵列例如传感器阵列310A-310D可以或可以不彼此设置在公共衬底上。例如,在一些实施例中,两个或更多传感器阵列设置在公共衬底上。但在一些实施例中,一个或多个传感器阵列不与一个或多个其它传感器阵列设置在同一衬底上。
一个或多个相机通道可以或可以不彼此相同。例如,在一些实施例中,相机通道彼此相同。在其它实施例中,一个或多个相机通道在一个或多个方面不同于一个或多个其它相机通道。在一些后面所述的实施例中,每个相机通道可用于检测与由其它相机通道所检测的颜色(或色带)和/或光带不同的颜色(色带)和/或光带。
在一些实施例中,相机通道之一例如相机通道350A检测红光,相机通道之一例如相机通道350B检测绿光,相机通道之一例如相机通道350C检测蓝光。在一些这种实施例中,相机通道之一例如相机通道350D检测红外光、青色光或翠绿光。在一些其它实施例中,相机通道之一例如相机通道350A检测青色光,相机通道之一例如相机通道350B检测黄色光,相机通道之一例如相机通道350C检测品红色光,相机通道之一例如相机通道350D检测明光(黑色和白色)。还可以使用任何其它波长或波长带(无论可见还是不可见)组合。
处理器340通过一个或多个通信链路例如通信链路370A-370D分别与一个或多个传感器阵列例如传感器阵列310A-310D连接。通信链路可以是任何种类的通信链路,包括但不限于例如有线的(例如导线、光缆)或无线的(例如声学链路、电磁链路或它们的任何组合,包括但不限于微波链路、卫星链路、红外链路)以及它们的组合,其每一种都可以是公用或私有的、专用的和/或共享的(如网络)。通信链路可以使用例如电路交换或包交换或它们的组合。通信链路的其它例子包括专用点对点系统、有线网络和蜂窝电话系统。通信链路可以使用任何协议或协议组合,包括但不限于互联网协议。
通信链路可以传输任何类型的信息。该信息可以具有任何形式,包括例如但不限于模拟的和/或数字的(二进制值序列,即比特串)。该信息可以或可以不分成块。如果分成块,则一个块中的信息量可以预定或动态确定,和/或可以是固定的(例如一致的)或可变的。
如下面将进一步描述的那样,处理器可以包括一个或多个通道处理器,其每一个都与相应的一个(或多个)相机通道耦合并且至少部分地基于从相应的相机通道接收到的信号来产生图像,尽管这并不需要。在一些实施例中,一个或多个通道处理器适用于其相应的相机通道,例如在此描述的那样。例如,当相机通道之一专用于特定的波长或颜色(或波长带或色带)时,相应的通道处理器可以适应于或适于该波长或颜色(或波长带或色带)。例如,处理器的增益、噪声减小、动态范围、线性度和/或任何其它特性或这样的特性的组合可以适于针对该波长或颜色(或波长带或色带)改进和/或优化处理器。使通道处理适于相应的相机通道可以有助于产生高于由类似像素数量的传统图像传感器产生的图像质量的质量的图像。此外,向每个相机通道提供专用通道处理器可以有助于减少或简化通道处理器中的逻辑单元的量,因为通道处理器可能不需要适应颜色或波长的极端平移,例如从处于一个极端的颜色(或色带)或波长(或波长带)平移到处于另一极端的颜色(或色带)或波长(或波长带)。
在工作中,相机通道的光学器件部分从视场内接收光,并使该光的一个或多个部分例如以图像的形式透射在图像平面。传感器阵列接收由该光学器件部分透射的光的一个或多个部分,并提供表示其的一个或多个输出信号。来自传感器阵列的一个或多个输出信号提供给处理器。在一些实施例中,处理器至少部分地基于来自传感器阵列的一个或多个信号来产生一个或多个输出信号。例如,在一些实施例中,每个相机通道专用于不同于其它相机通道的颜色(或色带)或波长(或波长带)的颜色(或色带)或波长(或波长带),且处理器为每个这样的相机通道产生独立的图像。在一些其它实施例中,处理器可以至少部分地基于来自两个或更多这种相机通道的图像来产生合成图像。例如,在一些实施例中,每个相机通道专用于不同于其它相机通道的颜色(或色带)或波长(或波长带)的颜色(或色带)或波长(或波长带),且处理器将来自两个或更多相机通道的图像相组合以提供部分彩色或全彩色图像。
尽管示出处理器340与一个或多个传感器阵列例如传感器阵列310A-310D相分离,但处理器340或其部分可以具有任何配置并且可以设置在一个或多个位置。在一些实施例中,处理器340的一个、一些或所有部分与一个或多个传感器阵列例如传感器阵列310A-310D中的一个或多个集成在相同的一个或多个衬底中或设置在相同的一个或多个衬底上。在一些实施例中,该处理器的一个、一些或所有部分设置在与其上可设置有一个或多个传感器阵列例如传感器阵列310A-310D中的一个或多个的一个或多个衬底分开(且可能远离)的一个或多个衬底上。例如,该处理器的某些工作可以分配给与该一个或多个传感器阵列中的一个或多个集成在相同的一个或多个衬底中或设置在相同的一个或多个衬底上的电路或由该电路执行,且该处理器的某些工作分配给集成在与该一个或多个传感器阵列集成或设置于的衬底不同的一个或多个衬底(无论这样的一个或多个不同衬底是否物理地位于相机内)中或设置在该一个或多个衬底上的电路或由该电路执行。
数码相机设备300可以或可以不包括快门、闪光灯和/或将部件容纳在一起的框架。
图9A是光学器件部分例如光学器件部分330A的一个实施例的分解示意图。在该实施例中,光学器件部分330A包括一个或多个透镜例如复杂的非球面透镜模块380、一个或多个颜色涂层例如颜色涂层382、一个或多个掩模例如自动聚焦掩模384、以及一个或多个IR涂层例如IR涂层386。
透镜可以包含任何适当的一种或多种材料,包括例如玻璃和塑料。透镜可以以诸如给予的任何合适的方式被掺入滤色、偏振或其它特性。透镜可以是刚性或挠性的。就此而言,一些实施例采用具有染料涂层的透镜(或多个透镜)、在光学介质(例如一个或多个透镜)中扩散的染料、基本上均匀的滤色器和/或用以使光传到在下面的阵列的任何其它滤光技术。
颜色涂层382帮助光学器件部分滤除(即相当大地减弱)一个或多个波长或波长带。自动聚焦掩模384可以限定一个或多个干涉图案,这些图案有助于数码相机设备执行一个或多个自动聚焦功能。IR涂层386有助于光学器件部分370A滤除光谱的IR部分中的波长或波长带。
一个或多个颜色涂层例如颜色涂层382、一个或多个掩模例如掩模384、一个或多个IR涂层例如IR涂层386可以具有任何尺寸、形状和/或配置。在一些实施例中,一个或多个颜色涂层例如颜色涂层382中的一个或多个设置在光学器件部分的顶部(参见例如图9B)。光学器件部分(和/或其部件)的一些实施例可以或可以不包括该一个或多个颜色涂层、一个或多个掩模以及一个或多个IR涂层,而且可以或可以不包括除了它们以外的特征或代替它们的特征。例如,在一些实施例中,一个或多个颜色涂层例如颜色涂层382中的一个或多个由设置在光学器件部分中、例如设置在透镜以下的一个或多个滤光器388(参见例如图9C)代替。在其它实施例中,一个或多个颜色涂层由在透镜中扩散的一种或多种染料代替(参见例如图9D)。
一个或多个光学器件部分例如光学器件部分330A-330D可以或可以不彼此相同。例如,在一些实施例中,该光学器件部分彼此相同。在一些其它实施例中,一个或多个光学器件部分在一个或多个方面不同于一个或多个其它的光学器件部分。例如,在一些实施例中,一个或多个光学器件部分的一个或多个特性(例如但不限于其元件类型、尺寸、响应和/或性能)适于相应的传感器阵列和/或有助于实现期望的结果。例如,如果特定相机通道专用于特定颜色(或色带)或波长(或波长带),则用于该相机通道的光学器件部分可以适于只将该特定颜色(或色带)或波长(或波长带)透射到该特定相机通道的传感器阵列和/或适于滤除一个或多个其它颜色或波长。在一些这样的实施例中,光学部分的设计针对相应相机通道专用于的相应波长或波长带来优化。但是应当理解,还可以采用任何其它配置。该一个或多个光学器件部分中的每一个都可以具有任何配置。
在一些实施例中,光学器件部分例如光学器件部分330A-330D中的每一个包括单个透镜元件或一堆透镜元件(或小透镜),尽管如上所述本发明不局限于此。例如,在一些实施例中,采用具有或不具有一个或多个滤光器、棱镜和/或掩模的单个透镜元件、多个透镜元件和/或复合透镜。
光学部分还可以包含数码相机功能和/或性能所需要的其它光学特征。这可以是诸如可电调谐的滤光器、偏振器、波前编码、空间滤光器(掩模)和其它还未预期的特征。一些新特征(除了透镜之外)可以电工作(如可调谐滤光器)或利用MEMs机制来机械移动。
参照图10A-10F,光学器件部分例如光学器件部分330A可以包括例如任何数量的透镜元件、光学涂层波长滤光器、光学偏振器和/或它们的组合。其它光学元件可以包括在光学堆中以产生期望光学特征。图10A是光学器件部分330A的一个实施例的示意图,其中光学器件部分330A包括单个透镜元件390。图10B是光学器件部分330A的另一实施例的示意图,其中光学器件部分330A包括两个或更多透镜元件,例如透镜元件392A、392B。光学器件部分的部分可以彼此分开、彼此整合和/或按照这两种方式的任何组合。因此,例如,图10B中表示的两个透镜元件392A、392B可以彼此分开或彼此整合。
图10C-10F示出光学器件部分330A的示例性实施例的示意表示,其中光学器件部分330A具有一个或多个透镜元件例如透镜元件394A、394B以及一个或多个滤光器例如滤光器394C。该一个或多个透镜元件以及期望光学特征和/或光学元件可以彼此分开、彼此整合和/或按照这两种方式的任何组合。而且,一个或多个透镜元件特征和/或元件可以按照例如透镜-滤光器顺序(参见例如图10C)、透镜-编码顺序(参见例如图10D)、透镜-偏振器顺序(参见例如图10E)、透镜-滤光器-编码-偏振器顺序(参见例如图10F)及其组合和/或变化的任何配置和/或顺序来设置。
在一些实施例中,图10C所示的滤光器394C是在透镜内制成的、作为支撑结构上的独立层沉积在光学系统中或者沉积在透镜表面上的滤色器。该滤光器可以是单带通滤光器或多带通滤光器。编码396C(图10D)可以施加在或形成在透镜上,和/或作为独立的光学元件来提供。在一些实施例中,编码396C用于修正光学波前,以允许具有额外的后图像处理的改善的成像能力。光学偏振器400E(图10E)可以具有用于改善图像质量如眩光减小的任何类型。偏振器400E可以施加或形成在一个或多个光学表面上和/或作为专用的光学元件来提供。
图10G-10H是按照本发明其它实施例的光学器件部分的示意表示。
如上所述,光学器件部分的部分可以彼此分开、彼此整合和/或按照这两种方式的任何组合。如果这些部分是分开的,则这些部分可以彼此隔开、彼此接触或按照这两种方式的任何组合。例如,两个或更多分开的透镜可以彼此隔开、彼此接触或按照这两种方式的任何组合。因此,图10G所示的光学器件部分的一些实施例可以用彼此隔开的透镜元件402A-402C来实施,如在图10I中示意性表示的那样,或者用彼此接触的两个或更多透镜元件402A-402C来实施,如在图10I中示意性表示的那样。此外,例如402D的滤光器可以例如实施为单独的元件402D,如在图10G中示意性表示的那样,或者例如实施为设置在透镜表面上的涂层402D,如图10J中示意性表示的那样。该涂层可以具有任何适当的厚度,且可以例如比透镜厚度薄,如在图10K中示意性表示的那样。类似地,图10H所示的光学器件部分的一些实施例可以用彼此隔开的透镜元件404A-404D来实施,如在图10H中示意性表示的那样,或者用彼此接触的两个或更多透镜元件404A-404D来实施,如在图10L中示意性表示的那样。例如404E的滤光器可以例如实施为单独的元件404E,如在图10H中示意性表示的那样,或者例如实施为设置在透镜表面上的涂层404E,如图10M中示意性表示的那样。该涂层可以具有任何适当的厚度,且可以例如比透镜厚度薄,如在图10N中示意性表示的那样。
应当理解,这些技术可以与在此公开的任何实施例组合使用,但是为简要起见,这些实施例可以或可以不在此单独示出和/或讨论。
此外,如同在此公开的每个实施例一样,应当理解图10A-10N的任何实施例可以与在此公开的任何其它实施例或其部分组合使用。因此,图10G-10N所示的光学器件部分的实施例还可以包括编码和/或偏振器。
一个或多个相机通道例如350A-350D可以采用使例如R、G或B的较窄波长带(与宽带相比)透射的光学部分,这在一些实施例中有助于简化光学设计。例如,在一些实施例中,用具有窄色带的光学器件部分比用使用单个光学组件和Bayer滤色器阵列的传统数码相机更容易实现图像锐度和聚焦。在一些实施例中,使用多个相机通道来检测不同的色带允许减少每个相机通道中光学元件的数量。附加的光学方法如衍射和非球面表面可能导致进一步的光学元件减少。此外,在一些实施例中,使用使较窄波长带透射的光学部分允许使用可直接施加在光学材料中或作为涂层来施加的滤色器。在一些实施例中,每个带中的光透射大于传统上由与片上滤色器阵列一起使用的滤色器提供的光透射。此外,所透射的光不显示在滤色器阵列方法中观察到的像素到像素的变化。此外,在一些实施例中,使用多个光学器件和对应的传感器阵列有助于简化光学设计和元件的数量,因为在与宽带光学器件相比的较窄波长带中,色差小得多。
在一些实施例中,每个光学部分使单个颜色或色带、多个颜色或色带、或宽带透射。在一些实施例中,一个或多个使光偏振的偏振器可以增强图像质量。
在某些实施例中,例如如果光学部分使多个色带或宽带透射,则滤色器阵列(例如具有Bayer图案的滤色器阵列)可以设置在透镜和传感器阵列之间,和/或相机通道可以使用能够分离这些颜色或色带的传感器阵列。
在一些实施例中,光学部分本身可以具有提供例如类似于由滤色器阵列(例如Bayer图案或其变种)提供的颜色分离的能力。
在某些实施例中,可供光学部分选择的光学器件材料有许多种,例如但不限于模制玻璃和塑料。
在一些实施例中,在一个或多个光学部分中采用一种或多种光致变色材料。该一种或多种材料可以合并到光学透镜元件中,或作为例如一个或多个传感器阵列上方的光学路径中的另一特征。在一些实施例中,光致变色材料可以合并到(为所有相机通道所共用的)所有光学器件的相机入口(公共孔径)处的覆盖玻璃中,或者置入一个或多个相机通道的透镜中,或者置入被包括在任何传感器阵列上方的光学器件部分的光学路径中的一个或多个其它光学特征中。
一些实施例采用具有单个透镜元件的光学器件设计。一些其它实施例采用具有多个透镜元件(例如两个或更多元件)的透镜。具有多个透镜元件的透镜可以例如用于帮助提供优于宽波长带(如在传感器阵列上具有滤色器阵列的传统数字成像器)的光学性能。例如,一些多元件透镜组件采用单个元件的组合来帮助最小化总偏差。由于一些透镜元件具有正偏差而另一些具有负偏差,因此可以减小总偏差。该透镜元件可以由不同材料制成,可以具有不同的形状和/或可以限定不同的表面曲率。通过这种方式可以获得预定的响应。确定合适的和/或最佳的透镜配置的过程通常由透镜设计者借助适当的计算机软件来执行。
一些实施例采用具有三个透镜元件或小透镜的光学器件部分。该三个小透镜可以布置成任何配置的堆并且彼此隔开,其中每个小透镜限定两个表面轮廓,使得该堆总共限定6个表面曲率和两个空间(在小透镜之间)。在一些实施例中,具有3个小透镜的透镜提供足够的自由度来允许设计者校正所有第三阶像差和两个色差,并向透镜提供有效焦距,尽管这不是每个实施例的要求,也不是具有布置成堆的3个小透镜的实施例的要求。
就此而言,图11A-11B分别是按照本发明另一实施例的在例如用于红色相机通道的适于使红光或红光带透射的光学器件部分中使用的透镜410的示意图和侧视图。在该实施例中,透镜410包括布置成堆418的3个小透镜,即第一小透镜412、第二小透镜414和第三小透镜416。透镜410从视场内接收光,并将该光的至少一部分透射和/或成形,以在图像平面419的图像区域中产生图像。具体地说,第一小透镜412从视场内接收光,并将该光的至少一部分透射和/或成形。第二小透镜414接收由第一小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形。第三小透镜416接收由第二小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形以在图像平面419的图像区域中产生图像。
图12A-12B分别是按照本发明另一实施例的在例如用于绿色相机通道的适于使绿光或绿光带透射的光学器件部分中使用的透镜420的示意图和侧视图。在该实施例中,透镜420包括布置成堆428的3个小透镜,即第一小透镜422、第二小透镜424和第三小透镜426。堆428从视场内接收光,并将该光的至少一部分透射和/或成形,以在图像平面429的图像区域中产生图像。具体地说,第一小透镜422从视场内接收光,并将该光的至少一部分透射和/或成形。第二小透镜424接收由第一小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形。第三小透镜426接收由第二小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形以在图像平面429的图像区域中产生图像。
图13A-13B分别是按照本发明另一实施例的在例如用于蓝色相机通道的适于使蓝光或蓝光带透射的光学器件部分中使用的透镜430的示意图和侧视图。在该实施例中,透镜430包括布置成堆438的3个小透镜,即第一小透镜432、第二小透镜434和第三小透镜436。透镜430从视场内接收光,并将该光的至少一部分透射和/或成形,以在图像平面439的图像区域中产生图像。具体地说,第一小透镜432从视场内接收光,并将该光的至少一部分透射和/或成形。第二小透镜434接收由第一小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形。第三小透镜436接收由第二小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形以在图像平面439的图像区域中产生图像。
图14是按照本发明另一实施例的在例如用于红色相机通道的适于使红光或红光带透射的光学器件部分中使用的透镜440的示意图。该实施例中的透镜440可以被表征为60度的全视场。在该实施例中,透镜440包括设置成堆448的3个小透镜,即第一小透镜442、第二小透镜444和第三小透镜446。透镜440从视场内接收光,并将该光的至少一部分透射和/或成形,以在图像平面449的图像区域中产生图像。具体地说,第一小透镜442从视场内接收光,并将该光的至少一部分透射和/或成形。第二小透镜444接收由第一小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形。第三小透镜446接收由第二小透镜透射和/或成形的光的至少一部分,并将该光的一部分透射和/或成形以在图像平面449的图像区域中产生图像。
图15A-15F是可以采用的一些其它类型透镜的示意表示。具体地说,图15A-15E是包括具有3个小透镜450A-450C、452A-452C、454A-454C、456A-456C、458A-458C的堆的其它透镜450-458的示意表示。图15是只具有一个透镜元件的透镜460的示意表示。然而应当理解,光学器件部分可以具有任何数量的部件和配置。
图16A-16C是传感器阵列例如传感器阵列310A以及与其连接的电路例如470-476的一个实施例的表示。传感器阵列例如传感器阵列310A的目的是捕捉光并将其转换为一个或多个表示该光的信号(例如电信号),这些信号被提供给一个或多个与该传感器阵列连接的例如如下所述的电路。参照图16A,传感器阵列包括多个传感器元件,例如多个相同的光电检测器(有时称为“图片元素”或“像素”),例如像素4801,1-480n,m。光电检测器例如光电检测器4801,1-480n,m布置成阵列,例如矩阵类型阵列。该阵列中像素的数量的范围可以例如从几十万到上百万个。这些像素可以例如布置成例如具有多行和多列的二维阵列配置,例如640×480,1280×1024等。但是,可以按照需要设置像素的尺寸和尺度,而且这些像素可以按照任何需要的图案来分布。甚至可以使用不按照任何规则图案分布的像素。参照图16B,例如像素4801,1的像素可以视为具有例如x和y尺度的尺度,尽管应当认识到,像素的光子捕捉部分可以或可以不占据该像素的整个面积,并且可以或可以不具有规则形状。在一些实施例中,传感器元件设置在这里称为传感器平面的平面上。该传感器可以具有正交的传感器参考轴,包括例如x轴、y轴和z轴,而且可以配置为使该传感器平面平行于xy平面XY并指向相机通道的光学器件部分。每个相机通道都具有对应于可由该传感器阵列观察到的宽阔区域的视场。每个传感器元件可以例如与该视场的相应部分相关联。
传感器阵列可以采用任何类型的技术,例如但不限于MOS像素技术(意思是传感器的一个或多个部分按照“金属氧化物半导体”技术来实施)、电荷耦合器件(CCD)像素技术或两种技术的组合(混合),并且可以包含任何适当的一种或多种材料,包括例如硅、锗和/或它们的组合。传感器元件或像素可以按照任何适当的方式形成。
在工作中,传感器阵列例如传感器阵列310A例如逐行地(类似于扫描仪)或全部地(类似于传统胶片相机曝光)暴露于光。在暴露于光长达特定时间段(曝光时间)之后,可以例如逐行地读取例如像素4801,1-480n,m的像素。
在一些实施例中,使用有时称为列逻辑单元例如列逻辑单元470的电路来读取来自像素例如像素4801,1-480n,m的信号。参照图16C,即像素电路的示意表示,在一些这样的实施例中,可以通过声明水平穿过传感器阵列例如传感器阵列310A的字线例如字线482中的一个,来每次一行地存取传感器元件例如像素4801,1。数据可以通过竖直穿过传感器阵列例如传感器阵列310A的位线而传入和/或传出传感器元件例如像素4801,1
应当认识到,像素不限于图16A-16C所示的配置。如上所述,一个或多个传感器阵列中的每一个都可以具有任何配置(例如尺寸、形状、像素设计)。
传感器阵列例如传感器阵列310A-310D可以彼此相同或不同。例如在一些实施例中,传感器阵列彼此相同。而在一些其它实施例中,一个或多个传感器阵列在一个或多个方面不同于一个或多个其它的传感器阵列。例如,在一些实施例中,一个或多个传感器阵列的一个或多个特性(例如但不限于其元件类型、尺寸(例如表面面积)和/或性能)适于相应的光学器件部分和/或有助于实现期望的结果。例如,如果特定相机通道专用于特定颜色(或色带)或波长(或波长带),则用于该相机通道的传感器阵列可以适于对该特定颜色(或色带)或波长(或波长带)比对其它颜色或波长的灵敏度要高,和/或只感测该特定颜色(或色带)或波长(或波长带)。在一些这样的实施例中,传感器阵列的像素形状(例如像素的有效区域(该像素对光敏感的表面区域)的形状)、设计、操作、阵列尺寸(例如阵列的有效部分的表面面积)和/或传感器阵列的像素尺寸(例如像素表面的有效面积)针对相机通道所专用于的相应波长或波长带来确定、选择、定制和/或优化。然而应当理解,还可以使用任何其它配置。一个或多个传感器阵列中的每一个都可以具有任何配置(例如尺寸和形状)。
如在此所述的那样,每个传感器阵列可以例如专用于特定的光带(可见和/或不可见),例如一种颜色或色带。如果这样,则可以对每个传感器阵列调谐以便更高效地捕捉和/或处理其特定光带中的一个或多个图像。
在该实施例中,跨每个单独阵列的光电检测器的阱深是相同的,尽管在一些其它实施例中,该阱深可以不同。例如,任何给定阵列的阱深可以容易地制造成不同于传感器子系统的其它阵列的阱深。对合适阱深的选择可取决于很多因素,最可能包括所针对的可见光谱带。由于每个整个阵列可能针对一个可见光谱带(例如红色),因此阱深可以设计为捕捉该波长而忽略其它(例如蓝色、绿色)。
在特定颜色阵列中掺以半导体材料可以增强对特定颜色波长的光子吸收的选择性。
在一些实施例中,像素可以响应于一种特定的颜色或色带(即波长或波长带)。例如在一些这样的实施例中,光学器件部分可以包括仅使该特定颜色或色带透射和/或减弱与其它颜色或色带相关联的波长或波长带的透镜和/或滤光器。在一些其它这样的实施例中,滤色器和/或滤色器阵列设置在一个或多个传感器阵列的一个或多个部分的上方和/或上。在一些其它实施例中,没有滤色器或滤色器阵列设置在任何传感器阵列上。在一些实施例中,传感器阵列分离颜色或色带。在一些这样的实施例中,传感器阵列可以配备具有例如两种或三种颜色的多带感测能力的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三种颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。实际上,减弱特定波长并使其它波长通过的材料层可以设置在光电二极管表面上或集成到光电二极管表面中。通过这种方式,每个像素起到适于感测多个波长的多个光电二极管的作用。
图17A是按照本发明的一个实施例的传感器阵列的一部分例如传感器阵列310A的一部分的平面图。该阵列的该部分包括6个单位单元,例如单元490i,j-490i+2,j+1。每个单位单元具有像素区,例如单位单元490i+2,j+1具有像素区492i+2,j+1。该像素区可以例如是但不限于p注入区。可以通过声明可以例如水平穿过传感器阵列例如传感器阵列310A的字线例如字线494中的一个,来每次一行地存取传感器元件例如像素492i,j-492i+2,j+1。可以在功率线例如功率线496上提供能量,该功率线可以例如竖直地穿过传感器阵列。数据可以通过可以例如竖直穿过传感器阵列例如传感器阵列310A的位线例如位线498而传入和/或传出传感器元件例如像素492i,j-492i+2,j+1
在一些实施例中,每个传感器阵列具有1.3M个像素。在这些实施例中,3个相机通道可以提供大约4M个像素的有效分辨率。4个相机通道可以提供大约5.2M个像素的有效分辨率。
在一些其它实施例中,每个传感器阵列具有2M个像素。在这些实施例中,3个相机通道可以提供大约6M个像素的有效分辨率。4个相机通道可以提供大约8M个像素的有效分辨率。
应当认识到,传感器阵列不限于图17A中所示的设计。如上所述,一个或多个传感器阵列中的每一个都可以具有任何配置(如尺寸、形状、像素设计)。
图17B是具有用以捕捉所有波长的单个阱的像素的注入部分的横截面图。
例如,图17C是具有阱的像素的注入部分的横截面图,该阱形成在半导体(例如硅)中的“深处”,使得注入深度适于或适用于改善波长在与例如红色相关联的范围内的光的捕捉或采集。这样,图17C所示的实施例包括结的深注入形成以产生高效率的红色检测器,其中光子被采集、检测或捕捉于半导体中的深处。在该实施例中,可能有利的是,在光入射到像素上之前采用滤色器或对光进行光学过滤,以相当大程度地减弱波长与非红色的颜色相关联的光(波长在与红色相关联的范围内的光子)。
像素或光电检测器的阱深可以预定、选择和/或设计为将响应调谐为适于光电检测器。就此而言,参照图17D,图示了“调谐为”捕捉、采集或响应于波长在与蓝色相关联的范围内的光子的像素。像素的注入部分的横截面图包括阱,该阱形成在半导体(例如硅)中的“表面附近”,使得植入深度适于或适用于改善波长在与蓝色相关联的范围内的光的捕捉或采集。因此,参照图17C,在半导体中形成浅结,其针对在检测器表面附近采集、检测或捕捉与蓝色相关联的范围内的波长(参照图17C)而被优化。这样,在该实施例中,由于选择性地将该区注入于特定深度而可以省略滤光器。也就是说,滤光器材料可以是不必要的,因为绿色和红色光子穿过主要采集、检测或捕捉蓝色信号((波长在与蓝色相关联的范围内的光子)的采集区。
参照图17E,像素或光电检测器可以“调谐”为捕捉、采集或响应于波长主要在与红色相关联的范围内的光子。在此,阱区形成和/或限定在主要与红色波长相关联的深度处。
参照图17F,像素或光电检测器可以“调谐”为捕捉、采集或响应于波长主要在与绿色相关联的范围内的光子。在此,阱区形成和/或限定在主要与绿色波长相关联的深度处。
值得注意的是,像素或光电检测器可以“调谐”为捕捉、采集或响应于波长主要在与任何颜色相关联的范围内的光子。就此而言,像素或光电检测器的阱区形成和/或限定在主要与待捕捉或待采集颜色的波长相关联的深度处。在这些实施例中,用于采集的特定区可以通过将结埋入半导体基材料内来形成。在这种情况下,通过改变埋入的结深度和形状,就可以实现波长选择性。和光学路径一起,进一步的选择性和波长响应度可以允许单个或多个带通检测器。
像素或光电检测器可以“调谐”为捕捉、采集或响应于波长主要在与多种颜色相关联的范围内的光子。例如参照图17G,第一像素(位于左边)包括形成和/或限定在主要与红色(深)和蓝色(较浅)的波长相关联的深度处的阱区。这样,该像素或光电检测器“调谐”为捕捉或采集波长主要在与两种颜色相关联的范围内的入射光子。右边的像素包括形成和/或限定在主要与一种颜色、在此为绿色的波长相关联的深度处的阱区。该传感器阵列可以包括一个、一些或所有像素(位于左边或右边)。此外,该传感器阵列可以包括两种类型像素的图案。
值得注意的是,像素或光电检测器可以“调谐”为捕捉、采集或响应于波长主要在与任何两种或更多颜色相关联的范围内的光子(只要这样的颜色足够地隔开以允许合适的感测)。(参见例如图17H—通过位于左边的像素感测的蓝色和绿色,通过位于右边的像素感测的绿色和红色)。
有很多实施例涉及调谐阱深和/或像素或光电检测器的区,例如,
-各个像素上的λ3/λ2/λ1(例如R/G/B)滤色器阵列
-各个像素中的λ3/λ2/λ1(例如R/G/B)光电二极管
-一个像素中的λ3/λ1(例如R/B)光电二极管,一个像素中的λ2(例如G)
-一个像素中的λ3/λ2/λ1(例如R/G/B)光电二极管
-一个像素中的λ4/λ2(例如R/G1)光电二极管,一个像素中的λ3/λ1(例如G2/B)
-各个像素上的λ4/λ3/λ2/λ1(例如R/G2/G1/B)滤色器阵列
-一个像素中的λ4/λ3/λ2/λ1(例如R/G2/G1/B)光电二极管
-各个像素中的λ4/λ3/λ2/λ1(例如R/G2/G1/B)光电二极管
注意:从λ1到λ4的波长带代表递增的波长,并且范围可以从UV到IR(例如,200-1100nm用于硅光电二极管)
涉及调谐阱深和/或像素或光电检测器的区的所有实施例都意图落入本发明的范围,并因此可以在这里描述和图示的任何实施例中实施。
总的来说,由于每个光电检测器阵列彼此分离,而且不像由于相邻光电检测器的靠近而只能以类似方式处理的传统阵列那样,通过本发明可以实现各种注入和结配置。利用上述一种或多种技术和/或实施例或滤光器和特定波长的检测器的组合,可以实现各种光电检测器拓扑。
传感器阵列的配置(例如传感器元件的数量、形状、尺寸类型和布置)可能影响所感测的图像的特性。例如,图18A-18B是示出由传感器阵列例如310A的一部分捕捉的图像的解释性表示。具体地说,图18A是撞击传感器阵列的一部分的物体(闪电)的图像的解释图。在该实施例中,传感器元件的光子捕捉部分(或有效区域)例如光子捕捉部分502通常由圆圈表示,尽管实际上像素可以具有任何形状,包括例如不规则形状。对此实例来说,撞击像素或光电检测器的光子捕捉部分或有效区域的光子(例如撞击在圆圈XX内的光子)由该光子捕捉部分或有效区域来感测和/或捕捉。图18B示出由该实施例中的传感器捕捉的光子部分例如部分504。不撞击传感器元件的光子(例如撞击在圆圈XX之外的光子)不被感测/捕捉。
图19A-19B是示出由传感器的一部分例如传感器阵列310A捕捉的图像的示意表示,该传感器的一部分比图18A中的传感器提供更多的传感器元件和这些元件的更近间隔。具体地说,图19A示出撞击该传感器的物体(闪电)的图像。对此实例来说,撞击光子捕捉部分例如光子捕捉部分506的光子由该光子捕捉部分来感测和/或捕捉。图19B示出由该实例中的传感器捕捉的光子部分,例如部分508。值得注意的是,图19A的传感器比图18A的传感器捕捉的光子多。
图20A-20B是在一些实施例中为光学器件部分例如光学器件部分330A以及相应的传感器阵列例如传感器阵列310A提供的相对定位的示意图。就此而言,应当理解,尽管图20A-20B示出具有轴例如轴510A的光学器件部分与传感器阵列的轴例如轴512A对齐,但一些实施例可以不采用这样的对齐。此外,在一些实施例中,光学器件部分和/或传感器阵列可以没有轴。
图21是在一些实施例中为4个光学器件部分例如光学器件部分330A-330D和4个传感器阵列例如传感器阵列310A-310D提供的相对定位的示意图。尽管图21示出具有轴例如轴510B的光学器件部分例如光学器件部分330B中的每一个与相应的传感器阵列例如传感器阵列310B的轴例如轴512B对齐,但应当理解一些实施例可以不采用这样的对齐。此外,在一些实施例中,该一个或多个光学器件部分和/或一个或多个传感器阵列可以没有轴。
在一些实施例中,光学器件部分与相应的传感器阵列通常尺寸大致相同,并因此取决于在下面的阵列的尺度而可以在尺寸和形状上彼此不同。但是不要求给定的光学器件部分覆盖全部或只覆盖在下面的阵列。在一些可替换实施例中,光学器件部分可以只覆盖阵列的一部分和/或可以延伸超出该阵列。
图22A-22B分别是按照本发明的一个实施例的图像装置520以及相应的光学器件部分例如光学器件部分330A-330D的图像区域的一个实施例的平面图和横截面图,一个或多个传感器阵列例如传感器阵列310A-310D可以设置和/或集成在图像装置520中或上。在该实施例中,图像装置520具有第一和第二主表面522、524以及由边缘526、528、530、532限定的外周界。图像装置520分别为一个或多个传感器阵列例如传感器阵列310A-310D的有效区域限定一个或多个区例如区534A-534D。该图像装置还分别为与一个或多个传感器阵列例如传感器阵列310A-310D相关联的缓冲器和/或逻辑单元限定一个或多个区例如区536A-536D和538A-538D。
该图像装置还可以限定设置在该图像装置的周界附近(例如沿着并相邻于该图像装置的一个、两个、三个或四个边缘延伸)和/或用于传感器阵列的区之间的一个或多个附加的区例如区540、542、544、546。在一些实施例中,一个或多个导电的垫,例如垫550、552、554、556、处理器的一个或多个部分、附加的存储器的一个或多个部分和/或任何其他类型的电路或特征可以设置在一个或多个这些区或其部分中。一个或多个这样的垫可用于提供一个或多个电信号和/或从该图像装置上的一个或多个电路提供给位于该图像装置上或离开该图像装置的一个或多个其他电路。
在一些实施例中,主外表面限定用于支撑支撑件例如支撑件320的一个或多个部分的一个或多个支撑表面。这种支撑表面可以设置在任何区例如区540-546或其部分中,但在一些实施例中,有利的是,将支撑表面定位在传感器阵列的有效区域之外,从而不干扰这些区域中的像素对光子的捕捉。
一个或多个光学器件部分例如光学器件部分330A-330D分别在图像平面上产生图像区域例如图像区域560A-560D。
图像装置、传感器阵列和图像区域可以分别具有任何尺寸和形状。在一些实施例中,图像区域与相应的传感器阵列通常尺寸大致相同,并因此,图像区域取决于在下面的传感器阵列的尺度而可以在尺寸和形状上彼此不同。当然,不要求图像区域覆盖全部或只覆盖在下面的阵列。在可替换实施例中,图像区域可以只覆盖阵列的一部分,并且可以延伸超出该阵列。
在该实施例中,图像区域例如图像区域560A-560D分别延伸超出传感器阵列例如传感器阵列310A-310D的外周界。该图像装置具有通常为正方形的形状,其中第一尺度562约等于10mm,第二尺度564约等于10mm,每个象限具有等于5mm的第一尺度566和等于5mm的第二尺度568。每个图像区域具有通常为圆形的形状和约等于5毫米(mm)的宽度或直径570。每个有效区域具有通常为矩形的形状,其中第一尺度572约等于4mm,第二尺度574约等于3mm。有效区域可以限定例如1200×900个像素(即1200列,900行)的矩阵。
图23A-23B分别是按照另一实施例的图像装置和图像区域的平面图和横截面图。在该实施例中,图像装置520具有一个或多个垫例如550-556,它们按照不同于上面示出的实施例中的一个或多个垫的配置来设置。图像装置520、传感器阵列和图像区域560A-560D可以具有例如针对图22A-22B所示的图像装置的实施例在上面阐述的相同形状和尺度。
图24A-24B分别是按照另一实施例的图像装置520和图像区域的平面图和横截面图。在该实施例中,图像装置520具有设置在传感器阵列之间的竖直延伸区,该区比图22A-22B所示的图像装置的实施例中设置在传感器阵列之间的竖直延伸区更窄。沿着周界设置的水平延伸区542、546比沿着图22A-22B所示的图像装置520的周界设置的水平延伸区542、546更宽。图像装置520可以具有例如针对图22A-22B所示的图像装置的实施例在上面阐述的相同形状和尺度。
图25A-25B分别是按照另一实施例的图像装置520和图像区域例如图像区域560A-560D的平面图和横截面图。在该实施例中,图像区域例如图像区域560A-560D分别都没有延伸超出传感器阵列例如传感器阵列310A-310D的外周界。图像装置520和传感器阵列可以具有例如针对图22A-22B所示的图像装置520的实施例在上面阐述的相同形状和尺度。
图26A-26B分别是按照另一实施例的图像装置和图像区域的平面图和横截面图。在该实施例中,设置在传感器阵列和图像装置的边缘之间的区540-546比设置在传感器阵列和图22A-22B的实施例中的图像装置的边缘之间的区540-546更宽。这样的区可以用于例如一个或多个垫、处理器的一个或多个部分、用作支撑件的安装区和/或底座和/或它们的任何组合。
此外,在该实施例中,设置在传感器阵列之间的水平延伸区564比设置在图22A-22B的实施例中的传感器阵列之间的水平延伸区546更宽。这样的区546可以用于例如一个或多个垫、处理器的一个或多个部分、用作支撑件的安装区和/或底座和/或它们的任何组合。该图像装置和传感器阵列可以具有例如上面阐述的相同形状和尺度。
对于在此公开的每个实施例,该实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
为此,例如,图27A-27B分别是按照另一实施例的图像装置540和图像区域560A-560D的平面图和横截面图。图像装置520和图像区域560A-560D的该实施例类似于图26A-26B所示的图像装置和图像区域的实施例,只是图像区域例如图像区域560A-560D分别没有延伸超出传感器阵列例如传感器阵列310A-310D的外周界。
图28A是按照本发明另一实施例的支撑件320的透视图。支撑件320可以具有任何配置,且可以包括例如但不限于框架。图28B-28D是支撑件320的放大的横截面图。参照图28A-28D,一个或多个相机通道的光学器件部分例如光学器件部分330A-330D由一个或多个支撑件例如支撑件320来支撑,该支撑件将每个光学器件部分至少部分地与相应的传感器阵列配准地定位。在该实施例中,例如光学器件部分330A与传感器阵列310A配准地定位。光学器件部分330B与传感器阵列310B配准地定位。光学器件部分330C与传感器阵列310C配准地定位。光学器件部分330B与传感器阵列310B配准地定位。光学器件部分330D与传感器阵列310D配准地定位。
在一些实施例中,支撑件320还可以帮助限制、最小化和/或消除相机通道之间的光“串扰”和/或帮助限制、最小化和/或消除光从数码相机设备之外“进入”。
在一些实施例中,支撑件320限定一个或多个支撑部分,例如4个支撑部分600A-600D,其每一个都支撑和/或帮助定位一个或多个光学器件部分中相应的一个。例如,在该实施例中,支撑部分600A将光学器件部分330A与传感器阵列310A配准地支撑和定位。支撑部分600B将光学器件部分330B与传感器阵列310B配准地支撑和定位。支撑部分600C将光学器件部分330C与传感器阵列310C配准地支撑和定位。支撑部分600D将光学器件部分330D与传感器阵列310D配准地支撑和定位。
在该实施例中,每个支撑部分例如支撑部分600A-600D限定孔径616和底座618。孔径616为相应的相机通道限定光传输的通路。底座618适于接收相应的一个光学器件部分(或其部分)并适于至少部分地支撑和/或定位相应的光学器件部分。就此而言,底座618可以包括适于邻接该光学器件部分的一个或多个表面的一个或多个表面(例如表面620、622),以相对于该支撑部分和/或传感器阵列310A-310D中的一个或多个来至少部分地支撑和/或定位该光学器件部分。在该实施例中,表面620设置在该光学器件部分的周界周围,以在x方向和y方向上支撑和帮助定位该光学器件部分。表面622(有时称为“止动”表面)将该光学器件部分定位或帮助定位在z方向上。
止动表面622的位置和/或取向可以被修改成将光学器件部分定位在相对于相应的传感器阵列的特定距离(或距离范围)处和/或取向上。就此而言,底座618控制透镜定位(例如安装)在支撑件320中的深度。该深度对每个透镜可能不同,并且至少部分地基于透镜的焦距。例如,如果相机通道专用于特定的颜色(或色带),则用于该相机通道的一个或多个透镜可以具有特别适于相机通道所专用于的颜色(或色带)的焦距。如果每个相机通道专用于不同于其它相机通道的颜色(或色带)的颜色(或色带),则每个透镜可以具有不同的焦距,以例如使透镜适于相应的传感器阵列,并且每个底座具有不同的深度。
每个光学器件部分可以按照任何合适的方式固定在相应的底座618中,该方式例如但不限于机械的(例如压配合、物理止动)、化学的(例如粘附)、电的(例如电接合)和/或它们的组合。底座618可以包括适于为相应的光学器件部分提供压配合的尺度。
孔径(或其部分)可以具有任何配置(例如形状和/或尺寸),包括例如圆筒形的、圆锥形的、矩形的、不规则的和/或它们的任何组合。该配置可以基于例如光学路径的期望配置、相应光学器件部分的配置、相应传感器阵列的配置和/或它们的任何组合。
应当理解,支撑件320可以具有或不具有恰好4个支撑部分例如600A-600D。例如,在一些实施例中,该支撑件包括少于4个的支撑部分(例如1个、2个或3个支撑部分)。在另一些实施例中,该支撑件包括超过4个的支撑部分。尽管支撑部分630A-630D被示出为彼此相同,但这不是必需的。此外,在一些实施例中,一个或多个支撑部分可以至少部分地与一个或多个其它支撑部分相隔离。例如,支撑件320可以进一步限定将一个或多个内部支撑部分与一个或多个其它支撑部分部分地相隔离的间隙或空间。
支撑件320可以包含任何类型的材料而且可以具有任何配置和/或构造。例如,在一些实施例中,支撑件320包含硅、半导体、玻璃、陶瓷、塑料或金属材料和/或它们的组合。如果支撑件320具有多于一个的部分,则这些部分可以彼此分开地制造、彼此整合地制造和/或按这两种方式的任何组合来制造。如果该支撑件限定多于一个的支撑部分,则每个这样的支撑部分例如支撑部分600A-600D可以如所示那样与其它支撑部分中的一个、一些或全部耦合,或者与其它支撑部分完全相隔离。该支撑件可以是可以为制造和材料提供广泛选择的固体装置,但是也可以采用其它形式的装置。例如,在一些实施例中,支撑件320包括限定一个或多个支撑部分的板(例如薄板),其中孔径和底座通过机械加工(例如钻孔)或任何其它合适方式来形成。在另一些实施例中,支撑件320(例如利用具有限定一个或多个支撑部分的孔径和底座的突起的模子来)被制造为其中限定有孔径的铸件。
在一些实施例中,透镜和支撑件被制造为单个模制部件。在一些实施例中,透镜可以被制造有可用于形成支撑件的小片(tab)。
在一些实施例中,支撑件320直接或间接耦合和/或附着到图像装置上。例如,支撑件320可以(例如使用粘附剂来)直接耦合和附着到图像装置上或者通过中间支撑部件(未示出)间接耦合和/或附着到图像装置上。
支撑件320的x和y尺度可以例如与图像装置(在一个或多个尺度上)大致相同、与光学器件部分330A-330D的布置(在一个或多个尺度上)大致相同和/或与传感器阵列310A-310D的布置(在一个或多个尺度上)大致相同。这样设置尺度的一个优点是有助于将数码相机设备的x和y尺度保持得尽可能地小。
在一些实施例中,可能有利的是,向底座618提供与将邻接止动表面620的光学器件部分的高度相同的高度A。可能有利的是,将止动表面622设置在至少等于允许底座618为要安装在上面的光学器件部分(例如透镜)提供牢固止动所需要的高度的高度B(例如止动表面622和支撑部分的基座之间的距离)。高于止动表面622的高度而设置的孔径616的部分的宽度或直径C可以例如基于要安装在其中的光学器件部分(例如透镜)的宽度或直径以及用于将光学器件部分粘附和/或保持在底座618中的方法。止动表面622的宽度优选的大得足以有助于为光学器件部分(例如透镜)提供牢固止动,但小得足以将对由光学器件部分透射的光的不必要阻挡降至最低。可能理想的是,将低于止动表面622的高度而设置的孔径616的部分的宽度或直径D大得足以有助于将对由光学器件部分透射的光的不必要阻挡降至最低。鉴于上述考虑,可能理想的是,向该支撑件提供等于所需要的最小尺度的高度E,从而产生坚固得足以支撑一个或多个将要安装在其中的光学器件部分的支撑件,并且可能有利的是,使一个或多个支撑部分600A-600D的一个或孔径616A-616D间隔尽可能小但又大得足以使该支撑件坚固得足以支撑将要安装在其中的光学器件部分的间距F。该支撑件可以具有长度J和宽度K。
在一些实施例中,理想的是,向底座618提供等于2.2mm的高度A,在0.25mm到3mm范围内的高度B处提供止动表面622,使该孔径高于止动表面622的高度B的部分的宽度或直径C大约等于3mm,该孔径的下部的宽度或直径D大约等于2.8mm,向支撑部分提供2.45mm到5.2mm范围内的高度E,并且使孔径间隔开至少1mm的距离F。在一些这样的实施例中,可能理想的是,提供长度J等于10mm而宽度K等于10mm的支撑件。在另一些实施例中,可能理想的是,提供长度J等于10mm而宽度K等于8.85mm的支撑件。
在一些实施例中,一个或多个光学器件部分例如光学器件部分330A包括圆筒形类型的透镜,例如Edmunds Optics制造的NT45-090透镜,尽管这不是必须的。这种透镜具有直径G高达3毫米(mm)且高度H为2.19mm的圆筒形部分。在这些实施例中,可能理想的是,采用具有上一段中阐述的尺度和范围的支撑件。
在一些实施例中,支撑件的长度J等于10mm而宽度K等于10mm。在另一些实施例中,可能理想的是,提供长度J等于10mm而宽度K等于8.85mm的支撑件。
图29A是按照另一实施例的支撑件320和安装在其中的光学器件部分例如光学器件部分330A-330D的横截面图。在该实施例中,光学器件部分具有与图7A-7C实施例中的光学器件部分相反的取向。
图29B是按照另一实施例的支撑件和安装在其中的光学器件部分例如光学器件部分330A-330D的横截面图。在该实施例中,每个光学器件部分分别包括具有柄(shank)部分702A-702D的单个透镜元件。支撑件320具有与图6A-6C实施例中的支撑件相反的取向,使得光学器件部分分别安装在面向远离传感器阵列(未示出)的方向的止动表面622A-622D上。
应当理解在此描述的各种实施例的特征可以单独使用和/或组合使用。
图30A-30D示出具有4个支撑部分600A-600D的支撑件320,每个支撑部分都为相应的光学器件部分限定孔径例如孔径616A-616D,其中由一个或多个支撑部分例如支撑部分600A限定的底座例如底座618A设置在深度710A处,该深度不等于一个或多个其它支撑部分的底座例如底座618C的深度例如深度710C,以例如使该一个或多个支撑部分适于相应光学器件部分的聚焦。如上所述,止动表面622的位置和/或取向可以适于将光学器件部分定位于相对于相应传感器阵列的特定距离(或距离范围)和/或取向。就此而言,底座618控制透镜定位(例如安装)在支撑件320内的深度。在一些实施例中,光学器件部分之一适用于蓝光或蓝光带,而光学器件部分中的另一个适用于红光或红光带,然而也可以使用其它配置。
图31A-31D示出具有4个支撑部分600A-600D的支撑件320,每个支撑部分都分别为相应的光学器件部分限定孔径616A-616D和底座618A-618D,其中一个或多个支撑部分例如支撑部分600A的孔径例如孔径616A的直径714A小于一个或多个其它支撑部分例如支撑部分600C的孔径616的直径714C。
对于在此公开的每个实施例,该实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。就此而言,在一些实施例中,如在图30A-30D示出的支撑件的实施例中,由一个或多个支撑部分限定的底座与其它支撑部分的底座处在不同的深度处,以便使这样的一个或多个支撑部分适于相应光学器件部分的焦距。
