TWI781085B - 複眼透鏡模組及複眼相機模組 - Google Patents

複眼透鏡模組及複眼相機模組 Download PDF

Info

Publication number
TWI781085B
TWI781085B TW105133820A TW105133820A TWI781085B TW I781085 B TWI781085 B TW I781085B TW 105133820 A TW105133820 A TW 105133820A TW 105133820 A TW105133820 A TW 105133820A TW I781085 B TWI781085 B TW I781085B
Authority
TW
Taiwan
Prior art keywords
lens
substrate
light
camera module
hole
Prior art date
Application number
TW105133820A
Other languages
English (en)
Other versions
TW201719916A (zh
Inventor
石田實
釘宮克尚
星博則
Original Assignee
日商索尼半導體解決方案公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商索尼半導體解決方案公司 filed Critical 日商索尼半導體解決方案公司
Publication of TW201719916A publication Critical patent/TW201719916A/zh
Application granted granted Critical
Publication of TWI781085B publication Critical patent/TWI781085B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • B29D11/00375Production of microlenses by moulding lenses in holes through a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00403Producing compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0085Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing wafer level optics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/025Mountings, adjusting means, or light-tight connections, for optical elements for lenses using glue
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B19/00Cameras
    • G03B19/02Still-picture cameras
    • G03B19/04Roll-film cameras
    • G03B19/07Roll-film cameras having more than one objective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14687Wafer level processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/95Computational photography systems, e.g. light-field imaging systems
    • H04N23/957Light-field or plenoptic cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/10Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming different wavelengths into image signals
    • H04N25/11Arrangement of colour filter arrays [CFA]; Filter mosaics
    • H04N25/13Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements
    • H04N25/134Arrangement of colour filter arrays [CFA]; Filter mosaics characterised by the spectral characteristics of the filter elements based on three different wavelength filter elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本技術係關於一種能夠提供可利用於多種用途之相機模組之相機模組及電子機器。
相機模組具備:第1像素陣列,其係將接收R、G或B之波長之光之像素矩陣狀地2維配置而成;第2像素陣列,其係將接收可見光之波長區域之光之像素矩陣狀地2維配置而成;第1光學單元,其使入射光聚光於第1像素陣列;及第2光學單元,其使入射光聚光於第2像素陣列。本技術可應用於例如相機模組等。

Description

複眼透鏡模組及複眼相機模組
本技術係關於一種相機模組及電子機器,尤其是關於一種能夠提供可利用於多種用途之相機模組之相機模組及電子機器。
於晶圓基板之平面方向排列複數個透鏡之晶圓級透鏡製程於形成透鏡時之形狀精度或位置精度之要求嚴格。尤其是,積層晶圓基板彼此而製造積層透鏡構造體之製程難度極高,而於量產級尚未實現3層以上之積層。
關於晶圓級透鏡製程,至今為止考慮並提出有各種技術。例如,於專利文獻1中,提出於在形成於基板之貫通孔內填充透鏡材料形成透鏡時,藉由將該透鏡材料原樣設為接著劑,積層晶圓基板之方法。
[先前技術文獻] [專利文獻]
[專利文獻1]日本專利特開2009-279790號公報
近年,研究有將使用晶圓級透鏡製程製作之積層透鏡作為光學單元採用於相機模組,而利用於多種用途。
本技術係鑒於此種狀況而完成者,其係能夠提供一種可利用於多種用途之相機模組者。
本技術之第1態樣之相機模組具備:第1像素陣列,其係將接收R、G或B之波長之光之像素矩陣狀地2維配置而成;第2像素陣列,其係將接收可見光之波長區域之光之像素矩陣狀地2維配置而成;第1光學單元,其使入射光聚光於上述第1像素陣列;及第2光學單元,其使上述入射光聚光於上述第2像素陣列。
本技術之第2態樣之電子機器具備相機模組,該相機模組具備:第1像素陣列,其係將接收R、G或B之波長之光之像素矩陣狀地2維配置而成;第2像素陣列,其係將接收可見光之波長區域之光之像素矩陣狀地2維配置而成;第1光學單元,其使入射光聚光於上述第1像素陣列;及第2光學單元,其使上述入射光聚光於上述第2像素陣列。
於本技術之第1及第2態樣中,將入射光藉由第1光學單元聚光於將接收R、G或B之波長之光之像素矩陣狀地2維配置而成之第1像素陣列;且將入射光藉由第2像素陣列聚光於將接收可見光之波長區域之光之像素矩陣狀地2維配置而成之第2像素陣列。
相機模組及電子機器既可為獨立之裝置,亦可為組入於其他裝置之模組。
根據本技術之第1及第2態樣,能夠提供一種可利用於多種用途之相機模組。
另,此處所記載之效果並非完全限定者,亦可為本揭示中所記載之任一效果。
1:相機模組
1A~1H:相機模組
1J:相機模組
1L:相機模組
1M:相機模組
1N:相機模組
1P:相機模組
11:積層透鏡構造體
11f:積層透鏡構造體
11g:積層透鏡構造體
11h:積層透鏡構造體
11W:積層透鏡構造體
12:受光元件
13:光學單元
21:透鏡
21V:形狀可變透鏡
21V-1:第1形狀可變透鏡
21V-2:第2形狀可變透鏡
21V-3:第3形狀可變透鏡
21V-4:第4形狀可變透鏡
21X:空洞
41:附透鏡之基板
41a~41g:附透鏡之基板
41a'-1:附透鏡之基板
41a'-2:附透鏡之基板