在一些实施例中,光学器件部分之一适用于蓝光或蓝光带,而光学器件部分中的另一个适用于红光或红光带,然而也可以使用其它配置。
图32是按照本发明一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。在该实施例中,一个或多个光学器件部分例如光学器件部分330A-330D安装在支撑件320中和/或附着到支撑件320。支撑件320上覆在第一接合层722上,而第一接合层722上覆在其中或其上设置和/或集成了一个或多个传感器部分例如传感器部分310A-310D的图像装置例如图像装置520上。图像装置520上覆在第二接合层724上,而第二接合层724上覆在印刷电路板110上。
该印刷电路板包括限定安装图像装置的安装区的主外表面730。主外表面730还可以限定其上可以安装有在数码相机中使用的一个或多个附加装置的一个或多个附加安装区(未示出)。在印刷电路板的主外表面730上提供一个或多个垫732以连接到一个或多个安装在该主外表面上的装置。
图像装置520包括一个或多个传感器阵列例如传感器阵列310A-310D以及一个或多个导电层。在一些实施例中,图像装置还包括数码相机设备的处理器的一个、一些或所有部分。图像装置520还包括限定其上安装有支撑件320的安装区的主外表面740。
一个或多个导电层可以图案化为限定一个或多个垫742以及将该一个或多个垫与一个或多个传感器阵列中的一个或多个连接的一个或多个轨迹(未示出)。垫742例如沿着图像装置的一个侧、两个侧、三个侧或四个侧而设置在例如图像装置520的周界附近。一个或多个导电层可以包含例如铜、铜箔和/或任何其它合适的导电材料。
多个导体750可以将图像装置520上的一个或多个垫742与电路板720上的一个或多个垫732连接。导体750可用于例如将图像装置上的一个或多个电路与印刷电路板上的一个或多个电路连接。
第一和第二接合层722、724可以包含任何合适的材料,例如但不限于粘附剂,且可以包括任何合适的配置。第一和第二接合层722、724可以包含相同的材料,尽管这不是必须的。如在此使用的那样,接合层可以是连续或不连续的。例如,导电层可以是蚀刻的印刷电路层。此外,接合层可以是或不是平坦的,或甚至基本上是平坦的。例如,非平坦表面上的共形(conformal)接合层是非平坦的。
多个光学器件部分例如光学器件部分330A-330D安装在支撑件中和/或附着到支撑件。
在一些实施例中,数码相机设备300具有约2.5mm×6mm×6mm的尺度。例如,厚度可以等于约2.5mm,长度可以等于约6mm,宽度可以等于约6mm。在一些这样的实施例中,数码相机设备具有总共有1.3M个像素的一个或多个传感器阵列,尽管也可以采用其他配置(例如不同的厚度、宽度、长度和像素数量)。
在一些实施例中,图像装置520上的一个或多个电路可以通过一个或多个无线通信链路与一个或多个装置通信。在一些这样的实施例中,图像装置520可以限定在这种无线通信链路中使用的一个或多个电路和/或在这种无线通信链路中使用的一个或多个分立装置的一个或多个安装区。
数码相机设备300可以按照任何方式来组装和安装。图33A-33F示出组装和安装该数码相机设备的一个实施例。参照图33A,最初,提供图像装置520。参照图33B,第一接合层722提供在图像装置520的一个或多个表面的一个或多个区上。这些区为支撑件限定了一个或多个安装区。参照图33C,此后将支撑件520定位在接合层722上。在一些实施例中,可以施加力来帮助将任何陷入的空气从图像装置和支撑件之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在图像装置520和支撑件320之间形成接合。参照图33D,此后一个或多个光学器件部分例如光学器件部分330A-330D可以安装在支撑件320中和/或附着到支撑件320。参照图33E,接合层724提供在印刷电路板720的一个或多个表面的一个或多个区上。这样的区为数码相机设备300限定一个或多个安装区。参照图33F,此后将数码相机设备300定位在接合层724上。可以安装一个或多个导体750,以将图像装置上的一个或多个垫742与电路板732上的一个或多个垫连接。
在一些实施例中,部件层之间的电互联可以通过光刻法和金属化、隆起接合或其它方法来形成。有机或无机接合方法可用于联结部件层。分层组装工艺从具有用于整个相机和/或每个相机通道的电子器件的“宿主”晶片开始。然后将另一个晶片或各个芯片与宿主晶片对齐并且与宿主晶片接合。被转移晶片或芯片可具有用以进行电互联的隆起,或者连接可以在接合和减薄之后进行。来自第二晶片或各个芯片的支撑衬底被去除,只留下包含被转移电子器件的附着到宿主晶片的几微米材料厚度。然后在使用标准集成电路工艺的被接合晶片或管芯与宿主晶片或管芯之间进行电连接(如果需要)。可以多次重复该工艺。
图33G-33K是按照本发明其它实施例使用的数码相机设备、机械座架和电连接的示意图。具体地说,图33G是数码相机设备300的透视图。图33H是安装到印刷电路板720的主下表面的数码相机300的正视图。使用一个或多个导体750将印刷电路720上的一个或多个垫732与图像装置520的主外表面上的一个或多个垫连接。
图33H是安装到印刷电路板720的主下表面的数码相机300的正视图。支撑件320设置在由该印刷电路板限定的通孔中。一个或多个导体750将印刷电路720上的垫732与图像装置520的主外表面上的垫连接。
图33I是安装到印刷电路板720的主下表面的数码相机300的正视图。支撑件320设置在由该印刷电路板限定的通孔中。隆起接合752将图像装置520的表面740上的一个或多个垫742与印刷电路板720的主下表面上的垫732连接。
图33J是安装到印刷电路板720的主上表面的数码相机300的正视图。一个或多个导体750将印刷电路720上的垫732与图像装置520的主外表面740上的垫742连接。
图33I是安装到印刷电路板720的主下表面的数码相机300的正视图。支撑件320设置在由该印刷电路板限定的通孔中。隆起接合752将图像装置520的主下表面上的一个或多个垫与印刷电路板720的主上表面上的垫连接。
在一些实施例中,图像传感器和光学堆的制造在单个晶片上进行、在独立的晶片(可能多达两个晶片:一个用于IC,一个用于光学器件)上装配,并以晶片级接合在一起。还可以采用拾取和放置方法和设备以将光学组件附装到晶片IC,或者可以单独组装图像传感器管芯或其它组件。
在采用MEMS的实施例中,光学堆、MEMs和图像传感器的制造可以在单个晶片上进行、在独立的晶片(可能多达3个晶片:一个用于IC,一个用于MEMs,一个用于光学堆)上装配,并以晶片级接合在一起。还可以采用拾取和放置方法和设备以将光学组件和MEMs附装到晶片IC,或者可以单独组装图像传感器管芯或其它组件(MEMs和光学堆)。
图34是按照本发明的另一实施例的可用于支撑一个或多个具有3个透镜元件的透镜例如透镜410、430(图11A-11B,13A-13B)、并且可用于与相应传感器阵列至少部分配准地定位这些透镜的支撑件的横截面图。在该实施例中,支撑件320限定一个或多个支撑部分,例如4个支撑部分600A-600D,每个支撑部分都支撑和/或有助于定位一个或多个光学器件部分中相应的一个。
在一些实施例中,该支撑件还可以有助于限制、最小化和/或消除相机通道之间的光“串扰”和/或还可以有助于限制、最小化和/或消除光从数码相机设备之外“进入”。
支撑部分600A-600D中的每一个都限定孔径616和多个底座618-1至618-3。具体地说,支撑部分600A限定孔径616A和底座618-1A至618-3C。支撑部分600B限定孔径616B和底座618-1B至618-3B。支撑部分600C限定孔径616C和底座618-1C至618-3C。支撑部分600D限定孔径616D和底座618-1D至618-3D。参照例如支撑部分600A,孔径616A为相应的相机通道限定光传输的通路。多个底座618-1A至618-3A中的每一个适于接收相应的光学器件部分(或其部分)的小透镜中相应的一个并且至少部分地支撑和/或定位该相应的小透镜。就此而言,底座618-1A至618-3A中的每一个可以包括适于邻接该相应小透镜的一个或多个表面的一个或多个表面(例如表面620-1A至620-3A和表面622-1A至622-3A),以相对于该支撑部分和/或传感器阵列310A-310D中的一个或多个来至少部分地支撑和/或定位该小透镜。在该实施例中,表面620-1A至620-3A中的每一个设置在该相应小透镜的周界周围,以在x方向和y方向上支撑和帮助定位该小透镜。表面622-1A至622-3A(有时称为“止动”表面)中的每一个将该相应小透镜定位或帮助定位在z方向上。
止动表面622-1A至622-3A的位置和/或取向可以适于将该相应小透镜定位在相对于相应传感器阵列的特定距离(或距离范围)处和/或取向上。就此而言,底座618-1A至618-3A控制每个小透镜定位(例如安装)在支撑件内的深度。该深度对每个小透镜可能不同,并且至少部分基于透镜的焦距。例如,如果相机通道专用于特定的颜色(或色带),则用于该相机通道的一个或多个透镜可以具有特别适于该相机通道所专用于的颜色(或色带)的焦距。如果每个相机通道专用于不同于其它相机通道的颜色(或色带)的颜色(或色带),则每个透镜可以具有不同的焦距,以例如使透镜适于相应的传感器阵列,并且每个底座具有不同的深度。
在该实施例中,每个支撑部分包括适于帮助将相应的光学器件部分定位在离相应传感器阵列期望距离处的延长部分。在该实施例中,该延长部分在轴向上延伸并限定壁760,该壁又分别限定孔径的下部,其有助于限制、最小化和/或消除相机通道之间的光“串扰”和/或还可以有助于限制、最小化和/或消除光从数码相机设备之外“进入”。
在一些实施例中,提供与支撑部分分开装配的隔板,该隔板适于设置在支撑部分和一个或多个传感器阵列之间以帮助将一个或多个光学器件部分定位在离该一个或多个传感器阵列的期望距离处。在一些这样的实施例中,该隔板和支撑件共同限定一个或多个光传输的通道,帮助限制、最小化和/或消除相机通道之间的光“串扰”和/或帮助限制、最小化和/或消除光从数码相机设备之外“进入”。
支撑件320可以包含任何类型的材料且可以具有任何配置和/或构造。例如,在一些实施例中,支撑件320包括硅、半导体、玻璃、陶瓷、塑料或金属材料和/或它们的组合。如果支撑件320具有多于一个的部分,则这些部分可以彼此分开地制造、彼此整合地制造和/或按这两种方式的任何组合来制造。如果该支撑件限定多于一个的支撑部分,则每个这样的支撑部分例如支撑部分600A-600D可以如所示那样与其它支撑部分中的一个、一些或全部耦合,或者与其它支撑部分完全相隔离。
支撑件320可以是可以为制造和材料提供广泛选择的固体装置,但是也可以采用其它形式的装置。例如,在一些实施例中,支撑件320包括限定一个或多个支撑部分的板(例如薄板),其中孔径和底座通过机械加工(例如钻孔)或任何其它合适方式来形成。在另一些实施例中,支撑件320(例如利用具有限定一个或多个支撑部分的孔径和底座的突起的模子来)被制造为其中限定有孔径的铸件。
每个光学器件部分例如光学器件部分330A-330D可以按照任何合适的方式固定在相应的底座中,该方式例如但不限于机械的(例如压配合、物理止动)、化学的(例如粘附)、电的(例如电接合)和/或它们的组合。在一些实施例中,底座618-1A至618C-3A中的每一个具有适于为相应的小透镜提供压配合的尺度。
值得注意的是,光学器件部分的小透镜可以按照任何合适的方式组装在支撑件中。
图35A-35C示出将光学器件部分的小透镜组装在支撑件中的一个实施例。参照图35A,在该实施例中,将支撑件320倒置,并分别将每个透镜410、430的底部小透镜410C、430C插入相应孔径的底部、安装在相应的底座618-3中并与其粘附,如果需要的话。参照图35B,此后将支撑件320右侧朝上并分别将每个透镜410、430的中部小透镜410B、430B插入相应孔径的顶部、安装在相应的底座618-2中并与其粘附,如果需要的话。参照图35C,此后分别将每个透镜410、430的顶部小透镜410A、430A插入相应孔径的顶部、安装在相应的底座618-1中并与其粘附,如果需要的话。在一些实施例中,将顶部小透镜和中部小透镜构建为一个组件,并一起插入。
在该特定实施例中,将底部小透镜穿过孔径底部而插入可能是有利的,因为底部小透镜的止动表面面朝孔径的底部。类似地,将上部小透镜和中部小透镜穿过孔径顶部而插入可能是有利的,因为顶部小透镜的止动表面和中部小透镜的止动表面都面朝孔径的顶部。
然而应当理解,可以采用任何合适的配置。例如在一些实施例中,中部小透镜的止动表面可以面朝孔径的底部,使得中部小透镜可以例如在将底部小透镜插入支撑件之前穿过孔径的底部而插入到支撑部分中。在另一些实施例中,每个止动表面可以面朝一个方向,使得所有小透镜都穿过孔径的相同部分而被插入。
在一些实施例中,透镜和支撑件被制造为单个模制部件。在一些实施例中,透镜可以被制造有可用于形成支撑件的小片。
在一些实施例中,支撑件320直接或间接耦合和/或附着到图像装置上。例如,支撑件320可以(例如使用粘附剂来)直接耦合和附着到图像装置上或者通过中间支撑部件(未示出)间接耦合和/或附着到图像装置上。
支撑件320的x和y尺度可以例如与图像装置(在一个或多个尺度上)大致相同、与光学器件部分330A-330D的布置(在一个或多个尺度上)大致相同和/或与传感器阵列310A-310D的布置(在一个或多个尺度上)大致相同。这样设置尺度的一个优点是有助于将数码相机设备的x和y尺度保持得尽可能地小。
在一些实施例中,支撑件可以具有与图28A-28D所示的支撑件的实施例的一个或多个尺度类似的尺度。
图36是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图32中所示的数码相机设备和印刷电路板的实施例相似,只是本实施例采用图35A-35C中所示的支撑件320和透镜元件410、430。
在一些实施例中,数码相机设备300具有约2.5mm×6mm×6mm的尺度。例如,厚度可以等于约2.5mm,长度可以等于约6mm,宽度可以等于约6mm。在一些这样的实施例中,数码相机设备具有总共有1.3M个像素的一个或多个传感器阵列,尽管可以采用其他配置(例如不同的厚度、宽度、长度和像素数量)。
数码相机设备300可以按照任何方式组装和安装在印刷电路板上。在一些实施例中,该数码相机设备按照与针对图33A-33F所示的数码相机设备300和印刷电路板720的实施例在上面阐述的方式类似的方式组装和安装在印刷电路板720上,只是底部小透镜410C、430C可以在将支撑件定位在第二接合层上之前安装在支撑件中并与其粘附,如果需要的话。透镜的中部和顶部小透镜可以在支撑件被定位在第二接合层724上之后分别安装在支撑件中并与其粘附,如果需要的话。
图37是按照本发明的另一实施例的可用于支撑图11A-11B、13A-13B的透镜410、430、并且可用于与相应传感器阵列至少部分配准地定位这些透镜的可替换支撑件320的横截面图。本实施例中的支撑件320与图34所示的支撑件320的实施例类似,只是本实施例中的支撑件320限定比由图34所示的支撑件的实施例限定的外壁760A-760D更宽的外壁760A-760D。
每个光学器件部分例如光学器件部分330A-330S可以按照任何合适的方式组装和固定在相应的底座中,该方式例如但不限于针对图35A-35C所示的支撑件和光学器件部分的实施例在上面阐述的方式。
图38是按照本发明的另一实施例的可用于支撑图11A-11B、13A-13B的透镜410、430、并且可用于与相应传感器阵列至少部分配准地定位这些透镜的可替换支撑件320的横截面图。本实施例中的支撑件320与图34所示的支撑件320的实施例类似,只是本实施例中的支撑件320限定比由图34所示的支撑件320的实施例限定的外壁和内壁760A-760D更宽的外壁和内壁760A-760D。
每个光学器件部分可以按照任何合适的方式组装和固定在相应的底座中,该方式例如但不限于针对图35A-35C所示的支撑件和光学器件部分的实施例在上面阐述的方式。
图39是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备300和印刷电路板720的实施例相似,只是本实施例采用图37中所示的支撑件320和透镜元件410、430。
该数码相机设备可以按照任何方式组装和安装在印刷电路板上。例如在一些实施例中,该数码相机设备按照与针对图36所示的数码相机设备和印刷电路板的实施例在上面阐述的方式类似的方式组装和安装在印刷电路板上。
图40是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备300和印刷电路板的实施例相似,只是本实施例采用图38中所示的支撑件320和透镜元件410、430。
数码相机设备300可以按照任何方式组装和安装在印刷电路板720上。例如在一些实施例中,数码相机设备300按照与针对图36所示的数码相机设备300和印刷电路板720的实施例在上面阐述的方式类似的方式组装和安装在印刷电路板720上。
图41A-41D分别是按照其它实施例的可用于支撑和定位图15A-15B、15D-15E的透镜的底座配置770-776的横截面图。
在图41A所示的底座配置中,顶部小透镜450A、中部小透镜450B和底部小透镜450C一次一个地和/或作为组件地分别穿过孔径的底部(或者穿过孔径的顶部)而被插入。
在图41B所示的底座配置中,顶部小透镜452A、中部小透镜452B和底部小透镜452C一次一个地和/或作为组件地分别穿过孔径的顶部(或者穿过孔径的底部)而被插入。
在图41C的底座配置中,顶部小透镜456A可以例如穿过孔径的顶部而被插入。中部小透镜456B和底部小透镜456C可以一次一个地穿过孔径的底部而被插入,或者可替换地,该中部小透镜和底部小透镜可以构建为一个组件并被一起插入。
在图41D的底座配置中,中部小透镜458B和顶部小透镜458A一次一个地穿过孔径的顶部而被插入,或者可替换地,中部小透镜458B和顶部小透镜458A可以构建为一个组件并被一起插入。底部小透镜458C穿过孔径的底部而被插入。
对于在此公开的每个实施例,该实施例可以单独使用或与在此公开和图示的一个或多个其它实施例(或其部分)组合使用。
就此而言,图42-44是按照其它实施例的分别采用图41B-41D的底座配置来分别支撑图15B-15D所示的透镜452A-452C、456A-456C、458A-456C并与相应传感器阵列至少部分配准地定位该透镜的支撑件32的横截面图。
就此而言,图42-44是按照其它实施例的分别采用图41B-41D的底座配置来分别支撑图15B-15D所示的透镜452A-452C并与相应传感器阵列至少部分配准地定位该透镜的支撑件的横截面图。
图45是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备300和印刷电路板的实施例相似,只是本实施例采用图42中所示的支撑件320和透镜元件。
数码相机设备300可以按照任何方式组装和安装在印刷电路板上。例如在一些实施例中,数码相机设备300按照与针对图36所示的数码相机设备和印刷电路板的实施例而阐述的方式类似的方式组装和安装在印刷电路板720上,尽管采用与针对图41B所示的底座配置在上面阐述的方式类似的方式将小透镜组装到支撑件中可能是有利的。
图46是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备和印刷电路板的实施例相似,只是本实施例采用图43中所示的支撑件和透镜元件。
数码相机设备300可以按照任何方式组装和安装在印刷电路板720上。例如在一些实施例中,数码相机设备300按照与针对图36所示的数码相机设备和印刷电路板的实施例而阐述的方式类似的方式组装和安装在印刷电路板720上,尽管采用与针对图41C所示的底座配置在上面阐述的方式类似的方式将小透镜组装到支撑件中可能是有利的。
图47是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备300和印刷电路板720的实施例相似,只是本实施例采用图44中所示的支撑件和透镜元件。
数码相机设备300可以按照任何方式组装和安装在印刷电路板720上。例如在一些实施例中,数码相机设备300按照与针对图36所示的数码相机设备和印刷电路板的实施例而阐述的方式类似的方式组装和安装在印刷电路板720上,尽管采用与针对图41D所示的底座配置在上面阐述的方式类似的方式将小透镜组装到支撑件中可能是有利的。
在一些实施例中,数码相机设备300包括一个或多个附加的结构和/或装置,例如但不限于一个或多个附加的集成电路、一个或多个输出装置和/或一个或多个输入装置。该一个或多个输出装置可以包括任何一种或多种类型的输出装置,例如但不限于一个或多个显示装置、一个或多个扬声器和/或它们的任何组合。该一个或多个输入装置可以包括任何一种或多种类型的输入装置,例如但不限于一个或多个麦克风。该附加的结构和/或装置可以设置在任何合适的位置,例如但不限于相邻于图像装置。
该附加的结构和/或装置可以包含任何类型的材料而且可以具有任何配置和/或构造。例如在一些实施例中,该附加的结构和/或装置包含硅、半导体、玻璃、陶瓷、塑料或金属材料和/或它们的组合。该一个或多个附加的结构和/或装置可以彼此分开地制造、彼此整合地制造和/或按这两种方式的任何组合来制造。该一个或多个附加的结构和/或装置可以与相机通道分开地制造、与相机通道整合地制造和/或按这两种方式的任何组合来制造。该一个或多个附加的结构和/或装置可以或可以不物理地连接到处理器、一个或多个相机通道或其任何部分。该一个或多个附加的结构和/或装置可以或可以不电连接到处理器和/或一个或多个相机通道或其部分。
图48是按照本发明另一实施例的包括第二装置780的数码相机设备300的示意表示。第二装置780可以包括例如但不限于集成电路,该集成电路包括任何类型的一个或多个电路,例如但不限于处理器的一个或多个部分、存储器或附加的存储器的一个或多个部分、处理器的一个或多个部分(例如后处理器的一个或多个部分)和/或任何其它类型的电路。
例如在一些实施例中,数码相机设备300包括存储区,该存储区被提供有和/或存储一个、一些或所有图像和/或由数码相机设备产生或使用的其它信息和/或来自任何源并希望持续存储任何时间的任何其它信息。存储区可以向一个或多个其它装置和/或处理器的一个或多个部分提供一个或多个这样的图像和/或这样的其它信息,例如用以进一步处理和/或提供给一个或多个其它装置。该存储区可以(例如作为分立部件)集成到与一个、一些或所有传感器阵列相同或不同的衬底中或设置在该衬底上。该存储区可以例如是处理器的一部分或者集成在处理器(其可以(例如作为分立部件)集成到与一个、一些或所有传感器阵列相同或不同的衬底中或设置在该衬底上)中和/或通过一个或多个通信链路与处理器的一个或多个部分耦合。在一些实施例中,该存储区还通过一个或多个通信链路与一个或多个其它装置耦合。在这样的实施例中,该存储区可以直接(即不穿过处理器的任何其它部分)通过一个或多个通信链路中的一个或多个向一个或多个其它装置中的一个或多个提供一个或多个所存储的图像和/或其它信息。
第二装置780可以设置在任何合适的位置。但是在一些实施例中,第二装置780通常相邻于或接近相关联的图像装置例如图像装置520或相关联的处理器而设置。
第二装置780的一个或多个电路可以例如通过一个或多个通信链路连接到处理器340的一个或多个部分、相机通道中的一个或多个、一个或多个其它装置和/或它们的任何组合。在一些实施例中,一个或多个通信链路包括第二装置780和图像装置上的一个或多个垫以及具有一个或多个导电部件的一个或多个电连接器,该导电部件将图像装置上的一个或多个垫与第二装置上的一个或多个垫连接。在一些实施例中,一个或多个通信链路包括将图像装置上的一个或多个电路与第二装置上的一个或多个电路电连接的一个或多个隆起接合。
第二装置780可以具有任何尺寸和形状,并且可以或可以不具有与图像装置相同的配置。在一些实施例中,第二装置780的长度和宽度分别小于或等于光学组件、传感器子组件和/或图像装置的长度和宽度。在另一些实施例中,第二装置780的长度和宽度分别大于光学组件、传感器子组件和/或图像装置的长度和宽度。
尽管示出处理器与图像装置和第二装置分开,但应当理解处理器可以具有任何配置并且处理器或其部分可以设置在任何位置。在一些实施例中,处理器的一个、一些或所有部分设置在图像装置上或集成到图像装置中。在一些实施例中,处理器的一个、一些或所有部分设置在第二装置上或集成到第二装置中。在一些这样的实施例中,处理器的一个或多个部分设置在图像装置上,且处理器的一个或多个部分设置在第二装置上或集成到第二装置中。例如,处理器的特定工作可以分配给集成在与一个或多个传感器阵列中的一个或多个相同的一个或多个衬底中或设置在该衬底上的电路或由该电路执行,且处理器的特定工作被分配给集成在与一个或多个传感器阵列所集成或设置于的衬底不同的一个或多个衬底(不管这样的一个或多个不同衬底是否物理地位于相机内)中或设置在该一个或多个衬底上的电路或由该电路执行。
在一些实施例中,数码相机设备还可以包括一个或多个附加的集成电路器件,例如第三集成电路器件(未示出)。该一个或多个附加的集成电路器件可以具有任何尺寸和形状,且可以或可以不具有与其它集成电路器件、图像装置或第二装置相同的配置。在一些实施例中,第三集成电路器件的长度和宽度分别等于光学组件、传感器子组件和/或图像装置的长度和宽度。在另一些实施例中,第三集成电路器件的长度或宽度分别大于或小于光学组件、传感器子组件和/或图像装置的长度或宽度。
图49是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备和印刷电路板的实施例相似,只是本实施例包括例如图48所示的第二装置780。第二装置780上覆在第三接合层782上,第三接合层782上覆在该印刷电路板上。
第三接合层782可以包含任何合适的材料,例如但不限于粘附剂,且可以包括任何合适的配置。第三接合层782可以包括与第一和/或第二接合层722、724相同的材料,尽管这不是必须的。
在一些实施例中,数码相机设备300具有约2.5mm×6mm×6mm的尺度。例如,厚度可以等于约2.5mm,长度可以等于约6mm,宽度可以等于约6mm。在一些这样的实施例中,数码相机设备具有总共有1.3M个像素的一个或多个传感器阵列,尽管也可以采用其他配置(例如不同的厚度、宽度、长度和像素数量)。
数码相机设备300可以按照任何方式组装和/或安装。图50A-50F示出用于组装和安装该数码相机设备的一个实施例。参照图50A,最初,提供第二装置。参照图50B,接合层724被提供在第二装置的一个或多个表面的一个或多个区上。这些区为图像装置限定了一个或多个安装区。参照图50C,此后将图像装置520定位在接合层724上。在一些实施例中,可以施加力来帮助将任何陷入的空气从第二装置780和图像装置520之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在第二装置和图像装置之间形成接合。参照图50D,接合层722被提供在图像装置520的一个或多个表面的一个或多个区上。这些区为支撑件320限定了一个或多个安装区。参照图50E,此后将支撑件320定位在接合层722上。在一些实施例中,可以施加力来帮助将任何陷入的空气从支撑件320和图像装置520之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在支撑件和图像装置之间形成接合。参照图50F,此后可以将一个或多个光学器件部分例如光学器件部分330A-330D安装在支撑件320中和/或附着到支撑件320。参照图50G,接合层782被提供在印刷电路板720的一个或多个表面的一个或多个区上。这样的区为数码相机设备300限定一个或多个安装区。参照图50H,此后将数码相机设备定位在接合层782上。可以安装一个或多个导体750,以将图像装置520上的一个或多个垫742与电路板732上的一个或多个垫连接。可以安装一个或多个导体790,以将图像装置792上的一个或多个垫与第二装置794上的一个或多个垫连接。
图51是按照本发明另一实施例的示例性数码相机设备的示意表示,数码相机设备300包括设置在支撑件320和图像装置520之间的隔板800。在一些实施例中,隔板800有助于将光学器件部分例如光学器件部分330A-330D分别定位在离相应传感器阵列例如310A-310D的期望距离处。在本实施例中,隔板800在轴向上延伸并限定壁802,该壁限定有助于限制、最小化和/或消除相机通道之间的光“串扰”并且有助于限制、最小化和/或消除光从数码相机设备之外“进入”的用于传输光的孔径,例如(例如分别用于相机通道350A-350D的)孔径804-804D。
隔板800可以包含任何类型的材料且可以具有任何配置和/或构造。例如在一些实施例中,隔板800包含硅、半导体、玻璃、陶瓷、塑料或金属材料和/或它们的组合。如果该隔板具有超过一个的部分,则这些部分可以彼此分开地制造、彼此整合地制造和/或按这两种方式的任何组合来制造。
隔板800可以与支撑件320或支撑部分600A-600D分开地和/或整合地制造。
隔板800可以是可以为制造和材料提供广泛选择的固体装置,但是也可以采用其它形式的装置。例如,在一些实施例中,该隔板包括限定该隔板的壁和孔径的板(例如薄板)。孔径例如孔径804A-804D可以通过机械加工(例如钻孔)或任何其它合适方式来形成。在一些实施例中,该隔板(例如利用具有限定该隔板的一个或多个支撑部分的孔径和底座的突起的模子来)被制造为其中限定有孔径的铸件。
尽管示出处理器与图像装置分开,但应当理解处理器可以具有任何配置并且处理器或其部分可以设置在任何一个或多个位置。在一些实施例中,处理器的一个、一些或所有部分设置在图像装置上。
对于在此公开的每个实施例,该实施例可以单独使用或与在此公开和图示的一个或多个其它实施例或其部分组合使用。
图52是按照本发明另一实施例的数码相机设备300的示意表示,数码相机设备300包括设置在支撑件320和图像装置520之间的隔板800。该隔板800的实施例类似于图51所示的隔板500的实施例,只是本实施例中的隔板800只限定一个用于传输光的孔径804,并且可能不有助于限制、最小化和/或消除相机通道例如相机通道350A-350D之间的光“串扰”。
图53是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图36中所示的数码相机设备和印刷电路板的实施例相似,只是本实施例包括例如如图51所示的隔板800。隔板800上覆在接合层782上,接合层782上覆在图像装置520上。
该接合层782可以包含任何合适的材料,例如但不限于粘附剂,且可以包括任何合适的配置。该接合层可以包含与其它接合层相同的材料,尽管这不是必须的。
在一些实施例中,该数码相机设备具有约2.5mm×6mm×6mm的尺度。例如,厚度可以等于约2.5mm,长度可以等于约6mm,宽度可以等于约6mm。在一些这样的实施例中,数码相机设备具有总共有1.3M个像素的一个或多个传感器阵列,尽管也可以采用其他配置(例如不同的厚度、宽度、长度和像素数量)。
该数码相机设备可以按照任何方式组装和/或安装。图54A-54F示出用于组装和安装数码相机设备300的一个实施例。参照图54A,最初,提供图像装置520。参照图54B,接合层782被提供在该图像装置的一个或多个表面的一个或多个区上。这些区为隔板800限定了一个或多个安装区。参照图54C,此后将隔板800定位在接合层782上。在一些实施例中,可以施加力来帮助将任何陷入的空气从隔板800和图像装置520之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在该隔板和该图像装置之间形成接合。参照图54D-54E,接合层722被提供在隔板800的一个或多个表面的一个或多个区上。这些区为支撑件320的一个或多个支撑部分限定了一个或多个安装区,此后将支撑件320定位在接合层722上。在一些实施例中,可以施加力来帮助将任何陷入的空气从隔板800和支撑件320的一个或多个支撑部分之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在该隔板和该支撑件的一个或多个支撑部分之间形成接合。参照图54F,此后可以将一个或多个光学器件部分例如光学器件部分330A-330D安装在支撑件320中和/或附着到支撑件320。参照图54G,接合层724被提供在印刷电路板720的一个或多个表面的一个或多个区上。这样的区为数码相机设备300限定一个或多个安装区。参照图54H,此后将数码相机设备定位在接合层724上。可以安装一个或多个导体750,以将该图像装置上的一个或多个垫742与该电路板上的一个或多个垫732连接。
对于在此公开的每个实施例,该实施例可以单独使用或与在此公开和图解的一个或多个其它实施例或其部分组合使用。
例如,图55是按照本发明另一实施例的包括第二装置和隔板800的数码相机设备300的示意表示。
尽管示出处理器与图像装置和第二装置分开,但应当理解处理器340可以具有任何配置并且该处理器或其部分可以设置在任何一个或多个位置。在一些实施例中,该处理器的一个、一些或所有部分设置在图像装置上。在一些实施例中,该处理器的一个、一些或所有部分设置在第二装置上。在一些这样的实施例中,该处理器的一个或多个部分设置在图像装置上,且该处理器的一个或多个部分设置在第二装置上。
图56是按照本发明另一个实施例的数码相机设备300和数码相机的印刷电路板720的横截面图,数码相机设备300可以安装在印刷电路板720上。该实施例与图53中所示的数码相机设备和印刷电路板的实施例相似,只是本实施例包括第二装置780。第二装置780上覆在接合层808上,接合层808上覆在印刷电路板720上。
接合层808可以包含任何合适的材料,例如但不限于粘附剂,且可以包括任何合适的配置。该接合层可以包含与其它接合层相同的材料,尽管这不是必须的。
在一些实施例中,该数码相机设备具有约2.5mm×6mm×6mm的尺度。例如,厚度可以等于约2.5mm,长度可以等于约6mm,宽度可以等于约6mm。在一些这样的实施例中,数码相机设备具有总共有1.3M个像素的一个或多个传感器阵列,尽管也可以采用其他配置(例如不同的厚度、宽度、长度和像素数量)。
数码相机设备300可以按照任何方式组装和/或安装。图57A-57F示出用于组装和安装该数码相机设备的一个实施例。参照图57A,最初,提供第二装置780。参照图57B,接合层724被提供在第二装置780的一个或多个表面的一个或多个区上。这些区为图像装置520限定了一个或多个安装区。参照图57C,此后将图像装置定位在接合层724上。在一些实施例中,可以施加力来帮助将任何陷入的空气从第二装置780和图像装置之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在第二装置780和图像装置之间形成接合。参照图57D,接合层782被提供在图像装置的一个或多个表面的一个或多个区上。这些区为隔板800限定了一个或多个安装区。参照图57E,此后将隔板800定位在接合层782上。在一些实施例中,可以施加力来帮助将任何陷入的空气从隔板800和图像装置之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在隔板800和图像装置之间形成接合。参照图54E-54G,接合层722被提供在隔板800的一个或多个表面的一个或多个区上。这样的区为支撑件320的一个或多个支撑部分限定一个或多个安装区,此后将支撑件320定位在接合层722上。在一些实施例中,可以施加力来帮助将任何陷入的空气从隔板800和支撑件320的一个或多个支撑部分之间驱赶出来。在一些实施例中,可以施加热和/或施加力以提供激活和/或固化接合层的条件,从而在隔板800和支撑件320的一个或多个支撑部分之间形成接合。此后可以将一个或多个光学器件部分例如光学器件部分330A-330D安装在该支撑件中和/或附着到该支撑件。参照图57G,接合层808被提供在印刷电路板720的一个或多个表面的一个或多个区上。这样的区为数码相机设备300限定一个或多个安装区。参照图57H,此后将该数码相机设备定位在接合层782上。可以安装一个或多个导体750,以将图像装置上的一个或多个垫742与电路板732上的一个或多个垫连接。可以安装一个或多个导体790,以将图像装置上的一个或多个垫742与第二装置780上的一个或多个垫连接。
如上所述,在此公开的每个实施例可以单独使用或与在此公开和图解的一个或多个其它实施例或其部分组合使用。
例如在一些实施例中,图37-38和42-44所示的一个或多个支撑件在图48-57所示的数码相机设备的一个或多个实施例中使用。
例如,图58-62是按照本发明其它实施例的数码相机设备和数码相机的印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上。这些实施例与图49中所示的数码相机设备和印刷电路板的实施例相似,只是支撑件和光学器件部分分别具有与图37-38,42-44所示的支撑件和光学器件部分相似的配置。
图63-67是按照本发明其它实施例的数码相机设备和数码相机的印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上。这些实施例与图53中所示的数码相机设备和印刷电路板的实施例相似,只是支撑件和光学器件部分分别具有与图37-38,42-44所示的支撑件和光学器件部分相似的配置。
在这里的一些实施例中,一个或多个电的或电子的机械装置设置在支撑件中和/或设置在隔板上。在一些这样的实施例中,一个或多个导体可以将一个或多个这样的装置与图像装置和/或另一装置上的一个或多个电路连接,以例如提供去往和/或来自一个或多个这样的装置的功率、控制信号和/或数据信号。一个或多个这样的导体可以采取电连接器的形式,但这不是必须的。所述导体可以贯穿数码相机设备的一个或多个部分,例如支撑件、隔板、图像装置(如果存在的话)或它们的组合的一个或多个部分和/或可以设置在其一个或多个外表面上。例如在一些实施例中,一个或多个导体例如导体810、812(图63-72)被提供并且遍布支撑件的一个或多个表面或贯穿支撑件的一个或多个部分(例如遍布或贯穿一个或多个支撑部分例如600A-600D)和/或遍布隔板的一个或多个表面或贯穿隔板的一个或多个部分(例如遍布或贯穿一个或多个壁例如壁602),以便连接到图像装置或另一装置中或上的一个或多个电路。
图68-72是按照本发明其它实施例的数码相机设备和数码相机的印刷电路板的横截面图,该数码相机设备可以安装在该印刷电路板上。这些实施例与图56中所示的数码相机设备和印刷电路板的实施例相似,只是支撑件和光学器件部分分别具有与图37-38,42-44所示的支撑件和光学器件部分相似的配置。
图73A-73B分别是按照本发明另一个实施例的支撑件的正视图和横截面图。在该实施例中,一个或多个支撑部分例如通过一个或多个间隙或空间例如间隙816彼此隔开和/或彼此隔离。
图74是按照本发明另一实施例的支撑件的横截面图。在该实施例中,支撑件包括上覆在一个或多个其它支撑部分上(例如设置在该一个或多个其它支撑部分上或上方)的一个或多个支撑部分。在一些这样的实施例中,支撑部分可以例如通过间隙或空间例如间隙816在z方向上彼此隔开和/或彼此隔离。
如上所述,应当理解,每个上述实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
例如,在一些实施例中,支撑件适于容纳第一尺寸和形状的一个或多个光学器件部分以及不同于第一尺寸和/或第一形状的第二尺寸和形状的一个或多个光学器件部分。在一些实施例中,还可以容纳其它尺寸和形状例如第三尺寸和形状、第四尺寸和形状、第五尺寸和形状等的光学器件部分。
参照图75,在一些实施例中,在此公开的一个或多个支撑件设有一个或多个弯曲部分例如弯曲部分818A-818D。这样的方面例如在希望减小和/或最小化数码相机设备的尺度的一些实施例中可能是有利的。
图76A-76C是按照本发明另一实施例的包括一个或多个输出装置820的数码相机设备的示意图。图76A是包括一个或多个输出装置的数码相机设备的一个实施例的透视图。图76B-76C分别是按照本发明的一个实施例的输出装置820的前视图和后视图。
在一些实施例中,一个或多个输出装置820采取一个或多个显示装置的形式,但是也可以采用其它类型的输出装置。在一些实施例中,一个或多个显示装置采取一个或多个微显示器的形式。
该一个或多个显示装置可以设置在任何合适的一个或多个位置。在一些实施例中,可能有利的是,在数码相机组件的一个侧面上(为一个或多个相机通道)采集光,而在数码相机组件的另一侧面上提供该一个或多个输出显示器例如输出显示器820中的一个或多个。在图示的实施例中,数码相机设备具有通常彼此相对的第一侧面和第二侧面。该一个或多个相机通道定位成通过数码相机设备的第一侧面接收光。显示装置中的一个或多个定位成从数码相机设备的第二侧面发射光(例如一个或多个显示图像)。在一些实施例中,这样的配置可能使得可以提供非常薄(例如在z方向上非常薄)的数码相机设备。也可以采用其它配置。在一些实施例中,显示装置中的一个或多个通常相邻于图像装置而定位,尽管这不是必须的。
该一个或多个显示装置可以通过一个或多个通信链路连接到处理器、一个或多个相机通道或它们的任何组合。在一些实施例中,一个或多个通信链路包括图像装置和该一个或多个显示装置上的一个或多个垫、以及具有一个或多个导电部件的一个或多个电连接器,该导电部件将图像装置上的一个或多个垫与该一个或多个显示装置上的一个或多个垫连接。在一些实施例中,一个或多个通信链路包括将图像装置上的一个或多个电路与该一个或多个显示装置上的一个或多个电路连接的一个或多个隆起接合,。
该一个或多个显示装置可以具有任何尺寸和形状,且可以或可以不具有彼此相同的配置(例如类型、尺寸、形状、分辨率)。在一些实施例中,该一个或多个显示装置中的一个或多个的长度和宽度分别小于或等于光学组件、传感器子组件和/或图像装置的长度和宽度。在一些实施例中,该一个或多个显示装置中的一个或多个的长度和宽度分别大于光学组件、传感器子组件和/或图像装置的长度和宽度。在一些实施例中,每个相机通道与其自己的显示装置连接。在另一些实施例中,两个或更多相机通道例如相机通道350A-350B与第一显示装置连接,且一个或多个其他相机通道例如相机通道350C-350D与第二显示装置连接。在一些实施例中,该一个或多个显示装置中的一个与处理器连接,以至少部分地基于来自每个相机通道的图像来显示合成图像。
对于在此公开的每个实施例,上述实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
因此,在一些实施例中,数码相机设备300还包括隔板800(参见例如图76D)和/或用于将一个或多个输出装置例如输出装置820的一个或多个电路连接到子系统300的一个或多个其它部分中的一个或多个电路的一个或多个导体822、可以设置在图像装置520(参见例如图76E)上的处理器340的一个或多个电路。
此外,在一些实施例中,数码相机设备还可以包括一个或多个照明装置和/或具有用于移动相机通道的一个或多个光学器件部分的一个或多个致动器(例如,MEMS致动器,例如梳型MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)。在一些较后的实施例中,数码相机设备包括一个或多个照明装置和/或具有一个或多个致动器(例如MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)。
图77A-77C是按照本发明另一实施例的包括一个或多个输入装置830的数码相机设备的示意图。具体地说,图77A是包括一个或多个输入装置的数码相机设备的一个实施例的透视图。图77B-77C分别是按照本发明的一个实施例的输入装置的放大的前视图和后视图。在该实施例中,该一个或多个输入装置采取一个或多个音频输入装置例如一个或多个麦克风的形式,但是也可以采用其它类型的输入装置。在一些实施例中,该一个或多个麦克风采取一个或多个硅麦克风的形式。
该一个或多个音频输入装置可以设置在任何合适的一个或多个位置。在一些实施例中,可能有利的是,在数码相机组件的一个侧面上(为一个或多个相机通道)采集光,而从数码相机子组件的同一侧面采集声音。在图示的实施例中,数码相机设备具有通常彼此相对的第一和第二侧面。该一个或多个相机通道定位成通过数码相机设备的第一侧面接收光。音频输入装置中的一个或多个可以定位成从数码相机设备的第一侧面接收音频输入(例如声音)。在一些实施例中,这样的配置可能使得可以提供非常薄(例如在z方向上非常薄)的数码相机设备。也可以采用其它配置。在一些实施例中,音频输入装置中的一个或多个设置在支撑件的一个或多个部分上和/或与支撑件的一个或多个部分整合地设置,尽管这不是必须的。
该一个或多个音频输入装置可以通过一个或多个通信链路连接到处理器。在一些实施例中,该一个或多个通信链路包括图像装置和该一个或多个音频输入装置上的一个或多个垫以及具有一个或多个导电部件的一个或多个电连接器,该导电部件将图像装置上的一个或多个垫与音频输入装置上的一个或多个垫连接。在一些实施例中,该一个或多个通信链路包括将图像装置上的一个或多个电路与该一个或多个音频输入装置上的一个或多个电路电连接的一个或多个隆起接合。
该一个或多个音频输入装置可以具有任何尺寸和形状,且可以或可以不具有彼此相同的配置(例如类型、尺寸、形状、分辨率)。在一些实施例中,该一个或多个音频输入装置中的一个或多个的长度和宽度分别小于或等于光学组件、传感器子组件和/或图像装置的长度和宽度。在一些实施例中,该一个或多个音频输入装置中的一个或多个的长度或宽度分别大于光学组件、传感器子组件和/或图像装置的长度或宽度。
图77G-77L是按照其它实施例的数码相机设备的透视图。这些实施例的输入装置具有与图77A所示输入装置的配置和/或布置不同的配置和/或布置。也可以使用其它配置和/或布置。
对于在此公开的每个实施例,上述实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
因此,在一些实施例中,数码相机设备300还包括隔板800、用于将一个或多个输入装置例如输入装置830的一个或多个电路与子系统300的一个或多个其它部分中的一个或多个电路连接的一个或多个导体822、可以设置在图像装置520上的处理器340的一个或多个电路、和/或一个或多个附加装置例如一个或多个输出装置820。
例如,图77D是包括输入装置和隔板800的数码相机设备的一个实施例的透视图。图77E是包括隔板800和一个或多个附加装置例如一个或多个输出装置820的数码相机设备300的一个实施例的透视图。图像装置示出具有与设置在图像装置上或中的一个或多个电路连接的一个或多个垫。图77F是包括输入装置、隔板和附加装置(例如显示器和/或与图像装置相邻的第二集成电路装置)的数码相机设备的一个实施例的透视图。图像装置示出具有与设置在图像装置上或中的一个或多个电路连接的一个或多个垫。
此外,在一些实施例中,数码相机设备还可以包括具有用于移动相机通道的一个或多个光学器件部分的一个或多个致动器(例如,MEMS致动器,例如梳型MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)、一个或多个显示装置和/或一个或多个照明装置(例如一个或多个具有高输出强度的发光二极管(LED))。在一些较后的实施例中,数码相机设备包括一个或多个音频输入装置、具有用于移动相机通道的一个或多个光学器件部分的一个或多个致动器(例如,MEMS致动器,例如梳型MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)、一个或多个显示装置和/或一个或多个照明装置。
图是包括一个或多个音频输入装置、一个或多个显示装置和一个或多个照明装置的数码相机设备的示意表示。
该数码相机设备可以按照例如但不限于与在一个或多个这里公开的实施例中采用的方式类似的任何方式组装和/或安装。
本发明的任何实施例都可以包括一个或多个照明单元,用以改善和/或增强通过一个或多个相机通道(具体地说,一个或多个传感器阵列)进行的图像获取,有助于对物体的范围检测、物体的形状检测以及转换成像(即人眼不可观察到的成像)。
图78A-78B是按照本发明其它实施例的具有一个或多个照明单元例如照明单元840的数码相机设备的框图。该照明单元可以提供被动照明(例如没有照明)、主动照明(例如恒定照明)、恒定和/或门控的主动照明(例如预定、预设或处理器控制的脉冲式照明和/或用户/操作员可编程的脉冲式照明)。该一个或多个照明单元可以设置在传感器阵列的衬底和/或支撑框架上或者集成在传感器阵列的衬底和/或支撑框架中。实际上,该一个或多个照明单元可以设置在一个或多个相机通道的任何元件或部件上或者集成在一个或多个相机通道的任何元件或部件中。
图78C-78P是按照本发明另一实施例的包括一个或多个输出装置的数码相机设备的示意图。具体地说,图78C是包括一个或多个输出装置的数码相机设备的一个实施例的透视图。在一些实施例中,该一个或多个输出装置采取一个或多个照明装置例如一个或多个照明装置850的形式,但也可以采用其它类型的输出装置。图78C-78D分别是按照本发明的一个实施例的照明装置850的放大的前视图和后视图。在一些实施例中,该一个或多个照明装置采取一个或多个LED(例如一个或多个高功率LED)的形式。
该一个或多个照明装置可以设置在任何合适的一个或多个位置。在一些实施例中,可能有利的是,在数码相机组件的一个侧面上(为一个或多个相机通道)采集光,而从数码相机组件的同一侧面提供照明。在图示的实施例中,数码相机设备具有通常彼此相对的第一和第二侧面。该一个或多个相机通道定位成通过数码相机设备的第一侧面接收光。照明装置中的一个或多个可以定位成从数码相机设备的同一侧面进行照明(例如提供光)。在一些实施例中,这样的配置可能使得可以提供非常薄(例如在z方向上非常薄)的数码相机设备。也可以采用其它配置。在一些实施例中,一个或多个照明装置设置在支撑件的一个或多个部分上和/或与支撑件的一个或多个部分整合地设置,尽管这不是必须的。
该一个或多个照明装置可以通过一个或多个通信链路连接到处理器。在一些实施例中,该一个或多个通信链路包括图像装置和该一个或多个照明装置上的一个或多个垫以及具有一个或多个导电部件的一个或多个电连接器,该导电部件将图像装置上的一个或多个垫与该照明装置上的一个或多个垫连接。在一些实施例中,该一个或多个通信链路包括将图像装置上的一个或多个电路与该一个或多个照明装置上的一个或多个电路电连接的一个或多个隆起接合。
该一个或多个照明装置可以具有任何尺寸和形状,且可以或可以不具有彼此相同的配置(例如类型、尺寸、形状、分辨率)。在一些实施例中,一个或多个照明装置中的一个或多个的长度和宽度分别小于或等于光学组件、传感器子组件和/或图像装置的长度和宽度。在一些实施例中,一个或多个照明装置中的一个或多个的长度或宽度分别大于光学组件、传感器子组件和/或图像装置的长度或宽度。
图78H-78M是按照其它实施例的数码相机设备的透视图。这些实施例的一个或多个照明装置具有与图78C所示照明装置的配置和/或布置不同的配置和/或布置。也可以使用其它配置和/或布置。
对于在此公开的每个实施例,上述实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
例如,图78F是包括输出装置和隔板的数码相机设备的一个实施例的透视图。图78G是包括输出装置和隔板的数码相机设备的一个实施例的透视图。该图像装置示出具有与设置在图像装置上或中的一个或多个电路连接的一个或多个垫。图77H是包括输出装置、隔板和附加装置(例如显示器和/或与图像装置相邻的第二装置780)的数码相机设备的一个实施例的透视图。该图像装置示出具有与设置在图像装置上或中的一个或多个电路连接的一个或多个垫。
此外,在一些实施例中,数码相机设备还可以包括具有用于移动相机通道的一个或多个光学器件部分的一个或多个致动器(例如,MEMS致动器,例如梳型MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)、一个或多个显示装置和/或一个或多个音频输入装置。在一些较后的实施例中,数码相机设备包括一个或多个音频输入装置、具有用于移动相机通道的一个或多个光学器件部分的一个或多个致动器(例如,MEMS致动器,例如梳型MEMS致动器)的支撑件(这样的支撑件可以包括例如具有一个或多个致动器的框架)、一个或多个显示装置和/或一个或多个照明装置。
该数码相机设备可以按照例如但不限于与在一个或多个这里公开的实施例中采用的方式类似的任何方式组装和/或安装。
图78R是按照本发明的一个实施例的支撑件320的下侧面(例如面朝一个或多个传感器阵列的主外表面)的平面图。在该实施例中,一个或多个装置850设置在支撑件320上或中并通过设置在支撑件320表面上的垫852接收/提供功率、控制信号和/或数据信号。多个导体(参见例如图63-72)可以将支撑件320上的一个或多个垫与设置在数码相机设备300中别处的一个或多个电路连接。
在一些实施例中,集成电路854可以设置在支撑件320上以提供例如但不限于有助于与任何设置在支撑件320上的装置对接(例如以其它任何方式控制或通信)的一个或多个电路。多个导电轨迹856(示出了其中的一些)可以将集成电路854的输出与安装在支撑件320上的一个或多个装置连接。尽管示出在表面上,但应当理解,一个、一些或所有这样的轨迹可以设置在支撑件320内,从而不在其外表面上。
图79A-79C是按照本发明其它实施例的包括一个或多个输入装置830例如一个或多个音频输入装置(例如硅麦克风)以及一个或多个输出装置820例如一个或多个显示装置(例如微显示装置)的数码相机设备的透视图。
图80A-80F是按照本发明其它实施例的包括一个或多个输入装置830例如一个或多个音频输入装置(如硅麦克风)以及一个或多个输出装置820例如一个或多个显示装置(例如微显示器)的数码相机设备的透视图,其中该输入装置中的一个或多个包括一个或多个照明装置(例如高照度LED)。
该数码相机设备可以按照例如但不限于与在一个或多个这里公开的实施例中采用的方式类似的任何方式组装和/或安装。
如上所述,该数码相机设备可以具有任何数量的相机通道,每个相机通道可以具有任何配置。参照图81A-81C,在一些实施例中,数码相机设备包括外壳,该外壳例如但不限于密封包装。外壳的一个或多个部分可以由在此描述的一个或多个结构来限定,所述结构例如:光学器件部分中的一个或多个、框架的一个或多个部分、图像装置的一个或多个部分和/或它们的组合。
在一些实施例中,外壳的一个或多个部分由塑料材料、陶瓷材料和/或它们的任何组合来限定。
图81A是按照本发明的一个实施例的包括外壳的数码相机设备300的透视图。图81B-81C是数码相机设备300的分解透视图。外壳可以包括模制塑料包装,尽管这不是必须的。在图示的实施例中,该数码相机设备包括支撑图像传感器的第一外壳部分(例如模制塑料基座或底部)。图像装置可以包括一个或多个传感器部分,还可以包括处理器的一个或多个部分。第二外壳部分(例如模制塑料顶部或盖子)限定具有用于容纳和定位一个或多个光学器件部分的一个或多个框架部分的框架。可以提供一个或多个端子例如一个或多个端子860,端子860可以例如设置在模制塑料包装的一个或多个外表面上。一个或多个导电部件例如接合线可以将一个或多个端子与图像装置上的一个或多个电路例如处理器的一个或多个部分的一个或多个电路电连接。在一些实施例中,第一外壳部分、第二外壳部分和一个或多个光学器件部分限定外壳的基本部分,例如但不限于密封包装。在一些实施例中,一个或多个光学器件部分的上表面通常与第二外壳部分(例如模制塑料顶部)的主外表面的一个或多个部分平齐。
该数码相机设备可以任何方式组装。在一些实施例中,图像装置、端子和导电部件被支撑在第一外壳部分(例如模制塑料基座)的主外表面上面。第二外壳部分(例如模制塑料顶部)可以随后提供。在组装过程之前、之中和/或之后可以采用热、压力和/或接合材料。该接合材料可以是任何一种或多种类型的接合材料,例如但不限于一种或多种密封接合材料。
模制塑料包装可以使得该数码相机子组件可更容易地拆卸和/或安装,以例如有助于修理和/或更新,尽管这不是必须的。模制塑料包装例如对耐磨传感器中采用的数码相机设备可能也是有利的,该传感器例如是不包含显示器但向基站发送数据的计量器(badge)或钻孔器(broach)。模制塑料包装可以与在此公开的一个或多个实施例组合使用。
还可以使用其它配置。例如在一些实施例中,第一外壳部分和/或第二外壳部分由任何类型的密封材料形成,该密封材料例如但不限于陶瓷材料。陶瓷包装的使用在恶劣环境中和/或在从塑料中排气存在问题的应用(例如真空系统)中可能是有利的,尽管这不是必须的。陶瓷包装可以与在此公开的一个或多个实施例组合使用。
参照图81D,示出按照本发明另一实施例的包括模制塑料包装的数码相机设备的分解透视图,在一些实施例中,两个数码相机设备设置在单个外壳中。例如,在一些实施例中,第一外壳部分(例如基座)限定具有一个或多个框架部分的框架,该一个或多个框架部分用于容纳和定位与安装在第二外壳部分中的一个或多个光学器件部分朝向相对的第二组一个或多个光学器件部分。第二组一个或多个传感器阵列可以与第二组一个或多个光学器件部分相关联,并且可以例如设置在也可以设置在该外壳中的图像装置或第二图像装置上。
在一些实施例中,相机通道之一例如相机通道350A专用于两个或更多分离的颜色或者两个或更多分离的色带(例如蓝色或蓝色带以及红色或红色带)。在一些这样的实施例中,光学器件部分自身可以具有提供例如类似于滤色器阵列(例如Bayer图案或其变种)所提供的颜色分离的能力的颜色分离的能力(参见例如图82)。
图82是按照本发明的一个实施例的具有一个或多个光学器件部分的数码相机设备的透视图,该一个或多个光学器件部分具有提供颜色分离的能力。在一些这样的实施例中,一个或多个光学器件部分例如光学器件部分330C包括例如但不限于Bayer图案的滤色器阵列。在一些这样的实施例中,一个或多个光学器件部分例如光学器件部分330C具有提供类似于滤色器阵列所提供的颜色分离的能力的颜色分离的能力。
在一些实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器阵列可以配备有具有多带能力(例如两个或三个颜色)的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。
4个相机通道
在一些实施例中,数码相机设备包括4个或更多相机通道例如相机通道350A-350D。在一些这样的实施例中,第一相机通道例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),第二相机通道例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),第三相机通道例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带),第四相机通道例如相机通道350C专用于不同于第一、第二和第三颜色或色带的第四颜色或第四色带(例如绿色或绿色带)。在一些实施例中,一个或多个相机通道采用:与相应相机通道的颜色光学模糊相匹配的像素尺寸、适于提高或优化相应相机通道的性能的传感器阵列的整合时间和/或其它电特性、和/或适于提高或最大化相应相机通道的灵敏度的像素电路和光电二极管的设计/布局。在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
一个或多个相机通道的传感器阵列可以或可以不具有彼此相同的视场。在一些实施例中,传感器阵列中的每一个具有彼此相同的视场。在一些实施例中,一个或多个传感器阵列具有与一个或多个其它相机通道的视场不同的视场。
在一些实施例中,相机通道之一例如相机通道350A专用于两个或更多分离的颜色或者两个或更多分离的色带(例如蓝色或蓝色带以及红色或红色带)。在一些这样的实施例中,光学器件部分自身可以具有提供例如类似于滤色器阵列(例如Bayer图案或其变种)所提供的颜色分离的能力的颜色分离的能力(参见例如图82)。在一些实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器阵列可以配备有具有多带能力(例如两个或三个颜色)的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。
在一些较后的实施例中,第二相机通道例如相机通道350B也专用于两个或更多分离的颜色或两个或更多分离的色带。例如,第一相机通道可以专用于红色或红色带以及绿色或绿色带(例如G1)。第二相机通道可以专用于蓝色或蓝色带以及绿色或绿色带(例如G2)。在另一些较后的实施例中,第二相机通道例如相机通道350B专用于与第一相机通道所专用于的颜色或色带不同的单个颜色或单个色带(例如绿色或绿色带),第三相机通道例如相机通道350C专用于与第一和第二相机通道所专用于的颜色或色带不同的单个颜色或单个色带。
相机通道可以或可以不具有彼此相同的配置(例如尺寸、形状、分辨率、或灵敏度或灵敏度范围)。例如,在一些实施例中,每个相机通道具有与其它相机通道相同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。在另一些实施例中,一个或多个相机通道具有与一个或多个其它相机通道不同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。就此而言,在一些实施例中,每个相机通道例如相机通道350A-350D具有彼此相同的分辨率。在另一些实施例中,一个或多个相机通道具有小于一个或多个其它相机通道的分辨率的分辨率。例如,对于可比拟的视场部分,一个或多个相机通道例如相机通道350A的传感器阵列具有比一个或多个其它相机通道例如相机通道350B的传感器阵列的像素少的像素。例如,在一个实施例中,对于可比拟的视场部分,相机通道之一中的像素数量比另一个相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,相机通道之一中的像素数量比其它相机通道中的像素数量多36%。
在一些实施例中,一个或多个相机通道的传感器阵列可以具有与一个或多个其它相机通道的传感器阵列的尺寸不同的尺寸。在一些这样的实施例中,这种一个或多个相机通道的光学器件部分可以具有与一个或多个其它相机通道的f/#和/或焦距不同的f/#和/或焦距。
在一些实施例中,一个或多个相机通道专用于一个波长或波长带,且这样的一个或多个相机通道的传感器阵列和/或光学器件部分针对相应相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个传感器阵列的设计、操作、阵列尺寸和/或像素尺寸针对相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个光学部分的设计针对相应相机通道所专用于的相应波长或波长带而优化。
然而应当理解,还可以采用任何其它配置。
该4个或更多相机通道可以按照任何方式布置。在一些实施例中,该4个或更多相机通道布置成2×2矩阵,以有助于提供光采集的紧凑性和对称性。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图83A-83C)相同或类似的布局。在一些实施例中,该处理器可以具有不集成在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图83D-83E)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,相机通道例如相机通道350A-350D通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有彼此相同的特性。在另一些实施例中,4个相机通道例如相机通道350A-350D分别与同一显示器连接。
Y配置的4个相机通道
图84A-84E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括4个或更多相机通道例如相机通道350A-350D,其中4个相机通道例如相机通道350A-350D布置成“Y”配置。
在一些实施例中,相机通道之一例如相机通道350C是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,相机通道中的第一个例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),相机通道中的第二个例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),相机通道中的第三个例如相机通道350D专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,另一个相机通道例如相机通道350D是例如使用具有Bayer图案的滤色器阵列的宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,相机通道之一例如相机通道350C专用于两个或更多颜色或者两个或更多色带。在一些这样的实施例中,光学器件部分自身可以具有提供例如类似于滤色器阵列(例如Bayer图案或其变种)所提供的颜色分离的能力的颜色分离的能力(参见例如图84B)。在一些实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器阵列可以配备有具有多带能力(例如两个或三个颜色)的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图84C-84E)相同或类似的布局。在一些实施例中,该处理器的一个、一些或所有部分不设置在与传感器阵列相同的集成电路上(参见例如图84A)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
4个通道,两个通道比另两个通道小
图85A-85E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括4个或更多相机通道例如相机通道350A-350D。两个相机通道例如相机通道350A、350C的尺寸分别小于另两个相机通道例如相机通道350B、350D的尺寸。
在一些实施例中,较小相机通道例如相机通道350A、350C的分辨率都小于较大相机通道例如相机通道350B、350D的分辨率,尽管在这些实施例中,较小相机通道可以或可以不具有彼此相同的分辨率,且较大相机通道可以或可以不具有彼此相同的分辨率。例如,对于可比拟的视场部分,每个较小相机通道的传感器阵列可以具有比每个较大相机通道的传感器阵列中所提供的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,一个或多个较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,一个或多个较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多36%。然而应当理解,还可以使用任何其它尺寸和/或架构。
在另一些实施例中,一个或多个较小相机通道的分辨率等于一个或多个较大相机通道的分辨率。例如,对于可比拟的视场部分,一个或多个较小相机通道例如相机通道350A、350C的传感器阵列可以与较大相机通道例如相机通道350B、350D中所提供的传感器阵列具有相同数量的像素。例如,在一个实施例中,较大相机通道中的像素的尺寸比较小相机通道中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以使用任何其它尺寸和/或架构。
在一些实施例中,一个或多个相机通道的传感器阵列的尺寸可以不同于一个或多个其它相机通道的传感器阵列的尺寸。在一些这样的实施例中,这样的一个或多个相机通道的光学器件部分可以具有与一个或多个其它相机通道的f/#和/或焦距不同的f/#和/或焦距。
在一些实施例中,较小相机通道之一例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),较大相机通道之一例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),另一个相机通道例如相机通道350D专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,较小相机通道例如相机通道350A具有等于两个较大相机通道例如相机通道350B、350D的分辨率的分辨率。
在一些实施例中,较小相机通道之一例如相机通道350C是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图85C-85E)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图85B)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,该4个或更多相机通道例如相机通道350A-350D通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有彼此相同的特性。在另一些实施例中,两个或更多相机通道例如相机通道350A-350B、350D与第一显示器连接,一个或多个其它相机通道例如相机通道350C与第二显示器连接。第一和第二显示器可以或可以不具有相同的特性。在一些这样的实施例中,第一显示器具有等于与其连接的一个或多个相机通道的分辨率的分辨率。第二显示器可以具有等于与其连接的一个或多个相机通道的分辨率的分辨率。例如,在一些实施例中,一个或多个相机通道具有低于一个或多个其它相机通道的分辨率的分辨率。在这样的实施例中,与该一个或多个较低分辨率相机通道连接的一个或多个显示器可以具有低于与一个或多个其它相机通道连接的一个或多个显示器的分辨率的分辨率。在一些实施例中,第一显示器具有等于与其连接的一个或多个相机通道的分辨率的分辨率。第二显示器具有等于与其连接的一个或多个相机通道的分辨率的分辨率。但是也可以采用其它分辨率。
4个通道,3个通道比其它的一个通道小
图86A-86E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括4个或更多相机通道例如相机通道350A-350D。3个相机通道例如相机通道350A-350C的尺寸都小于其它的一个相机通道例如相机通道350D的尺寸。
在一些实施例中,较小相机通道例如相机通道350A-350C的分辨率都小于较大相机通道例如相机通道350D的分辨率,尽管在这些实施例中,较小相机通道可以或可以不具有彼此相同的分辨率。例如,对于可比拟的视场部分,每个较小相机通道的传感器阵列可以具有比每个较大相机通道的传感器阵列中所提供的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多36%。然而应当理解,还可以采用任何其它尺寸和/或架构。
在另一些实施例中,一个或多个较小相机通道的分辨率等于较大相机通道的分辨率。例如,对于可比拟的视场部分,一个或多个较小相机通道例如相机通道350A-350C的传感器阵列可以与较大相机通道例如相机通道350D中所提供的传感器阵列具有相同数量的像素。例如,在一个实施例中,较大相机通道中的像素的尺寸比较小相机通道中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以采用任何其它尺寸和/或架构。
在一些实施例中,相机通道之一例如相机通道350D是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,相机通道中的第一个例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),相机通道中的第二个例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),相机通道中的第三个例如相机通道350D专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,其它的一个相机通道例如相机通道350D是例如使用具有Bayer图案的滤色器阵列的宽带相机通道。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图86C-86E)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图86B)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,该4个或更多相机通道例如相机通道350A-350D通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有彼此相同的特性。在另一些实施例中,3个或更多相机通道例如相机通道350A-350C与第一显示器连接,其它的一个相机通道例如相机通道350D与第二显示器连接。第一和第二显示器可以或可以不具有彼此相同的特性。例如,在一些实施例中,一个或多个相机通道具有低于一个或多个其它相机通道的分辨率的分辨率。在这样的实施例中,与该一个或多个较低分辨率相机通道连接的一个或多个显示器可以具有低于与一个或多个其它相机通道连接的一个或多个显示器的分辨率的分辨率。在一些实施例中,第一显示器具有等于与其连接的一个或多个相机通道的分辨率的分辨率。第二显示器可以具有等于与其连接的一个或多个相机通道的分辨率的分辨率。但是也可以采用其它分辨率。
4个椭圆形通道
图87A-87B是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括4个或更多相机通道例如相机通道350A-350D,其一个或多个分别具有椭圆形或其它非圆形形状的光学部分例如光学部分330A-330D。
在一些实施例中,相机通道中的第一个例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),相机通道中的第二个例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),相机通道中的第三个例如相机通道350D专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,其它的一个相机通道例如相机通道350D是例如使用具有Bayer图案的滤色器阵列的宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在另一些实施例中,相机通道中的第一个例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),相机通道中的第二个例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如绿色或绿色带),相机通道中的第三个例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如蓝色或蓝色带),相机通道中的第四个例如相机通道350D专用于不同于第一和第三颜色或色带的颜色或色带(例如绿色或绿色带)。
在另一些实施例中,相机通道中的第一个例如相机通道350A专用于红色或红色带,相机通道中的第二个例如相机通道350B专用于蓝色或蓝色带,相机通道中的第三个例如相机通道350C专用于绿色1或绿色带1,相机通道中的第四个例如相机通道350D专用于绿色2或绿色带2)。
在一些实施例中,相机通道之一例如相机通道350C是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的布局相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图87A-87B)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
3个相机通道
图88A-88E和89A-89E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括3个或更多相机通道例如相机通道350A-350C。
在一些实施例中,第一相机通道例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),第二相机通道例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),第三相机通道例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些实施例中,一个或多个相机通道采用:与相应相机通道的颜色光学模糊相匹配的像素尺寸、适于提高或优化相应相机通道的性能的传感器阵列的整合时间和/或其它电特性、和/或适于提高或最大化相应相机通道的灵敏度的像素电路和光电二极管的设计/布局。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,相机通道之一例如相机通道350A专用于两个或更多分离的颜色或者两个或更多分离的色带(例如蓝色或蓝色带以及红色或红色带)。在一些这样的实施例中,光学器件部分自身可以具有提供例如类似于滤色器阵列(例如Bayer图案或其变种)所提供的颜色分离的能力的颜色分离的能力。在一些实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器阵列可以配备有具有多带能力(例如两个或三个颜色)的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。
在一些较后的实施例中,第二相机通道例如相机通道350B也可以专用于两个或更多分离的颜色或两个或更多分离的色带。例如,第一相机通道可以专用于红色或红色带以及绿色或绿色带(例如G1)。第二相机通道可以专用于蓝色或蓝色带以及绿色或绿色带(例如G2)。在另一些较后的实施例中,第二相机通道例如相机通道350B可以专用于与第一相机通道所专用于的颜色或色带不同的单个颜色或单个色带(例如绿色或绿色带),第三相机通道例如相机通道350C专用于与第一和第二相机通道所专用于的颜色或色带不同的单个颜色或单个色带。
该3个或更多相机通道可以或可以不具有彼此相同的配置(例如尺寸、形状、分辨率、或灵敏度或灵敏度范围)。在一些实施例中,每个相机通道具有与其它相机通道相同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。例如,在另一些实施例中,一个或多个相机通道具有与一个或多个其它相机通道不同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。例如,对于可比拟的视场部分,一个或多个相机通道的传感器阵列可以具有比一个或多个其它相机通道的传感器阵列的像素少的像素。
在一些实施例中,一个或多个相机通道的传感器阵列可以具有与一个或多个其它相机通道的传感器阵列的尺寸不同的尺寸。在一些这样的实施例中,这种一个或多个相机通道的光学器件部分可以具有与一个或多个其它相机通道的f/#和/或焦距不同的f/#和/或焦距。
在一些实施例中,一个或多个相机通道专用于一个波长或波长带,且这样的一个或多个相机通道的传感器阵列和/或光学器件部分针对相应相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个传感器阵列的设计、操作、阵列尺寸和/或像素尺寸针对相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个光学部分的设计针对相应相机通道所专用于的相应波长或波长带而优化。
然而应当理解,还可以采用任何其它配置。
该3个或更多相机通道可以按照任何方式布置。在一些实施例中,该3个或更多相机通道布置成所图所示的三角形,以有助于提供光采集的紧凑性和对称性。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的布局(参见例如图98A-98B)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,相机通道例如相机通道350A-350C通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有彼此相同的特性。在另一些实施例中,3个相机通道例如相机通道350A-350C分别与同一显示器连接。
图90A、91A-91B、92A-92B、93A-93、94A-94B、95A-95B、96A-96B分别是可以与具有3个或更多相机通道的数码相机设备相关联采用的图像装置520的一些实施例的平视图和横截面图。在该实施例中,该图像装置具有第一和第二主表面以及由边缘限定的外周界。该图像装置为一个或多个传感器阵列的有效区域限定一个或多个区。该图像装置还为与一个或多个传感器阵列相关联的缓冲器和/或逻辑单元限定一个或多个区。
图像装置、传感器阵列和图像区域都可以具有任何尺寸和形状。在一些实施例中,图像区域通常与相应传感器阵列的尺寸大致相同,并因此,取决于在下面的传感器阵列的尺度,图像区域可以彼此尺寸和形状不同。当然,不要求图像区域覆盖全部或仅在下面的阵列。在可替换实施例中,图像区域可以仅覆盖阵列的一部分,且可以延伸超出该阵列。
图像装置520的形状通常为矩形,其第一边的尺度等于约10mm且第二边的尺度等于约8.85mm。每个图像区域的形状通常为圆形,其宽度或直径等于约5mm。每个有效区域的形状通常为矩形,其第一尺度等于约4.14mm且第二尺度等于约3.27mm。该有效区域可以限定例如1200×900个像素(即1200列、900行)的矩阵。
在一些实施例中,图像装置520的形状通常为正方形,其每边的尺度等于约10mm,其中在每个象限,每边的尺度为5mm。每个图像区域的形状通常为圆形,其宽度或直径等于约5毫米(mm)。每个有效区域的形状通常为矩形,其第一尺度等于约4mm且第二尺度等于约3mm。该有效区域可以限定例如1200×900个像素(即1200列、900行)的矩阵。
参照图97A-97D,3个或更多相机通道的光学器件部分由一个或多个支撑件例如支撑件320来支撑,该支撑件将每个光学器件部分与相应传感器阵列至少部分配准地定位。例如,在该实施例中,光学器件部分330A与传感器阵列310A配准地定位。光学器件部分330B与传感器阵列310B配准地定位。光学器件部分330C与传感器阵列310C配准地定位。光学器件部分330B与传感器阵列310B配准地定位。在一些实施例中,该支撑件还有助于限制、最小化和/或消除相机通道之间的光“串扰”。
在该实施例中,支撑件320包括限定一个或多个支撑部分例如4个支撑部分600A-600C的支撑件,每个支撑部分都支撑和/或有助于定位一个或多个光学器件部分中相应的一个。例如,在该实施例中,支撑部分600A与传感器阵列310A配准地定位和支撑光学器件部分330A。支撑部分600B与传感器阵列310B配准地定位和支撑光学器件部分330B。支撑部分600C与传感器阵列310C配准地定位和支撑光学器件部分330C。支撑部分600D与传感器阵列310D配准地定位和支撑光学器件部分330D。在该实施例中,该支撑件还有助于限制、最小化和/或消除相机通道之间的光“串扰”。
每个支撑部分600A-600C限定孔径616和底座618。孔径616为相应的相机通道限定光传输的通路。底座618适于容纳相应的一个光学器件部分(或其部分)并适于至少部分地支撑和/或定位该相应的光学器件部分。就此而言,底座618可以包括适于邻接该光学器件部分的一个或多个表面的一个或多个表面(例如表面620、622),以相对于该支撑部分和/或传感器阵列310A-310C中的一个或多个来至少部分地支撑和/或定位该光学器件部分。在该实施例中,表面620设置在该光学器件部分的周界周围,以在x方向和y方向上支撑和帮助定位该光学器件部分。表面622(有时称为“止动”表面)将该光学器件部分定位或帮助定位在z方向上。
止动表面622的位置和/或取向可以适于将光学器件部分定位在相对于相应的传感器阵列的特定距离(或距离范围)处和/或取向上。就此而言,底座618控制透镜定位(例如安装)在支撑件320中的深度。该深度对每个透镜可能不同,并且至少部分地基于透镜的焦距。例如,如果相机通道专用于特定的颜色(或色带),则用于该相机通道的一个或多个透镜可以具有特别适于相机通道所专用于的颜色(或色带)的焦距。如果每个相机通道专用于不同于其它相机通道的颜色(或色带)的颜色(或色带),则每个透镜可以具有不同的焦距,以例如使透镜适于相应的传感器阵列,并且每个底座具有不同的深度。
每个光学器件部分可以按照任何合适的方式固定在相应的底座618中,该方式例如但不限于机械的(例如压配合、物理止动)、化学的(例如粘附)、电的(例如电接合)和/或它们的组合。在一些实施例中,底座618具有适于为相应的光学器件部分提供压配合的尺度。
孔径(或其部分)可以具有任何配置(例如形状和/或尺寸),包括例如圆筒形的、圆锥形的、矩形的、不规则的和/或它们的任何组合。该配置可以基于例如光学路径的期望配置、相应光学器件部分的配置、相应传感器阵列的配置和/或它们的任何组合。
支撑件320可以包含任何类型的材料而且可以具有任何配置和/或构造。例如,在一些实施例中,支撑件320包含硅、半导体、玻璃、陶瓷、塑料或金属材料和/或它们的组合。如果支撑件320具有多于一个的部分,则这些部分可以彼此分开地制造、彼此整合地制造和/或按这两种方式的任何组合来制造。如果该支撑件限定多于一个的支撑部分,则每个这样的支撑部分例如支撑部分600A-600D可以如所示那样与其它支撑部分中的一个、一些或全部耦合,或者与其它支撑部分完全相隔离。如果支撑件320是单个整合部件,则一个或多个支撑部分中的每一个限定这样的整合部件的一个或多个部分。此外,该定位器可以是可以为制造和材料提供广泛选择的固体装置,但是也可以采用其它形式的装置。例如,在一些实施例中,支撑件320包括限定该支撑件和一个或多个支撑部分的板(例如薄板),其中孔径和底座通过机械加工(例如钻孔)或任何其它合适方式来形成。在另一些实施例中,支撑件320(例如利用具有限定一个或多个支撑部分的孔径和底座的突起的模子来)被制造为其中限定有孔径的铸件。
在一些实施例中,透镜和支撑件被制造为单个模制部件。在一些实施例中,透镜可以被制造有可用于形成支撑件的小片。
在一些实施例中,支撑件320直接或间接耦合和/或附着到图像装置上。例如,支撑件320可以(例如使用粘附剂来)直接耦合和附着到图像装置上或者通过中间支撑部件(未示出)间接耦合和/或附着到图像装置上。
支撑件320的x和y尺度可以例如与图像装置(在一个或多个尺度上)大致相同、与光学器件部分330A-330D的布置(在一个或多个尺度上)大致相同和/或与传感器阵列310A-310D的布置(在一个或多个尺度上)大致相同。这样设置尺度的一个优点是有助于将数码相机设备的x和y尺度保持得尽可能地小。
在一些实施例中,可能有利的是,向底座618提供与将邻接止动表面620的光学器件部分的高度相同的高度A。可能有利的是,将止动表面622设置在至少等于允许底座618为要安装在上面的光学器件部分(例如透镜)提供牢固止动所需要的高度的高度B(例如止动表面622和支撑部分的基座之间的距离)。高于止动表面622的高度而设置的孔径616的部分的宽度或直径C可以例如基于要安装在其中的光学器件部分(例如透镜)的宽度或直径以及用于将光学器件部分粘附和/或保持在底座618中的方法。止动表面622的宽度优选的大得足以有助于为光学器件部分(例如透镜)提供牢固止动,但小得足以将对由光学器件部分透射的光的不必要阻挡降至最低。可能理想的是,将低于止动表面622的高度而设置的孔径616的部分的宽度或直径D大得足以有助于将对由光学器件部分透射的光的不必要阻挡降至最低。鉴于上述考虑,可能理想的是,向该支撑件提供等于所需要的最小尺度的高度E,从而产生坚固得足以支撑一个或多个将要安装在其中的光学器件部分的支撑件,并且可能有利的是,使一个或多个支撑部分600A-600D的一个或孔径616A-616D间隔尽可能小但又大得足以使该支撑件坚固得足以支撑将要安装在其中的光学器件部分的间距F。该支撑件可以具有长度J和宽度K。
在一些实施例中,理想的是,向底座618提供等于2.2mm的高度A,在0.25mm到3mm范围内的高度B处提供止动表面622,使该孔径高于止动表面622的高度B的部分的宽度或直径C大约等于3mm,该孔径的下部的宽度或直径D大约等于2.8mm,向支撑部分提供2.45mm到5.2mm范围内的高度E,并且使孔径间隔开至少1mm的距离F。在一些这样的实施例中,可能理想的是,提供长度J等于10mm而宽度K等于10mm的支撑件。在另一些实施例中,可能理想的是,提供长度J等于10mm而宽度K等于8.85mm的支撑件。
在一些实施例中,一个或多个光学器件部分包括圆筒形类型的透镜,例如Edmunds Optics制造的NT45-090透镜。这种透镜具有直径G高达3毫米(mm)且高度H为2.19mm的圆筒形部分。在这些实施例中,可能理想的是,采用具有上一段中阐述的尺度和范围的支撑件。
在一些实施例中,支撑件的长度J等于10mm而宽度K等于10mm。在另一些实施例中,可能理想的是,提供长度J等于10mm而宽度K等于8.85mm的支撑件。
3个通道,两个通道小于其它的一个通道
图99A-99D是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括3个或更多相机通道例如相机通道350A-350C。两个相机通道例如相机通道350A-350B的尺寸都小于第三相机通道例如相机通道350C的尺寸。较小相机通道可以或可以不具有彼此相同的尺寸。
在一些实施例中,较小相机通道例如相机通道350A-350B的分辨率都低于较大相机通道例如相机通道350C的分辨率,尽管在这些实施例中,较小相机通道可以或可以不具有彼此相同的分辨率。例如,对于可比拟的视场部分,每个较小相机通道例如相机通道350A-350B的传感器阵列可以具有比较大相机通道例如相机通道350B的传感器阵列中所提供的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多36%。然而应当理解,还可以采用任何其它尺寸和/或架构。
在另一些实施例中,一个或多个较小相机通道的分辨率等于较大相机通道的分辨率。例如,对于可比拟的视场部分,一个或多个较小相机通道例如相机通道350A-350B的传感器阵列可以与较大相机通道例如相机通道350C中所提供的传感器阵列具有相同数量的像素。例如,在一个实施例中,较大相机通道中的像素的尺寸比较小相机通道中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以采用任何其它尺寸和/或架构。
在一些实施例中,第一相机通道例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),第二相机通道例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),第三相机通道例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,两个较小相机通道例如相机通道350A-350B的分辨率都低于第三相机通道例如相机通道350C的分辨率。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的布局(参见例如图99B-99D)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图89A)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,相机通道例如相机通道350A-350C通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有彼此相同的特性。在另一些实施例中,较小相机通道例如相机通道350A-350B与第一显示器连接,且较大相机通道例如相机通道350C与第二显示器连接。第一和第二显示器可以或可以不具有相同的特性。在一些实施例中,第一显示器具有等于与其连接的一个或多个相机通道的分辨率的分辨率。第二显示器可以具有等于与其连接的一个或多个相机通道的分辨率的分辨率。但是也可以采用其它分辨率。
3个尺寸互不相同的通道
图100A-100D是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括3个或更多相机通道例如相机通道350A-350C。第一相机通道例如相机通道350A的尺寸小于第二相机通道例如相机通道350B,而该第二相机通道的尺寸又小于第三相机通道例如相机通道350C的尺寸。
参照图101A-101G,在一些实施例中,最小相机通道例如相机通道350A的分辨率低于第二相机通道例如相机通道350B的分辨率,而第二相机通道例如相机通道350B的分辨率又低于最大相机通道例如相机通道350C的分辨率。例如,对于可比拟的视场部分,最小相机通道例如相机通道350A的传感器阵列可以具有比第二相机通道例如相机通道350B的传感器阵列中所提供的像素更少的像素,且对于可比拟的视场部分,第二相机通道例如相机通道350B的传感器阵列可以具有比最大相机通道例如相机通道350C的传感器阵列中所提供的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,第二相机通道例如相机通道350B中的像素数量比最小相机通道例如相机通道350A中的像素数量多44%,且对于可比拟的视场部分,最大相机通道例如相机通道350C中的像素数量比第二相机通道例如相机通道350B中的像素数量多36%。然而应当理解,还可以采用任何其它尺寸和/或架构。
参照图102A-102G,在另一些实施例中,一个或多个较小相机通道例如相机通道350A-350B具有等于较大相机通道例如相机通道350C的分辨率的分辨率。例如,对于可比拟的视场部分,一个或多个较小相机通道例如相机通道350A-350B的传感器阵列可以与较大相机通道例如相机通道350C的传感器阵列具有相同数量的像素。
例如,在一个实施例中,第二相机通道例如相机通道350B中的像素尺寸比最小相机通道例如相机通道350A中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,最大相机通道例如相机通道350C中的像素尺寸比第二相机通道例如相机通道350B中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以使用任何其它尺寸和/或架构。
在一些实施例中,第一相机通道例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),第二相机通道例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),第三相机通道例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,两个较小相机通道例如相机通道350A-350B都具有低于第三相机通道例如相机通道350C的分辨率的分辨率。在另一些实施例中,每个相机通道例如相机通道350A-350C具有同一分辨率。
在一些实施例中,相机通道的传感器阵列中的像素数量和/或像素设计适于与这种相机通道所专用于的入射光的波长或波长带相匹配。
在一些实施例中,一个或多个相机通道的传感器阵列尺寸和/或光学器件设计(例如f/#和焦距)适于为这种相机通道提供所需的视场和/或灵敏度。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,一个或多个相机通道专用于一个波长或波长带,且这样的一个或多个相机通道的传感器阵列和/或光学器件部分针对相应相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个传感器阵列的设计、操作、阵列尺寸和/或像素尺寸针对相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个光学部分的设计针对相应相机通道所专用于的相应波长或波长带而优化。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图100B-100D)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图100A)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,相机通道例如相机通道350A-350C通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。该显示器可以或可以不具有相同的特性。例如,在一些实施例中,一个或多个相机通道的分辨率低于一个或多个其它相机通道的分辨率,与该一个或多个较低分辨率相机通道连接的一个或多个显示器具有低于与一个或多个其它相机通道连接的一个或多个显示器的分辨率的分辨率。