41W:附透鏡之基板
41W-a:附透鏡之基板
41W-b:附透鏡之基板
41W-c:附透鏡之基板
41W-d:附透鏡之基板
41W-e:附透鏡之基板
41W-b:附透鏡之基板
43:感測器基板
43W:感測器基板
44:相機模組
44W:相機模組
51:光圈板
51a:遮蔽區域
51b:開口區域
51W:光圈板
52:開口部
71:晶載透鏡
72:外部端子
73:構造材
74:透鏡鏡筒
81:載體基板
81a~81e:載體基板
81W:載體基板
82:透鏡樹脂部
82a~82e:透鏡樹脂部
83:貫通孔
83a~83e:貫通孔
84:1點鏈線
85:射入入射光
91:透鏡部
92:承載部
101:腕部
102:腳部
121:遮光膜
121':遮光膜
122:上側表面層
123:下側表面層
124:下側表面層
125:上側表面層
131:第1開口寬度
132:第2開口寬度
141:蝕刻遮罩
142:保護膜
151:貫通槽
171:表側平坦部
172:背側平坦部
181:下模
182:光學轉印面
183:平坦面
191:能量硬化性樹脂
201:上模
202:光學轉印面
221:階級部
241:蝕刻阻止膜
242:硬遮罩
243:硬遮罩
301a:構造材
301b:構造材
302:透光性基板
311:樹脂層
331:軸
332:移動構件
333:固定構件
334:殼體
335:保護基板
336:接著劑
351:壓電元件
500:積層透鏡構造體
511:透鏡
512:基板
513:樹脂
1000:晶圓級積層構造
1010:晶圓基板
1011:影像感測器
1012:感測器陣列基板
1021:透鏡陣列基板
1022:間隔件
1031:附透鏡之基板
1032:透鏡
1041:透鏡陣列基板
1042:貫通孔
1051:基板
1052:貫通孔
1053:透鏡
1054:樹脂
1061:下模
1062:上模
1081:透鏡陣列基板
1091:基板
1092:貫通孔
1093:透鏡
1094:樹脂
1101:下模
1102:上模
1121:透鏡陣列基板
1141:基板
1142:貫通孔
1143:透鏡
1144:樹脂
1151:下模
1152:上模
1161:透鏡陣列基板
1171:基板
1172:貫通孔
1173:透鏡
1174:樹脂
1175:樹脂溢出區域
1151:下模
1152:上模
1211:透鏡陣列基板
1212:光硬化性樹脂
1311:積層透鏡構造體
1321~1323:附透鏡之基板
1332:透鏡
1341:樹脂
1361~1363:附透鏡之基板
1371:積層透鏡構造體
1501:覆蓋玻璃
1501W:覆蓋玻璃
1502:遮光膜
1503:開口部
1511:基板
1512:基板
1531:附透鏡之基板
1531W:附透鏡之基板
1531W-a:附透鏡之基板
1531W-b:附透鏡之基板
1532:貫通孔
1533:透鏡
1535:抗反射膜
1536:異物
1541:金屬遮罩
1542:金屬膜
1543:異物
1551:第1區域
1552:第2區域
1561W:高濃度摻雜基板
1571W:摻雜基板
1601a1:受光區域
1601a2:受光區域
1601a3:受光區域
1601a4:受光區域
1601b1:像素陣列
1601b2:像素陣列
1601b3:像素陣列
1601b4:像素陣列
1602c1:重複單位
1602c2:重複單位
1602c3:重複單位
1602c4:重複單位
1631a1:記憶區域
1631a2:記憶區域
1631a3:記憶區域
1631a4:記憶區域
1641a1:邏輯區域
1641a2:邏輯區域
1641a3:邏輯區域
1641a4:邏輯區域
1642a1:控制區域
1642a2:控制區域
1642a3:控制區域
1642a4:控制區域
1701:第1半導體基板
1702:第2半導體基板
1703:第3半導體基板
1721:透鏡材
1722:蓋材
1723:壓電材料
1731:壓力施加部
1732:基材
1733:膜
1734:流動體
1741:基材
1742:電性活性材料
1743:電極
1751:液晶材料
1752:電極
2000:攝像裝置
2001:影像感測器
2002:相機模組
2003:DSP電路
2004:圖框記憶體
2005:顯示部
2006:記錄部
2007:操作部
2008:電源部
2009:匯流排線
B:像素
B-B':線
C:像素
C1:像素
C2:像素
C3:像素
C-C':線
D1:孔徑
D2:孔徑
D3:孔徑
D4:直徑
D5:孔徑
D6:孔徑
G:像素
G1:像素
G2:像素
L:大
M:中
P_LEN1:配置間距
P_LEN2:配置間距
P_LEN3:配置間距
R:像素
S:小
圖1A、B係顯示使用應用本技術之積層透鏡構造體之相機模組之第1實施形態之圖。
圖2係專利文獻1所揭示之積層透鏡構造體之剖視構造圖。
圖3係圖1之相機模組之積層透鏡構造體之剖視構造圖。
圖4係說明附透鏡之基板之直接接合之圖。
圖5係顯示形成圖1之相機模組之步驟之圖。
圖6係顯示形成圖1之相機模組之步驟之圖。
圖7係顯示形成圖1之相機模組之另一步驟之圖。
圖8A-H係說明附透鏡之基板之構成之圖。
圖9A-H係顯示使用應用本技術之積層透鏡構造體之相機模組之第2實施形態之圖。
圖10A-F係顯示使用應用本技術之積層透鏡構造體之相機模組之第3實施形態之圖。
圖11A-D係顯示使用應用本技術之積層透鏡構造體之相機模組之第4實施形態之圖。
圖12A-D係顯示使用應用本技術之積層透鏡構造體之相機模組之第5實施形態之圖。
圖13係說明第4實施形態之相機模組之詳細構成之圖。
圖14係載體基板與透鏡樹脂部之俯視圖與剖視圖。
圖15係顯示積層透鏡構造體與光圈板之剖視圖。
圖16係顯示使用應用本技術之積層透鏡構造體之相機模組之第6實施形態之圖。
圖17係顯示使用應用本技術之積層透鏡構造體之相機模組之第7實施 形態之圖。
圖18A-C係顯示附透鏡之基板之詳細構成之剖視圖。
圖19A、B係說明附透鏡之基板之製造方法之圖。
圖20A-C係說明附透鏡之基板之製造方法之圖。
圖21A-F係說明附透鏡之基板之製造方法之圖。
圖22A、B係說明附透鏡之基板之製造方法之圖。
圖23A-G係說明附透鏡之基板之製造方法之圖。
圖24係說明附透鏡之基板之製造方法之圖。
圖25係說明附透鏡之基板之製造方法之圖。
圖26係說明附透鏡之基板之製造方法之圖。
圖27A-F係說明附透鏡之基板之製造方法之圖。
圖28係說明附透鏡之基板之製造方法之圖。
圖29係說明附透鏡之基板之製造方法之圖。
圖30A、B係說明基板狀態之附透鏡之基板彼此之接合之圖。
圖31A、B係說明基板狀態之附透鏡之基板彼此之接合之圖。
圖32A-F係說明將5片附透鏡之基板以基板狀態積層之第1積層方法之圖。
圖33A-F係說明將5片附透鏡之基板以基板狀態積層之第2積層方法之圖。
圖34係顯示使用應用本技術之積層透鏡構造體之相機模組之第8實施形態之圖。
圖35係顯示使用應用本技術之積層透鏡構造體之相機模組之第9實施形態之圖。
圖36係顯示使用應用本技術之積層透鏡構造體之相機模組之第10實施形態之圖。
圖37係顯示使用應用本技術之積層透鏡構造體之相機模組之第11實施形態之圖。
圖38係作為比較構造例1之晶圓級積層構造之剖視圖。
圖39係作為比較構造例2之透鏡陣列基板之剖視圖。
圖40A-C係說明圖39之透鏡陣列基板之製造方法之圖。
圖41係作為比較構造例3之透鏡陣列基板之剖視圖。
圖42A-C係說明圖41之透鏡陣列基板之製造方法之圖。
圖43係作為比較構造例4之透鏡陣列基板之剖視圖。
圖44係說明圖43之透鏡陣列基板之製造方法之圖。
圖45係作為比較構造例5之透鏡陣列基板之剖視圖。
圖46A-C係說明成為透鏡之樹脂帶來之作用之圖。
圖47A-C係說明成為透鏡之樹脂帶來之作用之圖。
圖48A-C係模式性表示作為比較構造例6之透鏡陣列基板之圖。
圖49係作為比較構造例7之積層透鏡構造體之剖視圖。
圖50A-D係說明圖49之積層透鏡構造體帶來之作用之圖。
圖51係作為比較構造例8之積層透鏡構造體之剖視圖。
圖52A-D係說明圖51之積層透鏡構造體帶來之作用之圖。
圖53A、B係採用本構造之積層透鏡構造體之剖視圖。
圖54A-C係模式性表示圖53之積層透鏡構造體之圖。
圖55係顯示對覆蓋玻璃追加有光圈之第1構成例之圖。
圖56A、B係說明圖55之覆蓋玻璃之製造方法之圖。
圖57係顯示對覆蓋玻璃追加有光圈之第2構成例之圖。
圖58係顯示對覆蓋玻璃追加有光圈之第3構成例之圖。
圖59A-C係顯示將貫通孔之開口本身設為光圈機構之構成例之圖。