3个尺寸互不相同的椭圆形通道
图103A-103E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括一个或多个相机通道例如相机通道350A-350C,其一个或多个分别具有椭圆形或其它非圆形形状的光学部分例如光学部分330A-330C。
在一些实施例中,一个或多个相机通道例如相机通道350A-350B的尺寸小于第三相机通道例如相机通道350C的尺寸。在一些这样的实施例中,一个或多个较小相机通道例如相机通道350A-350B的分辨率可以都小于较大相机通道例如相机通道350C的分辨率,尽管在这些实施例中,较小相机通道可以或可以不具有彼此相同的分辨率。例如,对于可比拟的视场部分,每个较小相机通道例如相机通道350A-350B的传感器阵列可以具有比较大相机通道例如相机通道350B的传感器阵列中所提供的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比一个或多个较小相机通道中的像素数量多36%。然而应当理解,还可以采用任何其它尺寸和/或架构。
如果一个或多个相机通道例如相机通道350A-350B的尺寸小于第三相机通道例如相机通道350C的尺寸,则该一个或多个较小相机通道可以具有等于较大相机通道的分辨率的分辨率。例如,对于可比拟的视场部分,一个或多个较小相机通道例如相机通道350A-350B的传感器阵列可以与较大相机通道例如相机通道350C的传感器阵列具有相同数量的像素。例如,在一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以采用任何其它尺寸和/或架构。
在一些实施例中,第一相机通道例如相机通道350A专用于第一颜色或第一色带(例如红色或红色带),第二相机通道例如相机通道350B专用于不同于第一颜色或第一色带的第二颜色或第二色带(例如蓝色或蓝色带),第三相机通道例如相机通道350C专用于不同于第一和第二颜色或色带的第三颜色或第三色带(例如绿色或绿色带)。在一些这样的实施例中,两个较小相机通道例如相机通道350A-350B都具有低于第三相机通道例如相机通道350C的分辨率的分辨率。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图103B-103E)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图103A)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,一个或多个相机通道例如相机通道350A-350C通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与其自己的显示器连接。显示器可以或可以不具有彼此相同的特性。例如,如果相机通道具有互不相同的分辨率,则显示器也可以具有互不相同的分辨率。例如,在一些实施例中,较小通道例如相机通道350A-350B的分辨率低于较大通道例如相机通道350B的分辨率,且与较小通道连接的显示器的分辨率低于与较大相机通道连接的显示器的分辨率。在另一些实施例中,两个较小相机通道例如相机通道350A-350B与第一显示器连接,且较大相机通道例如相机通道350C与第二显示器连接。第一和第二显示器可以或可以不具有彼此相同的特性。例如,在一些实施例中,较小相机通道例如相机通道350A-350B的分辨率低于较大相机通道例如相机通道350C的分辨率,与较小相机通道连接的显示器具有低于与较大相机通道连接的显示器的分辨率的分辨率。
两个相机通道
图104A-104E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括两个或更多相机通道例如相机通道350A-350B。
在一些实施例中,第一相机通道例如相机通道350A专用于单个颜色或单个色带(例如红色或红色带),且第二相机通道例如相机通道350B专用于不同于第一相机通道所专用于的颜色或色带的单个颜色或单个色带(例如绿色或绿色带)。在一些实施例中,一个或多个相机通道采用:与相应相机通道的颜色光学模糊相匹配的像素尺寸、适于提高或优化相应相机通道的性能的传感器阵列的整合时间和/或其它电特性、和/或适于提高或最大化相应相机通道的灵敏度的像素电路和光电二极管的设计/布局。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在另一些实施例中,第一相机通道例如相机通道350A专用于两个或更多分离的颜色或者两个或更多分离的色带(例如蓝色或蓝色带以及红色或红色带)。在一些这样的实施例中,光学器件部分自身可以具有提供例如类似于滤色器阵列(例如Bayer图案或其变种)所提供的颜色分离的能力的颜色分离的能力。在一些实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器阵列可以配备有具有多带能力(例如两个或三个颜色)的像素。例如,每个像素可以包括两个或三个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,第二光电二极管适于检测第二颜色或第二色带,第三光电二极管适于检测第三颜色或第三色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。在一些实施例中,即使像素可能只看见一种特定颜色或色带,也使用这种传感器阵列,来例如使这种传感器阵列适于特定颜色或色带。
在一些较后的实施例中,第二相机通道例如相机通道350B专用于不同于第一相机通道所专用于的颜色或色带的单个颜色或单个色带(例如绿色或绿色带)。在一些较后的实施例中,第二相机通道例如相机通道350B也专用于两个或更多分离的颜色或者两个或更多分离的色带。例如,第一相机通道可以专用于红色或红色带以及绿色或绿色带(例如G1)。第二相机通道可以专用于蓝色或蓝色带以及绿色或绿色带(例如G2)。
该2个或更多相机通道可以或可以不具有彼此相同的配置(例如尺寸、形状、分辨率、或灵敏度或灵敏度范围)。例如,在一些实施例中,每个相机通道具有彼此相同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。在另一些实施例中,一个或多个相机通道具有与一个或多个其它相机通道不同的尺寸、形状、分辨率和/或灵敏度或灵敏度范围。例如,对于可比拟的视场部分,一个或多个相机通道的传感器阵列可以具有比一个或多个其它相机通道的传感器阵列的像素少的像素。
在一些实施例中,相机通道之一的传感器阵列可以具有不同于其它相机通道的传感器阵列的尺寸的尺寸的尺寸。在一些这样的实施例中,这种一个或多个相机通道的光学器件部分可以具有不同于一个或多个其它相机通道的f/#和/或焦距的f/#和/或焦距。
在一些实施例中,一个或多个相机通道专用于一个波长或波长带,且这样的一个或多个相机通道的传感器阵列和/或光学器件部分针对相应相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个传感器阵列的设计、操作、阵列尺寸和/或像素尺寸针对相机通道所专用于的相应波长或波长带而优化。在一些实施例中,每个光学部分的设计针对相应相机通道所专用于的相应波长或波长带而优化。
然而应当理解,还可以采用任何其它配置。
该两个或更多相机通道可以按照任何方式排列。在一些实施例中,该两个或更多相机通道可以如图所示布置成线性阵列。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的一个或多个布局(参见例如图104C-104E)相同或类似的布局。在一些实施例中,该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(参见例如图104B)。
如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
在一些实施例中,一个或多个相机通道例如相机通道350A-350B通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与不同的显示器连接,即较小相机通道例如相机通道350A与第一显示器连接,而较大相机通道例如相机通道350B与第二显示器连接。第一和第二显示器可以或可以不具有相同的特性。在一些实施例中,第一显示器的分辨率等于与其连接的相机通道的分辨率。第二显示器的分辨率可以等于与其连接的相机通道的分辨率,但是也可以采用其它分辨率。
两个通道,一个通道小于另一个通道
图105A-105E是按照本发明其它实施例的数码相机设备300的示意表示。在每个这样的实施例中,该数码相机设备包括两个或更多相机通道例如相机通道350A-350B。第一相机通道例如相机通道350A的尺寸小于第二相机通道例如相机通道350B的尺寸。
在一些实施例中,较小相机通道例如相机通道350A的分辨率低于较大相机通道例如相机通道350B的分辨率。例如,对于可比拟的视场部分,较小相机通道例如相机通道350A的传感器阵列可以具有比较大相机通道例如相机通道350B的传感器阵列的像素更少的像素。例如,在一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比较小相机通道中的像素数量多44%。例如,在另一个实施例中,对于可比拟的视场部分,较大相机通道中的像素数量比较小相机通道中的像素数量多36%。然而应当理解,还可以采用任何其它尺寸和/或架构。
在另一些实施例中,较小相机通道例如相机通道350A具有等于较大相机通道例如相机通道350B的分辨率的分辨率。例如,对于可比拟的视场部分,较小相机通道例如相机通道350A的传感器阵列可以与较大相机通道例如相机通道350B的传感器阵列具有数量相同但较小的像素。例如,在一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大44%(例如在x方向上大20%,在y方向上大20%)。例如,在另一个实施例中,较大相机通道中的像素尺寸比较小相机通道中的像素尺寸大36%(例如在x方向上大17%,在y方向上大17%)。然而应当理解,还可以采用任何其它尺寸和/或架构。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
在一些实施例中,第一相机通道即较小相机通道专用于单个颜色或单个色带(例如红色或红色带),而第二相机通道即较大相机通道专用于不同于第一相机通道所专用于的颜色或色带的单个颜色或单个色带(例如绿色或绿色带)。
在另一些实施例中,相机通道之一例如较小相机通道专用于两个或更多分离的颜色或者两个或更多分离的色带(例如蓝色或蓝色带以及红色或红色带)。在一些这样的实施例中,相机通道的透镜和/或滤光器可以使这两个颜色或色带透射,且在相机通道中的别处,相机通道可以包括一种或多种机制来分离两个颜色或两个色带。例如,滤色器阵列可以设置在透镜和传感器阵列之间和/或相机通道可以采用能分离颜色或色带的传感器。在一些较后的实施例中,传感器可以配备有传感器元件或像素,该传感器元件或像素每个都包括两个光电二极管,其中第一光电二极管适于检测第一颜色或第一色带,且第二光电二极管适于检测第二颜色或第二色带。完成此的一种方法是向光电二极管提供使得它们具有选择性的不同结构/特性,从而使第一光电二极管对第一颜色或第一色带比对第二颜色或第二色带更灵敏,且第二光电二极管对第二颜色或第二色带比对第一颜色或第一色带更灵敏。另一种方法是将光电二极管设置在像素内的不同深度处,这利用了不同颜色或色带的穿透和吸收特性不同的特点。例如,蓝色和蓝色带比绿色和绿色带穿透得少(并因此在较小深度处被吸收),而绿色和绿色带又比红色和红色带穿透得少(并因此在较小深度处被吸收)。
在一些实施例中,数码相机设备采用设置在与传感器阵列相同的集成电路上的处理器。该处理器可以具有任何布局,包括例如与在此描述的布局(参见例如图105C-105E)相同或类似的布局。在一些实施例中,该处理器该处理器可以具有不设置在与传感器阵列相同的集成电路上的一个或多个部分,和/或可以不具有任何设置在与传感器阵列相同的集成电路上的部分(例如参见图105B)。如上所述,上述每个实施例可以单独使用或与在此公开或本领域技术人员公知的任何其它实施例或其部分组合使用。
为此,在一些实施例中,较小相机通道专用于两个或更多分离的颜色(或两个或更多分离的色带),并且其分辨率低于较大相机通道的分辨率。
在一些实施例中,相机通道例如相机通道350A-350B通过一个或多个通信链路与一个或多个显示器连接。在一些这样的实施例中,每个相机通道与不同的显示器连接,即较小相机通道例如相机通道350A与第一显示器连接,而较大相机通道例如相机通道350B与不同于第一显示器的第二显示器连接。第一和第二显示器可以或可以不具有相同的特性。在一些实施例中,第一显示器的分辨率等于与其连接的相机通道的分辨率。第二显示器的分辨率可以等于与其连接的相机通道的分辨率,但是也可以采用其它分辨率。
图像传感器芯片组
图106A-106C是按照本发明另一实施例的具有多个数码相机设备例如两个数码相机设备的系统的透视图。该多个数码相机设备可以按照任何期望的方式布置。在一些实施例中,可能理想的是,从相反的方向采集图像。在一些实施例中,数码相机设备如图所示地背对背安装,一些这样的实施例可允许在相反方向上同时成像。
在一些实施例中,第一相机子系统的一个或多个光学器件部分面向与第二数码相机设备的一个或多个光学器件部分所面向的方向相反的方向。例如,在图示的实施例中,该系统具有通常彼此相对的第一和第二侧面。该数码相机设备中的第一个可以定位成通过数码相机设备的第一侧面接收光。该数码相机设备中的第二个可以定位成通过该系统的第二侧面接收光。还可以采用其它配置。
在一些实施例中,每个子系统都具有其自己的传感器阵列、滤光器和光学器件的组,而且可以或可以不具有彼此相同的应用和/或配置,例如在一些实施例中,一个子系统可以是彩色系统,而另一个可以是单色系统,一个子系统可以具有第一视场而另一个可以具有不同的视场,一个子系统可以提供视频成像而另一个可以提供静止成像。
多个数码相机子组件可以具有任何尺寸和形状并且可以或可以不具有彼此相同的配置(例如类型、尺寸、形状、分辨率)。在图示的实施例中,一个子系统的长度和宽度分别等于另一个子系统的长度和宽度,尽管这不是必需的。
在一些实施例中,第二数码相机设备的一个或多个传感器部分设置在与第一数码相机设备的一个或多个传感器部分相同的装置(如图像装置)上。在一些实施例中,第二数码相机设备的一个或多个传感器部分设置在第二装置(例如第二图像装置)上,第二装置可以例如相邻于上面设置了第一数码相机设备的一个或多个传感器部分的图像装置而设置。
在一些实施例中,两个或更多数码相机设备共享处理器或其部分。在另一些实施例中,每个数码相机设备具有其自己专用的、与其它数码相机设备的处理器分离的处理器。
在一些实施例中,该系统限定密封包装,尽管这不是必须的。
对于在此公开的每个实施例,本发明的该实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
该数码相机设备可以按照例如但不限于类似于在此公开的一个或多个实施例中采用的方式的任何方式组装和/或安装。
图107A-107B是另一个实施例的示意表示。该实施例包括多个图像装置。在该实施例中,每个图像装置都具有用于一个或多个相机通道的一个或多个传感器阵列。在一些实施例中,图像装置可以或可以不彼此相似。
尽管在此的很多附图示出层状组件形式的数码相机子组件,但应当理解数码相机子组件可以或可以不具有这样的配置。实际上,数码相机子组件的一个或多个相机通道可以具有任何配置。因此,一些实施例可以具有层状组件的形式。另一些实施例可以不具有层状组件的形式。
例如,图108A-108B是按照本发明其它实施例的数码相机子组件的示意表示。数码相机子组件每个都采用一个或多个在此描述的实施例或其部分。但是,数码相机子组件可以或可以不具有层状组件的形式。
在该实施例中,数码相机组件包括一个或多个相机通道。该相机通道可以具有任何配置而且可以或可以不具有彼此相同的配置。
在一些实施例中,每个相机通道都包括例如红色相机通道、蓝色相机通道和绿色相机通道的2M像素窄带相机。
在一些实施例中,每个相机通道都包括例如红色相机通道、蓝色相机通道和绿色相机通道的1.3M像素窄带相机。
在一些实施例中,相机通道之一是宽带相机通道、红外(IR)相机通道或紫外(UV)相机通道。
然而,如上所述,还可以采用任何其它配置。
对于在此公开的每个实施例,本发明的该实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
活动支持
在一些实施例中,每个光学器件部分相对于相应传感器部分的位置是固定的。但在一些可替换实施例中,可以提供一个或多个致动器以提供一个或多个光学器件部分或其部分和/或一个或多个传感器阵列或其部分的运动。在一些实施例中,一个或多个这样的致动器被提供在支撑件(这样的支撑件可以包括例如设有一个或多个致动器的框架)中。
例如,可能理想的是,提供光学器件部分(或其一个或多个部分)和传感器阵列(或其一个或多个部分)之间的相对移动,包括例如但不限于x和/或y方向、z方向上的相对移动、倾斜、旋转(例如小于、大于和/或等于360度的旋转)和/或它们的组合,该相对移动可以用于提供在此公开的各个特征和/或各个应用,包括例如但不限于增大分辨率(例如增大细节)、变焦、3D增强、图像稳定、图像对齐、透镜对齐、掩蔽、图像辨别、自动聚焦、机械快门、机械可变光阑(mechanical iris)、超球面成像、快照模式、测距和/或它们的组合。
值得注意的是,在2005年7月1日提交的标题为“Method andApparatus for use in Camera and Systems Employing Same”的美国临时申请60/695,946中描述和图示的发明可以与本发明相结合使用。为了简洁起见,将不重复那些讨论。应特别注意,上述美国临时申请的全部内容,包括例如其所有发明/实施例的特征、属性、替换、材料、技术和/或优点都通过引用结合于此。
可以例如使用致动器例如MEMS致动器,并且通过向一个或多个致动器施加合适的控制信号以使该一个或多个致动器移动、扩张和/或收缩从而移动关联的光学器件部分来提供这样的运动。可能是有利的是,使运动量等于小的距离例如2微米(2μm),这对于很多应用可能是足够的。例如,在一些实施例中,该运动量可以小到传感器阵列之一上的一个传感器元件的宽度的1/2(例如一个像素的宽度的1/2)。例如,在一些实施例中,该移动量可以等于一个传感器元件的宽度的量或一个传感器元件的宽度的量的两倍。
在一些实施例中,相对移动的形式是3×3格式的1/3像素×1/3像素节距移位。在其它实施例中,相对移动的形式是抖动。在一些抖动系统中,可能理想的是,采用减小的光学填充因子。在一些实施例中,采用快照积分。一些实施例提供在积分时读出信号的能力。
在一些实施例中,数码相机设备采用其自己进行的相对移动,该相对移动代替在此公开的一个或多个实施例或与该一个或多个实施例相组合来提供在此公开的各个特征和/或各个应用,例如但不限于增大分辨率(例如增大细节)、变焦、3D效果、图像稳定、图像对齐、透镜对齐、掩蔽、图像辨别、自动聚焦、自动曝光、机械快门、机械可变光阑、超球面成像、快照模式、测距和/或它们的组合。
此外,应当理解这样的相对移动可以用于提供目前已知或以后开发的任何其它特征和/或各个应用,如果需要还可以与目前已知或以后开发的任何方法和/或设备一起使用。
图109A-109D是示出在本发明的一些实施例中采用的配置的框图。
尽管在此的一些附图示出与传感器阵列分离的处理器,但处理器或其部分可以具有任何配置而且可以设置在任何一个或多个位置。在一些实施例中,处理器的一个、一些或所有部分与一个或多个传感器阵列例如传感器阵列310A-310D中的一个或多个设置在相同的一个或多个衬底上。但是在一些实施例中,处理器的一个、一些或所有部分设置在一个或多个衬底上,该一个或多个衬底与其上可设置有一个或多个传感器阵列例如传感器阵列310A-310D中的一个或多个的一个或多个衬底分离(并且可能远离)。
在一些实施例中,数码相机设备的一个或多个部分包括有助于进行至子系统和/或自子系统和/或在子系统内的有线、无线和/或光通信的电路。这样的电路可以具有任何形式。在一些实施例中,这种电路的一个或多个部分可以是处理器340的一部分,且可以与处理器340的一个或多个其它部分设置在同一集成电路上和/或可以以分立的形式与处理器340或其其它部分分离。
图110A是按照本发明的一个实施例的处理器340的框图。在该实施例中,处理器340包括一个或多个通道处理器、一个或多个图像管线和/或一个或多个图像后处理器。每个通道处理器都与相应的一个相机通道耦合并至少部分地基于从该相应相机通道接收到的信号来产生图像。在一些实施例中,处理器340至少部分地基于来自两个或更多相机通道的图像来产生合成图像。在一些实施例中,一个或多个通道处理器适于其相应的相机通道,例如在此描述的那样。例如,如果相机通道之一专用于特定的波长或颜色(或波长带或色带),则相应的通道处理器也可以适于该波长或颜色(或波长带或色带)。还可以采用在此描述的任何其它实施例或其组合。
例如,处理器的增益、噪声减小、动态范围、线性度和/或任何其它特性或这样的特性的组合可以适于针对该波长或颜色(或波长带或色带)改进和/或优化处理器。使通道处理适于相应的相机通道可以有助于产生高于由类似像素数量的传统图像传感器产生的图像质量的质量的图像。在这样的实施例中,向每个相机通道提供专用通道处理器可以有助于减少或简化通道处理器中的逻辑单元的量,因为通道处理器可能不需要适应颜色或波长的极端平移,例如从处于一个极端的颜色(或色带)或波长(或波长带)平移到处于另一极端的颜色(或色带)或波长(或波长带)。
由通道处理器产生的图像(和/或表示其的数据)被提供给图像管线,图像管线可以将图像组合以形成全色或黑/白图像。图像管线的输出被提供给后处理器,后处理器根据一个或多个输出格式产生输出数据。
图110B示出通道处理器的一个实施例。在该实施例中,通道处理器包括列逻辑单元、模拟信号逻辑单元、黑色电平控制和曝光控制。列逻辑单元与传感器耦合并从像素读取信号。如果通道处理器与专用于特定波长(或波长带)的相机通道耦合,则使列逻辑单元适于该波长(或波长带)可能是有利的。例如,列逻辑单元可以采用适于响应于该颜色通道所专用于的波长(或波长带)而提供特定动态范围的一个或多个整合时间。因此,使通道处理器之一中的列逻辑单元采用与一个或多个其它通道处理器中的列逻辑单元所采用的一个或多个整合时间不同的一个或多个整合时间可能是有利的。
模拟信号逻辑单元接收来自列逻辑单元的输出。如果通道处理器与专用于特定波长或颜色(或者波长带或色带)的相机通道耦合,则使模拟信号逻辑单元特别适于该波长或颜色(或者波长带或色带)可能是有利的。这样,如果需要,可以针对增益、噪声、动态范围和/或线性度等来优化模拟信号逻辑单元。例如,如果通道处理器专用于特定波长或颜色(或者波长带或色带),则可能不需要逻辑单元和稳定时间的显著平移,因为相机通道中的每个传感器元件专用于相同的波长或颜色(或者波长带或色带)。相反,如果相机通道必须处理所有波长和颜色并且采用其中相邻传感器元件专用于不同颜色例如红色-蓝色、红色-绿色或蓝色-绿色的Bayer布置,则可能不能进行这样的优化。
模拟信号逻辑单元的输出被提供给黑色电平逻辑单元,黑色电平逻辑单元确定该信号内的噪声的电平并滤除一些或所有这样的噪声。如果与通道处理器耦合的传感器针对比传统图像传感器更窄的可见光谱带,则可以对黑色电平逻辑单元更精细地调谐以消除噪声。如果通道处理器与专用于特定波长或颜色(或者波长带或色带)的相机通道耦合,则使模拟信号逻辑单元特别适于该波长或颜色(或者波长带或色带)可能是有利的。
黑色电平逻辑单元的输出被提供给曝光控制,曝光控制测量由阵列捕捉的光的总量并针对图像质量调整捕捉时间。传统相机必须全局地(对所有颜色)作出该确定。如果与通道处理器耦合的传感器专用于特定颜色(或色带),则曝光控制可以特别适于该传感器所针对的波长(或波长带)。每个通道处理器因此能够提供特别适于该传感器和/或该传感器所针对的特定颜色(或色带)并且与由一个或多个其它相机通道的一个或多个其它通道处理器所提供的捕捉时间不同的捕捉时间。
图110C示出图像管线的一个实施例。在该实施例中,图像管线包括两部分。第一部分包括颜色平面整合器和图像调整器。颜色平面整合器接收来自每个通道处理器的输出并将多个颜色平面整合为单个彩色图像。表示单个彩色图像的颜色平面整合器的输出被提供给图像调整器,图像调整器针对饱和度、锐度、强度和色调调整该单个彩色图像。该调整器还调整图像以去除伪影以及与一个或多个颜色通道中的坏像素相关的任何不期望效果。图像调整器的输出被提供给管线的第二部分,该第二部分提供自动聚焦、变焦、开窗、像素组合和相机功能。
图110D示出图像后处理器的一个实施例。在该实施例中,图像后处理器包括编码器和输出接口。编码器接收来自图像管线的输出信号,并根据一个或多个标准协议(例如MPEG和/或JPEG)提供编码以供给输出信号。
编码器的输出被提供给输出接口,输出接口根据标准输出接口例如通用串行总线(USB)接口提供编码以供给输出信号。
图110E示出系统控制的一个实施例。在该实施例中,系统控制部分包括串行接口、配置寄存器、功率管理、电压调节和控制、时序和控制、相机控制接口和串行接口。在一些实施例中,该相接接口包括处理高电平语言(HLL)指令的形式的信号的接口。下面各段描述该系统控制的一个这样的实施例。但是应当理解该相机接口不限于这样的实施例而可以具有任何配置。在一些实施例中,该相机接口包括处理低电平语言(LLL)指令的形式和/或任何目前公知或以后开发的其它形式的控制信号的接口。一些实施例可以处理HLL指令和LLL指令二者。
在该实施例的工作中,通信通过与串行端口连接的串行接口发生。例如,表示指令(例如HLL相机控制指令)、所需的设置、操作和/或数据的信号通过串行端口提供给串行接口和控制部分。如果该信号不表示HLL相机控制指令(即与相机有关的HLL指令),则表示所需的设置、操作和/或数据的信号被提供给配置寄存器以存储在其中。如果该信号表示HLL相机控制指令,则该HLL指令被提供给HLL相机控制接口。HLL相机控制接口对该指令解码,以产生表示所需的(用户或其它装置所需的)设置、操作和/或数据的信号,该信号被提供给配置寄存器以存储在其中。
表示所需的设置、操作和/或数据的信号按照需要被提供给功率管理、传感器时序和控制部分、通道处理器、图像管线和图像后处理器。功率管理部分接收所提供的信号并至少响应于该信号将控制信号提供给电压调整功率和控制部分,该部分又连接到数码相机设备中的电路。传感器时序和控制部分接收所提供的信号并至少响应于该信号将控制信号提供给传感器阵列以控制其工作。通道处理器(通过线)接收所提供的信号并进一步从一个或多个传感器阵列接收一个或多个信号,并至少响应于该信号而执行一个或多个通道处理器操作。
图像管线接收信号,并进一步从一个或多个通道处理器接收一个或多个信号,并至少响应于该信号而执行一个或多个图像管线操作。
图像后处理器接收信号,并进一步从图像管线接收一个或多个信号,并至少响应于该信号而执行一个或多个图像后处理器操作。
图110F示出按照本发明的一个实施例的高电平语言相机控制指令的例子。该指令格式具有op码,例如COMBINE,该op码在此情况下将该指令标识为一种类型的相机控制指令并请求数码相机设备产生合成图像。该指令格式还具有一个或多个操作对象字段,例如通道id1、通道id2,该字段至少部分地标识待用于产生合成图像的相机通道。
如在此使用的那样,术语“合成图像”意指至少部分地基于由两个或更多相机通道所捕捉的信息的图像。合成图像可以按照任何方式产生。示范相机通道包括但不限于相机通道350A-350D。
使用图110E的指令格式的HLL相机控制指令的例子是“COMBINE1,2”—该指令请求至少部分地基于由标示为“相机通道1”的相机通道例如相机通道350A和标示为“相机通道2”的相机通道例如相机通道350B捕捉的信息的输出图像。
另一个例子是COMBINE1,2,3,4—该指令请求至少部分地基于由标示为“相机通道1”的相机通道例如相机通道350A、标示为“相机通道2”的相机通道例如相机通道350B、标示为“相机通道3”的相机通道例如相机通道350C、标示为“相机通道4”的相机通道例如相机通道350D捕捉的信息的输出图像。
COMBINE和其它HLL指令对数码相机设备的可用性提供了形式上更为接近人类语言而不是机器语言和/或汇编语言的指令,从而有助于实现为数码相机设备写入、读取和/或维护程序。
应当认识到,本发明不限于图110E示出的COMBINE指令和HLL指令格式,也可以使用其它指令格式,包括例如其它HLL指令格式。
例如,在一些实施例中,相机通道没有在指令中指定,但是例如根据op码给出了提示。在这样的实施例中,数码相机设备可以例如配置为当COMBINE指令被提供时至少部分地基于一组预定相机通道而自动产生合成图像。可替换地,例如,可以支持多个不同的COMBINE或其它HLL指令,每一个都具有不同的op码。不同的op码可以明确地标识感兴趣的特定相机通道。例如,指令“COMBINE12”可以请求至少部分地基于由标示为“相机通道1”的相机通道例如相机通道350A和标示为“相机通道2”的相机通道例如相机通道350B捕捉的信息的输出图像。
指令“COMBINE1234”可以请求至少部分地基于由标示为“相机通道1”的相机通道例如相机通道350A、标示为“相机通道2”的相机通道例如相机通道350B、标示为“相机通道3”的相机通道例如相机通道350C、标示为“相机通道4”的相机通道例如相机通道350D捕捉的信息的输出图像。
在一些实施例中,单个COMBINE指令使得产生多于一个的合成图像。可以基于op码暗示用于附加合成图像的感兴趣的相机通道(如上所述)。可替换地,例如,可以基于所提供的操作对象暗示用于附加合成图像的感兴趣的相机通道。
图110G示出按照本发明其它实施例的高电平语言指令。
在一些实施例中,一个或多个指令可以使得相机接口启动由该指令建议的操作。例如,如果接收到指令“白色平衡人工”,则相机接口可以指示白色平衡控制在人工模式下工作和/或启动最终使得相机在这种模式下工作的信号。
这些指令可以用于例如控制相机设置和/或具有两个或更多状态例如“开/关”和/或“人工/自动”的相机的一个或多个方面的工作模式。
一些实施例包括图110G的指令中的一个、一些或全部。另一些实施例可以不采用图110G中列出的任何指令。
图110H示出按照本发明其它实施例的高电平语言指令。
在一些实施例中,一个或多个指令可以使得相机接口启动由该指令建议的操作。例如,如果接收到指令“单帧捕捉”,则相机接口可以启动单帧的捕捉。
一些实施例包括图110H的指令中的一个、一些或全部。另一些实施例可以不采用图110H中列出的任何指令。一些实施例可以单独地和/或与任何其它形式的信号相组合地包括图110G的一个或多个指令以及图110H的一个或多个指令。
在一些实施例中,相机接口可以配置为提供对低电平命令的有限访问,以提供特定用户限定的功能。
用于相机接口的信号形式可以是预定的、自适应确定的和/或用户确定的。例如在一些实施例中,用户可以为该接口定义指令集和/或格式。
如上所述,相机接口不限于采用HLL相机控制接口的实施例。该相机接口可以具有任何配置。在一些实施例中,该相机接口包括处理低电平语言(LLL)指令的形式和/或任何目前公知或以后开发的其它形式的控制信号的接口。一些实施例可以处理HLL指令和LLL指令二者。
应当理解,处理器340不限于上述部分和/或操作。例如,处理器340可以包括任何类型的部分或其组合和/或可以执行任何操作。
应当理解,处理器340可以按照任何方式来实施。例如,处理器340可以是可编程的或非可编程的、通用的或专门目的的、专用的或非专用的、分布式的或非分布式的、共享的或非共享的和/或它们的任何组合。如果处理器340具有两个或更多分布式部分,则该两个或更多部分可以通过一个或多个通信链路来通信。处理器可以包括例如但不限于硬件、软件、固件、硬线电路和/或它们的任何组合。在一些实施例中,处理器340的一个或多个部分可以按照一个或多个ASIC的形式来实施。处理器340可以执行或不执行具有一个或多个可分别包括多个指令的子例程或模块的一个或多个计算机程序,而且可以执行或不执行除在此描述的任务之外的任务。如果计算机程序包括超过一个的模块,则模块可以是一个计算机程序的部分,或者可以是分离的计算机程序的部分。如在此使用的那样,术语“模块”不限于子例程,而可以包括例如硬件、软件、固件、硬线电路和/或它们的任何组合。
在一些实施例中,处理器340包括有助于进行至数码相机设备和/或自数码相机设备的有线、无线和/或光通信的电路。这样的电路可以具有任何形式。在一些实施例中,这种电路的一个或多个部分与处理器340的其它部分设置在同一集成电路中。在一些实施例中,这种电路的一个或多个部分以分立的形式与处理器340或其部分的其它部分的集成电路分离。
在一些实施例中,处理器340包括至少一个通过互联机构(例如数据总线)与存储器系统连接的处理单元。存储器系统可以包括计算机可读的和可写的记录介质。该介质可以是或可以不是非易失性的。非易失性介质的例子包括但不限于磁盘、磁带、非易失性光学媒体和非易失性集成电路(例如只读存储器和闪存)。盘可以是可移动的,例如软盘,或可以是永久的,例如硬盘。易失性存储器的例子包括但不限于随机存取存储器例如动态随机存取存储器(DRAM)或静态随机存取存储器(SRAM),它们可以是或可以不是使用一个或多个集成电路来存储信息的类型。
如果处理器340执行一个或多个计算机程序,则该一个或多个计算机程序可以实施为由计算机执行的在机器可读存储介质或装置中明确体现的计算机程序产品。此外,如果处理器340是计算机,则这样的计算机不限于特定计算机平台、特定处理器或编程语言。计算机编程语言可以包括但不限于过程性的编程语言、面向对象的编程语言及它们的组合。
计算机可以执行或不执行称为操作系统的程序,该程序可以控制或不控制其它计算机程序的执行并提供调度、调试、输入/输出控制、计算、编译、存储分配、数据管理、通信控制和/或相关服务。计算机可以例如使用计算机语言如C、C++、Java或其它语言如脚本语言或甚至汇编语言来编程。计算机系统还可以是特别编程的、特殊用途硬件或特定用途集成电路(ASIC)。
输出装置的例子包括但不限于显示器(例如阴极射线管(CRT)装置、液晶显示器(LCD)、等离子体显示器和其它视频输出装置)、打印机、通信装置例如调制解调器、存储装置例如盘或带、和音频输出、以及在光透射膜或类似衬底上产生输出的装置。输出装置可以包括有助于与输出装置的通信的一个或多个接口。该接口可以是任何类型的接口,例如专有的或非专有的、标准的(例如通用串行总线(USB)或微USB)、或者自定制的或它们的任何组合。
输入装置的例子包括但不限于按钮、旋钮、开关、键盘、小键盘、跟踪球、鼠标、笔和书写板、光笔、触摸屏、以及数据输入装置如音频和视频捕捉装置。输出装置可以包括有助于与输出装置通信的一个或多个接口。该接口可以是任何类型的接口,例如但不限于专有的或非专有的、标准的(例如通用串行总线(USB)或微USB)、或者自定制的或它们的任何组合。
此外,如上所述,应当理解在此公开的特征可以以任何组合使用。
至处理器340的输入信号可以具有任何形式,且可以从任何源提供,该源例如但不限于数码相机设备内的一个或多个源(例如数码相机上的用户外围接口)和/或一个或多个其它装置。例如,在一些实施例中,外围用户接口包括一个或多个输入装置,用户可以通过该输入装置指示关于一个或多个期望工作模式(例如分辨率、人工曝光控制)的一个或多个偏好,且外围用户接口产生表示这样的一个或多个偏好的一个或多个信号。在一些实施例中,处理器340的一个或多个部分产生表示一个或多个期望工作模式的一个或多个信号。在一些实施例中,处理器340的一个或多个部分响应于来自外围用户接口的一个或多个输入而产生一个或多个这样的信号。
在一些实施例中,数码相机设备的一个或多个部分包括有助于进行至子系统和/或自子系统和/或在子系统内的有线、无线和/或光通信的电路。这样的电路可以具有任何形式。在一些实施例中,这种电路的一个或多个部分可以是处理器340的一部分,且可以与处理器340的一个或多个其它部分设置在同一集成电路上和/或可以以分立的形式与处理器340或其其它部分分离。
在一些实施例中,数码相机设备包括存储区,该存储区被提供有和/或存储一个、一些或所有图像和/或由数码相机设备产生或使用的其它信息和/或来自任何源并希望持续存储任何时间的任何其它信息。存储区可以向一个或多个其它装置和/或处理器的一个或多个部分提供一个或多个这样的图像和/或这样的其它信息,例如用以进一步处理和/或提供给一个或多个其它装置。该存储区可以例如是处理器340的一部分和/或通过一个或多个通信链路与处理器340的一个或多个部分耦合。在一些实施例中,该存储区还通过一个或多个通信链路与一个或多个其它装置耦合。在这样的实施例中,该存储区可以直接(即不穿过处理器340的任何其它部分)通过一个或多个通信链路中的一个或多个向一个或多个其它装置中的一个或多个提供一个或多个所存储的图像和/或其它信息,尽管这不是必须的。
图111A示出通道处理器的另一个实施例。在该实施例中,通道处理器包括双采样器、模数转换器、黑色电平钳位和偏离像素校正。
图像可以表示为多个图片元素(像素)量值。每个像素量值表示相关联的图像位置处的图片强度(相对暗度或相对亮度)。相对低的像素量值表示相对低的图片强度(即相对暗的位置)。相反,相对高的像素量值表示相对高的图片强度(即相对亮的位置)。像素量值是从取决于传感器分辨率的范围选择的。
图111B是相邻像素值的图形表示。图111B还示出多个规定的空间方向,即第一规定空间方向(例如水平方向)、第二规定空间方向(例如竖直方向)、第三规定空间方向(例如第一对角方向)和第四规定空间方向(例如第二对角方向)。像素P22与像素P12、P21、P32和P23相邻。像素P22在水平方向上与像素P32偏移。像素P22在竖直方向上与像素P23偏移。像素P22在第一对角方向上与像素P11偏移。像素P22在第二对角方向上与像素P31偏移。
双采样器确定每个像素的值在曝光时段期间改变的量,从而有效地提供对每个像素在曝光时段期间接收到的光量的估计。例如,像素可以在曝光时段之前具有第一值Vstart。该第一值Vstart可以等于或不等于0。同一个像素可以在曝光时段之后具有第二值Vend。第一值和第二值之间的差即Vstart-Vend表示该像素接收到的光量。
图111C示出该双采样实施例中采用的操作的流程图。
传感器阵列中的多个像素的值复位到开始曝光时段之前的初始状态。每个像素的值在开始曝光时段之前被采样。每个像素的值在曝光时段之后被采样,并且表示该值的信号被提供给双采样器。双采样器为每个像素产生信号,该信号表示该像素的开始值和结束值之间的差。
如上所述,每个差信号的量值表示在相应的传感器阵列位置接收到的光量。具有相对低量值的差信号表示在相应的传感器阵列位置接收到相对低的光量。具有相对高量值的差信号表示在相应的传感器阵列位置接收到相对高的光量。
再次参照图111A,由双采样器产生的差信号被提供给模数转换器,该模数转换器对每个这样的信号采样并响应于其产生多位数字信号序列,每个多位数字信号表示相应的一个差信号。
多位数字信号被提供给黑色电平钳位,黑色电平钳位补偿相机通道的传感器阵列的漂移。
差信号应当具有等于0的量值,除非像素暴露于光。但是由于传感器的不完美(例如漏电流),像素的值甚至在没有暴露于光时也可能改变(例如增大)。例如,像素可以在曝光时段之前具有第一值Vstart。同一个像素可以在曝光时段之后具有第二值Vend。如果存在漂移,则第二值可能不等于第一值,即使该像素没有暴露于光。黑色电平钳位补偿这样的漂移。
为了完成此,在一些实施例中,在传感器阵列的一个或多个部分(例如一个或多个行和/或一个或多个列)上施加永久的盖子,以防止光到达这些部分。该盖子例如在传感器阵列的制造期间施加。被覆盖的部分中的像素的差信号可用于估计传感器阵列中的漂移量值(和方向)。
在该实施例中,黑色电平钳位产生参考值(其代表该传感器阵列内的漂移的估计),该参考值的量值等于被覆盖部分中的像素的差信号的平均值。此后,黑色电平钳位通过为被覆盖部分中每个像素产生经补偿的差信号来补偿所估计的漂移,每个经补偿的差信号的量值等于相应未补偿的差信号的量值减去参考值的量值(参考值如上所述代表漂移的估计)。
黑色电平钳位的输出被提供给偏离像素识别器,偏离像素识别器用于识别有缺陷像素并帮助降低其影响。
在该实施例中,有缺陷像素定义为其一个或多个值、差信号和/或经补偿的差信号没有满足一个或多个准则的像素,在这种情况下于是采取一个或多个措施来帮助降低该像素的影响。例如,在该实施例中,如果像素的经补偿的差信号的量值超出参考值范围(即低于第一参考值或大于第二参考值),则该像素是有缺陷的。参考值范围可以是预定的、自适应确定的和/或它们的任何组合。
如果经补偿的差信号的量值超出该范围,则经补偿的差信号的量值被设定为等于至少部分地基于与有缺陷像素相邻的一个或多个像素的经补偿的差信号的值,该值例如是在正x方向上的像素偏移和负x方向上的像素偏移的平均值。
图111D示出在该有缺陷像素识别器实施例中采用的操作的流程图。每个经补偿的差信号的量值与参考值范围相比较。如果经补偿的差信号的量值超出参考值范围,则该像素是有缺陷的,并且差信号的量值被设定为按照上述方法的值。
图111E示出图像管线的另一个实施例。
在该实施例中,图像管线包括图像平面整合器、图像平面对齐和缝合、曝光控制、聚焦控制、变焦控制、伽玛校正、颜色校正、边缘增强、色度噪声减小、白色平衡、颜色增强、图像缩放和颜色空间转换。
通道处理器的输出是表示由相机通道捕捉到的图像的补偿版本的数据集。该数据集可以作为数据流输出。例如,来自相机通道A的通道处理器的输出表示由相机通道A捕捉到的图像的补偿版本,且可以以数据流PA1、PA2...PAn的形式。来自相机通道B的通道处理器的输出表示由相机通道B捕捉到的图像的补偿版本,且可以以数据流PB1、PB2...PBn的形式。来自相机通道C的通道处理器的输出表示由相机通道C捕捉到的图像的补偿版本,且可以以数据流PC1、PC2...PCn的形式。来自相机通道D的通道处理器的输出表示由相机通道D捕捉到的图像的补偿版本,且可以以数据流PD1、PD2...PDn的形式。
图像平面整合器从两个或更多通道处理器中的每一个接收数据,并将该数据组合成单个数据集,例如PA1、PB1、PC1、PD1、PA2、PB2、PC2、PD2、PA3、PB3、PC3、PD3、PAn、PBn、PCn、PDn。图111F示出图像平面整合器的一个实施例。
在该实施例中,图像平面整合器包括多路复用器和多相相位时钟。
多路复用器具有多个输入in0、in1、in2、in3,其每一个都适于接收多位数字信号流(或序列)。多位信号的数据流PA1、PA2...PAn从相机通道A的通道处理器提供给输入in0。数据流PB1、PB2...PBn从相机通道B的通道处理器提供给输入in1。数据流PC1、PC2...PCn从相机通道C的通道处理器提供给输入in2。数据流PD1、PD2...PDn从相机通道D的通道处理器提供给输入in3。多路复用器具有提供多位输出信号的输出out。要注意在一些实施例中,多路复用器包括多个4输入多路复用器,其每一个都是一位宽。
多相时钟具有接收信号的输入使能。多相时钟具有提供给多路复用器的输入s0、s1的输出c0、c1。在该实施例中,多相时钟具有4个相位,如图111G所示。
图像平面整合器的工作如下。该整合器具有两个状态。一个状态是等待状态。另一个状态是多路复用状态。工作状态的选择由提供给多相时钟的使能信号的逻辑状态来控制。多路复用状态具有4个相位,它们对应于多相时钟的4个相位。在相位0,时钟信号c1、c0都不被声明,使得多路复用器输出来自相机通道A的多位信号之一例如PA1。在相位1,时钟信号c0被声明,使得多路复用器输出来自相机通道B的多位信号之一例如PB1。在相位2,时钟信号c1被声明,使得多路复用器输出来自相机通道C的多位信号之一例如PC1。在相位0,时钟信号c1、c0二者都被声明,使得多路复用器输出来自相机通道D的多位信号之一例如PD1
此后,时钟返回到相位0,使得多路复用器输出来自相机通道A的另一个多位信号例如PA2。此后,在相位1,多路复用器输出来自相机通道B的另一个多位信号例如PB2。在相位2,多路复用器输出来自相机通道C的另一个多位信号例如PC2。在相位3,多路复用器输出来自相机通道D的另一个多位信号例如PD2
重复该操作直到多路复用器输出来自每个相机通道的最后一个多位信号例如PAn、PBn、PCn、PDn为止。
图像平面整合器的输出被提供给图像平面对齐和缝合部分。该部分的目的是确定应当如何对齐图像从而使由不同相机通道捕捉的目标被对齐在相应图像内的同一位置,以例如确保由不同相机通道捕捉的目标出现在每个相机通道图像内的同一位置。
例如,人眼是二通道图像平面系统的良好例子。当在眼睛前大约1英尺处握住铅笔,闭上左眼并用右眼看铅笔时,可以看到铅笔处在不同于当闭上右眼并用左眼看铅笔时的特定位置。这是因为我们的大脑在一个时间只接收一个图像,且不能将该图像与在不同时间接收的另一眼的图像关联。当睁开双眼并试图再次看铅笔时(在与前述实验相同的位置握住铅笔),大脑同时接收两个铅笔图像。在这种情况下,大脑自动试图将同一铅笔的两个图像对齐,且我们将感觉到前方是单个铅笔图像,只是该图像变成立体图像。
在数码相机设备的情况下,自动图像平面对齐和缝合部分确定2个、3个、4个、5个或更多图像通道应当如何对齐。
图111H-111J是分别由3个相机通道例如相机通道350A、350B、350C产生的图像的示意图,这三个相机通道按照本发明的一个实施例布置成三角形星座并在自动图像平面对齐和缝合部分的一个实施例中采用。
每个图像具有多个布置成多个行的像素。具体地说,第一相机通道例如相机通道350A的图像具有行1-n。第二相机通道例如相机通道350B的图像具有行1-n。第三相机通道例如相机通道350C的图像具有行1-n。一个参考线标识第一相机通道的图像中的水平参考点(例如中点)。一个参考线标识第二相机通道的图像中的水平参考点(例如中点)。一个参考线标识第三相机通道的图像中的水平参考点(例如中点)。
一个物体分别出现在这3个图像中。在该实施例中,该物体例如因为相机通道之间的空间偏移而出现在每个图像中的不同位置。例如,该物体具有交叉于顶点的两个边缘。在第一相机通道例如相机通道350A的图像中,该顶点出现在行2中并与水平参考点相一致。在第二相机通道例如相机通道350B的图像中,该顶点出现在行3中并在水平参考点的左边。在第三相机通道例如相机通道350C的图像中,该顶点出现在行3中并在水平参考点的右边。
图111K-111Q是按照本发明的一个实施例的由具有3个相机通道的系统的自动图像对齐部分执行的过程的示意图。在该实施例中,自动图像对齐执行竖直和水平对齐。
就此而言,可以首先执行竖直对齐,尽管可以采用任何顺序。该部分使用图像之一(例如第一相机通道例如相机通道350A的图像)作为参考图像来与其它图像相比较。自动图像对齐部分可以在初始时将参考图像的行1与其它图像的行1比较,并确定这样的图像的这样的行是否限定类似的边缘特征。在该实例中,图像都不在第一行中具有边缘特征,因此在每个这样的行中都不存在类似的边缘特征。因此该部分向图像缩放部分输出对应于这样的行(即这3个图像中的每一个的行1)的数据。在下一比较操作中,自动图像对齐部分将第一图像的行1与其它图像的行2比较。在该实例中,这样的行都不具有边缘特征,因此在每个这样的行中都不存在类似的边缘特征。因此该部分向图像缩放部分输出对应于这样的行(即第一图像的行1和每个其它图像的行2)的数据。在下一比较操作中,自动图像对齐部分将第一图像的行1与其它图像的行3比较。尽管第二和第三通道的图像的行3每个都具有边缘特征,但第一通道的图像的行1不具有边缘。