圖60A-E係說明使用金屬接合之晶圓級之貼合之圖。
圖61A、B係顯示使用高濃度摻雜基板之附透鏡之基板之例之圖。
圖62A-D係說明圖61A之附透鏡之基板之製造方法之圖。
圖63A-F係說明圖61B之附透鏡之基板之製造方法之圖。
圖64A-D係表示相機模組所具備之光圈板之平面形狀之例之圖。
圖65係說明相機模組之受光區域之構成之圖。
圖66係顯示相機模組之受光區域之像素排列之第1例之圖。
圖67係顯示相機模組之受光區域之像素排列之第2例之圖。
圖68係顯示相機模組之受光區域之像素排列之第3例之圖。
圖69係顯示相機模組之受光區域之像素排列之第4例之圖。
圖70係顯示圖66所示之像素排列之變化例之圖。
圖71係顯示圖68之像素排列之變化例之圖。
圖72係顯示圖69之像素排列之變化例之圖。
圖73A-D係顯示相機模組之受光區域之像素排列之第5例之圖。
圖74A-D係顯示相機模組之受光區域之像素排列之第6例之圖。
圖75係顯示相機模組之受光區域之像素排列之第7例之圖。
圖76係顯示相機模組之受光區域之像素排列之第8例之圖。
圖77係顯示相機模組之受光區域之像素排列之第9例之圖。
圖78係顯示相機模組之受光區域之像素排列之第10例之圖。
圖79A-D係顯示相機模組之受光區域之像素排列之第11例之圖。
圖80A-D係顯示使用應用本技術之積層透鏡構造體之相機模組之第12實施形態之圖。
圖81係說明第12實施形態之受光元件之構造之圖。
圖82係說明第12實施形態之受光元件之構造之圖。
圖83係說明第12實施形態之受光元件之構造之圖。
圖84A-C係顯示使用應用本技術之積層透鏡構造體之相機模組之第13實施形態之圖。
圖85係顯示第13實施形態之受光元件之基板構成例之圖。
圖86係說明第13實施形態之受光元件之處理例之圖。
圖87A-C係顯示使用應用本技術之積層透鏡構造體之相機模組之第14實施形態之圖。
圖88係說明第14實施形態之受光元件之驅動方法之圖。
圖89係顯示第14實施形態之受光元件之構成例之圖。
圖90A、B係具有第1形狀可變透鏡之相機模組之概略剖視圖。
圖91A、B係具有第2形狀可變透鏡之相機模組之概略剖視圖。
圖92A、B係具有第3形狀可變透鏡之相機模組之概略剖視圖。
圖93A、B係具有第4形狀可變透鏡之相機模組之概略剖視圖。
圖94係顯示作為應用本技術之電子機器之攝像裝置之構成例之方塊圖。
圖95係說明影像感測器之使用例之圖。
以下,對用以實施本技術之形態(以下,稱為實施形態)進行說明。另,說明係按以下之順序進行。
1.相機模組之第1實施形態
2.相機模組之第2實施形態
3.相機模組之第3實施形態
4.相機模組之第4實施形態
5.相機模組之第5實施形態
6.第4實施形態之相機模組之詳細構成
7.相機模組之第6實施形態
8.相機模組之第7實施形態
9.附透鏡之基板之詳細構成
10.附透鏡之基板之製造方法
11.附透鏡之基板彼此之直接接合
12.相機模組之第8及第9實施形態
13.相機模組之第10實施形態
14.相機模組之第11實施形態
15.與其他構造相比之本構造之效果
16.各種變化例
17.受光元件之像素排列與光圈板之構造與用途說明
18.相機模組之第12實施形態
19.相機模組之第13實施形態
20.相機模組之第14實施形態
21.具有形狀可變透鏡之積層透鏡構造體之例
22.對電子機器之應用例
23.影像感測器之使用例
<1.相機模組之第1實施形態>
圖1係顯示使用應用本技術之積層透鏡構造體之相機模組之第1實施形態之圖。
圖1A係顯示作為相機模組1之第1實施形態之相機模組1A之構成之模式圖。圖1B係相機模組1A之概略剖視圖。
相機模組1A具備積層透鏡構造體11與受光元件12。積層透鏡構造體11具備縱橫分別各5個、共計25個光學單元13。受光元件12係對應於光學單元13具有複數個受光區域(像素陣列)之固體攝像裝置。光學單元13係於1條光軸方向包含複數片透鏡21而構成,其將入射光聚光至對應之受光元件12。相機模組1A係具備複數個光學單元13之複眼相機模組。
相機模組1A具備之複數個光學單元13之光軸係如圖1B所示般,以朝向模組之外側擴寬之方式配置,藉此可進行廣角之圖像之攝影。
另,於圖1B中,為簡單起見,積層透鏡構造體11形成為將透鏡21僅積層3層之構造,但當然亦可積層更多透鏡21。
圖1之相機模組1A可拼接經由複數個光學單元13拍攝之複數張圖像,而製成1張廣角圖像。為拼接複數張圖像,對拍攝各圖像之各光學單元13之形成及配置要求較高精度。又,尤其是廣角側之光學單元13,由於對透鏡21之光之入射角度較小,故對於光學單元13之內之各透鏡21之位置關係與配置,亦要求較高精度。
圖2係專利文獻1所揭示之使用利用樹脂之黏著技術之積層透鏡構造體之剖視構造圖。
於圖2所示之積層透鏡構造體500中,使用樹脂513,作為黏著具備透鏡511之基板512彼此之手段。樹脂513係UV(Ultraviolet:紫外線)硬化性 等能量硬化性樹脂。
於貼合基板512彼此前,於基板512表面整面形成樹脂513之層。隨後,貼合基板512彼此,進而,使樹脂513硬化。藉此,將貼合之基板512彼此黏著。
但,於使樹脂513硬化時,樹脂513硬化收縮。於圖2所示之構造之情形,於在基板512整體形成樹脂513之層後,因使樹脂513硬化,故樹脂513之移位量變大。
又,於將貼合基板512彼此而形成之積層透鏡構造體500單片化,並組合攝像元件形成相機模組之後,相機模組所具備之積層透鏡構造體500亦如圖2所示般,於具備透鏡511之基板512間全體,存在樹脂513。因此,於將相機模組搭載於相機之框體內而實際使用時,有因機器之發熱所引起之溫度上升,而積層透鏡構造體500之基板間之樹脂熱膨脹之憂慮。
圖3係圖1之相機模組1A之僅顯示積層透鏡構造體11之剖視構造圖。
相機模組1A之積層透鏡構造體11亦為將具備透鏡21之附透鏡之基板41積層複數片而形成。
於相機模組1A之積層透鏡構造體11中,使用與圖2之積層透鏡構造體500或其他先前技術文獻所示者完全不同之固定手段,作為固定具備透鏡21之附透鏡之基板41彼此之手段。
即,積層之2片附透鏡之基板41係藉由形成於一基板表面之氧化物或氮化物之表面層、與形成於另一基板表面之氧化物或氮化物之表面層之間之共價鍵,直接接合。作為具體例,如圖4所示,於積層之2片附透鏡之基板41各者之表面,形成氧化矽膜或氮化矽膜作為表面層,且於使其與羥基鍵合後,將2片附透鏡之基板41彼此貼合,並升溫而脫水縮合。其結果, 於2片附透鏡之基板41之表面層之間,形成矽-氧共價鍵。藉此,將2片附透鏡之基板41直接接合。另,縮合之結果,亦可引起2片之表面層所包含之元素彼此直接形成共價鍵。
於本說明書中,將如此之固定方式稱為直接接合:介隔配置於2片附透鏡之基板41之間之無機物之層固定2片附透鏡之基板41;或,藉由使分別配置於2片附透鏡之基板41之表面之無機物之層彼此化學鍵合而固定2片附透鏡之基板41;或,藉由於分別配置於2片附透鏡之基板41之表面之無機層之層之間形成脫水縮合所引起之鍵合而固定2片附透鏡之基板41;或,藉由於分別配置於2片附透鏡之基板41之表面之無機物之層之間,形成經由氧之共價鍵或彼此之無機物層所包含之元素彼此之共價鍵,而固定2片附透鏡之基板41;或,藉由於分別配置於2片附透鏡之基板41之表面之氧化矽層或氮化矽層之間,形成矽-氧共價鍵或矽-矽共價鍵,而固定2片附透鏡之基板41。
為進行該貼合與升溫所引起之脫水縮合,於本實施形態中,使用在半導體裝置或平面顯示裝置之製造領域使用之基板,以基板狀態形成透鏡,且以基板狀態進行貼合及升溫所引起之脫水縮合,並以基板狀態進行利用共價鍵之接合。使形成於2片附透鏡之基板41之表面之無機物之層之間藉由共價鍵接合之構造帶來避免於使用專利文獻1揭示之圖2所說明之技術之情形時所憂慮之遍及基板整體之樹脂513之硬化收縮所致之變形、或實際使用時之樹脂513之熱膨脹所致之變形之作用或效果。
圖5及圖6係顯示組合積層透鏡構造體11與受光元件12而形成圖1之相機模組1A之步驟之圖。
首先,如圖5所示,準備複數片於平面方向形成有複數片各透鏡 21(未圖示)之附透鏡之基板41W,並將其等積層。藉此,獲得積層有複數片基板狀態之附透鏡之基板41W之基板狀態之積層透鏡構造體11W。
其次,如圖6所示,於圖5所示之基板狀態之積層透鏡構造體11W之外,另行製作、準備於平面方向形成有複數個受光元件12之基板狀態之感測器基板43W。
然後,藉由將基板狀態之感測器基板43W、與基板狀態之積層透鏡構造體11W積層,並針對所貼合之基板之每一模組安裝外部端子,而獲得基板狀態之相機模組44W。
最後,將基板狀態之相機模組44W按模組單位或晶片單位單片化。藉由將單片化之相機模組44封入於另行準備之框體(未圖示),而獲得最終之相機模組44。
另,於本說明書及圖式中,例如,如附透鏡之基板41W般對符號附加有“W”之零件係表示其處於基板狀態(晶圓狀態),如附透鏡之基板41般未附加有“W”者係表示處於按模組單位或晶片單位單片化後之狀態。此外,對於感測器基板43W、相機模組44W等亦相同。
圖7係顯示組合積層透鏡構造體11與受光元件12而形成圖1之相機模組1A之另一步驟之圖。
首先,與上述之步驟同樣地,製造積層有複數片基板狀態之附透鏡之基板41W之基板狀態之積層透鏡構造體11W。
其次,將基板狀態之積層透鏡構造體11W單片化。
又,於基板狀態之積層透鏡構造體11W之外,另行製作、準備基板狀態之感測器基板43W。
然後,於基板狀態之感測器基板43W之各受光元件12之上,逐個安 裝已單片化之積層透鏡構造體11。
最後,將已安裝單片化之積層透鏡構造體11之基板狀態之感測器基板43W按模組單位或晶片單位單片化。藉由將已安裝積層透鏡構造體11、且已單片化之感測器基板43封入於另行準備之框體(未圖示),且進而安裝外部端子,而獲得最終之相機模組44。
進而,作為形成組合積層透鏡構造體11與受光元件12之圖1之相機模組1A之另一步驟之例,亦可將圖7所示之基板狀態之感測器基板43W單片化,並對其結果所獲得之各個受光元件12,分別安裝單片化後之積層透鏡構造體11,而獲得單片化後之相機模組44。
圖8A係說明相機模組1A之附透鏡之基板41之構成之圖。
圖8A係與圖1A同樣之顯示相機模組1A之構成之模式圖。
圖8B係與圖1B同樣之相機模組1A之概略剖視圖。
相機模組1A係如圖8B所示般,組合複數片透鏡21而形成,且具備複數個具備1條光軸之光學單元13之複眼相機模組。積層透鏡構造體11具備縱橫分別各5個、共計25個光學單元13。
於相機模組1A中,將複數個光學單元13之光軸以朝向模組之外側擴寬之方式配置,藉此,可進行廣角之圖像之攝影。於圖8B中,雖為簡便起見,將積層透鏡構造體11形成為僅積層3層附透鏡之基板41之構造,但當然亦可積層更多附透鏡之基板41。
圖8C至E係顯示構成積層透鏡構造體11之3層附透鏡之基板41各者之平面形狀之圖。
圖8C係3層中之最上層之附透鏡之基板41之俯視圖,圖8D係中層之附透鏡之基板41之俯視圖,圖8D係最下層之附透鏡之基板41之俯視圖。 相機模組1由於為複眼廣角相機模組,故隨著變成上層,透鏡21之徑變大,且透鏡間之間距變寬。
圖8F至H係用於獲得圖8C至E所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。
圖8F所示之附透鏡之基板41W顯示與圖8C之附透鏡之基板41對應之基板狀態,圖8G所示之附透鏡之基板41W顯示與圖8D之附透鏡之基板41對應之基板狀態,圖8H所示之附透鏡之基板41W顯示與圖8E之附透鏡之基板41對應之基板狀態。
圖8F至H所示之基板狀態之附透鏡之基板41W係設為每1片基板可獲得8個圖8A所示之相機模組1A之構成。
可知,一方面,於圖8F至H之各附透鏡之基板41W之間,模組單位之附透鏡之基板41內之透鏡間之間距於上層之附透鏡之基板41W與下層之附透鏡之基板41W不同,另一方面,於各附透鏡之基板41W中,配置模組單位之附透鏡之基板41之間距自上層之附透鏡之基板41W至下層之附透鏡之基板41W成為一定。
<2.相機模組之第2實施形態>
圖9係顯示使用應用本技術之積層透鏡構造體之相機模組之第2實施形態之圖。
圖9A係顯示作為相機模組1之第2實施形態之相機模組1B之外觀之模式圖。圖9B係相機模組1B之概略剖視圖。
相機模組1B具備2個光學單元13。2個光學單元13於積層透鏡構造體11之最上層,具備光圈板51。於光圈板51,設置有開口部52。
相機模組1B雖具備2個光學單元13,但該等2個光學單元13之光學參 數不同。即,相機模組1B具備光學性能不同之2種光學單元13。2種光學單元13可設為例如用於拍攝近景之焦距較短之光學單元13、與為拍攝遠景而焦距較長之光學單元13。
於相機模組1B中,由於2個光學單元13之光學參數不同,故例如,如圖9B所示,2個光學單元13之透鏡21之片數不同。又,於2個光學單元13具備之積層透鏡構造體11之相同層之透鏡21中,可採用徑、厚度、表面形狀、體積、以及與鄰接之透鏡之距離之任一者不同之構成。因此,相機模組1B之透鏡21之平面形狀係例如既可如圖9C所示般,2個光學單元13具備相同徑之透鏡21,亦可如圖9D所示般,具備不同形狀之透鏡21,還可如圖9E所示般,一者成為不具備透鏡21之空洞21X之構造。
圖9F至H係用於獲得圖9C至E所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。
圖9F所示之附透鏡之基板41W顯示與圖9C之附透鏡之基板41對應之基板狀態,圖9G所示之附透鏡之基板41W顯示與圖9D之附透鏡之基板41對應之基板狀態,圖9H所示之附透鏡之基板41W顯示與圖9E之附透鏡之基板41對應之基板狀態。
圖9F至H所示之基板狀態之附透鏡之基板41W係設為每1片基板可獲得16個圖9A所示之相機模組1B之構成。
如圖9F至H所示,為形成相機模組1B,可於基板狀態之附透鏡之基板41W之基板整面形成相同形狀之透鏡、形成不同形狀之透鏡、或間斷地形成透鏡。
<3.相機模組之第3實施形態>
圖10係顯示使用應用本技術之積層透鏡構造體之相機模組之第3實施 形態之圖。
圖10A係顯示作為相機模組1之第3實施形態之相機模組1C之外觀之模式圖。圖10B係相機模組1C之概略剖視圖。
相機模組1C於光之入射面上具備縱橫各2個、共計4個光學單元13。於4個光學單元13彼此中,透鏡21之形狀形成為相同。
4個光學單元13於積層透鏡構造體11之最上層,具備光圈板51,但該光圈板51之開口部52之大小於4個光學單元13之間不同。藉此,相機模組1C例如可實現如以下般之相機模組1C。即,例如於防盜用途之監視相機中,於使用具備為白天之彩色圖像監視用而具備RGB3種彩色濾光片接收RGB3種光之受光像素、與為夜間之黑白圖像監視用而不具備RGB用之彩色濾光片之受光像素之受光元件12之相機模組1C中,可僅對用於拍攝照度較低之夜間之黑白圖像之像素擴大光圈之開口之大小。因此,1個相機模組1C之透鏡21之平面形狀係例如圖10C所示般,4個光學單元13具備之透鏡21之徑相同,且如圖10D所示般,光圈板51之開口部52之大小根據光學單元13而不同。
圖10E係用於獲得圖10C所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。圖10F係顯示用於獲得圖10D所示之光圈板51之基板狀態下之光圈板51W之俯視圖。
於圖10E所示之基板狀態之附透鏡之基板41W、及圖10F所示之基板狀態之光圈板51W中,設為每1片基板可獲得8個圖10A所示之相機模組1C之構成。
如圖10F所示,於基板狀態下之光圈板51W中,為形成相機模組1C,可針對相機模組1C具備之每一光學單元13,設定不同之開口部52之 大小。
<4.相機模組之第4實施形態>
圖11係顯示使用應用本技術之積層透鏡構造體之相機模組之第4實施形態之圖。
圖11A係顯示作為相機模組1之第4實施形態之相機模組1D之外觀之模式圖。圖11B係相機模組1D之概略剖視圖。
相機模組1D係與相機模組1C同樣地,於光之入射面上具備縱橫各2個、共計4個光學單元13。於4個光學單元13彼此中,透鏡21之形狀與光圈版51之開口部52之大小形成為相同。
相機模組1D係對於光之入射面之縱方向與橫方向之各者各配置有2個之光學單元13所具備之光軸於相同方向延伸。圖11B所示之1點鏈線表示光學單元13各者之光軸。此種構造之相機模組1D適於利用超解析技術,拍攝解析度較以1個光學單元13拍攝更高之圖像。
於相機模組1D中,藉由對於縱方向與橫方向之各者,一面使光軸朝向相同方向,一面藉由以配置於不同位置之複數個受光元件12拍攝圖像,或藉由以1個受光元件12中之不同區域之受光像素拍攝圖像,而可一面光軸朝向相同方向,一面獲得未必相同之複數張圖像。藉由將具有該等並不相同之複數張圖像之每一場所之圖像資料合併,可獲得解析度較高之圖像。因此,1個相機模組1D之透鏡21之平面形狀較佳如圖11C所示般,於4個光學單元13形成為相同。
圖11D係用於獲得圖11C所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。基板狀態之附透鏡之基板41W係設為每1片基板可獲得8個圖11所示之相機模組1D之構成。