可以基于相机通道之间的物理间隔来选择使用(参考图像的)特定行的比较操作的最大数目。例如在该实施例中,参考图像的特定行最多用于3次比较操作。因此在后续的比较操作中,自动图像对齐使用第一相机通道的图像的行2,而不是第一通道的图像的行1。在下一比较操作中,自动图像对齐部分将第一图像的行2与其它图像的行2比较。尽管第一相机通道的图像的行2具有边缘,但其它相机通道的行2没有任何边缘。在下一比较操作中,自动图像对齐部分将第一图像的行2与其它图像的行3比较。在该实例中,每个这样的行具有类似的边缘特征。自动图像对齐部分使用其作为重叠图像(或其部分)的指示。
然后执行水平对齐。该部分确定为了将第二通道的图像和第三通道的图像中的边缘特征与第一相机通道的图像中的边缘特征对齐而应当将第二通道的图像和第三通道的图像平移的量值和方向,并确定图像重叠的宽度(例如,图像在水平方向上重叠的程度)。
在下一比较操作中,该部分将参考图像的下一行(例如行3)与其它图像的下一行(例如行4)比较,并重复上述操作以确定图像重叠的最小宽度。
可以按照竖直重叠和最小水平重叠来修剪图像。自动图像对齐部分的输出是修剪的对齐的图像,该修剪的对齐的图像被提供给图像缩放部分。在一些实施例中,图像缩放部分放大(例如上采样)该修剪的对齐的图像,以产生与原始图像尺寸相同的图像。
一些实施例单独地或与在此描述的任何方法相组合地采用另外的对齐方法。例如,在一些实施例中,在物体离相机相对远的情况下使用上述方法,而在物体离相机相对近时使用其他方法。
图111AF示出按照本发明另一实施例的可以在对齐部分中采用的操作的流程图。该对齐实施例可以例如用于包括一个或多个近物体的图像。
在该实施例中,在平面之一提取边缘。为每个边缘像素规定相邻像素(核)。此后,例如通过朝着其它颜色平面所相对位于的方向平移核,每个边缘像素的核可以与其它颜色平面中的像素相匹配。可以作出关于每个边缘像素的核与另一颜色平面中的像素的匹配程度的一个或多个确定。就此而言,可以采用匹配费用函数来量化每个边缘像素的核与另一颜色平面中的像素的匹配程度。在确定下一平面中每个边缘的最佳位置的过程中,可以检查每个边缘的相对位置以确认它们在根据最佳匹配平移之后仍保持相同的结构。
在设定了边缘的最终位置之后,可以例如使用线性映射和/或平移来映射边缘之间的间隔。可以对平移量执行后处理,以确认没有界外值(没有相对于周围像素的非预期平移)。
最初两个颜色平面的最初匹配可以用作关于在其它颜色平面中的每个像素处预期平移的量的参考。
上述操作可以例如在最初颜色平面和所有其它颜色平面之间施加。
应当理解自动图像对齐部分不限于上述实施例。例如在一些实施例中,对齐少于3个或多于3个的相机通道。此外,可以采用任何其它技术来对齐两个或更多图像。
由自动图像对齐部分执行的对齐可以是预定的、处理器控制的和/或用户控制的。在一些实施例中,自动对齐部分具有对齐少于所有相机通道(例如任何两个或更多个)的能力。在这样的实施例中,一个或多个信号可以被提供给自动图像对齐部分以指示要对齐的相机通道,且该自动图像对齐部分可以至少部分地响应于这样的一个或多个信号来对齐所指示的相机通道。该一个或多个信号可以是预定的或自适应确定的、处理器控制的和/或用户控制的。
应当理解在每个实施例中可以不要求自动图像对齐。
图像平面对齐和缝合的输出被提供给曝光控制,曝光控制的目的是帮助确保所捕捉的图像不会过曝光或欠曝光。过曝光的图像太亮。欠曝光的图像太暗。
图111R示出自动曝光控制的一个实施例。在一些实施例中,该自动曝光控制产生表示提供给该曝光控制的图像的亮度的亮度值。自动曝光控制将所产生的亮度值与一个或多个参考值比较,参考值例如两个值,其中第一值表示最小期望亮度而第二值表示最大期望亮度。最小和/或最大亮度可以是预定的、处理器控制的和/或用户控制的。例如在一些实施例中,最小期望亮度和最大期望亮度值由用户提供,使得由数码相机设备提供的图像在该用户看来不会太亮或太暗。
如果亮度值在最小期望亮度和最大期望亮度之间(即大于或等于最小期望亮度且小于或等于最大期望亮度),则自动曝光控制不改变曝光时间。如果该亮度值小于最小期望亮度值,则自动曝光控制提供使得曝光时间增加直到亮度大于或等于最小期望亮度为止的控制信号。如果亮度值大于最大亮度值,则自动曝光控制提供使得曝光时间减少直到亮度小于或等于最大亮度值为止的控制信号。在亮度值在最小和最大亮度值之间(即大于或等于最小亮度值且小于或等于最大亮度值)之后,自动曝光控制提供使能捕捉模式的信号,其中用户能够按下捕捉按钮以启动对图像的捕捉,且曝光时间的设定使得曝光时间导致处于用户偏好范围内的(所捕捉图像的)亮度水平。在一些实施例中,数码相机设备向用户提供直接人工调整曝光时间的能力,其类似于调整传统胶片相机上的可变光阑。
在一些实施例中,数码相机设备采用光学器件部分(或其一个或多个部分)和传感器阵列(或其一个或多个部分)之间的相对移动,来提供用于自动曝光控制和/或人工曝光控制的机械可变光阑。如上所述,这样的运动可以例如使用致动器例如MEMS致动器,并且通过向一个或多个致动器施加合适的控制信号以使该一个或多个致动器移动、扩张和/或收缩从而移动关联的光学器件部分来提供。
对于在此公开的每个实施例,上述实施例可以单独采用或与在此公开的一个或多个其它实施例或其部分组合使用。
此外,应当理解,在此公开的实施例还可以与目前公知或以后开发的一个或多个其它方法和/或装置组合使用。
如上所述,在2005年7月1日提交的标题为“Method and Apparatusfor use in Camera and Systems Employing Same”的美国临时申请60/695,946中描述和图示的发明可以与本发明相结合使用。为了简洁起见,将不重复那些讨论。应特别注意,上述美国临时申请的全部内容,包括例如其所有发明/实施例的特征、属性、替换、材料、技术和/或优点都通过引用结合于此。
曝光控制的输出被提供给自动/人工聚焦控制部分,自动/人工聚焦控制部分有助于使位于视场内的物体(例如图像的目标)出现在焦点上。通常,如果图像过焦点或欠焦点,图像中的物体都会显得模糊。当透镜位于焦点时,图像可具有峰值锐度。在一些实施例中,自动聚焦控制部分例如当数码相机设备处于预览模式时检测图像的模糊量,并提供控制信号,该控制信号使得透镜组件相应地前后移动,直到自动聚焦控制部分确定透镜位于焦点为止。目前可用的很多数码照相机都利用了此类型的机制。
在一些实施例中,自动/人工聚焦部分适于帮助增大数码相机设备的焦深。焦深可以视为在视场内位于焦点的物体在该物体变得“离焦”之前可以向前或向后移动多少的度量。焦深至少部分地基于光学部分中采用的透镜。一些实施例与一个或多个算法相结合地采用一个或多个滤光器来增大焦深。该一个或多个滤光器可以是用于增大焦深的传统滤光器,并且可以上覆在透镜顶(上或上方),尽管这不是必须的。可以采用任何类型的滤光器和定位。类似地,该一个或多个算法可以是传统的波前编码算法,尽管这不是必须的。可以采用任何类型的一个或多个算法。在一些实施例中,自动聚焦机制将焦深增大10倍(例如设有自动聚焦机制的焦深是单独透镜(没有自动聚焦机制)的焦深的10倍),从而使该系统对物体在视场内的位置较不敏感或不敏感。在一些实施例中,该自动聚焦机制将焦深增大20倍或更多倍(例如设有自动聚焦机制的焦深是单独透镜(没有自动聚焦机制)的焦深的20倍),从而进一步降低了对物体在视场内的位置的敏感度和/或使该系统对物体在视场内的位置不敏感。
在一些实施例中,数码相机设备可以向用户提供人工调整焦距的能力。
在一些实施例中,数码相机设备采用光学器件部分(或其一个或多个部分)和传感器阵列(或其一个或多个部分)之间的相对移动,来帮助提供自动聚焦和/或人工聚焦。如上所述,这样的运动可以例如使用致动器例如MEMS致动器,并且通过向一个或多个致动器施加合适的控制信号以使该一个或多个致动器移动、扩张和/或收缩从而移动关联的光学器件部分来提供。(参见例如在2005年7月1日提交的标题为“Method andApparatus for use in Camera and Systems Employing Same”的美国临时申请60/695,946,通过引用将该申请再次合并)。
自动/人工聚焦不限于上述实施例。实际上,可以采用目前公知或以后开发的任何其它类型的自动/人工聚焦。
此外,对于在此公开的每个实施例,上述实施例可以单独使用或与在此公开的一个或多个其它实施例或其部分组合使用。
应当理解,在此公开的实施例还可以与目前公知或以后开发的一个或多个其它方法和/或装置组合使用。
应当理解,自动聚焦和人工聚焦不是必须的。此外,聚焦部分可以提供自动聚焦而不考虑是否提供人工聚焦的能力。类似地,聚焦部分可以提供人工聚焦而不考虑是否提供自动聚焦的能力。
自动聚焦控制的输出被提供给变焦控制器。
图111S是变焦控制器的一个实施例的示意框图,该变焦控制器例如可以帮助提供“光学变焦”和/或“数字变焦”能力。光学变焦可以是目前公知或以后开发的任何类型的光学变焦。上面描述了传统光学变焦的例子(将一个或多个透镜元件前后移动)。类似地,数字变焦可以是目前公知或以后开发的任何类型的数字变焦。要注意期望变焦窗口的确定可以是预定的、处理器控制的和/或用户控制的。
数字变焦的一个缺点是称为混叠(aliasing)的现象。例如,当新闻频道的电视主持人戴着有条纹的领带时,该有条纹的领带的电视图像有时包括不出现在实际领带上的颜色现象。这种类型的混叠在系统没有足够的分辨率来精确表达视场内物体的一个或多个特征时是常见的。在上述例子中,电视相机没有足够的分辨率来精确捕捉领带上的条纹图案。
在一些实施例中,数码相机设备采用光学器件部分(或其一个或多个部分)和传感器阵列(或其一个或多个部分)之间的相对移动来帮助提高分辨率,从而有助于减少和/或最小化可能由于数字变焦而出现的混叠。如上所述,这样的运动可以例如使用致动器例如MEMS致动器,并且通过向一个或多个致动器施加合适的控制信号以使该一个或多个致动器移动、扩张和/或收缩从而移动关联的光学器件部分来提供。
例如在一些实施例中,捕捉图像然后将光学器件部分在x方向上移动等于像素的1/2宽度的距离。用光学器件在新位置捕捉图像。所捕捉的图像可以被组合以提高有效分辨率。在一些实施例中,该光学器件部分在y方向而不是x方向上移动。在另一些实施例中,该光学器件部分在x方向和y方向上移动并在这样的位置捕捉图像。在其它实施例中,还在所有4个位置(即没有移动、在x方向上移动、在y方向上移动、在x和y方向上移动)捕捉图像,然后图像被组合以进一步提高分辨率并进一步帮助减小、最小化或消除变焦所产生的混叠。例如,通过使分辨率加倍,可以放大两倍而不显著增大混叠。
在一些实施例中,相对移动的形式是3×3格式的1/3像素×1/3像素节距移位。在一些实施例中,可能理想的是,采用减小的光学填充因子。在一些实施例中,一个或多个传感器阵列提供足够的分辨率来允许数码相机设备执行数字变焦而不产生过度的混叠。例如,如果实施例对每个图像要求640×480个像素,有变焦或没有变焦,则可以向一个或多个传感器阵列提供1280×1024个像素。在这样的实施例中,这种传感器部分具有足够的像素来向数码相机设备提供缩小到图像的1/4所需要的分辨率,且还提供所需的640×480个像素的分辨率(例如1/2×1280=640,1/2×1024=512)。
图111T-111V是按照本发明这样的实施例的由数码相机设备的变焦部分执行的过程的示意图。在一些实施例中,该子系统当不在变焦模式下时可以仅使用像素的1/4(例如1/2×1280=640,1/2×1024=512),或者可以采用下采样以减少像素数量。在另一些这样的实施例中,数码相机设备即使当不在变焦模式下时也输出所有像素,例如1280×1024。关于当不在变焦模式下时使用多少像素和输出多少像素的确定可以是预定的、处理器控制的和/或用户控制的。
变焦控制器的输出被提供给伽码校正部分,伽码校正部分有助于将从相机通道接收到的值映射为与显示装置(例如液晶显示器或阴极射线管装置)的动态范围特性更紧密匹配的值。来自相机通道的值至少部分地基于传感器的动态范围特性,该传感器的动态范围特性常常与显示装置的动态范围特性不匹配。由伽码校正部分提供的映射有助于补偿动态范围之间的不匹配。
图111W是示出伽码校正部分的工作的例子的图形表示。
图111X示出伽码校正部分的一个实施例。在该实施例中,伽码校正部分采用传统的传递函数来提供伽码校正。该传递函数可以是任何类型的传递函数,包括线性传递函数、非线性传递函数和/或它们的组合。该传递函数可具有任何合适的形式,包括但不限于一个或多个等式、查找表和/或它们的组合。该传递函数可以是预定的、自适应确定的和/或它们的组合。
伽码校正部分的输出被提供给颜色校正部分,颜色校正部分有助于将相机的输出映射为与用户的颜色偏好相匹配的形式。
在该实施例中,颜色校正部分利用包含多个参考值的校正矩阵产生经校正的颜色值,以实施如下的颜色偏好(该校正矩阵包含例如由数码相机的用户和/或制造商限定的参数集):
Rc Gc Bc = Rr Gr Br Rg Gg Bg Rb Gb Bb ⊃ R G B
使得:
R校正=(Rr×R未校正)+(Gr×G未校正)+(Br×B未校正)
G校正=(Rg×R未校正)+(Gg×G未校正)+(Bg×B未校正)
B校正=(Rb×R未校正)+(Gb×G未校正)+(Bb×B未校正)
其中,
Rr表示来自红色相机通道的输出值与显示装置响应该输出值而需要的红色光量之间的关系的值,
Gr表示来自绿色相机通道的输出值与显示装置响应该输出值而需要的红色光量之间的关系的值,
Br表示来自蓝色相机通道的输出值与显示装置响应该输出值而需要的红色光量之间的关系的值,
Rg表示来自红色相机通道的输出值与显示装置响应该输出值而需要的绿色光量之间的关系的值,
Gg表示来自绿色相机通道的输出值与显示装置响应该输出值而需要的绿色光量之间的关系的值,
Bg表示来自蓝色相机通道的输出值与显示装置响应该输出值而需要的绿色光量之间的关系的值,
Rb表示来自红色相机通道的输出值与显示装置响应该输出值而需要的蓝色光量之间的关系的值,
Gb表示来自绿色相机通道的输出值与显示装置响应该输出值而需要的蓝色光量之间的关系的值,
Bb表示来自蓝色相机通道的输出值与显示装置响应该输出值而需要的蓝色光量之间的关系的值。
图111Y示出颜色校正部分的一个实施例。在该实施例中,颜色校正部分包括红色校正电路、绿色校正电路和蓝色校正电路。
红色校正电路包括3个乘法器。第一乘法器接收红色值(例如PAn)和传递特性Rr,并产生表示它们的乘积的第一信号。第二乘法器接收绿色值(例如PBn)和传递特性Gr,并产生表示它们的乘积的第二信号。第三乘法器接收绿色值(例如PCn)和传递特性Br,并产生表示它们的乘积的第三信号。第一、第二和第三信号被提供给加法器,加法器产生表示经校正的红色值(例如PAn校正)的和。
绿色校正电路包括3个乘法器。第一乘法器接收红色值(例如PAn)和传递特性Rg,并产生表示它们的乘积的第一信号。第二乘法器接收绿色值(例如PBn)和传递特性Gg,并产生表示它们的乘积的第二信号。第三乘法器接收绿色值(例如PCn)和传递特性Bg,并产生表示它们的乘积的第三信号。第一、第二和第三信号被提供给加法器,加法器产生表示经校正的绿色值(如PBn校正)的和。
蓝色校正电路包括3个乘法器。第一乘法器接收红色值(例如PAn)和传递特性Rb,并产生表示它们的乘积的第一信号。第二乘法器接收绿色值(例如PBn)和传递特性Gb,并产生表示它们的乘积的第二信号。第三乘法器接收绿色值(例如PCn)和传递特性Bb,并产生表示它们的乘积的第三信号。第一、第二和第三信号被提供给加法器,加法器产生表示经校正的蓝色值(如PCn校正)的和。
颜色校正器的输出被提供给边缘增强器/锐化器,边缘增强器/锐化器用于帮助增强可能出现在图像中的特征。
图111Z示出边缘增强器/锐化器的一个实施例。在该实施例中,边缘增强器/锐化器包括高通滤波器,高通滤波器应用于提取细节和边缘并将提取信息回应用于原始图像。
边缘增强器/锐化器的输出被提供给减小图像中的随机噪声的随机噪声减小部分。随机噪声减小可以包括例如具有自适应和边缘保持特性的线性或非线性低通滤波器。这样的噪声减小可查看所考虑像素的局部邻域。在边缘附近,可以在边缘方向上执行低通滤波,以便防止这样的边缘的模糊。一些实施例可以应用自适应机制。例如,低通滤波器(线性的和/或非线性的)和较大尺寸的邻域可用于光滑区域。在边缘附近,可采用低通滤波器(线性的和/或非线性的)和较小尺寸的邻域,以便例如不使这样的边缘模糊。
如果需要,可以单独地或与在此公开的一个或多个实施例组合地采用其它随机噪声减小部分。在一些实施例中,例如在偏离像素校正之后在通道处理器中执行随机噪声减小。这样的噪声减小可以代替或补充可以在图像管线中执行的任何随机噪声减小。
随机噪声减小部分的输出被提供给用于减小颜色噪声的色度噪声减小部分。
图111AA示出色度噪声减小部分的一个实施例。在该实施例中,色度噪声减小部分包括RGB至YUV转换器、第一和第二低通滤波器以及YUV至RGB转换器。为RGB值形式的信号的随机噪声减小部分的输出被提供给RGB至YUV转换器,RGB至YUV转换器响应于该输出产生YUV值序列,每个YUV值表示相应的一个RGB值。
Y值或分量(其表示图像的亮度)被提供给YUV至RGB转换器。U和V值或分量(其表示图像的颜色成分)分别被提供给第一和第二低通滤波器,第一和第二低通滤波器分别减小U和V分量上的颜色噪声。所述滤波器的输出被提供给YUV至RGB转换器,YUV至RGB转换器响应于该输出产生RGB值序列,每个RGB值表示相应的一个YUV值。
色度噪声减小部分的输出被提供给自动/人工白色平衡部分,自动/人工白色平衡部分用于帮助确保白色目标显现为白色目标,而不是红色、绿色或蓝色的。
图111AB是示出由一个实施例中的白色平衡部分执行的过程的示意图。具体地说,图111AB描绘了具有R/G轴和B/G轴的矩形坐标平面。该矩形坐标平面具有3个区,即红色区、白色区和蓝色区。第一参考线限定了将红色区与白色区分开的色温。第二参考线限定了将白色区与蓝色区分开的色温。第一参考线例如设置在4700K的色温。第二参考线例如设置在7000K的色温。在该实施例中,自动白色平衡部分确定限定原始图像的多个像素在由R/G轴和B/G轴限定的矩形坐标平面中位置。该多个像素的位置被视为表示该矩形坐标平面上的点簇。自动白色平衡部分确定该点簇的中心以及可施加到原始图像的R、G、B像素值的改变,该改变用以有效地将该点簇的中心平移到该坐标平面的白色图像区中例如6500K的色温。自动白色平衡部分的输出是这样的输出图像,其中输出图像中的像素值基于对应的原始图像像素值,并且已确定的对R、G、B像素值的改变可用于将原始图像的点簇中心平移到白色区中,使得该输出图像的点簇中心设置在该坐标平面的白色图像区中例如6500K的色温。
期望色温可以是预定的、处理器控制的和/或用户控制的。例如在一些实施例中,表示期望色温的参考值由用户提供,从而由数码相机设备提供的图像将具有用户所期望的色温特性。在这样的实施例中,可以通过确定可用于将原始图像的点簇中心平移到对应于由用户提供的参考值的色温的改变来执行人工白色平衡。
白色平衡策略可使用例如目前公知或以后开发的一个或多个传统颜色增强算法。
应当理解白色平衡部分不限于上面阐述的技术。实际上,白色平衡部分可以采用目前公知或以后开发的任何白色平衡技术。还应当理解白色平衡不是必须的。白色平衡部分的输出被提供给自动/人工颜色增强部分。
图111AC是按照一个实施例的颜色增强部分的一个实施例的框图。在该实施例中,颜色增强部分调整亮度、对比度和/或饱和度,以按照一个或多个增强策略来增强颜色表现。该过程在某些方面类似于调整电视机或计算机监视器的颜色设置。一些实施例还可以调整色调。该增强策略可以使用例如目前公知或以后开发的一个或多个传统颜色增强算法。
参照图111AC,表示图像的数据被提供给亮度增强部分,亮度增强部分进一步接收调整值并根据该调整值产生表示针对亮度而调整的图像的输出数据。在该实施例中,输出图像中的每个像素值等于调整值与输入图像中的对应像素之和。该调整值可以是预定的、处理器控制的和/或用户控制的。例如在一些实施例中,该调整值由用户提供,使得由数码相机设备提供的图像将具有用户所期望的特性。在一些实施例中,具有正量值的调整值使得输出图像显得比输入图像亮。具有负量值的调整值使得输出图像显得比输入图像暗。
亮度增强部分的输出被提供给对比度增强部分,对比度增强部分进一步接收调整值并根据该调整值产生针对对比度而调整的输出图像。在该实施例中,对比度调整可以视为“拉长”暗(例如由具有小量值的像素值表示)与亮(例如由具有大量值的像素值表示)之间的距离。具有正量值的调整值使得输入图像中的暗区域在输出图像中显得更暗,且使得输入图像中的亮区域在输出图像中显得更亮。具有负量值的调整值可以具有相反的效果。可以采用例如目前公知或以后开发的一个或多个传统算法。调整值可以是预定的、处理器控制的和/或用户控制的。例如在一些实施例中,调整值由用户提供,使得由数码相机设备提供的图像具有用户所期望的特性。
对比度增强部分的输出被提供给饱和度增强部分,饱和度增强部分进一步接收调整值并根据该调整值产生针对饱和度而调整的输出图像。在该实施例中,饱和度调整可以视为“拉长”像素的R、G、B成分之间的距离(某些方面类似于对比度调整)。具有正量值的调整值使得输入图像中的暗区域在输出图像中显得更暗,且使得输入图像中的亮区域在输出图像中显得更亮。具有负量值的调整值可以具有相反的效果。可以采用例如目前公知或以后开发的一个或多个传统算法。该技术可以采用例如类似于由上述颜色校正部分采用的颜色校正矩阵。调整值可以是预定的、处理器控制的和/或用户控制的。例如在一些实施例中,调整值由用户提供,使得由数码相机设备提供的图像具有用户所期望的特性。
应当理解颜色增强部分不限于上述增强技术。实际上,颜色增强部分可以采用目前公知或以后开发的任何增强技术。还应当理解颜色增强不是必须的。
自动/人工颜色增强部分的输出被提供给图像缩放部分,图像缩放部分用于例如通过去除或增加像素以调整图像尺寸来缩小或放大图像。
图像缩放部分接收表示待缩放(例如放大或缩小)的图像的数据。缩放的量值可以是预定的或预设的、处理器控制的或人工控制的。在一些实施例中,接收表示缩放量值的信号(如果存在的话)。如果表示期望缩放量值的信号指示图像应被放大,则缩放部分执行上缩放。如果表示期望缩放量值的信号指示图像应被缩小,则缩放部分执行下缩放。
图111AD-111AE分别是按照一个实施例的上缩放的框图和解释图。具体地说,图111AE描绘了待放大的图像部分和由此形成的图像部分。在该例子中,待放大的图像部分包括9个像素,为解释起见表示为P11-P33,示出布置成具有3行和3列的阵列。由此形成的图像部分包括25个像素,为解释起见表示为A-Y,示出布置成具有5行和5列的阵列。(注意要形成的图像部分可以替换地表示为P11-P55。)
在该实施例中,图像缩放部分采用上缩放策略,其中奇数列和奇数行的交叉处的像素值即A、C、E、K、M、O、U、W、Y取自待放大的图像中的像素值。例如
A=P11
C=P21
E=P31
K=P12
M=P22
O=P32
U=P13
W=P23
Y=P33
其它像素值,即设置在偶数列或偶数行中的像素值即B、D、F、G、H、I、J、L、N、P、Q、R、S、T、V、X通过插值来产生。每个像素值基于两个或更多相邻像素值来产生,例如
B=(A+C)/2
D=(C+E)/2
F=(A+K)/2
H=(C+M)/2
J=(E+O)/2
L=(K+M)/2
N=(M+O)/2
P=(K+U)/2
R=(M+W)/2
T=(O+Y)/2
V=(U+W)/2
X=(W+Y)/2
G=(B+L)/2
I=(D+N)/2
Q=(L+V)/2
S=(N+X)/2
在一些实施例中,上缩放将像素数量从640×480个增加到1280×1024个,但是可以采用任何量值的上缩放。在一些实施例中,数码相机设备向用户提供确定是否要执行上缩放以及如果要执行则确定上缩放的量值的能力。
在一些实施例中,缩放部分采用在此描述的一个或多个技术用于变焦控制器,其具有或不具有修剪。
应当理解缩放部分不限于上述上缩放策略。实际上,缩放部分可以采用目前公知或以后开发的任何上缩放技术。还应当理解上缩放不是必须的。
缩放部分可以具有下缩放的能力,而无论缩放部分是否具有上缩放的能力。在一些实施例中,下缩放将像素数量从1280×1024个减少到640×480个,但是可以采用任何量值的下缩放。在一些实施例中,数码相机设备向用户提供确定是否要执行下缩放以及如果要执行则确定下缩放的量值的能力。
应当理解可以采用目前公知或以后开发的任何下缩放技术。还应当理解下缩放不是必须的。
图像缩放部分的输出被提供给颜色空间转换部分,颜色空间转换部分用于将颜色格式从RGB转换为YCrCB或YUV以便压缩。在该实施例中,该转换利用以下等式完成:
Y=(0.257*R)+(0.504*G)+(0.098*B)+16
Cr=V=(0.439*R)-(0.368*G)-(0.071*B)+128
Cb=U=-(0.148*R)-(0.291*G)+(0.439*B)+128
颜色空间转换部分的输出被提供给后处理器的图像压缩部分。图像压缩部分用于减小图像文件的大小。这可以例如使用联合图像专家组、运动影像专家组和微软公司提供的现成的JPEG、MPEG和/或WMV压缩算法来完成。
图像压缩部分的输出被提供给图像传输格式器,图像传输格式器用于将图像数据流格式化成在双向并行或串行8-16位接口中都符合YUV422、RGB565等格式。
图112示出通道处理器的另一个实施例。在该实施例中,双采样器接收模数转换器的输出而不是传感器阵列的输出。
图113和114A分别示出通道处理器和图像管线的另一实施例。在该实施例中,偏离像素校正器设置在图像管线中而不是通道处理器中。在该实施例中,偏离像素校正器接收图像平面对齐和缝合的输出而不是黑色电平钳位的输出。
图114B是按照本发明另一实施例的图像管线的框图。
图114C是例如可以在图114B的图像管线中采用的色度噪声减小部分的示意框图。在该实施例中,U和V值或分量(其表示图像的颜色成分)分别提供给第一和第二低通滤波器,第一和第二低通滤波器分别减小U和V分量上的颜色噪声。
应当理解通道处理器、图像管线和/或后处理器可以具有任何配置。例如在另一些实施例中,图像管线采用少于图110C、110E和/或图114A所示的所有部分,具有或不具有目前公知或以后开发的其它部分,并且按照任何顺序。
视差
如果数码相机设备具有多于一个的相机通道,则相机通道必须彼此在空间上偏移(虽然可能偏移小的距离)。该空间上的偏移可能引入相机通道之间的视差,例如由于改变观察物体的位置而导致的物体位置的明显变化。
图115A-115E示出数码相机设备中的视差的例子。具体地说,图115A示出物体(即闪电)和具有在空间上偏移一距离的两个相机通道的数码相机设备。第一相机通道具有传感器和以第一轴为中心的第一视场。第二相机通道具有传感器和以第二轴为中心并与第一视场在空间上偏移的第二视场。两个视场之间的偏移导致物体在第一视场中的位置不同于物体在第二视场中的位置。
图115B是由第一相机通道观看到的、撞击第一相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115C是由第二相机通道观看到的、撞击第二相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115D示出由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。在该实施例中,视差在x方向上。
图115E示出在消除了该视差的情况下由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。
图115F-115H示出y方向上的视差的例子。图115I示出在消除了该视差的情况下由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。
图115J-115L示出具有x分量和y分量的视差的例子。图115M示出在消除了该视差的情况下由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。
图115N示出物体(即闪电)和具有在空间上偏移一距离的两个相机通道的数码相机设备。第一相机通道具有传感器和以第一轴为中心的第一视场。第二相机通道具有传感器和以第二轴为中心并与第一视场在空间上偏移的第二视场。视场之间的偏移导致物体在第一视场中的位置不同于物体在第二视场中的位置。
图115O是由第一相机通道观看到的、撞击第一相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115P是由第二相机通道观看到的、撞击第二相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115Q示出由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。在该实施例中,视差在x方向上。
图115R示出在消除了该视差的情况下由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。
图115S示出物体(即闪电)和具有在空间上偏移一距离的两个相机通道的数码相机设备。第一相机通道具有传感器和以第一轴为中心的第一视场。第二相机通道具有传感器和以第二轴为中心并与第一视场在空间上偏移的第二视场。视场之间的偏移导致物体在第一视场中的位置不同于物体在第二视场中的位置。
图115R是由第一相机通道观看到的、撞击第一相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115P是由第二相机通道观看到的、撞击第二相机通道中的传感器的物体的图像的表示。该传感器具有多个以圆圈示意示出的传感器元件。
图115Q示出由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。在该实施例中,视差在x方向上。
图115R示出在消除了该视差的情况下由第一相机通道观看到的图像与由第二相机通道观看到的图像的叠加。
测距
在一些实施例中,希望能够估算与视场内物体之间的距离。该能力有时称为“测距”。
一种用于估算与物体之间的距离的方法是采用视差。
图116示出按照本发明另一实施例的可以在估算与物体或其部分之间的距离时采用的操作的流程图。
该系统接收表示所需要的视差量和/或一个或多个移动的信号。
该系统识别一个或多个移动以提供或帮助提供所需要的视差量。
该系统启动该一个或多个移动中的一个、一些或全部。
从每个相机通道捕捉图像,以在估算与物体(或其部分)之间的距离时使用该图像。例如,如果在进行估算时使用两个相机通道,则从第一相机通道捕捉图像并且从第二相机通道捕捉图像。
在一些实施例中,该系统接收表示物体在图像中的位置的一个或多个信号,或者确定物体在每个图像中的位置。例如,如果在估算与物体之间的距离时使用两个相机通道,则该系统可以接收表示物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置的一个或多个信号。在另一些实施例中,该系统确定物体在每个图像中的位置,例如物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置。
该系统产生表示图像中位置之差的信号。例如,如果采用两个相机通道,则该系统产生表示物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置之差的信号。
该系统至少部分地基于以下几点来估算与物体(或其部分)之间的距离:(1)表示物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置之差的信号,(2)表示第一相机通道和第二相机通道的相对定位的信号,(3)表示(a)物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置之差、(b)第一相机通道和第二相机通道的相对定位、以及(c)与物体之间的距离之间的关联的数据。
图117是示出测距器的一个实施例的一部分的框图。在该实施例中,测距器包括求差器和估算器。求差器具有接收表示物体在第一图像中的位置和物体在第二图像中的位置的一个或多个信号的一个或多个输入。求差器还包括提供差信号Difference的一个或多个输出。该差信号Difference表示物体在第一图像中的位置和物体在第二图像中的位置之差。
该差信号被提供给估算器,估算器还接收表示提供第一图像的相机通道和提供第二图像的相机通道之间的相对定位的信号。响应该信号,估算器提供表示对与物体(或其部分)之间距离的估算的输出信号estimate。
为了完成此,估算器包括表示(a)物体在第一图像中的位置和物体在第二图像中的位置之差、(b)产生第一图像的相机通道和产生第二图像的相机通道的相对定位、以及(c)与物体之间的距离之间的关系的数据。
该数据可以采取任何形式,包括但不限于输入(例如(a)物体在第一图像中的位置和物体在第二图像中的位置之差,和(b)产生第一图像的相机通道和产生第二图像的相机通道的相对定位)和输出(对与物体之间距离的估算)之间的关系的映射。
该映射可以具有本领域技术人员公知的各种形式,包括但不限于公式和/或查找表。该映射可以以硬件、软件、固件或它们的任何组合来实施。
该映射优选地通过将物体放置在离数码相机设备已知距离处、用两个或更多具有已知相对定位的相机通道捕捉两个或更多图像、并确定物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置之差来产生。
可以重复上述过程以便覆盖离物体已知距离和相机通道的相对定位的不同组合。覆盖整个感兴趣范围(例如已知距离和相对定位)可能是有利的,但是,如下所述,通常不必要覆盖每个可想到的组合。离物体已知距离、相机通道的相对定位、以及物体在来自第一相机通道的图像中的位置和物体在来自第二相机通道的图像中的位置之差的每种组合都代表整体输入输出关系中的一个数据点。
所述数据点可用于创建为输入量值的多种组合中的每一种提供相关联的输出的查找表。或者代替查找表,数据点可以被输入到统计包以产生用于基于输入计算输出的公式。该公式通常可以为感兴趣的传感器输入范围中的任何输入组合(包括不为其产生数据点的组合)提供合适的输出。
查找表实施例可以采用插值来为不在查找表中的任何输入组合确定合适的输出。
求差器可以是适于提供表示物体在第一图像中的位置和物体在第二图像中的位置之差的一个或多个差信号的任何类型的求差器。例如在该实施例中,求差器包括绝对值减法器,其产生等于物体在第一图像中的位置和物体在第二图像中的位置之差的绝对值的差信号。在另一些实施例中,求差器可以是比率计量类型的求差器,其产生表示物体在第一图像中的位置和物体在第二图像中的位置之差的比率计量差信号。
表示相机通道的相对位置的信号可以具有任何形式。例如,该信号可以采取直接表示相机通道之间位置差的单个信号的形式。该信号也可以采取多个信号的形式,该多个信号例如两个或更多分别表示相应的一个相机通道的位置的信号,使得该多个信号间接表示相机通道的相对位置。
尽管测距器的位置被示出在估算器之前具有求差器,但测距器不限于此。例如,求差器可以体现在估算器内和/或差信号可以以某种其它方式提供或产生。在一些实施例中,估算器可以响应于绝对量值而不是差信号。
此外,虽然所公开的实施例包括3个输入和一个输出,但测距器不限于此。可以采用具有任何数量的输入和输出的测距器。
测距还可以仅使用一个相机通道来执行。例如,相机通道之一可被提供有物体的第一视图,且图像可被捕捉。此后,一个或多个移动可被施加到该相机通道的一个或多个部分以便向该相机通道提供物体的第二视图(第二视图不同于第一视图)。这样的移动可以由定位系统提供。第二图像可以用物体的第二视图来捕捉。此后,第一和第二图像可以由测距器使用上述操作来处理,以产生与物体(或其部分)之间距离的估计。
图118是测距器的定位器部分的框图。
3D成像
参照图119A-119D,在一些实施例中,希望能够产生用于提供一个或多个3D效果的图像,有时称为“3D成像”。
一种类型的3D成像称为立体视觉。立体视觉至少部分地基于提供物体的两个视图(例如一个提供给右眼、一个提供给左眼)的能力。在一些实施例中,这些视图被组合成单个立体图像。例如在一个实施例中,用于右眼的视图可以是蓝色的,而用于左眼的视图可以是红色的,在这种情况下,戴着合适眼镜(例如左眼前是蓝色镜片,右眼前是红色镜片)的人将在合适的眼睛中看见合适的视图(即右眼中是右视图,而左眼中是左视图)。在另一实施例中,用于右眼的视图可以在第一方向上偏振,而用于左眼的视图可以在不同于第一方向的第二方向上偏振,在这种情况下,戴着合适眼镜(例如左眼前是在第一方向上偏振的镜片,右眼前是在第二方向上偏振的镜片)的人将在合适的眼睛中看见合适的视图(即右眼中是右视图,而左眼中是左视图)。
参照图120,另一类型的3D成像称为3D图形,其至少部分地基于向图像提供深度外观的能力。
理想的是,在产生用于提供3D效果的图像时采用视差。
增加视差量可以有助于改善3D成像的一个或多个特性。
图121A-121B示出按照本发明的另一实施例可以在提供3D成像时采用的操作的流程图。
该系统接收表示所需要的视差量和/或一个或多个移动的信号。
该系统识别一个或多个移动以提供或帮助提供所需要的视差量。
该系统启动所识别的一个或多个移动中的一个、一些或全部。
该系统产生一个或多个具有所需3D效果的图像。
从每个相机通道捕捉图像以在3D成像时使用。例如,如果在3D成像时使用两个相机通道,则从第一相机通道捕捉图像并且从第二相机通道捕捉图像。
该系统确定是否需要立体视觉或是否需要3D图形。如果需要立体视觉,则从第一相机通道捕捉的图像和从第二相机通道捕捉的图像都被提供给格式器,格式器产生两个图像,一个适用于提供给一只眼睛而另一个适用于提供给另一只眼睛。例如在一个实施例中,例如,用于右眼的视图可以是蓝色的,而用于左眼的视图可以是红色的,在这种情况下,戴着合适眼镜的人将在合适的眼睛中看见合适的视图(即右眼中是右视图,而左眼中是左视图)。在另一实施例中,用于右眼的视图可以在第一方向上偏振,而用于左眼的视图可以在不同于第一方向的第二方向上偏振,在这种情况下,戴着合适眼镜的人将在合适的眼睛中看见合适的视图(即右眼中是右视图,而左眼中是左视图)。
这两个图像可以组合为单个立体图像。
如果需要3D图形而不是立体视觉,则该系统采用一个或多个特征化准则来特征化图像。例如在一个实施例中,特征化准则包括识别该图像中的一个或多个特征(例如边缘)并估算与这些特征的一个或多个部分之间的距离。可以采用如上所述的测距器来估算与特征或其部分之间的距离。该系统至少部分基于(1)该特征化数据和(2)3D再现准则来产生至少部分具有深度外观的3D图形图像。
该特征化准则和3D图形标准可以是预定的、自适应确定的或它们的组合。
应当理解3D成像还可以仅使用一个相机通道来执行。例如,相机通道之一可被提供有物体的第一视图,且图像可被捕捉。此后,一个或多个移动可被施加到该相机通道的一个或多个部分以便向该相机通道提供物体的第二视图(第二视图不同于第一视图)。这样的移动可以由定位系统提供。第二图像可以用物体的第二视图来捕捉。此后,第一和第二图像可以由测距器使用上述操作来处理,以产生与物体(或其部分)之间距离的估计。
图123是用于产生具有3D效果的图像的一个实施例的框图表示。
图124是用于产生具有3D效果的图像的一个实施例的框图表示。
图像辨别
图125示出按照本发明另一实施例的可以在提供图像辨别时采用的操作的流程图。
图126A-126B示出按照本发明另一实施例的可以在提供图像辨别时采用的操作的流程图。
某些其它应用
在一些实施例中,图像传感器的数量、尺寸和/或类型可以基于应用要求来选择。下面描述3个例子来说明如何影响相机元件,且如果需要还影响特征/工作优化。应当理解任何上述实施例或其部分都可以在实施任何下面的例子时采用。
#1):同时成像超光谱数码相机:
超光谱成像器采用多达100个离散色带中的数据。这可以通过电调谐或机械选择的窄带滤波器来完成。该可调谐或可选择滤波器方法的一个问题是图像中的色带是按时间顺序选择的。需要花费很多数据帧来采集具有3D像素标识符:x、y和颜色的完整超光谱图像(称为数据体)。在很多系统应用中,需要在一个数据帧中同时获取整个超光谱数据体。
所公开的多种光学/成像器方法可用于利用每个传感器光学路径中单独的颜色窄带通滤波器来同时获取所有色带。一个例子是布置成例如8×8或1×64或其它传感器布置的64个单独的传感器(定制光学组件、任选的MEMs机械抖动机构和优化的单色或多色图像传感器)。这将给出64个单独色带的超光谱能力。每个传感器在图像传感器中具有某合适数量的像素来覆盖所需要的视场(例如:成像器阵列上的256×256个像素被设置有3μm像素间距)。
每个图像传感器可以具有不同的像素间距和/或阵列尺寸,其中针对入射颜色或色带而优化成像器集成电路(IC)。如果每个传感器的帧速率是每秒60帧,则可以在一个帧时间(16.67毫秒)中获取64个单独色带中的数据。对于很多超光谱成像应用来说,此能力或类似能力都是期望的。
#2):物体(威胁)检测和识别多颜色主动/被动数码相机
一些相机系统需要从宽视场(WFOV)获取数据以检测感兴趣的物体,然后利用多颜色成像能力和较高空间分辨率能力在窄视场(NFOV)中将该物体快速加边框,以识别该物体。
WFOV传感器例如可以具有像素间距为20微米的128×128阵列尺寸,以确定感兴趣的物体在WFOV中的一个或多个像素内。128×128阵列中的像素和光学器件可以是能胜任高灵敏度的宽带可见的。
整个数码相机(具有WFOV图像传感器和多个NFOV图像传感器)可以由万向接头机构来瞄准。来自WFOV图像传感器的数据可以调整该万向接头瞄准方向,使得所检测的物体在所有FOV的中心。
分辨率高于WFOV图像传感器的NFOV图像传感器可以对物体进行成像和识别。WFOV图像传感器可以持续对WFOV成像以便检测其它感兴趣的物体。
可以有多个NFOV图像传感器。可以通过像素尺寸、(在x和y方向上的)像素数量以及光学器件的焦距来选择NFOV。例如,相机可以包含6个NFOV图像传感器。NFOV可以成像的区是WFOV图像传感器的1/100。如果WFOV和NFOV光学器件的焦距相同,则例如像素间距为2.0μm的128×128图像阵列会提供期望的NFOV。
6个NFOV图像传感器可以互不相同。一个例子是针对紫外的(UV)、蓝色的、绿色的、宽带可见的、880nm连续激光照明和880nm脉冲式激光照明而优化的图像传感器。这6个传感器可以针对像素尺寸和阵列尺寸来优化以匹配NFOV。通常,像素间距对于较长的波长将增大,以匹配光学模糊圆。脉冲式880nm激光阵列可以在每个像素内具有特殊电路以测量被物体反射的激光脉冲的幅度和到达时间;该能力称为LADAR,提供与物体之间的距离、反射信号幅度和在某些情况下物体形状的3D信息。
可以在单个集成电路上处理WFOV图像传感器和其它6个NFOV图像传感器。可以为了最小化集成电路面积或其它考虑而选择这些图像传感器在集成电路上的位置。每个传感器针对其所需操作而被优化。每个传感器上方的光学堆提供所需颜色透射和其它所需光学特征。如果需要,光学堆或其部分可以通过MEMs机械机构来机械地抖动,以实现更高的空间分辨率或提供其它功能(如图像稳定或图像聚焦)。
NFOV图像传感器可以利用减小的FOV(可能是8×较快帧速率下的32×32个像素)来进行开窗读出。来自NFOV传感器的数据可用于瞄准万向接头以将感兴趣的物体保持在减小的FOV的中心。
#3:大动态范围彩色数码相机
数码相机可以具有限制特定系统的动态范围的最大光信号存储能力。光信号电荷存储在像素区域内的电容器上。电荷处理能力受到集成电路中的最大电压摆动和像素内的存储电容的限制。集成的光电荷的量与图像传感器从场景中采集和集成信号的时间直接相关。这公知为整合时间。对于弱信号而言需要长的整合时间,因为更多的光电荷整合在像素内,且数码相机的信噪比得以改善。
一旦达到最大电荷容量,传感器就不再能分辨图像变亮了多少。这由于为整个视场设置单个整合时间而产生了成像难题。数码相机的整合时间可以设置为对低亮度水平成像并且使亮信号饱和或者对高亮度水平成像并且不检测低亮度水平(因为来自低亮度水平的整合光电荷低于传感器的信噪比)。
在单个IC上使用全都同时观察同一视场、并且每一个都具有不同整合时间的多个光学器件和图像传感器,解决了上述动态范围问题。该数码相机可以例如具有一个3×3图像传感器组件,可能是每种颜色(R、G、B)3个并且每种颜色的整合时间可以不同,例如每种颜色可以具有3个不同的值(可能是0.1、1和10毫秒)。来自每种颜色的相机的数据可以被数字组合,以在一个数码相机数据帧内提供大得多的动态范围。虽然难以在不压缩的情况下显示此宽动态范围的成像,但原始的数码相机数据可以由场景的数字信号处理使用。该数字数据还可以被存储和显示,以按照需要展示低亮度或高亮度特性。
光学堆还可以包含数码相机功能和/或性能所需要的其它光学特征。这可以是诸如可电调谐的滤光器、偏振器、波前编码、空间滤光器(掩模)和其它还未预期的特征。一些新特征(除了透镜之外)可以电工作(如可调谐滤光器)或利用MEMs机制来机械移动。
图像传感器和光学堆的制造在单个晶片上进行、在独立的晶片(可能多达两个晶片:一个用于IC,一个用于光学器件)上装配,并以晶片级接合在一起。还可以采用拾取和放置方法和设备以将光学组件附装到晶片IC,或者可以单独组装图像传感器管芯或其它组件。
在采用MEMS的实施例中,光学堆、MEMs和图像传感器的制造可以在单个晶片上进行、在独立的晶片(可能多达3个晶片:一个用于IC,一个用于MEMs,一个用于光学堆)上装配,并以晶片级接合在一起。还可以采用拾取和放置方法和设备以将光学组件和MEMs附装到晶片IC,或者可以单独组装图像传感器管芯或其它组件(MEMs和光学堆)。
还应当理解,尽管示出数码相机设备210用于数码相机200中,但本发明不限于此。实际上,数码相机设备和/或可以用于其中的任何方法和/或设备可以单独使用或在任何类型的装置中使用,该装置包括例如但不限于照相机和摄像机、蜂窝电话、其它个人通信设备、监视设备、汽车应用、计算机、制造和检查设备、玩具以及各种各样的其它的和持续扩展的应用。此外,可以采用数码相机设备和/或所采用的任何方法和/或设备的其它装置可以包括或不包括图2所示的外壳、电路板、外围用户接口、电源、电子图像存储介质和孔径(例如,电路板可以不是只有相机功能才有的,如在蜂窝电话中,数码相机子系统是现有电路板的附件。),而且可以采用或不采用未在图2中示出的方法和/或装置。
数码相机可以是独立的产品,或可以被嵌入其它装置,如蜂窝电话、计算机、或者目前可得到的或可以在未来产生的无数其它成像平台,如由于本发明而变得可行的那些成像平台。
本发明一个或多个方面的一个或多个实施例可以具有下面优点中的一个或多个。按照本发明的装置可以在单个图像传感器上具有多个独立的阵列,每个阵列具有它自己的透镜。较小的多个阵列的简单几何结构允许较小的透镜(直径、厚度和焦距),这允许减小数码相机的堆叠高度。
每个阵列可有利地针对一个可见和/或可检测光谱带。尤其可以针对该一个特定波长带的通路而对每个透镜调谐。由于每个透镜因此不需要使整个光谱通过,所以元件的数量可以例如减少为一个或两个。
此外,由于每个透镜所针对的带宽,每个透镜可以在制造过程中针对其相应带宽来被染色(例如将针对红色可见光谱带的阵列染成红色)。可替换地,可以在每个透镜上施加单个滤色器。此过程省去了传统滤色器(各个像素滤光器的片),由此降低了成本、提高了信号强度并消除了像素减少的障碍。
在一些实施例中,一旦已组装了具有传感器阵列(以及可能组装的处理器的一个或多个部分)的集成电路管芯,该组件就为密封装置的形式。因此,这样的装置不需要“封装”,并因此如果需要则可以直接安装在电路板上,这在一些实施例中节省了零件成本和/或制造成本。如上所述,本发明的方法和设备不限于在数码相机系统中使用,而可以在任何类型的系统、包括但不限于任何类型的信息系统中使用。
应当理解在此公开的特征可以以任何组合使用。
要注意,除非特别申明,诸如“包括(comprise)”、“具有”、“包括(include)”的术语及其所有形式都视为不受限制的,从而不排除额外的元素和/或特征。此外,除非申明,诸如“响应于”和“基于”的术语分别表示“至少响应于”和“至少基于”,从而不排除响应于和/或基于多于一个的事物。
在此采用的识别、确定和产生包括分别以任何方式识别、确定和产生,包括但不限于计算、访问所存储的数据和/或映射(例如在查找表中)和/或它们的组合。
尽管已示出和描述了各个实施例,但本领域的技术人员应当理解,本发明不限于这些只通过举例提供的实施例,而且在不脱离本发明的范围的情况下可以进行各种改变和修正。

Claims (67)

1.一种数码相机,包括
多个光电检测器阵列,包括:
第一光电检测器阵列,用以对光强度采样;以及
第二光电检测器阵列,用以对光强度采样;
与所述第一和第二光电检测器阵列耦合的信号处理电路,用以利用(i)表示由所述第一光电检测器阵列采样的光强度的数据,和(ii)表示由所述第二光电检测器阵列采样的光强度的数据来产生合成图像;以及
其中所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
2.根据权利要求1所述的数码相机,其中:
所述第一光电检测器阵列对第一波长光的强度采样;以及
所述第二光电检测器阵列对第二波长光的强度采样。
3.根据权利要求2所述的数码相机,还包括用以对第三波长光的强度采样的第三光电检测器阵列,且其中所述信号处理电路与所述第三光电检测器阵列耦合,并利用(i)表示由所述第一光电检测器阵列采样的光强度的数据,(ii)表示由所述第二光电检测器阵列采样的光强度的数据,和(ii)表示由所述第三光电检测器阵列采样的光强度的数据来产生合成图像。
4.根据权利要求3所述的数码相机,其中所述第一、第二和第三光电检测器阵列相对排列成三角形配置。
5.根据权利要求4所述的数码相机,其中所述第一光电检测器阵列、所述第二光电检测器阵列、所述第三光电检测器阵列和所述信号处理电路集成在同一半导体衬底上。
6.根据权利要求5所述的数码相机,其中所述第一波长与第一颜色相关联,所述第二波长与第二颜色相关联,且所述第三波长与第三颜色相关联。
7.根据权利要求3所述的数码相机,其中:
所述第一光电检测器阵列对所述第一波长光的强度采样长达第一整合时间;
所述第二光电检测器阵列对所述第二波长光的强度采样长达第二整合时间;
所述第三光电检测器阵列对所述第三波长光的强度采样长达第三整合时间。
8.根据权利要求3所述的数码相机,其中所述第一、第二和第三光电检测器阵列相对排列成等腰、钝角、锐角或直角三角形配置。
9.根据权利要求2所述的数码相机,其中所述第一波长与第一颜色相关联,且所述第二波长与第二颜色相关联。
10.根据权利要求1所述的数码相机,其中:
所述第一光电检测器阵列对光强度采样长达第一整合时间;并且
所述第二光电检测器阵列对光强度采样长达第二整合时间。
11.根据权利要求1所述的数码相机,其中:
所述第一阵列的每个光电检测器包括半导体部分,在该半导体部分对光强度进行采样;并且
所述第二阵列的每个光电检测器包括半导体部分,在该半导体部分对光强度进行采样;且其中所述第一阵列的每个光电检测器的半导体部分与所述第二阵列的每个光电检测器的半导体部分位于相对于每个光电检测器的表面的不同深度处。
12.根据权利要求1所述的数码相机,其中所述第一光电检测器阵列和所述第二光电检测器阵列设置在同一图像平面上。
13.根据权利要求1所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜以及设置在所述第二光电检测器阵列的光学路径中并与该光学路径相关联的第二透镜。
14.根据权利要求13所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中的基本上均匀的滤色器片。
15.根据权利要求1所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的第一有色透镜。
16.根据权利要求1所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜,其中:
所述第一透镜使第一波长光通过并滤除第二波长光;
所述第一光电检测器阵列对第一波长光的强度采样;并且
所述第二光电检测器阵列对第二波长光的强度采样。
17.根据权利要求1所述的数码相机,其中:
所述第一光电检测器阵列对第一波长光的强度和第二波长光的强度采样;
所述第二光电检测器阵列对第三波长光的强度采样;并且
所述第一波长与第一颜色相关联,所述第二波长与第二颜色相关联,且所述第三波长与第三颜色相关联。
18.根据权利要求17所述的数码相机,其中:
所述第一阵列的每个光电检测器包括:第一半导体部分,在该第一半导体部分对所述第一波长光的强度进行采样;以及第二半导体部分,在该第二半导体部分对所述第二波长光的强度进行采样;
所述第二阵列的每个光电检测器包括半导体部分,在该半导体部分对所述第三波长光的强度进行采样;并且
所述第一阵列的每个光电检测器的所述第一和第二半导体部分与所述第二阵列的每个光电检测器的半导体部分位于相对于彼此和相对于每个光电检测器的表面的不同深度处。
19.根据权利要求17所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的第一透镜以及设置在所述第二光电检测器阵列的光学路径中并与该光学路径相关联的第二透镜,其中所述第一透镜使所述第一和第二波长光通过并滤除所述第三波长光。
20.根据权利要求17所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的滤光器,其中该滤光器使所述第一和第二波长光通过并滤除所述第三波长光。
21.根据权利要求17所述的数码相机,其中:
所述第一光电检测器阵列对所述第一波长光的强度采样长达第一整合时间;
所述第一光电检测器阵列对所述第二波长光的强度采样长达第二整合时间;并且
所述第二光电检测器阵列对所述第三波长光的强度采样长达第三整合时间。
22.根据权利要求1所述的数码相机,其中所述信号处理电路:
利用表示由所述第一光电检测器阵列采样的光强度的数据来产生第一图像,并且
利用表示由所述第二光电检测器阵列采样的光强度的数据来产生第二图像。
23.根据权利要求22所述的数码相机,其中所述信号处理电路利用所述第一图像和所述第二图像来产生所述合成图像。
24.根据权利要求1所述的数码相机,还包括存储器,用以存储(i)表示由所述第一光电检测器阵列采样的光强度的数据,和(ii)表示由所述第二光电检测器阵列采样的光强度的数据。
25.根据权利要求24所述的数码相机,其中所述存储器、所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
26.根据权利要求25所述的数码相机,还包括用以向所述信号处理电路、所述第一光电检测器阵列和/或所述第二光电检测器阵列提供时序和控制信息的时序和控制逻辑单元。
27.根据权利要求24所述的数码相机,还包括用以输出表示所述合成图像的数据的通信电路。
28.根据权利要求27所述的数码相机,其中所述通信电路包括有线、无线或光通信电路中的至少一种。
29.根据权利要求24所述的数码相机,其中所述通信电路、所述存储器、所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
30.根据权利要求1所述的数码相机,其中所述第一光电检测器阵列包括第一表面区域,且所述第二光电检测器阵列包括第二表面区域,其中所述第一表面区域不同于所述第二表面区域。
31.根据权利要求30所述的数码相机,其中所述第一阵列的光电检测器包括第一有效表面区域,且所述第二阵列的光电检测器包括第二有效表面区域,其中所述第一有效表面区域不同于所述第二有效表面区域。
32.根据权利要求1所述的数码相机,其中所述第一光电检测器阵列包括第一表面区域,且所述第二光电检测器阵列包括第二表面区域,其中所述第一表面区域与所述第二表面区域基本上相同。
33.根据权利要求32所述的数码相机,其中所述第一阵列的光电检测器包括第一有效表面区域,且所述第二阵列的光电检测器包括第二有效表面区域,其中所述第一有效表面区域不同于所述第二有效表面区域。
34.一种数码相机,包括:
多个光电检测器阵列,包括:
第一光电检测器阵列,用以对第一波长光的强度采样,以及
第二光电检测器阵列,用以对第二波长光的强度采样;
设置在所述第一光电检测器阵列的光学路径中的第一透镜,其中所述第一透镜包括对所述第一波长光的预定光学响应;
设置在所述第二光电检测器阵列的光学路径中的第二透镜,其中所述第二透镜包括对所述第二波长光的预定光学响应;
与所述第一和第二光电检测器阵列耦合的信号处理电路,用以利用(i)表示由所述第一光电检测器阵列采样的光强度的数据,和(ii)表示由所述第二光电检测器阵列采样的光强度的数据来产生合成图像;并且
其中所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
35.根据权利要求34所述的数码相机,其中:
所述第一透镜使所述第一波长光传递到所述第一阵列的光电检测器的图像平面上;并且
所述第二透镜使所述第二波长光传递到所述第二阵列的光电检测器的图像平面上。
36.根据权利要求35所述的数码相机,其中:
所述第一透镜滤除所述第二波长光;并且
所述第二透镜滤除所述第一波长光。
37.根据权利要求34所述的数码相机,还包括:
用以对第三波长光的强度采样的第三光电检测器阵列;
设置在所述第三光电检测器阵列的光学路径中的第三透镜,其中所述第三透镜包括对所述第三波长光的预定光学响应;并且
其中所述信号处理电路与所述第三光电检测器阵列耦合,并利用(i)表示由所述第一光电检测器阵列采样的光强度的数据,(ii)表示由所述第二光电检测器阵列采样的光强度的数据,和(ii)表示由所述第三光电检测器阵列采样的光强度的数据来产生合成图像。
38.根据权利要求37所述的数码相机,其中:
所述第一透镜滤除所述第二和第三波长光,
所述第二透镜滤除所述第一和第三波长光,并且
所述第三透镜滤除所述第一和第二波长光。
39.根据权利要求37所述的数码相机,其中所述第一、第二和第三光电检测器阵列相对排列成三角形配置。
40.根据权利要求39所述的数码相机,其中所述第一光电检测器阵列、所述第二光电检测器阵列、所述第三光电检测器阵列和所述信号处理电路集成在同一半导体衬底上。
41.根据权利要求40所述的数码相机,其中所述第一波长与第一颜色相关联,所述第二波长与第二颜色相关联,且所述第三波长与第三颜色相关联。
42.根据权利要求37所述的数码相机,其中:
所述第一光电检测器阵列对所述第一波长光的强度采样长达第一整合时间;
所述第二光电检测器阵列对所述第二波长光的强度采样长达第二整合时间;并且
所述第三光电检测器阵列对所述第三波长光的强度采样长达第三整合时间。
43.根据权利要求34所述的数码相机,其中所述第一波长与第一颜色相关联,且所述第二波长与第二颜色相关联。
44.根据权利要求43所述的数码相机,其中:
所述第一光电检测器阵列对光强度采样长达第一整合时间;并且
所述第二光电检测器阵列对光强度采样长达第二整合时间。
45.根据权利要求34所述的数码相机,还包括外壳,其中所述第一和第二透镜、第一和第二光电检测器阵列以及所述信号处理电路附装到该外壳,且其中所述第一和第二透镜相对于相关联的光电检测器阵列可独立地定位。
46.根据权利要求34所述的数码相机,其中:
所述第一光电检测器阵列对所述第一波长光的强度和第三波长光的强度采样;
所述第二光电检测器阵列对第二波长光的强度采样;
所述第一波长与第一颜色相关联,所述第二波长与第二颜色相关联,且所述第三波长与第三颜色相关联。
47.根据权利要求46所述的数码相机,其中:
所述第一阵列的每个光电检测器包括:第一半导体部分,在该第一半导体部分对所述第一波长光的强度进行采样;以及第二半导体部分,在该第二半导体部分对所述第三波长光的强度进行采样;
所述第二阵列的每个光电检测器包括半导体部分,在该半导体部分对所述第二波长光的强度进行采样;并且
所述第一阵列的每个光电检测器的第一和第二半导体部分与所述第二阵列的每个光电检测器的半导体部分位于相对于彼此和相对于每个光电检测器的表面的不同深度处。
48.根据权利要求46所述的数码相机,其中所述第一透镜使所述第一和第三波长光通过并滤除第二波长光。
49.根据权利要求46所述的数码相机,还包括设置在所述第一光电检测器阵列的光学路径中并与该光学路径相关联的滤光器,其中该滤光器使所述第一和第三波长光通过并滤除所述第二波长光。
50.根据权利要求46所述的数码相机,其中:
所述第一光电检测器阵列对所述第一波长光的强度采样长达第一整合时间;
所述第二光电检测器阵列对所述第三波长光的强度采样长达第二整合时间;并且
所述第一光电检测器阵列对所述第三波长光的强度采样长达第三整合时间。
51.根据权利要求34所述的数码相机,其中所述信号处理电路:
利用表示由所述第一光电检测器阵列采样的光强度的数据来产生第一图像,并且
利用表示由所述第二光电检测器阵列采样的光强度的数据来产生第二图像。
52.根据权利要求51所述的数码相机,其中所述信号处理电路利用所述第一图像和所述第二图像来产生所述合成图像。
53.根据权利要求34所述的数码相机,还包括存储器,用以存储(i)表示由所述第一光电检测器阵列采样的光强度的数据,和(ii)表示由所述第二光电检测器阵列采样的光强度的数据。
54.根据权利要求53所述的数码相机,其中所述存储器、所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
55.根据权利要求53所述的数码相机,还包括用以输出表示所述合成图像的数据的通信电路。
56.根据权利要求55所述的数码相机,其中所述通信电路包括无线、有线或光通信电路中的至少一种。
57.根据权利要求53所述的数码相机,其中所述通信电路、所述存储器、所述第一光电检测器阵列、所述第二光电检测器阵列和所述信号处理电路集成在同一半导体衬底上或同一半导体衬底中。
58.根据权利要求34所述的数码相机,其中所述信号处理电路包括第一信号处理电路和第二信号处理电路,其中所述第一信号处理电路与所述第一光电检测器阵列耦合并且相关联,且第二信号处理电路与所述第二光电检测器阵列耦合并且相关联。
59.根据权利要求34所述的数码相机,其中所述信号处理电路包括第一模拟信号逻辑单元和第二模拟信号逻辑单元,其中所述第一模拟信号逻辑单元与所述第一光电检测器阵列耦合并且相关联,且第二模拟信号逻辑单元与所述第二光电检测器阵列耦合并且相关联。
60.根据权利要求34所述的数码相机,其中所述信号处理电路包括第一黑色电平逻辑单元和第二黑色电平逻辑单元,其中所述第一黑色电平逻辑单元与所述第一光电检测器阵列耦合并且相关联,且第二黑色电平逻辑单元与所述第二光电检测器阵列耦合并且相关联。
61.根据权利要求34所述的数码相机,其中所述信号处理电路包括第一曝光控制电路和第二曝光控制电路,其中所述第一曝光控制电路与所述第一光电检测器阵列耦合并且相关联,且第二曝光控制电路与所述第二光电检测器阵列耦合并且相关联。
62.根据权利要求34所述的数码相机,还包括框架,其中所述第一和第二光电检测器阵列、所述信号处理电路以及所述第一和第二透镜固定到该框架上。
63.根据权利要求34所述的数码相机,还包括用以向所述信号处理电路、所述第一光电检测器阵列和/或所述第二光电检测器阵列提供时序和控制信息的时序和控制逻辑单元。
64.根据权利要求34所述的数码相机,其中所述第一光电检测器阵列包括第一表面区域,且所述第二光电检测器阵列包括第二表面区域,其中所述第一表面区域不同于所述第二表面区域。
65.根据权利要求64所述的数码相机,其中所述第一阵列的光电检测器包括第一有效表面区域,且所述第二阵列的光电检测器包括第二有效表面区域,其中所述第一有效表面区域不同于所述第二有效表面区域。
66.根据权利要求34所述的数码相机,其中所述第一光电检测器阵列包括第一表面区域,且所述第二光电检测器阵列包括第二表面区域,其中所述第一表面区域与所述第二表面区域基本上相同。
67.根据权利要求66所述的数码相机,其中所述第一阵列的光电检测器包括第一有效表面区域,且所述第二阵列的光电检测器包括第二有效表面区域,其中所述第一有效表面区域不同于所述第二有效表面区域。
CN2005800323740A 2004-08-25 2005-08-25 用于多个相机装置的设备和操作该设备的方法 Active CN101427372B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US60485404P 2004-08-25 2004-08-25
US60/604,854 2004-08-25
US69594605P 2005-07-01 2005-07-01
US60/695,946 2005-07-01
PCT/US2005/030256 WO2006026354A2 (en) 2004-08-25 2005-08-25 Apparatus for multiple camera devices and method of operating same