如圖11D所示,於基板狀態之附透鏡之基板41W中,為形成相機模組1D,而相機模組1D具備複數個透鏡21,且於基板上以一定之間距配置有複數個該1個模組用之透鏡群。
<5.相機模組之第5實施形態>
圖12係顯示使用應用本技術之積層透鏡構造體之相機模組之第5實施形態之圖。
圖12A係顯示作為相機模組1之第5實施形態之相機模組1E之外觀之模式圖。圖12B係相機模組1E之概略剖視圖。
相機模組1E係於相機模組1E內具備1個具有1條光軸之光學單元13之單眼之相機模組。
圖12C係相機模組1E之顯示透鏡21之平面形狀之附透鏡之基板41之俯視圖。相機模組1E具備1個光學單元13。
圖12D係用於獲得圖12C所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。基板狀態之附透鏡之基板41W係設為每1片基板可獲得32個圖12A所示之相機模組1E之構成。
如圖12D所示,於基板狀態之附透鏡之基板41W中,於基板上以一定之間距配置有複數個相機模組1E用之透鏡21。
<6.第4實施形態之相機模組之詳細構成>
其次,參照圖13,對圖11所示之第4實施形態之相機模組1D之詳細構成進行說明。
圖13係圖11B所示之相機模組1D之剖視圖。
相機模組1D係包含積層有複數片附透鏡之基板41a至41e而成之積層透鏡構造體11、與受光元件12而構成。積層透鏡構造體11具備複數個光 學單元13。1點鏈線84表示各者之光學單元13之光軸。受光元件12係配置於積層透鏡構造體11之下側。於相機模組1D中,自上方入射至相機模組1D內之光透過積層透鏡構造體11,而以配置於積層透鏡構造體11之下側之受光元件12接收。
積層透鏡構造體11具備積層之5片附透鏡之基板41a至41e。於無需特別區分5片附透鏡之基板41a至41e之情形時,簡單記為附透鏡之基板41加以說明。
構成積層透鏡構造體11之各附透鏡之基板41之貫通孔83之剖面形狀係形成為朝向下側(配置受光元件12之側)開口寬度變小之所謂漸窄之形狀。
於積層透鏡構造體11之上,配置有光圈板51。光圈板51具備例如以具有光吸收性或遮光性之材料形成之層。於光圈板51,設置有開口部52。
受光元件12係以例如表面照射型或背面照射型之CMOS(Complementary Metal Oxide Semiconductor:互補型金屬氧化半導體)影像感測器構成。於受光元件12之成為積層透鏡構造體11側之上側之面,形成有晶載透鏡71,且於受光元件12之下側之面,形成有輸入輸出信號之外部端子72。
積層透鏡構造體11、受光元件12、及光圈板51等係收納於透鏡鏡筒74內。
於受光元件12之上側,配置有構造材73。介隔該構造材73,將積層透鏡構造體11與受光元件12固定。構造材73例如為環氧系之樹脂。
於本實施形態中,積層透鏡構造體11雖具備積層之5片附透鏡之基板 41a至41e,但附透鏡之基板41之積層片數只要為2片以上則不特別限定。
構成積層透鏡構造體11之各者之附透鏡之基板41係於載體基板81追加有透鏡樹脂部82之構成。載體基板81具有貫通孔83,且於貫通孔83之內側,形成有透鏡樹脂部82。透鏡樹脂部82係表示包含上述之透鏡21,且亦合併延伸至載體基板81之承載透鏡21之部位,藉由構成透鏡21之材料形成為一體之部分。
另,於區分附透鏡之基板41a至41e各者之載體基板81、透鏡樹脂部82、以及貫通孔83之情形時,如圖13所示般,與附透鏡之基板41a至41e對應,而如載體基板81a至81e、透鏡樹脂部82a至82e、以及貫通孔83a至83e般記述而進行說明。
<透鏡樹脂部之詳細說明>
其次,以附透鏡之基板41a之透鏡樹脂部82a為例,對透鏡樹脂部82之形狀進行說明。
圖14係構成附透鏡之基板41a之載體基板81a與透鏡樹脂部82a之俯視圖與剖視圖。
圖14所示之載體基板81a與透鏡樹脂部82a之剖視圖係俯視圖所示之B-B'線與C-C'線之剖視圖。
透鏡樹脂部82a係藉由構成透鏡21之材料形成為一體所形成之部位,具備透鏡部91與承載部92。於上述之說明中,透鏡21相當於透鏡部91或透鏡樹脂部82a整體。
透鏡部91係具有作為透鏡之性能之部位,換言之,即「使光折射而集中或發散之部位」、或「具備凸面或凹面或非球面等曲面之部位、或使用於費涅透鏡或利用繞射光柵之透鏡之連續配置複數個多邊形之部位」。
承載部92係自透鏡部91延伸至載體基板81a而承載透鏡部91之部位。承載部92係以腕部101與腳部102構成,且位於透鏡部91之外周。
腕部101係於透鏡部91之外側,與透鏡部91相接配置,且自透鏡部91向外側方向以一定之膜厚延伸之部位。腳部102係於承載部92之中腕部101以外之部分、且包含與貫通孔83a之側壁相接之部分之部位。腳部102較佳為樹脂之膜厚厚於腕部101。
形成於載體基板81a之貫通孔83a之平面形狀為圓形,其剖面形狀則當然無論直徑之方向如何均相同。於形成透鏡時由上模與下模之輪廓決定之形狀即透鏡樹脂部82a之形狀亦以其剖面形狀無論直徑之方向如何均成為相同之方式形成。
圖15係顯示圖13之相機模組1D之一部分即積層透鏡構造體11與光圈板51之剖視圖。
於相機模組1D中,將入射至模組之光以光圈板51縮窄之後,於積層透鏡構造體11之內部擴寬,而入射至配置於積層透鏡構造體11之下方之受光元件12(於圖15中未圖示)。即,若就積層透鏡構造體11整體概觀,則入射至模組之光係自光圈板51之開口部52朝向下側,大致漸寬地變寬前進。因此,作為積層透鏡構造體11所具備之透鏡樹脂部82之大小之一例,於圖14之積層透鏡構造體11中,形成為配置於光圈板51之正下方之附透鏡之基板41a所具備之透鏡樹脂部82a最小,配置於積層透鏡構造體11之最下層之附透鏡之基板41e所具備之透鏡樹脂部82e最大。
於假設將附透鏡之基板41之透鏡樹脂部82之厚度設為一定之情形時,難以製作較大小較小之透鏡更大之透鏡。其理由在於,例如、於製造透鏡時透鏡容易因對透鏡施加之載荷而變形,大小越大則越難以保持強 度。因此,較佳將大小較大之透鏡比大小較小之透鏡加厚厚度。因此,於圖15之積層透鏡構造體11中,透鏡樹脂部82之厚度係形成為配置於最下層之附透鏡之基板41e所具備之透鏡樹脂部82e最厚。
圖15之積層透鏡構造體11為提高透鏡設計之自由度,進而具備以下之特徵之至少一個。
(1)載體基板81之厚度於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。例如,載體基板81之厚度係下層之附透鏡之基板41較厚。
(2)附透鏡之基板41所具備之貫通口83之開口寬度於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。例如,貫通孔83之開口寬度係下層之附透鏡之基板41較大。
(3)附透鏡之基板41所具備之透鏡部91之直徑於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。例如,透鏡部91之直徑係下層之附透鏡之基板41之透鏡部91較大。
(4)附透鏡之基板41所具備之透鏡部91之厚度於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。例如,透鏡部91之厚度係下層之附透鏡之基板41之透鏡部91較厚。
(5)附透鏡之基板41所具備之透鏡間之距離於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。
(6)附透鏡之基板41所具備之透鏡樹脂部82之體積於構成積層透鏡構造體11之至少複數片附透鏡之基板41之間不同。例如,透鏡樹脂部82之體積係下層之附透鏡之基板41之透鏡樹脂部82較大。
(7)附透鏡之基板41所具備之透鏡樹脂部82之材料於構成積層透鏡構 造體11之至少複數片附透鏡之基板41之間不同。
一般而言,入射至相機模組之入射光係一併包含垂直入射光與射入入射光。射入入射光之多數撞上光圈板51,而於此處被吸收或向相機模組1D之外側反射。藉由光圈板51縮窄之射入入射光依其入射角度而有撞上貫通孔83之側壁,而於此處反射之可能性。
射入入射光之反射光前進之方向係由圖13中所示之射入入射光85之入射角度、與貫通孔83之側壁之角度決定。於貫通孔83之開口寬度自入射側朝向受光元件12側變大之所謂漸寬之形狀之情形,於未藉由光圈板51縮窄之特定之入射角度之射入入射光85撞上貫通孔83之側壁時,其向受光元件12方向反射,而有其成為散射光或雜訊光之可能性。