Publications (2)

Publication Number Publication Date
CN101427372A true CN101427372A (zh) 2009-05-06
CN101427372B CN101427372B (zh) 2012-12-12

Family

ID=36000574

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800323740A Active CN101427372B (zh) 2004-08-25 2005-08-25 用于多个相机装置的设备和操作该设备的方法

Country Status (4)

Country Link
US (7) US20060054782A1 (zh)
EP (1) EP1812968B1 (zh)
CN (1) CN101427372B (zh)
WO (1) WO2006026354A2 (zh)

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102131044A (zh) * 2010-01-20 2011-07-20 鸿富锦精密工业(深圳)有限公司 相机模组
CN102170571A (zh) * 2010-06-22 2011-08-31 上海盈方微电子有限公司 一种支持双通道cmos传感器的数码相机架构
CN102790849A (zh) * 2011-05-20 2012-11-21 英属开曼群岛商恒景科技股份有限公司 图像传感器模块
CN102857699A (zh) * 2011-06-29 2013-01-02 全友电脑股份有限公司 影像撷取系统以及方法
CN103004218A (zh) * 2011-05-19 2013-03-27 松下电器产业株式会社 三维摄像装置、摄像元件、透光部、及图像处理装置
CN103458162A (zh) * 2012-06-01 2013-12-18 全视科技有限公司 用于分区图像传感器的透镜阵列
CN103516962A (zh) * 2012-06-19 2014-01-15 全友电脑股份有限公司 影像撷取系统及方法
CN103581533A (zh) * 2012-08-07 2014-02-12 联想(北京)有限公司 一种采集图像信息的方法及电子设备
CN103870805A (zh) * 2014-02-17 2014-06-18 北京释码大华科技有限公司 一种移动终端生物特征成像方法和装置
CN104185808A (zh) * 2011-10-11 2014-12-03 派力肯影像公司 包括自适应光学元件的透镜堆叠阵列
CN105579902A (zh) * 2013-09-23 2016-05-11 Lg伊诺特有限公司 相机模块以及制造所述相机模块的方法
CN105629426A (zh) * 2014-10-31 2016-06-01 高准精密工业股份有限公司 可变焦透镜组件以及可变焦的摄像模组
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
CN105704465A (zh) * 2016-01-20 2016-06-22 海信电子科技(深圳)有限公司 图像处理方法及终端
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
CN106537890A (zh) * 2014-07-16 2017-03-22 索尼公司 复眼摄像装置
CN106716486A (zh) * 2014-06-24 2017-05-24 弗劳恩霍夫应用研究促进协会 用于包括若干光学通道的多孔径光学器件相对于图像传感器的相对定位的设备和方法
CN106768325A (zh) * 2016-11-21 2017-05-31 清华大学 多光谱光场视频采集装置
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
CN107193095A (zh) * 2016-03-14 2017-09-22 比亚迪股份有限公司 滤光片的调整方法、装置及系统
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
CN107431746A (zh) * 2015-11-24 2017-12-01 索尼半导体解决方案公司 相机模块和电子设备
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
CN108140247A (zh) * 2015-10-05 2018-06-08 谷歌有限责任公司 使用合成图像的相机校准
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
CN109155814A (zh) * 2016-05-27 2019-01-04 索尼半导体解决方案公司 处理装置、图像传感器和系统
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
CN109644258A (zh) * 2016-08-31 2019-04-16 华为技术有限公司 用于变焦摄影的多相机系统
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
CN113273183A (zh) * 2019-01-07 2021-08-17 Lg伊诺特有限公司 摄像头模块
CN113924517A (zh) * 2019-06-06 2022-01-11 应用材料公司 生成复合影像的成像系统及方法
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US12052409B2 (en) 2023-06-22 2024-07-30 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata

Families Citing this family (309)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7262799B2 (en) * 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US7813634B2 (en) 2005-02-28 2010-10-12 Tessera MEMS Technologies, Inc. Autofocus camera
KR100996094B1 (ko) * 2002-07-18 2010-11-22 소니 주식회사 촬상 데이터 처리 방법, 촬상 데이터 처리 장치, 및 컴퓨터 프로그램이 기록된 기록 매체
US8896725B2 (en) 2007-06-21 2014-11-25 Fotonation Limited Image capture device with contemporaneous reference image capture mechanism
US8593542B2 (en) 2005-12-27 2013-11-26 DigitalOptics Corporation Europe Limited Foreground/background separation using reference images
US7652685B2 (en) * 2004-09-13 2010-01-26 Omnivision Cdm Optics, Inc. Iris image capture devices and associated systems
US7433042B1 (en) * 2003-12-05 2008-10-07 Surface Optics Corporation Spatially corrected full-cubed hyperspectral imager
US8953087B2 (en) * 2004-04-08 2015-02-10 Flir Systems Trading Belgium Bvba Camera system and associated methods
US8049806B2 (en) * 2004-09-27 2011-11-01 Digitaloptics Corporation East Thin camera and associated methods
WO2006026354A2 (en) 2004-08-25 2006-03-09 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
US7795577B2 (en) * 2004-08-25 2010-09-14 Richard Ian Olsen Lens frame and optical focus assembly for imager module
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US7916180B2 (en) * 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
US8124929B2 (en) 2004-08-25 2012-02-28 Protarius Filo Ag, L.L.C. Imager module optical focus and assembly method
US8320641B2 (en) * 2004-10-28 2012-11-27 DigitalOptics Corporation Europe Limited Method and apparatus for red-eye detection using preview or other reference images
JP4534756B2 (ja) * 2004-12-22 2010-09-01 ソニー株式会社 画像処理装置、画像処理方法、撮像装置、プログラム、及び記録媒体
US7769284B2 (en) * 2005-02-28 2010-08-03 Silmpel Corporation Lens barrel assembly for a camera
JP2007003699A (ja) * 2005-06-22 2007-01-11 Fuji Xerox Co Ltd 画像表示装置
US20070102622A1 (en) * 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
US7566855B2 (en) * 2005-08-25 2009-07-28 Richard Ian Olsen Digital camera with integrated infrared (IR) response
US7964835B2 (en) * 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
US20070258006A1 (en) * 2005-08-25 2007-11-08 Olsen Richard I Solid state camera optics frame and assembly
WO2008008084A2 (en) * 2005-09-19 2008-01-17 Cdm Optics, Inc. Task-based imaging systems
US7999873B2 (en) * 2005-11-22 2011-08-16 Panasonic Corporation Imaging device with plural lenses and imaging regions
JP4147273B2 (ja) * 2006-01-20 2008-09-10 松下電器産業株式会社 複眼方式のカメラモジュール及びその製造方法
US7684612B2 (en) * 2006-03-28 2010-03-23 Pitney Bowes Software Inc. Method and apparatus for storing 3D information with raster imagery
US20070236591A1 (en) * 2006-04-11 2007-10-11 Tam Samuel W Method for mounting protective covers over image capture devices and devices manufactured thereby
US8081207B2 (en) * 2006-06-06 2011-12-20 Point Grey Research Inc. High accuracy stereo camera
KR100871564B1 (ko) * 2006-06-19 2008-12-02 삼성전기주식회사 카메라 모듈
KR100772910B1 (ko) * 2006-06-26 2007-11-05 삼성전기주식회사 디지털 카메라 모듈
EP1874034A3 (en) * 2006-06-26 2011-12-21 Samsung Electro-Mechanics Co., Ltd. Apparatus and method of recovering high pixel image
US8242426B2 (en) * 2006-12-12 2012-08-14 Dolby Laboratories Licensing Corporation Electronic camera having multiple sensors for capturing high dynamic range images and related methods
WO2008074019A2 (en) * 2006-12-13 2008-06-19 Georgia Tech Research Corporation Systems and methods for real time multispectral imaging
US20080165257A1 (en) * 2007-01-05 2008-07-10 Micron Technology, Inc. Configurable pixel array system and method
US8319846B2 (en) * 2007-01-11 2012-11-27 Raytheon Company Video camera system using multiple image sensors
US8456560B2 (en) * 2007-01-26 2013-06-04 Digitaloptics Corporation Wafer level camera module and method of manufacture
JP4999494B2 (ja) * 2007-02-28 2012-08-15 オンセミコンダクター・トレーディング・リミテッド 撮像装置
US8594387B2 (en) * 2007-04-23 2013-11-26 Intel-Ge Care Innovations Llc Text capture and presentation device
CA2685083A1 (en) * 2007-04-24 2008-11-06 Harpuneet Singh Auto focus/zoom modules using wafer level optics
CN101730863B (zh) * 2007-04-24 2011-12-28 弗莱克斯电子有限责任公司 相机模块及其制造方法
US7936377B2 (en) * 2007-04-30 2011-05-03 Tandent Vision Science, Inc. Method and system for optimizing an image for improved analysis of material and illumination image features
US7812869B2 (en) 2007-05-11 2010-10-12 Aptina Imaging Corporation Configurable pixel array system and method
US7909253B2 (en) * 2007-05-24 2011-03-22 Northrop Grumman Systems Corporation Image detection system and methods
CN100583956C (zh) * 2007-06-25 2010-01-20 鸿富锦精密工业(深圳)有限公司 成像设备及其镜头光线强度衰减补偿方法
US8300083B2 (en) * 2007-07-20 2012-10-30 Hewlett-Packard Development Company, L.P. Position relationships associated with image capturing devices
US20090033755A1 (en) * 2007-08-03 2009-02-05 Tandent Vision Science, Inc. Image acquisition and processing engine for computer vision
SG150414A1 (en) * 2007-09-05 2009-03-30 Creative Tech Ltd Methods for processing a composite video image with feature indication
US20090118600A1 (en) * 2007-11-02 2009-05-07 Ortiz Joseph L Method and apparatus for skin documentation and analysis
US9118850B2 (en) * 2007-11-27 2015-08-25 Capso Vision, Inc. Camera system with multiple pixel arrays on a chip
US20090159799A1 (en) * 2007-12-19 2009-06-25 Spectral Instruments, Inc. Color infrared light sensor, camera, and method for capturing images
EP2238745A4 (en) * 2007-12-27 2012-02-22 Google Inc IMAGE DEVICE WITH HIGH RESOLUTION AND DIFFICULT FOKUSTIEFE
JP4413261B2 (ja) * 2008-01-10 2010-02-10 シャープ株式会社 撮像装置及び光軸制御方法
US7745779B2 (en) * 2008-02-08 2010-06-29 Aptina Imaging Corporation Color pixel arrays having common color filters for multiple adjacent pixels for use in CMOS imagers
US8115825B2 (en) 2008-02-20 2012-02-14 Apple Inc. Electronic device with two image sensors
US9118825B2 (en) * 2008-02-22 2015-08-25 Nan Chang O-Film Optoelectronics Technology Ltd. Attachment of wafer level optics
US8135237B2 (en) * 2008-02-25 2012-03-13 Aptina Imaging Corporation Apparatuses and methods for noise reduction
WO2009126582A2 (en) 2008-04-07 2009-10-15 Mirion Technologies, Inc. Dosimetry apparatus, systems, and methods
CN101557453B (zh) * 2008-04-09 2010-09-29 鸿富锦精密工业(深圳)有限公司 影像撷取装置及其图片排列方法
JP4654264B2 (ja) * 2008-04-10 2011-03-16 シャープ株式会社 光通信デバイスおよび電子機器
US7675024B2 (en) * 2008-04-23 2010-03-09 Aptina Imaging Corporation Method and apparatus providing color filter array with non-uniform color filter sizes
US20090278929A1 (en) * 2008-05-06 2009-11-12 Flir Systems Inc Video camera with interchangable optical sensors
EP2133726B1 (en) 2008-06-10 2011-06-01 Thomson Licensing Multi-image capture system with improved depth image resolution
JP4582205B2 (ja) * 2008-06-12 2010-11-17 トヨタ自動車株式会社 電動車両
TW201007162A (en) * 2008-08-04 2010-02-16 Shanghai Microtek Technology Co Ltd Optical carriage structure of inspection apparatus and its inspection method
US20100110259A1 (en) * 2008-10-31 2010-05-06 Weistech Technology Co., Ltd Multi-lens image sensor module
US8462238B2 (en) 2008-11-04 2013-06-11 Ecole Polytechnique Fëdërale de Lausanne (EPFL) Camera design for the simultaneous capture of near-infrared and visible images
US9621825B2 (en) * 2008-11-25 2017-04-11 Capsovision Inc Camera system with multiple pixel arrays on a chip
US8587639B2 (en) * 2008-12-11 2013-11-19 Alcatel Lucent Method of improved three dimensional display technique
US20100165088A1 (en) * 2008-12-29 2010-07-01 Intromedic Apparatus and Method for Displaying Capsule Endoscope Image, and Record Media Storing Program for Carrying out that Method
US9494771B2 (en) 2009-01-05 2016-11-15 Duke University Quasi-monocentric-lens-based multi-scale optical system
US9432591B2 (en) * 2009-01-05 2016-08-30 Duke University Multiscale optical system having dynamic camera settings
US10725280B2 (en) 2009-01-05 2020-07-28 Duke University Multiscale telescopic imaging system
US9395617B2 (en) 2009-01-05 2016-07-19 Applied Quantum Technologies, Inc. Panoramic multi-scale imager and method therefor
US9635253B2 (en) 2009-01-05 2017-04-25 Duke University Multiscale telescopic imaging system
US8816460B2 (en) 2009-04-06 2014-08-26 Nokia Corporation Image sensor
DE112009004707T5 (de) * 2009-04-22 2012-09-13 Hewlett-Packard Development Co., L.P. Räumlich variierende Spektralantwort-Kalibrierungsdaten
US20100321511A1 (en) * 2009-06-18 2010-12-23 Nokia Corporation Lenslet camera with rotated sensors
US8198578B2 (en) * 2009-06-23 2012-06-12 Nokia Corporation Color filters for sub-diffraction limit-sized light sensors
US8179457B2 (en) * 2009-06-23 2012-05-15 Nokia Corporation Gradient color filters for sub-diffraction limit sensors
US8134115B2 (en) * 2009-06-23 2012-03-13 Nokia Corporation Color filters for sub-diffraction limit-sized light sensors
GB0912970D0 (en) * 2009-07-27 2009-09-02 St Microelectronics Res & Dev Improvements in or relating to a sensor and sensor system for a camera
US9419032B2 (en) * 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
JP4886016B2 (ja) * 2009-10-08 2012-02-29 シャープ株式会社 撮像レンズ、撮像モジュール、撮像レンズの製造方法、および、撮像モジュールの製造方法
CN102422417A (zh) * 2009-11-11 2012-04-18 松下电器产业株式会社 固态成像装置及其制造方法
US8633968B2 (en) * 2009-12-11 2014-01-21 Dish Network L.L.C. Three-dimensional recording and display system using near- and distal-focused images
ES2541482T3 (es) * 2009-12-18 2015-07-21 Vito Nv (Vlaamse Instelling Voor Technologisch Onderzoek Nv) Referenciación geométrica de datos multiespectrales
US8634596B2 (en) 2009-12-22 2014-01-21 Honeywell International Inc. Three-dimensional multilayer skin texture recognition system and method
GB0922603D0 (en) * 2009-12-24 2010-02-10 Touch Emas Ltd Skin colour determining apparatus and method
CN102143346B (zh) * 2010-01-29 2013-02-13 广州市启天科技股份有限公司 一种巡航拍摄存储方法及系统
JP2011216701A (ja) * 2010-03-31 2011-10-27 Sony Corp 固体撮像装置及び電子機器
US9001227B2 (en) 2010-04-05 2015-04-07 Qualcomm Incorporated Combining data from multiple image sensors
US8896668B2 (en) 2010-04-05 2014-11-25 Qualcomm Incorporated Combining data from multiple image sensors
WO2011139780A1 (en) 2010-04-27 2011-11-10 Duke University Monocentric lens-based multi-scale optical systems and methods of use
FR2959903B1 (fr) * 2010-05-04 2012-07-27 Astrium Sas Procede d'imagerie polychrome
US8576293B2 (en) * 2010-05-18 2013-11-05 Aptina Imaging Corporation Multi-channel imager
US8970672B2 (en) 2010-05-28 2015-03-03 Qualcomm Incorporated Three-dimensional image processing
WO2011155136A1 (ja) * 2010-06-07 2011-12-15 コニカミノルタオプト株式会社 撮像装置
US20130083157A1 (en) * 2010-06-07 2013-04-04 Konica Minolta Advanced Layers, Inc. Imaging Device
US8729478B2 (en) * 2010-06-09 2014-05-20 Carestream Health, Inc. Dual screen radiographic detector with improved spatial sampling
US8681217B2 (en) * 2010-07-21 2014-03-25 Olympus Corporation Inspection apparatus and measurement method
DE102010041569B4 (de) * 2010-09-28 2017-04-06 Leica Geosystems Ag Digitales Kamerasystem, Farbfilterelement für digitales Kamerasystem, Verfahren zur Bestimmung von Abweichungen zwischen den Kameras eines digitalen Kamerasystems sowie Bildverarbeitungseinheit für digitales Kamerasystem
CN102438153B (zh) * 2010-09-29 2015-11-25 华为终端有限公司 多摄像机图像校正方法和设备
JP5528976B2 (ja) * 2010-09-30 2014-06-25 株式会社メガチップス 画像処理装置
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
US9143668B2 (en) * 2010-10-29 2015-09-22 Apple Inc. Camera lens structures and display structures for electronic devices
US9137503B2 (en) 2010-11-03 2015-09-15 Sony Corporation Lens and color filter arrangement, super-resolution camera system and method
US8947584B2 (en) 2010-12-01 2015-02-03 Blackberry Limited Apparatus, and associated method, for a camera module of electronic device
US9167138B2 (en) 2010-12-06 2015-10-20 Apple Inc. Pattern projection and imaging using lens arrays
US9151848B2 (en) 2010-12-15 2015-10-06 Mirion Technologies, Inc. Dosimetry system, methods, and components
JP5976676B2 (ja) * 2011-01-14 2016-08-24 ソニー株式会社 レンズ部の縦の色収差を利用したイメージングシステム及びその操作方法
CN102823230B (zh) * 2011-01-17 2016-08-24 松下知识产权经营株式会社 摄像装置
US8581995B2 (en) * 2011-01-25 2013-11-12 Aptina Imaging Corporation Method and apparatus for parallax correction in fused array imaging systems
KR101829777B1 (ko) * 2011-03-09 2018-02-20 삼성디스플레이 주식회사 광 감지 센서
US9030528B2 (en) * 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
US20120274811A1 (en) * 2011-04-28 2012-11-01 Dmitry Bakin Imaging devices having arrays of image sensors and precision offset lenses
US20120281113A1 (en) * 2011-05-06 2012-11-08 Raytheon Company USING A MULTI-CHIP SYSTEM IN A PACKAGE (MCSiP) IN IMAGING APPLICATIONS TO YIELD A LOW COST, SMALL SIZE CAMERA ON A CHIP
JP2014521117A (ja) 2011-06-28 2014-08-25 ペリカン イメージング コーポレイション アレイカメラで使用するための光学配列
JP6080343B2 (ja) * 2011-07-29 2017-02-15 ソニーセミコンダクタソリューションズ株式会社 撮像素子およびその製造方法
GB201114264D0 (en) 2011-08-18 2011-10-05 Touch Emas Ltd Improvements in or relating to prosthetics and orthotics
US9438890B2 (en) * 2011-08-25 2016-09-06 Panasonic Intellectual Property Corporation Of America Image processor, 3D image capture device, image processing method, and image processing program
US9337949B2 (en) 2011-08-31 2016-05-10 Cablecam, Llc Control system for an aerially moved payload
US9477141B2 (en) 2011-08-31 2016-10-25 Cablecam, Llc Aerial movement system having multiple payloads
JPWO2013051186A1 (ja) * 2011-10-03 2015-03-30 パナソニックIpマネジメント株式会社 撮像装置、撮像装置を用いたシステム及び測距装置
US20130088603A1 (en) * 2011-10-11 2013-04-11 Thomas D. Pawlik Compact viewer for invisible indicia
US9036059B2 (en) * 2011-11-01 2015-05-19 Sony Corporation Imaging apparatus for efficiently generating multiple forms of image data output by an imaging sensor
US20130120621A1 (en) * 2011-11-10 2013-05-16 Research In Motion Limited Apparatus and associated method for forming color camera image
US8917453B2 (en) 2011-12-23 2014-12-23 Microsoft Corporation Reflective array waveguide
US9223138B2 (en) 2011-12-23 2015-12-29 Microsoft Technology Licensing, Llc Pixel opacity for augmented reality
US8941750B2 (en) * 2011-12-27 2015-01-27 Casio Computer Co., Ltd. Image processing device for generating reconstruction image, image generating method, and storage medium
US8638498B2 (en) 2012-01-04 2014-01-28 David D. Bohn Eyebox adjustment for interpupillary distance
US9606586B2 (en) 2012-01-23 2017-03-28 Microsoft Technology Licensing, Llc Heat transfer device
WO2013116253A1 (en) * 2012-01-30 2013-08-08 Scanadu Incorporated Spatial resolution enhancement in hyperspectral imaging
US9726887B2 (en) 2012-02-15 2017-08-08 Microsoft Technology Licensing, Llc Imaging structure color conversion
US9297996B2 (en) 2012-02-15 2016-03-29 Microsoft Technology Licensing, Llc Laser illumination scanning
US9368546B2 (en) 2012-02-15 2016-06-14 Microsoft Technology Licensing, Llc Imaging structure with embedded light sources
US9779643B2 (en) * 2012-02-15 2017-10-03 Microsoft Technology Licensing, Llc Imaging structure emitter configurations
CN103297665A (zh) * 2012-02-22 2013-09-11 庄佑华 图像采集系统
US9578318B2 (en) 2012-03-14 2017-02-21 Microsoft Technology Licensing, Llc Imaging structure emitter calibration
US11068049B2 (en) 2012-03-23 2021-07-20 Microsoft Technology Licensing, Llc Light guide display and field of view
US10191515B2 (en) 2012-03-28 2019-01-29 Microsoft Technology Licensing, Llc Mobile device light guide display
US9558590B2 (en) 2012-03-28 2017-01-31 Microsoft Technology Licensing, Llc Augmented reality light guide display
US9717981B2 (en) 2012-04-05 2017-08-01 Microsoft Technology Licensing, Llc Augmented reality and physical games
US20150085080A1 (en) * 2012-04-18 2015-03-26 3Shape A/S 3d scanner using merged partial images
JP2015521411A (ja) * 2012-05-01 2015-07-27 ペリカン イメージング コーポレイション πフィルタ群を用いてパターン化されたカメラモジュール
US10502876B2 (en) 2012-05-22 2019-12-10 Microsoft Technology Licensing, Llc Waveguide optics focus elements
US9754989B2 (en) * 2012-05-24 2017-09-05 Steven Huang Method for reading out multiple SRAM blocks with different column sizing in stitched CMOS image senor
US8989535B2 (en) 2012-06-04 2015-03-24 Microsoft Technology Licensing, Llc Multiple waveguide imaging structure
US8978981B2 (en) * 2012-06-27 2015-03-17 Honeywell International Inc. Imaging apparatus having imaging lens
US8988538B2 (en) * 2012-07-02 2015-03-24 Canon Kabushiki Kaisha Image pickup apparatus and lens apparatus
US10109063B2 (en) * 2012-07-04 2018-10-23 Apple Inc. Image processing in a multi-channel camera
WO2014043641A1 (en) 2012-09-14 2014-03-20 Pelican Imaging Corporation Systems and methods for correcting user identified artifacts in light field images
US9451745B1 (en) * 2012-09-21 2016-09-27 The United States Of America, As Represented By The Secretary Of Agriculture Multi-band photodiode sensor
US9766121B2 (en) * 2012-09-28 2017-09-19 Intel Corporation Mobile device based ultra-violet (UV) radiation sensing
US9398264B2 (en) 2012-10-19 2016-07-19 Qualcomm Incorporated Multi-camera system using folded optics
US9191587B2 (en) * 2012-10-26 2015-11-17 Raytheon Company Method and apparatus for image stacking
US8805115B2 (en) * 2012-11-02 2014-08-12 Raytheon Company Correction of variable offsets relying upon scene
CN113472989A (zh) 2012-11-28 2021-10-01 核心光电有限公司 多孔径成像系统以及通过多孔径成像系统获取图像的方法
US20140160253A1 (en) * 2012-12-10 2014-06-12 Microsoft Corporation Hyperspectral imager
US10192358B2 (en) 2012-12-20 2019-01-29 Microsoft Technology Licensing, Llc Auto-stereoscopic augmented reality display
GB201302025D0 (en) 2013-02-05 2013-03-20 Touch Emas Ltd Improvements in or relating to prosthetics
US9584722B2 (en) * 2013-02-18 2017-02-28 Sony Corporation Electronic device, method for generating an image and filter arrangement with multi-lens array and color filter array for reconstructing image from perspective of one group of pixel sensors
US9638883B1 (en) 2013-03-04 2017-05-02 Fotonation Cayman Limited Passive alignment of array camera modules constructed from lens stack arrays and sensors based upon alignment information obtained during manufacture of array camera modules using an active alignment process
US9521416B1 (en) 2013-03-11 2016-12-13 Kip Peli P1 Lp Systems and methods for image data compression
US9633442B2 (en) 2013-03-15 2017-04-25 Fotonation Cayman Limited Array cameras including an array camera module augmented with a separate camera
US9497370B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Array camera architecture implementing quantum dot color filters
WO2014160819A1 (en) * 2013-03-27 2014-10-02 Bae Systems Information And Electronic Systems Integration Inc. Multi field-of-view multi sensor electro-optical fusion-zoom camera
US9547231B2 (en) * 2013-06-12 2017-01-17 Avago Technologies General Ip (Singapore) Pte. Ltd. Device and method for making photomask assembly and photodetector device having light-collecting optical microstructure
CN109194849B (zh) 2013-06-13 2021-01-15 核心光电有限公司 双孔径变焦数字摄影机
WO2015001440A1 (en) 2013-07-04 2015-01-08 Corephotonics Ltd. Miniature telephoto lens assembly
US9127891B2 (en) * 2013-07-10 2015-09-08 Honeywell International, Inc. Furnace visualization
EP3028443A2 (en) 2013-08-01 2016-06-08 Corephotonics Ltd. Thin multi-aperture imaging system with auto-focus and methods for using same
US9473708B1 (en) * 2013-08-07 2016-10-18 Google Inc. Devices and methods for an imaging system with a dual camera architecture
US10178373B2 (en) 2013-08-16 2019-01-08 Qualcomm Incorporated Stereo yaw correction using autofocus feedback
JP6403369B2 (ja) * 2013-09-18 2018-10-10 ローム株式会社 光検出装置およびセンサパッケージ
KR102071325B1 (ko) * 2013-09-27 2020-04-02 매그나칩 반도체 유한회사 조도와 물체의 거리를 측정하는 광 센서
WO2015045144A1 (ja) 2013-09-30 2015-04-02 株式会社ニコン 電子機器、電子機器の制御方法、及び制御プログラム
US8917327B1 (en) * 2013-10-04 2014-12-23 icClarity, Inc. Method to use array sensors to measure multiple types of data at full resolution of the sensor
KR102241706B1 (ko) * 2013-11-13 2021-04-19 엘지전자 주식회사 3차원 카메라 및 그 제어 방법
DE102013226196A1 (de) * 2013-12-17 2015-06-18 Volkswagen Aktiengesellschaft Optisches Sensorsystem
WO2015120076A1 (en) 2014-02-04 2015-08-13 Rehabilitation Institute Of Chicago Modular and lightweight myoelectric prosthesis components and related methods
US20160018720A1 (en) * 2014-02-19 2016-01-21 Gil BACHAR Magnetic shielding between voice coil motors in a dual-aperture camera
GB201403265D0 (en) 2014-02-25 2014-04-09 Touch Emas Ltd Prosthetic digit for use with touchscreen devices
JP6422224B2 (ja) * 2014-03-17 2018-11-14 キヤノン株式会社 複眼光学機器
US20150281601A1 (en) * 2014-03-25 2015-10-01 INVIS Technologies Corporation Modular Packaging and Optical System for Multi-Aperture and Multi-Spectral Camera Core
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9374516B2 (en) 2014-04-04 2016-06-21 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
US9247117B2 (en) 2014-04-07 2016-01-26 Pelican Imaging Corporation Systems and methods for correcting for warpage of a sensor array in an array camera module by introducing warpage into a focal plane of a lens stack array
US9774797B2 (en) * 2014-04-18 2017-09-26 Flir Systems, Inc. Multi-sensor monitoring systems and methods
KR102269599B1 (ko) 2014-04-23 2021-06-25 삼성전자주식회사 직경이 상이한 렌즈 소자들을 구비하는 촬상 장치
US9300877B2 (en) * 2014-05-05 2016-03-29 Omnivision Technologies, Inc. Optical zoom imaging systems and associated methods
GB201408253D0 (en) 2014-05-09 2014-06-25 Touch Emas Ltd Systems and methods for controlling a prosthetic hand
US10057509B2 (en) 2014-05-30 2018-08-21 Flir Systems, Inc. Multiple-sensor imaging system
US10013764B2 (en) 2014-06-19 2018-07-03 Qualcomm Incorporated Local adaptive histogram equalization
US9819863B2 (en) 2014-06-20 2017-11-14 Qualcomm Incorporated Wide field of view array camera for hemispheric and spherical imaging
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9541740B2 (en) 2014-06-20 2017-01-10 Qualcomm Incorporated Folded optic array camera using refractive prisms
US9294672B2 (en) * 2014-06-20 2016-03-22 Qualcomm Incorporated Multi-camera system using folded optics free from parallax and tilt artifacts
US9516295B2 (en) * 2014-06-30 2016-12-06 Aquifi, Inc. Systems and methods for multi-channel imaging based on multiple exposure settings
SG11201700235QA (en) * 2014-07-25 2017-02-27 Heptagon Micro Optics Pte Ltd Optoelectronic modules including an image sensor having regions optically separated from one another
US9304235B2 (en) 2014-07-30 2016-04-05 Microsoft Technology Licensing, Llc Microfabrication
US10592080B2 (en) 2014-07-31 2020-03-17 Microsoft Technology Licensing, Llc Assisted presentation of application windows
US10678412B2 (en) 2014-07-31 2020-06-09 Microsoft Technology Licensing, Llc Dynamic joint dividers for application windows
US10254942B2 (en) 2014-07-31 2019-04-09 Microsoft Technology Licensing, Llc Adaptive sizing and positioning of application windows
CN104111552B (zh) * 2014-08-08 2017-02-01 深圳市华星光电技术有限公司 多基色液晶显示器及其驱动方法
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US9225889B1 (en) 2014-08-18 2015-12-29 Entropix, Inc. Photographic image acquisition device and method
GB201417541D0 (en) 2014-10-03 2014-11-19 Touch Bionics Ltd Wrist device for a prosthetic limb
US9832381B2 (en) 2014-10-31 2017-11-28 Qualcomm Incorporated Optical image stabilization for thin cameras
US9857569B2 (en) * 2014-10-31 2018-01-02 Everready Precision Ind. Corp. Combined lens module and image capturing-and-sensing assembly
US9615013B2 (en) 2014-12-22 2017-04-04 Google Inc. Image sensor having multiple output ports
US20160182846A1 (en) * 2014-12-22 2016-06-23 Google Inc. Monolithically integrated rgb pixel array and z pixel array
US9581696B2 (en) * 2014-12-22 2017-02-28 Google Inc. Image sensor and light source driver integrated in a same semiconductor package
CN112327463B (zh) 2015-01-03 2022-10-14 核心光电有限公司 微型长焦镜头模块和使用该镜头模块的相机
US9519979B1 (en) * 2015-01-23 2016-12-13 The United States Of America As Represented By The Secretary Of The Navy Ladar range data video color rendering
US11086216B2 (en) 2015-02-09 2021-08-10 Microsoft Technology Licensing, Llc Generating electronic components
US9372347B1 (en) 2015-02-09 2016-06-21 Microsoft Technology Licensing, Llc Display system
US9423360B1 (en) 2015-02-09 2016-08-23 Microsoft Technology Licensing, Llc Optical components
US10018844B2 (en) 2015-02-09 2018-07-10 Microsoft Technology Licensing, Llc Wearable image display system
US9429692B1 (en) 2015-02-09 2016-08-30 Microsoft Technology Licensing, Llc Optical components
US9827209B2 (en) 2015-02-09 2017-11-28 Microsoft Technology Licensing, Llc Display system
US9513480B2 (en) 2015-02-09 2016-12-06 Microsoft Technology Licensing, Llc Waveguide
US10317677B2 (en) 2015-02-09 2019-06-11 Microsoft Technology Licensing, Llc Display system
US9535253B2 (en) 2015-02-09 2017-01-03 Microsoft Technology Licensing, Llc Display system
US20160255323A1 (en) 2015-02-26 2016-09-01 Dual Aperture International Co. Ltd. Multi-Aperture Depth Map Using Blur Kernels and Down-Sampling
KR101914894B1 (ko) 2015-04-02 2018-11-02 코어포토닉스 리미티드 듀얼 광학 모듈 카메라의 듀얼 보이스 코일 모터 구조체
KR102480080B1 (ko) 2015-04-16 2022-12-22 코어포토닉스 리미티드 소형 접이식 카메라의 오토 포커스 및 광학 이미지 안정화
EP3286914B1 (en) 2015-04-19 2019-12-25 FotoNation Limited Multi-baseline camera array system architectures for depth augmentation in vr/ar applications
US9743007B2 (en) * 2015-04-23 2017-08-22 Altek Semiconductor Corp. Lens module array, image sensing device and fusing method for digital zoomed images
US10326981B2 (en) * 2015-05-15 2019-06-18 Semyon Nisenzon Generating 3D images using multi-resolution camera set
WO2016189455A1 (en) 2015-05-28 2016-12-01 Corephotonics Ltd. Bi-directional stiffness for optical image stabilization and auto-focus in a dual-aperture digital camera
EP3598737B1 (en) 2015-08-13 2020-12-09 Corephotonics Ltd. Dual aperture zoom camera with video support and switching / non-switching dynamic control
KR101993077B1 (ko) 2015-09-06 2019-06-25 코어포토닉스 리미티드 소형의 접이식 카메라의 롤 보정에 의한 자동 초점 및 광학식 손떨림 방지
WO2017087542A1 (en) 2015-11-18 2017-05-26 The Board Of Trustees Of The Leland Stanford Junior University Method and systems for measuring neural activity
EP4254926A3 (en) 2015-12-29 2024-01-31 Corephotonics Ltd. Dual-aperture zoom digital camera with automatic adjustable tele field of view
US10451548B2 (en) * 2016-01-15 2019-10-22 The Mitre Corporation Active hyperspectral imaging system
EP3518520B1 (en) 2016-05-30 2020-08-26 Corephotonics Ltd. Rotational ball-guided voice coil motor
KR101785458B1 (ko) 2016-06-07 2017-10-16 엘지전자 주식회사 카메라 모듈 및 이를 구비하는 이동 단말기
EP4020958B1 (en) 2016-06-19 2023-10-25 Corephotonics Ltd. Frame synchronization in a dual-aperture camera system
WO2018007951A1 (en) 2016-07-07 2018-01-11 Corephotonics Ltd. Dual-camera system with improved video smooth transition by image blending
KR102390572B1 (ko) 2016-07-07 2022-04-25 코어포토닉스 리미티드 폴디드 옵틱용 선형 볼 가이드 음성 코일 모터
US11102467B2 (en) * 2016-08-25 2021-08-24 Facebook Technologies, Llc Array detector for depth mapping
US11185426B2 (en) 2016-09-02 2021-11-30 Touch Bionics Limited Systems and methods for prosthetic wrist rotation
US10369024B2 (en) 2016-09-02 2019-08-06 Touch Bionics Limited Systems and methods for prosthetic wrist rotation
US10297034B2 (en) 2016-09-30 2019-05-21 Qualcomm Incorporated Systems and methods for fusing images
US10026014B2 (en) * 2016-10-26 2018-07-17 Nxp Usa, Inc. Method and apparatus for data set classification based on generator features
EP4246993A3 (en) 2016-12-28 2024-03-06 Corephotonics Ltd. Folded camera structure with an extended light-folding-element scanning range
US10884321B2 (en) 2017-01-12 2021-01-05 Corephotonics Ltd. Compact folded camera
WO2018154421A1 (en) 2017-02-23 2018-08-30 Corephotonics Ltd. Folded camera lens designs
KR102530535B1 (ko) 2017-03-15 2023-05-08 코어포토닉스 리미티드 파노라마 스캐닝 범위를 갖는 카메라
CN107426471B (zh) 2017-05-03 2021-02-05 Oppo广东移动通信有限公司 相机模组和电子装置
JP7048011B2 (ja) * 2017-05-26 2022-04-05 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 撮像装置
KR102301232B1 (ko) * 2017-05-31 2021-09-10 삼성전자주식회사 다채널 특징맵 영상을 처리하는 방법 및 장치
CN107277352A (zh) * 2017-06-30 2017-10-20 维沃移动通信有限公司 一种拍摄的方法和移动终端
US10969275B2 (en) * 2017-08-02 2021-04-06 Nanolamda Korea On-chip spectrometer employing pixel-count-modulated spectral channels and method of manufacturing the same
US10567636B2 (en) 2017-08-07 2020-02-18 Qualcomm Incorporated Resolution enhancement using sensor with plural photodiodes per microlens
US10499020B1 (en) 2017-08-17 2019-12-03 Verily Life Sciences Llc Lenslet based snapshot hyperspectral camera
US10904512B2 (en) 2017-09-06 2021-01-26 Corephotonics Ltd. Combined stereoscopic and phase detection depth mapping in a dual aperture camera
US10930709B2 (en) 2017-10-03 2021-02-23 Lockheed Martin Corporation Stacked transparent pixel structures for image sensors
US10951834B2 (en) 2017-10-03 2021-03-16 Corephotonics Ltd. Synthetically enlarged camera aperture
US10510812B2 (en) 2017-11-09 2019-12-17 Lockheed Martin Corporation Display-integrated infrared emitter and sensor structures
CN113075776B (zh) 2017-11-23 2023-08-29 核心光电有限公司 移动电子设备
US10973660B2 (en) 2017-12-15 2021-04-13 Touch Bionics Limited Powered prosthetic thumb
US11692813B2 (en) * 2017-12-27 2023-07-04 Ams Sensors Singapore Pte. Ltd. Optoelectronic modules and methods for operating the same
CN114609746A (zh) 2018-02-05 2022-06-10 核心光电有限公司 折叠摄像装置
US10594951B2 (en) * 2018-02-07 2020-03-17 Lockheed Martin Corporation Distributed multi-aperture camera array
US11616941B2 (en) 2018-02-07 2023-03-28 Lockheed Martin Corporation Direct camera-to-display system
US10652529B2 (en) 2018-02-07 2020-05-12 Lockheed Martin Corporation In-layer Signal processing
US10690910B2 (en) 2018-02-07 2020-06-23 Lockheed Martin Corporation Plenoptic cellular vision correction
US10951883B2 (en) 2018-02-07 2021-03-16 Lockheed Martin Corporation Distributed multi-screen array for high density display
US10838250B2 (en) 2018-02-07 2020-11-17 Lockheed Martin Corporation Display assemblies with electronically emulated transparency
US10979699B2 (en) 2018-02-07 2021-04-13 Lockheed Martin Corporation Plenoptic cellular imaging system
CN113568251B (zh) 2018-02-12 2022-08-30 核心光电有限公司 数字摄像机及用于提供聚焦及补偿摄像机倾斜的方法
KR102507746B1 (ko) 2018-03-02 2023-03-09 삼성전자주식회사 복수의 파장대역을 감지할 수 있는 카메라를 이용하여 복수의 정보를 생성하는 방법 및 이를 구현한 전자 장치
US10694168B2 (en) 2018-04-22 2020-06-23 Corephotonics Ltd. System and method for mitigating or preventing eye damage from structured light IR/NIR projector systems
CN114153107B (zh) 2018-04-23 2024-07-02 核心光电有限公司 相机及致动器
WO2019227974A1 (zh) 2018-06-02 2019-12-05 Oppo广东移动通信有限公司 电子组件和电子装置
JP7028983B2 (ja) 2018-08-04 2022-03-02 コアフォトニクス リミテッド カメラ上の切り替え可能な連続表示情報システム
TWI768103B (zh) * 2018-08-16 2022-06-21 先進光電科技股份有限公司 光學成像模組、成像系統及其製造方法
WO2020039302A1 (en) 2018-08-22 2020-02-27 Corephotonics Ltd. Two-state zoom folded camera
TWI768127B (zh) * 2018-09-21 2022-06-21 先進光電科技股份有限公司 光學成像模組、光學成像系統及光學成像模組製造方法
US10866413B2 (en) 2018-12-03 2020-12-15 Lockheed Martin Corporation Eccentric incident luminance pupil tracking
KR102558301B1 (ko) * 2018-12-13 2023-07-24 에스케이하이닉스 주식회사 유기 픽셀 어레이 및 무기 픽셀 어레이를 갖는 이미지 센싱 디바이스
US11287081B2 (en) 2019-01-07 2022-03-29 Corephotonics Ltd. Rotation mechanism with sliding joint
CN111971956B (zh) 2019-03-09 2021-12-03 核心光电有限公司 用于动态立体校准的方法及系统
US10698201B1 (en) 2019-04-02 2020-06-30 Lockheed Martin Corporation Plenoptic cellular axis redirection
US10921450B2 (en) * 2019-04-24 2021-02-16 Aeye, Inc. Ladar system and method with frequency domain shuttering
WO2020250774A1 (ja) * 2019-06-11 2020-12-17 富士フイルム株式会社 撮像装置
WO2020252592A1 (en) * 2019-06-21 2020-12-24 The Governing Council Of The University Of Toronto Method and system for extending image dynamic range using per-pixel coding of pixel parameters
CN110392149A (zh) 2019-07-23 2019-10-29 华为技术有限公司 图像摄取显示终端
KR102425865B1 (ko) 2019-07-31 2022-07-27 코어포토닉스 리미티드 카메라 패닝 또는 모션에서 배경 블러링을 생성하는 시스템 및 방법
JP7314752B2 (ja) * 2019-09-30 2023-07-26 株式会社リコー 光電変換素子、読取装置、画像処理装置および光電変換素子の製造方法
US11659135B2 (en) 2019-10-30 2023-05-23 Corephotonics Ltd. Slow or fast motion video using depth information
US11931270B2 (en) 2019-11-15 2024-03-19 Touch Bionics Limited Prosthetic digit actuator
US11470287B2 (en) 2019-12-05 2022-10-11 Samsung Electronics Co., Ltd. Color imaging apparatus using monochrome sensors for mobile devices
US11949976B2 (en) 2019-12-09 2024-04-02 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
WO2021116851A2 (en) 2019-12-09 2021-06-17 Corephotonics Ltd. Systems and methods for obtaining a smart panoramic image
CN114641805A (zh) 2020-02-22 2022-06-17 核心光电有限公司 用于微距摄影的分屏特征
CN114144898B (zh) 2020-04-26 2022-11-04 核心光电有限公司 用于霍尔棒传感器校正的温度控制
US11509837B2 (en) 2020-05-12 2022-11-22 Qualcomm Incorporated Camera transition blending
KR102495627B1 (ko) 2020-05-17 2023-02-06 코어포토닉스 리미티드 전체 시야 레퍼런스 이미지 존재 하의 이미지 스티칭
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
CN114730064A (zh) 2020-07-15 2022-07-08 核心光电有限公司 扫描折叠相机的视点像差校正
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
CN114270145B (zh) 2020-07-31 2024-05-17 核心光电有限公司 用于大行程线性位置感测的霍尔传感器-磁体几何结构
CN116626960A (zh) 2020-08-12 2023-08-22 核心光电有限公司 用于光学防抖的方法
US11917272B2 (en) * 2020-10-28 2024-02-27 Semiconductor Components Industries, Llc Imaging systems for multi-spectral imaging
EP4204885A4 (en) 2021-06-08 2024-03-06 Corephotonics Ltd. SYSTEMS AND CAMERAS FOR TILTING A FOCAL PLANE OF A SUPER MACRO-IMAGE
US20230262307A1 (en) * 2022-02-14 2023-08-17 Tunoptix, Inc. Systems and methods for high quality imaging using a color-splitting meta-optical computation camera
WO2023171470A1 (ja) * 2022-03-11 2023-09-14 パナソニックIpマネジメント株式会社 光検出装置、光検出システム、およびフィルタアレイ