然而,於圖13所示之積層透鏡構造體11中,如圖15所示,貫通孔83係形成為朝向下側(配置受光元件12之側)開口寬度變小之所謂漸窄之形狀。於該形狀之情形,撞上貫通孔83之側壁之射入入射光85被朝向上側方向、即所謂入射側方向反射,而非下側方向即所謂受光元件12之方向。藉此,可獲得抑制散射光或雜訊光之產生之作用或效果。
附透鏡之基板41之貫通孔83為減少撞上其側壁而反射之光,更佳於側壁配置光吸收性之材料。
作為一例,於將於將相機模組1D用作相機時欲接收之波長之光(例如可見光)設為第1光,將與該第1光波長不同之光(例如UV光)設為第2光之情形,亦可藉由於載體基板81之表面塗佈或噴射於藉由第2光(UV光)硬化之樹脂分散有碳粒子作為第1光(可見光)之吸收材料者,且僅對貫通孔83之側壁部之樹脂照射第2光(UV光)使其硬化,並去除其以外之區域之樹脂,而於貫通孔83之側壁,形成具有對第1光(可見光)之光吸收性之材料 之層。
圖15所示之積層透鏡構造體11係於積層之複數片附透鏡之基板41之最上方,配置有光圈板51之構造之例。光圈板51亦可插入於中間之附透鏡之基板41之某處而配置,而非積層之複數片附透鏡之基板41之最上方。
作為進而另一例,亦可不與附透鏡之基板41另行具備板狀之光圈板51,而於附透鏡之基板41之表面形成具有光吸收性之材料之層,使其作為光圈發揮功能。例如,亦可藉由於附透鏡之基板41之表面塗佈或噴射於藉由上述第2光(UV光)硬化之樹脂分散有碳粒子作為上述第1光(可見光)之吸收材料者,且除於作為光圈發揮功能時欲使光透過之區域,對其以外之區域之樹脂照射第2光(UV光),使上述樹脂硬化而殘留,並將未硬化之區域、即於作為光圈發揮功能時欲使光透過之區域之樹脂除去,而於附透鏡之基板41之表面形成光圈。
另,於上述表面形成光圈之附透鏡之基板41既可為配置於積層透鏡構造體11之最上層之附透鏡之基板41,或亦可為成為積層透鏡構造體11之內層之附透鏡之基板41。
圖15所示之積層透鏡構造體11具備積層有附透鏡之基板41之構造。
作為另一實施形態,積層透鏡構造體11亦可為一併具備複數片附透鏡之基板41、與至少1片不具備透鏡樹脂部82之載體基板81之構造。於該構造中,不具備透鏡樹脂部82之載體基板81既可配置於積層透鏡構造體11之最下層或最上層,亦可配置為積層透鏡構造體11之內側之層。該構造帶來例如、可任意地設定積層透鏡構造體11具備之複數片透鏡間之距離、或積層透鏡構造體11之最下層之透鏡樹脂部82與配置於積層透鏡構造體 11之下側之受光元件12之距離之作用或效果。
亦或,該構造帶來藉由適當地設定不具備透鏡樹脂部82之載體基板81之開口寬度、且於除開口部以外之區域配置具有光吸收性之材料,而可使其作為光圈板發揮功能之作用或效果。
<7.相機模組之第6實施形態>
圖16係顯示使用應用本技術之積層透鏡構造體之相機模組之第6實施形態之圖。
於圖16中,對與圖13所示之第4實施形態對應之部分標註有同一符號,且關注於與圖13之相機模組1D不同之部分進行說明。
於圖16所示之相機模組1F中,亦與圖13所示之相機模組1D同樣地,將入射至模組之光以光圈板51縮窄之後,於積層透鏡構造體11之內部擴寬,而入射至配置於積層透鏡構造體11之下方之受光元件12。即,若就積層透鏡構造體11整體概觀,則光係自光圈板51之開口部52朝向下側,漸寬地變寬前進。
圖16之相機模組1F與圖13所示之相機模組1D之不同點在於,構成積層透鏡構造體11之各附透鏡之基板41之貫通孔83之剖面形狀係形成為朝向下側(配置受光元件12之側)開口寬度變大之所謂漸寬之形狀。
相機模組1F之積層透鏡構造體11由於為入射之光自光圈板51之開口部52朝向下側漸寬地變寬前進之構造,故貫通孔83之開口寬度朝向下側變大之漸寬形狀較貫通孔83之開口寬度朝向下側變小之漸窄形狀,例如載體基板81不易成為光路之阻礙。藉此,帶來透鏡設計之自由度較高之作用。
又,包含承載部92之透鏡樹脂部82之基板平面方向之剖面面積係於 貫通孔83之開口寬度朝向下側變小之漸窄形狀之情形時,於透鏡樹脂部82之下表面,為使入射至透鏡21之光線透過而成為特定之大小,且隨著自透鏡樹脂部82之下表面朝向上表面,其剖面面積逐漸變大。
相對於此,於貫通孔83之開口寬度朝向下側變大之漸寬形狀之情形時,透鏡樹脂部82之下表面之剖面面積雖成為與漸窄形狀之情形大致相同,但隨著自透鏡樹脂部82之下表面朝向上表面,其剖面面積逐漸變小。
藉此,貫通孔83之開口寬度朝向下側變大之構造帶來可將包含承載部92之透鏡樹脂部82之大小抑制為較小之作用或效果。又,藉此,帶來可降低於先前所述之透鏡較大之情形產生之透鏡形成之難度之作用或效果。
<8.相機模組之第7實施形態>
圖17係顯示使用應用本技術之積層透鏡構造體之相機模組之第7實施形態之圖。
於圖17中,亦對與圖13對應之部分標註有同一符號,且關注於與圖13所示之相機模組1D不同之部分進行說明。
圖17之相機模組1G仍為構成積層透鏡構造體11之各附透鏡之基板41之透鏡樹脂部82與貫通孔83之形狀與圖13所示之相機模組1D之不同。
相機模組1G之積層透鏡構造體11具備貫通孔83之形狀形成為朝向下側(配置受光元件12之側)開口寬度變小之所謂漸窄形狀之附透鏡之基板41、與貫通孔83之形狀形成為朝向下側開口寬度變大之所謂漸寬形狀之附透鏡之基板41之兩者。
貫通孔83形成為朝向下側開口寬度變小之所謂漸窄形狀之附透鏡之基板41係如先前所述般,撞上貫通孔83之側壁之射入入射光85被向上側 方向或入射側方向反射,藉此,帶來抑制散射光或雜訊光之產生之作用或效果。
此處,於圖17之積層透鏡構造體11中,構成積層透鏡構造體11之複數片附透鏡之基板41之中,尤其是上側(入射側)之複數片中,使用貫通孔83形成為朝向下側開口寬度變小之所謂漸窄形狀之附透鏡之基板41。
貫通孔83形成為朝向下側開口寬度變大之所謂漸寬形狀之附透鏡之基板41係如先前所述般,附透鏡之基板41所具備之載體基板81不易成為光路之障礙,藉此,帶來增加透鏡設置之自由度,或將附透鏡之基板41所具備之包含承載部92之透鏡樹脂部82之大小抑制為較小之作用或效果。
於圖17之積層透鏡構造體11中,由於光自光圈朝向下側漸寬地變寬前進,故構成積層透鏡構造體11之複數片附透鏡之基板41之中,配置於下側之數片附透鏡之基板41所具備之透鏡樹脂部82之大小較大。於此種較大之透鏡樹脂部82中,若使用漸寬之形狀之貫通孔83,則可大幅度展現抑制透鏡樹脂部82之大小之作用。
此處,於圖17之積層透鏡構造體11中,構成積層透鏡構造體11之複數片附透鏡之基板41之中,尤其是下側之複數片中,使用貫通孔83形成為朝向下側開口寬度變大之所謂漸寬之形狀之附透鏡之基板41。
<9.附透鏡之基板之詳細構成>
其次,對附透鏡之基板41之詳細構成進行說明。
圖18係顯示附透鏡之基板41之詳細構成之剖視圖。
另,於圖18中,雖對5片附透鏡之基板41a至41e中之最上層之附透鏡之基板41a予以圖示,但其他附透鏡之基板41亦同樣地構成。
作為附透鏡之基板41之構成,可採用圖18A至C中任一構成。
於圖18A所示之附透鏡之基板41,相對於設置於載體基板81之貫通孔83,以自上表面觀看堵塞貫通孔83之方式形成有透鏡樹脂部82。透鏡樹脂部82係如參照圖14所說明般,以中央部之透鏡部91(未圖示)、與其周邊部之承載部92(未圖示)構成。
於附透鏡之基板41之成為貫通孔83之側壁,為防止起因於光反射之重像或眩光而成膜有具有光吸收性或遮光性之膜121。將該等膜121為方便起見稱為遮光膜121。
於載體基板81與透鏡樹脂部82之上側表面,形成有包含氧化物或氮化物或其他絕緣物之上側表面層122,於載體基板81與透鏡樹脂部82之下側表面,形成有包含氧化物或氮化物或其他絕緣物之下側表面層123。
上側表面層122作為一例,構成將低折射膜與高折射膜交錯地積層複數層之抗反射膜。抗反射膜例如可將低折射膜與高折射膜交錯地積層共計4層而構成。低反射膜係例如以SiOx(1≦x≦2)、SiOC、SiOF等氧化膜構成,高折射膜係例如以TiO、TaO、Nb2O5等金屬氧化膜構成。
另,上側表面層122之構成係例如只要設計成使用光學模擬可獲得所需之抗反射性能即可,低折射膜及高折射膜之材料、膜厚、積層數等並未特別限定。於本實施形態中,上側表面層122之最表面形成為低折射膜,其膜厚為例如20至1000nm,密度為例如2.2至2.5g/cm3,平坦度例如為1nm以下程度之均方根粗糙度Rp(RMS:root mean square,均方根)。又,細節雖於後敍述,但該上側表面層122亦成為與其他附透鏡之基板41接合時之接合膜。
上側表面層122作為一例,可為將低折射膜與高折射膜交錯地積層複數層之抗反射膜,且其中可為無機物之抗反射膜。上側表面層122作為另 一例,亦可為包含氧化物或氮化物或其他絕緣物之單層膜,且其中亦可為無機物之膜。
下側表面層123亦作為一例,可為將低折射膜與高折射膜交錯地積層複數層之抗反射膜,且其中可為無機物之抗反射膜。下側表面層123作為另一例,亦可為包含氧化物或氮化物或其他絕緣物之單層膜,且其中亦可為無機物之膜。
對於圖18B及C之附透鏡之基板41,僅對與圖18A所示之附透鏡之基板41不同之部分進行說明。
於圖18B所示之附透鏡之基板41中,形成於載體基板81與透鏡樹脂部82之下側表面之膜與圖18A所示之附透鏡之基板41不同。
於圖18B所示之附透鏡之基板41中,一方面,於載體基板81之下側表面,形成有包含氧化物或氮化物或其他絕緣物之下側表面層124,另一方面,於透鏡樹脂部82之下側表面,未形成下側表面層124。下側表面層124既可為與上側表面層122相同之材料,亦可為不同之材料。
此種構造例如、可藉由於形成透鏡樹脂部82前,於載體基板81之下側表面預先形成下側表面層124,隨後,形成透鏡樹脂部82之製法形成。或,可藉由於形成透鏡樹脂部82後,以於透鏡樹脂部82形成遮罩,於載體基板81上未形成遮罩之狀態,利用例如PVD(Physical vapor deposition:物理氣相沈積)使構成下側表面層124之膜堆積於載體基板81之下側表面,而形成。
於圖18C所示之附透鏡之基板41中,一方面,於載體基板81之上側表面,形成有包含氧化物或氮化物或其他絕緣物之上側表面層125,另一方面,於透鏡樹脂部82之上側表面,未形成上側表面層125。
同樣地,於附透鏡之基板41之下側表面中,亦一方面,於載體基板81之下側表面,形成有包含氧化物或氮化物或其他絕緣物之下側表面層124,另一方面,於透鏡樹脂部82之下側表面,未形成下側表面層124。
此種構造例如、可藉由於形成透鏡樹脂部82前,於載體基板81預先形成上側表面層125與下側表面層124,隨後,形成透鏡樹脂部82之製法形成。或,可藉由於形成透鏡樹脂部82後,以於透鏡樹脂部82形成遮罩,於載體基板81上未形成遮罩之狀態,利用例如PVD使構成上側表面層125及下側表面層124之膜堆積於載體基板81之表面,而形成。下側表面層124與上側表面層125既可為相同之材料,亦可為不同之材料。
附透鏡之基板41可如以上般構成。
<10.附透鏡之基板之製造方法>
其次,參照圖19至圖29說明附透鏡之基板41之製造方法。
首先,準備形成有複數個貫通孔83之基板狀態之載體基板81W。載體基板81W例如可使用於通常之半導體基板使用之矽基板。載體基板81W之形狀例如為圖19A所示般之圓形,其直徑設為例如200mm或300mm等。載體基板81W亦可為例如玻璃之基板、樹脂之基板、或金屬之基板,而非矽基板。
又,貫通孔83之平面形狀於本實施形態中,如圖19A所示般設為圓形,但如圖19B所示,貫通孔83之平面形狀亦可為例如四邊形等多邊形。
貫通孔83之開口寬度可採取例如100μm左右至20mm左右。於該情形時,於載體基板81W,可配置例如100個左右至500萬個左右。
於本說明書中,將附透鏡之基板41之平面方向之貫通孔83之大小稱為開口寬度。開口寬度只要無特別描寫,則於貫通孔83之平面形狀為四邊 形之情形時意指一邊之長度,於貫通孔83之平面形狀為圓形之情形時意指直徑。
如圖20所示,貫通孔83係形成為與第1表面對向之第2表面之第2開口寬度132小於載體基板81W之第1表面之第1開口寬度131。
作為第2開口寬度132小於第1開口寬度131之貫通孔83之3維形狀之例,貫通孔83既可為圖20A所示之圓錐台之形狀,亦可為多邊形之角錐台之形狀。貫通孔83之側壁之剖面形狀既可為圖20A所示般之直線,亦可為圖20B所示般之曲線。亦或,可如圖20C所示般,有階差。
為第2開口寬度132小於第1開口寬度131之形狀之貫通孔83係於藉由對貫通孔83內供給樹脂,並將該樹脂自第1與第2表面之各者以模構件向對向之方向按壓而形成透鏡樹脂部82時,成為透鏡樹脂部82之樹脂受到來自對向之2個模構件之力,而被按壓於貫通孔83之側壁。藉此,可帶來成為透鏡樹脂部82之樹脂與載體基板之密接強度變高之作用。
另,作為貫通孔83之另一實施形態,亦可為第1開口寬度131與第2開口寬度132相等之形狀、即貫通孔83之側壁之剖面形狀成為垂直之形狀。
<使用濕蝕刻之貫通孔之形成方法>
載體基板81W之貫通孔83可藉由對載體基板81W利用濕蝕刻進行蝕刻而形成。具體而言,於對載體基板81W進行蝕刻前,於載體基板81W之表面形成用於防止載體基板81W之非開口區域被蝕刻之蝕刻遮罩。於蝕刻遮罩之材料,使用例如氧化矽膜或氮化矽膜等絕緣膜。蝕刻遮罩係藉由於載體基板81W之表面形成蝕刻遮罩材料之層,並於該層開口出成為貫通孔83之平面形狀之圖案而形成。於形成蝕刻遮罩之後,藉由對載體基板81W進行蝕刻,而於載體基板81W形成貫通孔83。
作為載體基板81W,於例如使用基板表面定向為(100)之單晶矽之情形時,為形成貫通孔83,可採用使用KOH等之鹼性之溶液之結晶各向異性濕蝕刻。
若於基板表面定向為(100)之單晶矽之載體基板81W,進行使用KOH等之鹼性之溶液之結晶各向異性濕蝕刻,則蝕刻以於開口側壁出現(111)面之方式進行。其結果,無論蝕刻遮罩之開口部之平面形狀為圓形或四邊形之哪一者,均可獲得平面形狀為四邊形、且貫通孔83之開口寬度為第2開口寬度132小於第1開口寬度131、貫通孔83之3維形狀成為角錐台或與此類似之形狀之貫通孔83。成為角錐台之貫通孔83之側壁之角度係相對於基板平面,成為約55°之角度。
用於形成貫通孔之蝕刻作為另一實施之例,亦可藉由國際公開第2011/017039號等所揭示之使用不受結晶定向之制約可將矽蝕刻為任意形狀之藥液之濕蝕刻進行。作為該藥液,可採用例如於TMAH(Tetra Methyl Ammonium Hydroxide:四甲基氫氧化銨)水溶液添加作為界面活性劑之聚氧乙烯烷基苯基醚、聚氧化烯烷基醚、聚乙二醇之至少1種之藥液、或於KOH水溶液添加異丙醇之藥液等。
若於基板表面定向為(100)之單晶矽之載體基板81W,使用上述之任一種藥液進行用於形成貫通孔83之蝕刻,則於蝕刻遮罩之開口部之平面形狀為圓形之情形時,可獲得平面形狀為圓形、且第2開口寬度132小於第1開口寬度131、3維形狀成為圓錐台或與此類似之形狀之貫通孔83。
於蝕刻遮罩之開口部之平面形狀為四邊形之情形時,可獲得平面形狀為四邊形、且開口寬度為第2開口寬度132小於第1開口寬度131、3維形狀成為角錐台或與此類似之形狀之貫通孔83。上述成為圓錐台或角錐台之 貫通孔83之側壁之角度係相對於基板平面,成為約45°之角度。
<使用乾蝕刻之貫通孔之形成方法>
又,於形成貫通孔83之蝕刻,亦可使用乾蝕刻,而非上述之濕蝕刻。
參照圖21,對使用乾蝕刻之貫通孔83之形成方法進行說明。
如圖21A所示,於載體基板81W之一側之表面,形成蝕刻遮罩141。蝕刻遮罩141形成為開口有形成貫通孔83之部分之遮罩圖案。
其次,如圖21B所示,形成用於保護蝕刻遮罩141之側壁之保護膜142後,如圖21C所示,藉由乾蝕刻以特定之深度對載體基板81W進行蝕刻。藉由乾蝕刻步驟,載體基板81W表面與蝕刻遮罩141表面之保護膜142被去除,但蝕刻遮罩141側面之保護膜142殘留,而保護蝕刻遮罩141之側壁。蝕刻後,如圖21D所示,去除側壁之保護膜142,並使蝕刻遮罩141向擴大開口圖案之圖案尺寸之方向後退。
然後,再次重複進行複數次圖21B至D之保護膜形成步驟、乾蝕刻步驟、蝕刻遮罩後退步驟。藉此,如圖21E所示,載體基板81W被蝕刻成為具備具有週期性之階差之階梯形狀(凹凸形狀)。
隨後,當去除蝕刻遮罩141時,如圖21F所示,於載體基板81W形成具備階梯形狀之側壁之貫通孔83。貫通孔83之階梯形狀之平面方向之寬度(1階之寬度)例如為400nm至1μm左右。
於如以上般使用乾蝕刻形成貫通孔83之情形時,重複執行保護膜形成步驟、乾蝕刻步驟、蝕刻遮罩後退步驟。
藉由貫通孔83之側壁為具有週期性之階梯形狀(凹凸形狀),可抑制入射光之反射。又,於假設貫通孔83之側壁為隨機之大小之凹凸形狀之情形 時,於形成於貫通孔83內之透鏡與側壁之間之密接層產生氣泡(空隙),而有時因為該空隙而與透鏡之密接性下降。然而,根據上述之形成方法,因貫通孔83之側壁成為具有週期性之凹凸形狀,故密接性提高,而可抑制透鏡位置偏移所引起之光學特性之變化。
作為於各步驟使用之材料之一例,例如可設為:載體基板81W為單晶矽,蝕刻遮罩141為光阻劑,保護膜142為使用C4F8或CHF3等氣體電漿形成之碳氟聚合物,蝕刻處理為使用SF6/O2、C4F8/SF6等包含F之氣體之電漿蝕刻,遮罩後退步驟為使用O2氣體、CF4/O2氣體等包含O2之電漿蝕刻。