Family Cites Families (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1224063A (en) * 1968-09-04 1971-03-03 Emi Ltd Improvements in or relating to static split photo-sensors
US3676317A (en) 1970-10-23 1972-07-11 Stromberg Datagraphix Inc Sputter etching process
US3806633A (en) 1972-01-18 1974-04-23 Westinghouse Electric Corp Multispectral data sensor and display system
US3971065A (en) * 1975-03-05 1976-07-20 Eastman Kodak Company Color imaging array
US4028725A (en) * 1976-04-21 1977-06-07 Grumman Aerospace Corporation High-resolution vision system
US4323925A (en) * 1980-07-07 1982-04-06 Avco Everett Research Laboratory, Inc. Method and apparatus for arraying image sensor modules
US4385373A (en) * 1980-11-10 1983-05-24 Eastman Kodak Company Device for focus and alignment control in optical recording and/or playback apparatus
US4554460A (en) 1982-07-02 1985-11-19 Kollmorgen Technologies Corp. Photodetector automatic adaptive sensitivity system
JPS6211264U (zh) 1985-07-04 1987-01-23
JPS6211264A (ja) 1985-07-09 1987-01-20 Fuji Photo Film Co Ltd 固体撮像装置
US4679068A (en) 1985-07-25 1987-07-07 General Electric Company Composite visible/thermal-infrared imaging system
US4688080A (en) 1985-09-27 1987-08-18 Ampex Corporation Multi-standard adaptive chrominance separator
GB2207020B (en) * 1987-07-08 1991-08-21 Gec Avionics Imaging system
US4751571A (en) 1987-07-29 1988-06-14 General Electric Company Composite visible/thermal-infrared imaging apparatus
JPH01161326A (ja) * 1987-12-18 1989-06-26 Asahi Optical Co Ltd 焦点距離可変レンズのレンズ移動機構
EP0342419B1 (de) * 1988-05-19 1992-10-28 Siemens Aktiengesellschaft Verfahren zur Beobachtung einer Szene und Einrichtung zur Durchführung des Verfahrens
DE3927334C1 (zh) * 1989-08-18 1991-01-10 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
JP3261152B2 (ja) * 1991-03-13 2002-02-25 シャープ株式会社 複数の光学系を備えた撮像装置
US6347163B2 (en) * 1994-10-26 2002-02-12 Symbol Technologies, Inc. System for reading two-dimensional images using ambient and/or projected light
US5317394A (en) 1992-04-30 1994-05-31 Westinghouse Electric Corp. Distributed aperture imaging and tracking system
JPH06133191A (ja) 1992-10-16 1994-05-13 Canon Inc 撮像装置
US5850479A (en) * 1992-11-13 1998-12-15 The Johns Hopkins University Optical feature extraction apparatus and encoding method for detection of DNA sequences
EP0599470B1 (en) 1992-11-20 1998-09-16 Picker International, Inc. Panoramic camera systems
DK45493D0 (da) * 1993-04-21 1993-04-21 Vm Acoustics Aps Indstilleligt ophaengningsbeslag til vaegmontering f.eks. for hoejttalere
US5694165A (en) * 1993-10-22 1997-12-02 Canon Kabushiki Kaisha High definition image taking apparatus having plural image sensors
US6486503B1 (en) 1994-01-28 2002-11-26 California Institute Of Technology Active pixel sensor array with electronic shuttering
US5766980A (en) * 1994-03-25 1998-06-16 Matsushita Electronics Corporation Method of manufacturing a solid state imaging device
JPH08172635A (ja) * 1994-12-16 1996-07-02 Minolta Co Ltd 撮像装置
US5515109A (en) 1995-04-05 1996-05-07 Ultimatte Corporation Backing color and luminance nonuniformity compensation
US5694155A (en) * 1995-04-25 1997-12-02 Stapleton; Robert E. Flat panel display with edge contacting image area and method of manufacture thereof
US5604534A (en) 1995-05-24 1997-02-18 Omni Solutions International, Ltd. Direct digital airborne panoramic camera system and method
JPH0934422A (ja) 1995-07-19 1997-02-07 Sony Corp 映像信号処理方法及び映像装置
US5691765A (en) * 1995-07-27 1997-11-25 Sensormatic Electronics Corporation Image forming and processing device and method for use with no moving parts camera
US5742659A (en) * 1996-08-26 1998-04-21 Universities Research Assoc., Inc. High resolution biomedical imaging system with direct detection of x-rays via a charge coupled device
US6137535A (en) * 1996-11-04 2000-10-24 Eastman Kodak Company Compact digital camera with segmented fields of view
JPH10243296A (ja) * 1997-02-26 1998-09-11 Nikon Corp 撮像装置、および撮像装置の駆動方法
US6366319B1 (en) 1997-07-03 2002-04-02 Photronics Corp. Subtractive color processing system for digital imaging
US6714239B2 (en) * 1997-10-29 2004-03-30 Eastman Kodak Company Active pixel sensor with programmable color balance
NO305728B1 (no) * 1997-11-14 1999-07-12 Reidar E Tangen Optoelektronisk kamera og fremgangsmÕte ved bildeformatering i samme
US6381072B1 (en) * 1998-01-23 2002-04-30 Proxemics Lenslet array systems and methods
US7170665B2 (en) * 2002-07-24 2007-01-30 Olympus Corporation Optical unit provided with an actuator
US6100937A (en) 1998-05-29 2000-08-08 Conexant Systems, Inc. Method and system for combining multiple images into a single higher-quality image
JP3771054B2 (ja) * 1998-07-01 2006-04-26 株式会社リコー 画像処理装置及び画像処理方法
US6903770B1 (en) * 1998-07-27 2005-06-07 Sanyo Electric Co., Ltd. Digital camera which produces a single image based on two exposures
KR100284306B1 (ko) 1998-10-14 2001-03-02 김영환 이미지 센서의 화질 개선을 위한 단위 화소 구동 방법
GB2345217A (en) 1998-12-23 2000-06-28 Nokia Mobile Phones Ltd Colour video image sensor
US6611289B1 (en) * 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
US20030029651A1 (en) 1999-02-03 2003-02-13 Palmeri Frank A. Electronically controlled tractor trailer propulsion braking and stability systems
US6366025B1 (en) * 1999-02-26 2002-04-02 Sanyo Electric Co., Ltd. Electroluminescence display apparatus
US6570613B1 (en) * 1999-02-26 2003-05-27 Paul Howell Resolution-enhancement method for digital imaging
US6727521B2 (en) * 2000-09-25 2004-04-27 Foveon, Inc. Vertical color filter detector group and array
US6859299B1 (en) * 1999-06-11 2005-02-22 Jung-Chih Chiao MEMS optical components
US6885404B1 (en) * 1999-06-30 2005-04-26 Canon Kabushiki Kaisha Image pickup apparatus
US6833873B1 (en) * 1999-06-30 2004-12-21 Canon Kabushiki Kaisha Image pickup apparatus
US6882368B1 (en) * 1999-06-30 2005-04-19 Canon Kabushiki Kaisha Image pickup apparatus
US6375075B1 (en) 1999-10-18 2002-04-23 Intermec Ip Corp. Method and apparatus for reading machine-readable symbols including color symbol elements
US6960817B2 (en) * 2000-04-21 2005-11-01 Canon Kabushiki Kaisha Solid-state imaging device
US6437335B1 (en) * 2000-07-06 2002-08-20 Hewlett-Packard Company High speed scanner using multiple sensing devices
EP1176808A3 (en) * 2000-07-27 2003-01-02 Canon Kabushiki Kaisha Image sensing apparatus
US6946647B1 (en) * 2000-08-10 2005-09-20 Raytheon Company Multicolor staring missile sensor system
US6952228B2 (en) * 2000-10-13 2005-10-04 Canon Kabushiki Kaisha Image pickup apparatus
US7139028B2 (en) * 2000-10-17 2006-11-21 Canon Kabushiki Kaisha Image pickup apparatus
US7262799B2 (en) * 2000-10-25 2007-08-28 Canon Kabushiki Kaisha Image sensing apparatus and its control method, control program, and storage medium
US7128266B2 (en) * 2003-11-13 2006-10-31 Metrologic Instruments. Inc. Hand-supportable digital imaging-based bar code symbol reader supporting narrow-area and wide-area modes of illumination and image capture
JP2002252338A (ja) * 2000-12-18 2002-09-06 Canon Inc 撮像装置及び撮像システム
JP2002209226A (ja) * 2000-12-28 2002-07-26 Canon Inc 撮像装置
JP2002290793A (ja) * 2001-03-28 2002-10-04 Mitsubishi Electric Corp 撮像装置付携帯電話器
JP2003037757A (ja) * 2001-07-25 2003-02-07 Fuji Photo Film Co Ltd 画像撮像装置
US7362357B2 (en) * 2001-08-07 2008-04-22 Signature Research, Inc. Calibration of digital color imagery
US7239345B1 (en) * 2001-10-12 2007-07-03 Worldscape, Inc. Camera arrangements with backlighting detection and methods of using same
US6999130B2 (en) 2001-10-12 2006-02-14 Matsushita Electric Industrial Co., Ltd. Luminance signal/chrominance signal separation device, and luminance signal/chrominance signal separation method
JP2003143459A (ja) * 2001-11-02 2003-05-16 Canon Inc 複眼撮像系およびこれを備えた装置
US6617565B2 (en) * 2001-11-06 2003-09-09 Omnivision Technologies, Inc. CMOS image sensor with on-chip pattern recognition
US7054491B2 (en) * 2001-11-16 2006-05-30 Stmicroelectronics, Inc. Scalable architecture for corresponding multiple video streams at frame rate
JP3811403B2 (ja) * 2001-12-28 2006-08-23 日本圧着端子製造株式会社 パネル表裏何れの壁面からも取付可能な係止部材を備えたコネクタ
US7436038B2 (en) 2002-02-05 2008-10-14 E-Phocus, Inc Visible/near infrared image sensor array
US20030151685A1 (en) 2002-02-11 2003-08-14 Ia Grone Marcus J. Digital video camera having only two CCDs
JP4198449B2 (ja) * 2002-02-22 2008-12-17 富士フイルム株式会社 デジタルカメラ
US6841816B2 (en) * 2002-03-20 2005-01-11 Foveon, Inc. Vertical color filter sensor group with non-sensor filter and method for fabricating such a sensor group
US7129466B2 (en) 2002-05-08 2006-10-31 Canon Kabushiki Kaisha Color image pickup device and color light-receiving device
JP2004032172A (ja) * 2002-06-24 2004-01-29 Canon Inc 複眼撮像装置およびこれを備えた機器
US20040027687A1 (en) * 2002-07-03 2004-02-12 Wilfried Bittner Compact zoom lens barrel and system
US20040012688A1 (en) * 2002-07-16 2004-01-22 Fairchild Imaging Large area charge coupled device camera
US20040012689A1 (en) * 2002-07-16 2004-01-22 Fairchild Imaging Charge coupled devices in tiled arrays
CN1234234C (zh) * 2002-09-30 2005-12-28 松下电器产业株式会社 固体摄像器件及使用该固体摄像器件的设备
KR20040036087A (ko) * 2002-10-23 2004-04-30 주식회사 하이닉스반도체 광의 파장에 따라 포토다이오드의 깊이가 다른 씨모스이미지센서 및 그 제조 방법
JP4269334B2 (ja) * 2002-10-28 2009-05-27 コニカミノルタホールディングス株式会社 撮像レンズ、撮像ユニット及び携帯端末
WO2004071069A2 (en) * 2003-02-03 2004-08-19 Goodrich Corporation Random access imaging sensor
US20040183918A1 (en) * 2003-03-20 2004-09-23 Eastman Kodak Company Producing enhanced photographic products from images captured at known picture sites
US7379104B2 (en) * 2003-05-02 2008-05-27 Canon Kabushiki Kaisha Correction apparatus
US6834161B1 (en) * 2003-05-29 2004-12-21 Eastman Kodak Company Camera assembly having coverglass-lens adjuster
US7095561B2 (en) * 2003-07-29 2006-08-22 Wavefront Research, Inc. Compact telephoto imaging lens systems
JP4113063B2 (ja) * 2003-08-18 2008-07-02 株式会社リガク 特定高分子結晶の検出方法
US7115853B2 (en) * 2003-09-23 2006-10-03 Micron Technology, Inc. Micro-lens configuration for small lens focusing in digital imaging devices
US7453510B2 (en) * 2003-12-11 2008-11-18 Nokia Corporation Imaging device
FI20031816A0 (fi) * 2003-12-11 2003-12-11 Nokia Corp Menetelmä ja laite kuvan luomiseksi
US20050128509A1 (en) * 2003-12-11 2005-06-16 Timo Tokkonen Image creating method and imaging device
US7511749B2 (en) * 2003-12-18 2009-03-31 Aptina Imaging Corporation Color image sensor having imaging element array forming images on respective regions of sensor elements
US7123298B2 (en) * 2003-12-18 2006-10-17 Avago Technologies Sensor Ip Pte. Ltd. Color image sensor with imaging elements imaging on respective regions of sensor elements
US7151653B2 (en) * 2004-02-18 2006-12-19 Hitachi Global Technologies Netherlands B.V. Depositing a pinned layer structure in a self-pinned spin valve
EP1594321A3 (en) 2004-05-07 2006-01-25 Dialog Semiconductor GmbH Extended dynamic range in color imagers
EP1608183A1 (en) 2004-06-14 2005-12-21 Dialog Semiconductor GmbH Matrix circuit for imaging sensors
US7095159B2 (en) * 2004-06-29 2006-08-22 Avago Technologies Sensor Ip (Singapore) Pte. Ltd. Devices with mechanical drivers for displaceable elements
US7570809B1 (en) * 2004-07-03 2009-08-04 Hrl Laboratories, Llc Method for automatic color balancing in digital images
WO2006026354A2 (en) * 2004-08-25 2006-03-09 Newport Imaging Corporation Apparatus for multiple camera devices and method of operating same
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US7417674B2 (en) * 2004-08-25 2008-08-26 Micron Technology, Inc. Multi-magnification color image sensor
US7280290B2 (en) * 2004-09-16 2007-10-09 Sony Corporation Movable lens mechanism
US7460160B2 (en) * 2004-09-24 2008-12-02 Microsoft Corporation Multispectral digital camera employing both visible light and non-visible light sensing on a single image sensor
US7545422B2 (en) * 2004-10-27 2009-06-09 Aptina Imaging Corporation Imaging system
US7214926B2 (en) * 2004-11-19 2007-05-08 Micron Technology, Inc. Imaging systems and methods
US7483065B2 (en) * 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
KR100597651B1 (ko) 2005-01-24 2006-07-05 한국과학기술원 이미지 센서, 실제 이미지를 전기적 신호로 바꾸는 장치 및 그 방법
US7663662B2 (en) * 2005-02-09 2010-02-16 Flir Systems, Inc. High and low resolution camera systems and methods
US7561191B2 (en) * 2005-02-18 2009-07-14 Eastman Kodak Company Camera phone using multiple lenses and image sensors to provide an extended zoom range
US7206136B2 (en) * 2005-02-18 2007-04-17 Eastman Kodak Company Digital camera using multiple lenses and image sensors to provide an extended zoom range
US7256944B2 (en) * 2005-02-18 2007-08-14 Eastman Kodak Company Compact image capture assembly using multiple lenses and image sensors to provide an extended zoom range
US7236306B2 (en) * 2005-02-18 2007-06-26 Eastman Kodak Company Digital camera using an express zooming mode to provide expedited operation over an extended zoom range
US20060187322A1 (en) * 2005-02-18 2006-08-24 Janson Wilbert F Jr Digital camera using multiple fixed focal length lenses and multiple image sensors to provide an extended zoom range
US7358483B2 (en) * 2005-06-30 2008-04-15 Konica Minolta Holdings, Inc. Method of fixing an optical element and method of manufacturing optical module including the use of a light transmissive loading jig
US20070102622A1 (en) * 2005-07-01 2007-05-10 Olsen Richard I Apparatus for multiple camera devices and method of operating same
US7864211B2 (en) * 2005-10-16 2011-01-04 Mowry Craig P Apparatus, system and method for increasing quality of digital image capture

Cited By (150)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485496B2 (en) 2008-05-20 2016-11-01 Pelican Imaging Corporation Systems and methods for measuring depth using images captured by a camera array including cameras surrounding a central camera
US9749547B2 (en) 2008-05-20 2017-08-29 Fotonation Cayman Limited Capturing and processing of images using camera array incorperating Bayer cameras having different fields of view
US11792538B2 (en) 2008-05-20 2023-10-17 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US9712759B2 (en) 2008-05-20 2017-07-18 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US10027901B2 (en) 2008-05-20 2018-07-17 Fotonation Cayman Limited Systems and methods for generating depth maps using a camera arrays incorporating monochrome and color cameras
US9576369B2 (en) 2008-05-20 2017-02-21 Fotonation Cayman Limited Systems and methods for generating depth maps using images captured by camera arrays incorporating cameras having different fields of view
US10142560B2 (en) 2008-05-20 2018-11-27 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US12041360B2 (en) 2008-05-20 2024-07-16 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US12022207B2 (en) 2008-05-20 2024-06-25 Adeia Imaging Llc Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US11412158B2 (en) 2008-05-20 2022-08-09 Fotonation Limited Capturing and processing of images including occlusions focused on an image sensor by a lens stack array
US10306120B2 (en) 2009-11-20 2019-05-28 Fotonation Limited Capturing and processing of images captured by camera arrays incorporating cameras with telephoto and conventional lenses to generate depth maps
CN102131044A (zh) * 2010-01-20 2011-07-20 鸿富锦精密工业(深圳)有限公司 相机模组
CN102131044B (zh) * 2010-01-20 2014-03-26 鸿富锦精密工业(深圳)有限公司 相机模组
US10455168B2 (en) 2010-05-12 2019-10-22 Fotonation Limited Imager array interfaces
CN102170571A (zh) * 2010-06-22 2011-08-31 上海盈方微电子有限公司 一种支持双通道cmos传感器的数码相机架构
US10366472B2 (en) 2010-12-14 2019-07-30 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11875475B2 (en) 2010-12-14 2024-01-16 Adeia Imaging Llc Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US11423513B2 (en) 2010-12-14 2022-08-23 Fotonation Limited Systems and methods for synthesizing high resolution images using images captured by an array of independently controllable imagers
US10742861B2 (en) 2011-05-11 2020-08-11 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
US10218889B2 (en) 2011-05-11 2019-02-26 Fotonation Limited Systems and methods for transmitting and receiving array camera image data
CN103004218A (zh) * 2011-05-19 2013-03-27 松下电器产业株式会社 三维摄像装置、摄像元件、透光部、及图像处理装置
CN103004218B (zh) * 2011-05-19 2016-02-24 松下知识产权经营株式会社 三维摄像装置、摄像元件、透光部、及图像处理装置
US9179127B2 (en) 2011-05-19 2015-11-03 Panasonic Intellectual Property Management Co., Ltd. Three-dimensional imaging device, imaging element, light transmissive portion, and image processing device
CN102790849A (zh) * 2011-05-20 2012-11-21 英属开曼群岛商恒景科技股份有限公司 图像传感器模块
US9578237B2 (en) 2011-06-28 2017-02-21 Fotonation Cayman Limited Array cameras incorporating optics with modulation transfer functions greater than sensor Nyquist frequency for capture of images used in super-resolution processing
CN102857699A (zh) * 2011-06-29 2013-01-02 全友电脑股份有限公司 影像撷取系统以及方法
US10375302B2 (en) 2011-09-19 2019-08-06 Fotonation Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US9794476B2 (en) 2011-09-19 2017-10-17 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super resolution processing using pixel apertures
US11729365B2 (en) 2011-09-28 2023-08-15 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata
US10019816B2 (en) 2011-09-28 2018-07-10 Fotonation Cayman Limited Systems and methods for decoding image files containing depth maps stored as metadata
US10430682B2 (en) 2011-09-28 2019-10-01 Fotonation Limited Systems and methods for decoding image files containing depth maps stored as metadata
US20180197035A1 (en) 2011-09-28 2018-07-12 Fotonation Cayman Limited Systems and Methods for Encoding Image Files Containing Depth Maps Stored as Metadata
US9536166B2 (en) 2011-09-28 2017-01-03 Kip Peli P1 Lp Systems and methods for decoding image files containing depth maps stored as metadata
US10984276B2 (en) 2011-09-28 2021-04-20 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US10275676B2 (en) 2011-09-28 2019-04-30 Fotonation Limited Systems and methods for encoding image files containing depth maps stored as metadata
US9811753B2 (en) 2011-09-28 2017-11-07 Fotonation Cayman Limited Systems and methods for encoding light field image files
CN104185808A (zh) * 2011-10-11 2014-12-03 派力肯影像公司 包括自适应光学元件的透镜堆叠阵列
US9412206B2 (en) 2012-02-21 2016-08-09 Pelican Imaging Corporation Systems and methods for the manipulation of captured light field image data
US10311649B2 (en) 2012-02-21 2019-06-04 Fotonation Limited Systems and method for performing depth based image editing
US9754422B2 (en) 2012-02-21 2017-09-05 Fotonation Cayman Limited Systems and method for performing depth based image editing
US9706132B2 (en) 2012-05-01 2017-07-11 Fotonation Cayman Limited Camera modules patterned with pi filter groups
CN103458162A (zh) * 2012-06-01 2013-12-18 全视科技有限公司 用于分区图像传感器的透镜阵列
CN103458162B (zh) * 2012-06-01 2018-06-26 豪威科技股份有限公司 用于分区图像传感器的透镜阵列
CN103516962A (zh) * 2012-06-19 2014-01-15 全友电脑股份有限公司 影像撷取系统及方法
US9807382B2 (en) 2012-06-28 2017-10-31 Fotonation Cayman Limited Systems and methods for detecting defective camera arrays and optic arrays
US10334241B2 (en) 2012-06-28 2019-06-25 Fotonation Limited Systems and methods for detecting defective camera arrays and optic arrays
US10261219B2 (en) 2012-06-30 2019-04-16 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
US11022725B2 (en) 2012-06-30 2021-06-01 Fotonation Limited Systems and methods for manufacturing camera modules using active alignment of lens stack arrays and sensors
CN103581533A (zh) * 2012-08-07 2014-02-12 联想(北京)有限公司 一种采集图像信息的方法及电子设备
US9858673B2 (en) 2012-08-21 2018-01-02 Fotonation Cayman Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US12002233B2 (en) 2012-08-21 2024-06-04 Adeia Imaging Llc Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US10380752B2 (en) 2012-08-21 2019-08-13 Fotonation Limited Systems and methods for estimating depth and visibility from a reference viewpoint for pixels in a set of images captured from different viewpoints
US9813616B2 (en) 2012-08-23 2017-11-07 Fotonation Cayman Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10462362B2 (en) 2012-08-23 2019-10-29 Fotonation Limited Feature based high resolution motion estimation from low resolution images captured using an array source
US10390005B2 (en) 2012-09-28 2019-08-20 Fotonation Limited Generating images from light fields utilizing virtual viewpoints
US9749568B2 (en) 2012-11-13 2017-08-29 Fotonation Cayman Limited Systems and methods for array camera focal plane control
US10009538B2 (en) 2013-02-21 2018-06-26 Fotonation Cayman Limited Systems and methods for generating compressed light field representation data using captured light fields, array geometry, and parallax information
US9374512B2 (en) 2013-02-24 2016-06-21 Pelican Imaging Corporation Thin form factor computational array cameras and modular array cameras
US9743051B2 (en) 2013-02-24 2017-08-22 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774831B2 (en) 2013-02-24 2017-09-26 Fotonation Cayman Limited Thin form factor computational array cameras and modular array cameras
US9774789B2 (en) 2013-03-08 2017-09-26 Fotonation Cayman Limited Systems and methods for high dynamic range imaging using array cameras
US9917998B2 (en) 2013-03-08 2018-03-13 Fotonation Cayman Limited Systems and methods for measuring scene information while capturing images using array cameras
US10958892B2 (en) 2013-03-10 2021-03-23 Fotonation Limited System and methods for calibration of an array camera
US11570423B2 (en) 2013-03-10 2023-01-31 Adeia Imaging Llc System and methods for calibration of an array camera
US9986224B2 (en) 2013-03-10 2018-05-29 Fotonation Cayman Limited System and methods for calibration of an array camera
US11272161B2 (en) 2013-03-10 2022-03-08 Fotonation Limited System and methods for calibration of an array camera
US10225543B2 (en) 2013-03-10 2019-03-05 Fotonation Limited System and methods for calibration of an array camera
US11985293B2 (en) 2013-03-10 2024-05-14 Adeia Imaging Llc System and methods for calibration of an array camera
US9733486B2 (en) 2013-03-13 2017-08-15 Fotonation Cayman Limited Systems and methods for controlling aliasing in images captured by an array camera for use in super-resolution processing
US9888194B2 (en) 2013-03-13 2018-02-06 Fotonation Cayman Limited Array camera architecture implementing quantum film image sensors
US10127682B2 (en) 2013-03-13 2018-11-13 Fotonation Limited System and methods for calibration of an array camera
US9800856B2 (en) 2013-03-13 2017-10-24 Fotonation Cayman Limited Systems and methods for synthesizing images from image data captured by an array camera using restricted depth of field depth maps in which depth estimation precision varies
US10091405B2 (en) 2013-03-14 2018-10-02 Fotonation Cayman Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10547772B2 (en) 2013-03-14 2020-01-28 Fotonation Limited Systems and methods for reducing motion blur in images or video in ultra low light with array cameras
US10412314B2 (en) 2013-03-14 2019-09-10 Fotonation Limited Systems and methods for photometric normalization in array cameras
US9955070B2 (en) 2013-03-15 2018-04-24 Fotonation Cayman Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US9800859B2 (en) 2013-03-15 2017-10-24 Fotonation Cayman Limited Systems and methods for estimating depth using stereo array cameras
US10182216B2 (en) 2013-03-15 2019-01-15 Fotonation Limited Extended color processing on pelican array cameras
US9497429B2 (en) 2013-03-15 2016-11-15 Pelican Imaging Corporation Extended color processing on pelican array cameras
US10638099B2 (en) 2013-03-15 2020-04-28 Fotonation Limited Extended color processing on pelican array cameras
US10122993B2 (en) 2013-03-15 2018-11-06 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10542208B2 (en) 2013-03-15 2020-01-21 Fotonation Limited Systems and methods for synthesizing high resolution images using image deconvolution based on motion and depth information
US10674138B2 (en) 2013-03-15 2020-06-02 Fotonation Limited Autofocus system for a conventional camera that uses depth information from an array camera
US10455218B2 (en) 2013-03-15 2019-10-22 Fotonation Limited Systems and methods for estimating depth using stereo array cameras
CN105579902B (zh) * 2013-09-23 2019-06-28 Lg伊诺特有限公司 一种制造相机模块的方法
US10151859B2 (en) 2013-09-23 2018-12-11 Lg Innotek Co., Ltd. Camera module and manufacturing method for same
CN105579902A (zh) * 2013-09-23 2016-05-11 Lg伊诺特有限公司 相机模块以及制造所述相机模块的方法
US9898856B2 (en) 2013-09-27 2018-02-20 Fotonation Cayman Limited Systems and methods for depth-assisted perspective distortion correction
US10540806B2 (en) 2013-09-27 2020-01-21 Fotonation Limited Systems and methods for depth-assisted perspective distortion correction
US9924092B2 (en) 2013-11-07 2018-03-20 Fotonation Cayman Limited Array cameras incorporating independently aligned lens stacks
US10119808B2 (en) 2013-11-18 2018-11-06 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US11486698B2 (en) 2013-11-18 2022-11-01 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US10767981B2 (en) 2013-11-18 2020-09-08 Fotonation Limited Systems and methods for estimating depth from projected texture using camera arrays
US9813617B2 (en) 2013-11-26 2017-11-07 Fotonation Cayman Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US10708492B2 (en) 2013-11-26 2020-07-07 Fotonation Limited Array camera configurations incorporating constituent array cameras and constituent cameras
US9690970B2 (en) 2014-02-17 2017-06-27 Eyesmart Technology Ltd. Method and device for mobile terminal biometric feature imaging
CN103870805A (zh) * 2014-02-17 2014-06-18 北京释码大华科技有限公司 一种移动终端生物特征成像方法和装置
CN103870805B (zh) * 2014-02-17 2017-08-15 北京释码大华科技有限公司 一种移动终端生物特征成像方法和装置
US10574905B2 (en) 2014-03-07 2020-02-25 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US10089740B2 (en) 2014-03-07 2018-10-02 Fotonation Limited System and methods for depth regularization and semiautomatic interactive matting using RGB-D images
US9521319B2 (en) 2014-06-18 2016-12-13 Pelican Imaging Corporation Array cameras and array camera modules including spectral filters disposed outside of a constituent image sensor
US10542196B2 (en) 2014-06-24 2020-01-21 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Device and method for relative positioning of multi-aperture optics comprising several optical channels in relation to an image sensor
CN106716486A (zh) * 2014-06-24 2017-05-24 弗劳恩霍夫应用研究促进协会 用于包括若干光学通道的多孔径光学器件相对于图像传感器的相对定位的设备和方法
CN106537890A (zh) * 2014-07-16 2017-03-22 索尼公司 复眼摄像装置
US10250871B2 (en) 2014-09-29 2019-04-02 Fotonation Limited Systems and methods for dynamic calibration of array cameras
US11546576B2 (en) 2014-09-29 2023-01-03 Adeia Imaging Llc Systems and methods for dynamic calibration of array cameras
CN105629426A (zh) * 2014-10-31 2016-06-01 高准精密工业股份有限公司 可变焦透镜组件以及可变焦的摄像模组
CN105629426B (zh) * 2014-10-31 2019-05-24 高准精密工业股份有限公司 可变焦透镜组件以及可变焦的摄像模组
US9942474B2 (en) 2015-04-17 2018-04-10 Fotonation Cayman Limited Systems and methods for performing high speed video capture and depth estimation using array cameras
CN108140247B (zh) * 2015-10-05 2022-07-05 谷歌有限责任公司 用于使用合成图像的相机校准的方法和装置
CN108140247A (zh) * 2015-10-05 2018-06-08 谷歌有限责任公司 使用合成图像的相机校准
CN107431746B (zh) * 2015-11-24 2021-12-14 索尼半导体解决方案公司 相机模块和电子设备
CN107431746A (zh) * 2015-11-24 2017-12-01 索尼半导体解决方案公司 相机模块和电子设备
TWI781085B (zh) * 2015-11-24 2022-10-21 日商索尼半導體解決方案公司 複眼透鏡模組及複眼相機模組
CN105704465A (zh) * 2016-01-20 2016-06-22 海信电子科技(深圳)有限公司 图像处理方法及终端
CN107193095A (zh) * 2016-03-14 2017-09-22 比亚迪股份有限公司 滤光片的调整方法、装置及系统
CN107193095B (zh) * 2016-03-14 2020-07-10 比亚迪股份有限公司 滤光片的调整方法、装置及系统
CN109155814A (zh) * 2016-05-27 2019-01-04 索尼半导体解决方案公司 处理装置、图像传感器和系统
US10616493B2 (en) 2016-08-31 2020-04-07 Huawei Technologies Co., Ltd. Multi camera system for zoom
CN109644258B (zh) * 2016-08-31 2020-06-02 华为技术有限公司 用于变焦摄影的多相机系统
CN109644258A (zh) * 2016-08-31 2019-04-16 华为技术有限公司 用于变焦摄影的多相机系统
CN106768325A (zh) * 2016-11-21 2017-05-31 清华大学 多光谱光场视频采集装置
WO2018176493A1 (en) * 2017-04-01 2018-10-04 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
CN110476118B (zh) * 2017-04-01 2021-10-15 深圳市大疆创新科技有限公司 用于机器视觉的低轮廓多波段高光谱成像
CN110476118A (zh) * 2017-04-01 2019-11-19 深圳市大疆创新科技有限公司 用于机器视觉的低轮廓多波段高光谱成像
US10962858B2 (en) 2017-04-01 2021-03-30 SZ DJI Technology Co., Ltd. Low-profile multi-band hyperspectral imaging for machine vision
US10482618B2 (en) 2017-08-21 2019-11-19 Fotonation Limited Systems and methods for hybrid depth regularization
US10818026B2 (en) 2017-08-21 2020-10-27 Fotonation Limited Systems and methods for hybrid depth regularization
US11562498B2 (en) 2017-08-21 2023-01-24 Adela Imaging LLC Systems and methods for hybrid depth regularization
US11983893B2 (en) 2017-08-21 2024-05-14 Adeia Imaging Llc Systems and methods for hybrid depth regularization
CN113273183A (zh) * 2019-01-07 2021-08-17 Lg伊诺特有限公司 摄像头模块
CN113273183B (zh) * 2019-01-07 2024-03-08 Lg伊诺特有限公司 摄像头模块
CN113924517A (zh) * 2019-06-06 2022-01-11 应用材料公司 生成复合影像的成像系统及方法
US12021102B2 (en) 2019-06-06 2024-06-25 Applied Materials, Inc. Imaging system and method of creating composite images
CN113924517B (zh) * 2019-06-06 2024-03-22 应用材料公司 生成复合影像的成像系统及方法
US11699273B2 (en) 2019-09-17 2023-07-11 Intrinsic Innovation Llc Systems and methods for surface modeling using polarization cues
US11270110B2 (en) 2019-09-17 2022-03-08 Boston Polarimetrics, Inc. Systems and methods for surface modeling using polarization cues
US11982775B2 (en) 2019-10-07 2024-05-14 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11525906B2 (en) 2019-10-07 2022-12-13 Intrinsic Innovation Llc Systems and methods for augmentation of sensor systems and imaging systems with polarization
US11842495B2 (en) 2019-11-30 2023-12-12 Intrinsic Innovation Llc Systems and methods for transparent object segmentation using polarization cues
US11302012B2 (en) 2019-11-30 2022-04-12 Boston Polarimetrics, Inc. Systems and methods for transparent object segmentation using polarization cues
US11580667B2 (en) 2020-01-29 2023-02-14 Intrinsic Innovation Llc Systems and methods for characterizing object pose detection and measurement systems
US11797863B2 (en) 2020-01-30 2023-10-24 Intrinsic Innovation Llc Systems and methods for synthesizing data for training statistical models on different imaging modalities including polarized images
US11953700B2 (en) 2020-05-27 2024-04-09 Intrinsic Innovation Llc Multi-aperture polarization optical systems using beam splitters
US12020455B2 (en) 2021-03-10 2024-06-25 Intrinsic Innovation Llc Systems and methods for high dynamic range image reconstruction
US11954886B2 (en) 2021-04-15 2024-04-09 Intrinsic Innovation Llc Systems and methods for six-degree of freedom pose estimation of deformable objects
US11683594B2 (en) 2021-04-15 2023-06-20 Intrinsic Innovation Llc Systems and methods for camera exposure control
US11290658B1 (en) 2021-04-15 2022-03-29 Boston Polarimetrics, Inc. Systems and methods for camera exposure control
US11689813B2 (en) 2021-07-01 2023-06-27 Intrinsic Innovation Llc Systems and methods for high dynamic range imaging using crossed polarizers
US12052409B2 (en) 2023-06-22 2024-07-30 Adela Imaging LLC Systems and methods for encoding image files containing depth maps stored as metadata

Also Published As

Publication number Publication date
US7199348B2 (en) 2007-04-03
WO2006026354A2 (en) 2006-03-09
WO2006026354A3 (en) 2009-05-14
EP1812968A2 (en) 2007-08-01
US20060054782A1 (en) 2006-03-16
US10142548B2 (en) 2018-11-27
US20100208100A9 (en) 2010-08-19
US9313393B2 (en) 2016-04-12
US20060054787A1 (en) 2006-03-16
US20160234443A1 (en) 2016-08-11
US8664579B2 (en) 2014-03-04
US8415605B2 (en) 2013-04-09
US20080030597A1 (en) 2008-02-07
US20130277533A1 (en) 2013-10-24
EP1812968A4 (en) 2010-03-31
EP1812968B1 (en) 2019-01-16
US20110108708A1 (en) 2011-05-12
US20140232894A1 (en) 2014-08-21
US7884309B2 (en) 2011-02-08
CN101427372B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
CN101427372A (zh) 用于多个相机装置的设备和操作该设备的方法
US7566855B2 (en) Digital camera with integrated infrared (IR) response
US7714262B2 (en) Digital camera with integrated ultraviolet (UV) response
US20230132892A1 (en) Digital cameras with direct luminance and chrominance detection
US7916180B2 (en) Simultaneous multiple field of view digital cameras
US8436286B2 (en) Imager module optical focus and assembly method
US7795577B2 (en) Lens frame and optical focus assembly for imager module
EP2664153B1 (en) Imaging system using a lens unit with longitudinal chromatic aberrations and method of operating
US7773143B2 (en) Thin color camera having sub-pixel resolution
EP2315448B1 (en) Thin camera having sub-pixel resolution
US20070258006A1 (en) Solid state camera optics frame and assembly
US20160088239A1 (en) Depth of field in an imaging system
US20120274811A1 (en) Imaging devices having arrays of image sensors and precision offset lenses
JP2996958B2 (ja) 半導体光電素子に対して、合焦及びカラーフィルタリングする構造およびその構造の製造方法
JP2015521411A (ja) πフィルタ群を用いてパターン化されたカメラモジュール
CN103999449A (zh) 摄像元件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: POLOTARISFILO CO., LTD.

Free format text: FORMER OWNER: MANSION VIEW CO., LTD.

Effective date: 20090612

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20090612

Address after: Delaware

Applicant after: Newport Imaging Corp.

Address before: American California

Applicant before: Newport Imaging Corp.

C14 Grant of patent or utility model
GR01 Patent grant