亦或,可設為:載體基板81W為單晶矽,蝕刻遮罩141為SiO2,蝕刻為包含Cl2之電漿,保護膜142為使用O2電漿使蝕刻對象材料氧化而成之氧化膜,蝕刻處理為使用包含Cl2之氣體之電漿蝕刻,遮罩後退步驟為使用CF4/O2等包含F之氣體之電漿蝕刻。
如以上般,可藉由濕蝕刻或乾蝕刻,於載體基板81W同時形成複數個貫通孔,但於載體基板81W,亦可如圖22A所示般,於未形成貫通孔83之區域形成貫通槽151。
圖22A係除貫通孔83以外形成有貫通槽151之載體基板81W之俯視圖。
如圖22A所示,貫通槽151係例如避開配置成矩陣狀之複數個貫通孔83,僅配置於列方向與行方向之各者之貫通孔83之間之一部分。
又,載體基板81W之貫通槽151可於構成積層透鏡構造體11之各附透鏡之基板41彼此,配置於相同之位置。於該情形時,於作為積層透鏡構造體11積層有複數片載體基板81W之狀態下,如圖22B之剖視圖所示,複數 片載體基板81W之貫通槽151成為於複數片載體基板81W之間貫通之構造。
作為附透鏡之基板41之一部分之載體基板81W之貫通槽151於例如、自附透鏡之基板41之外部作用使附透鏡之基板41變形之應力之情形時,可帶來緩和應力所致之附透鏡之基板41之變形之作用或效果。
或,貫通槽151於例如、自附透鏡之基板41之內部產生使附透鏡之基板41變形之應力之情形時,可帶來緩和應力所致之附透鏡之基板41之變形之作用或效果。
<附透鏡之基板之製造方法>
其次,參照圖23,對基板狀態之附透鏡之基板41W之製造方法進行說明。
首先,如圖23A所示,準備形成有複數個貫通孔83之載體基板81W。於貫通孔83之側壁成膜有遮光膜121。於圖23中,雖受紙面之制約,而僅顯示有2個貫通孔83,但實際上,如圖19所示,於載體基板81W之平面方向,形成有多個貫通孔83。又,於接近載體基板81W之外周之區域,形成有用於定位之對準標記(未圖示)。
載體基板81W上側之表側平坦部171、與下側之背側平坦部172成為形成為平坦至可進行於之後之步驟進行之電漿接合之程度之平坦面。載體基板81W之厚度於最終單片化為附透鏡之基板41,且與其他附透鏡之基板41重疊時,亦擔負作為決定透鏡間距離之間隔件之功能。
於載體基板81W,較佳使用熱膨脹係數為10ppm/℃以下之低熱膨脹係數之基材。
其次,如圖23B所示,於以一定之間隔配置有複數個凹形狀之光學轉 印面182之下模181之上,配置載體基板81W。更詳細而言,以凹形狀之光學轉印面182位於載體基板81W之貫通孔83之內側之方式,將載體基板81W之背側平坦部172與下模181之平坦面183重合。下模181之光學轉印面182係以1對1地與載體基板81W之貫通孔83對應之方式形成,且以對應之光學轉印面182與貫通孔83之中心於光軸方向一致之方式,調整載體基板81W與下模181之平面方向之位置。下模181係以硬質之模構件形成,例如以金屬或矽、石英、玻璃構成。
其次,如圖23C所示,於重合後之下模181與載體基板81W之貫通孔83之內側,填充(滴下)能量硬化性樹脂191。透鏡樹脂部82係使用該能量硬化性樹脂191形成。因此,能量硬化性樹脂191較佳為了不包含氣泡而預先進行去泡處理。作為去泡處理,較佳為真空去泡處理、或利用離心力之去泡處理。又,真空去泡處理較佳於填充後進行。藉由進行去泡處理,可不內包氣泡,而成形透鏡樹脂部82。
其次,如圖23D所示,於重合後之下模181與載體基板81W之上,配置上模201。於上模201,以一定之間隔配置有複數個凹形狀之光學轉印面202,而與配置下模181時同樣地,以貫通孔83之中心與光學轉印面202之中心於光軸方向一致之方式,精度良好地定位後,配置上模201。
關於成為紙面上之縱方向之高度方向,係藉由控制上模201與下模181之間隔之控制裝置,以上模201與下模181之間隔成為預定之距離之方式,固定上模201之位置。此時,上模201之光學轉印面202與下模181之光學轉印面182所夾隔之空間成為與藉由光學設計計算出之透鏡樹脂部82(透鏡21)之厚度相等。
亦或,亦可如圖23E所示般,與配置下模181時同樣地,將上模201 之平坦面203與載體基板81W之表側平坦部171重合。於該情形時,上模201與下模181之距離成為與載體基板81W之厚度相同值,而實現平面方向及高度方向之高精度之定位。
於以上模201與下模181之間隔成為預先設定之距離之方式進行控制時,於上述之圖23C之步驟中,滴下至載體基板81W之貫通孔83之內側之能量硬化性樹脂191之填充量成為控制成不會自載體基板81W之貫通孔83、與其上下之上模201及下模181所包圍之空間溢出之量。藉此,不浪費能量硬化性樹脂191之材料,而可削減製造成本。
接著,於圖23E所示之狀態下,進行能量硬化性樹脂191之硬化處理。能量熱硬化性樹脂191係藉由例如將熱或UV光作為能量賦予,並放置特定之時間而硬化。於硬化中,藉由將上模201向下方向按壓、或進行對準,可將能量硬化性樹脂191之收縮所致之變形抑制為最小限度。
亦可取代能量硬化性樹脂191,使用熱塑性樹脂。於該情形時,於圖23E所示之狀態下,藉由使上模201與下模181升溫而將能量硬化性樹脂191成形為透鏡形狀,並藉由冷卻而硬化。
其次,如圖23F所示,控制上模201與下模181之位置之控制裝置使上模201向上方向、下模181向下方向移動,而將上模201與下模181自載體基板81W脫模。若上模201與下模181自載體基板81W脫模,則於載體基板81W之貫通孔83之內側,形成有包含透鏡21之透鏡樹脂部82。
另,亦可以氟系或矽系等脫模劑塗敷上模201與下模181之與載體基板81W接觸之表面。藉此,可容易地將上模201與下模181自載體基板81W脫模。又,作為自與載體基板81W之接觸面容易地脫模之方法,亦可進行含氟DLC(Diamond Like Carbon:類鑽碳)等各種塗敷。
其次,如圖23G所示,於載體基板81W與透鏡樹脂部82之表面形成上側表面層122,且於載體基板81W與透鏡樹脂部82之背面,形成下側表面層123。於上側表面層122及下側表面層123之成膜前後,亦可根據需要藉由進行CMP(Chemical Mechanical Polishing:化學機械研磨)等,將載體基板81W之表側平坦部171與背側平坦部172平坦化。
如以上,於形成於載體基板81W之貫通孔83,藉由將能量硬化性樹脂191使用下模201與上模181加壓成型(壓印),可形成透鏡樹脂部82,而製造附透鏡之基板41。
光學轉印面182及光學轉印面202之形狀並非限定於上述之凹形狀,而係根據透鏡樹脂部82之形狀適當決定。如圖15所示,附透鏡之基板41a至41e之透鏡形狀可採用藉由光學系統設計導出之各種形狀,例如可為、兩凸形狀、兩凹形狀、平凸形狀、平凹形狀、凸彎月形狀、凹彎月形狀、進而高次非球面形狀等。
又,光學轉印面182及光學轉印面202之形狀亦可設為形成後之透鏡形狀成為蛾眼構造之形狀。
根據上述之製造方法,因可藉由載體基板81W之介置而斷絕能量硬化性樹脂191之硬化收縮所引起之透鏡樹脂部82彼此之平面方向之距離之變動,故可高精度地控制透鏡距離間精度。又,有藉由強度較強之載體基板81W加強強度較弱之能量硬化性樹脂191之效果。藉此,可提供一種配置有複數個操作性良好之透鏡之透鏡陣列基板,且具有可抑制透鏡陣列基板之翹曲之效果。
<貫通孔形狀為多邊形之例>
如圖19B所示,貫通孔83之平面形狀亦可為例如四邊形等多邊形。
圖24係貫通孔83之平面形狀為四邊形之情形之附透鏡之基板41a之載體基板81a與透鏡樹脂部82a之俯視圖與剖視圖。
圖24之附透鏡之基板41a之剖視圖係顯示俯視圖之B-B'線與C-C'線之剖視圖。
如比較B-B'線剖視圖與C-C'線剖視圖可知,於貫通孔83a為四邊形之情形,自貫通孔83a之中心至貫通孔83a之上部外緣之距離、及自貫通孔83a之中心至貫通孔83a之下部外緣之距離係於為四邊形之貫通孔83a之邊方向與對角線方向不同,且對角線方向較大。因此,於貫通孔83a之平面形狀為四邊形之情形時,若將透鏡部91設為圓形,則需要將自透鏡部91外周至貫通孔83a側壁之距離、換言之即承載部92之長度於四邊形之邊方向與對角線方向設為不同之長度。
因此,圖24所示之透鏡樹脂部82a具備以下之構造。
(1)配置於透鏡部91之外周之腕部101之長度係於四邊形之邊方向與對角線方向相同。
(2)配置於腕部101之外側、且延伸至貫通孔83a側壁之腳部102之長度係較四邊形之邊方向之腳部102之長度將對角線方向之腳部102之長度更延長。
如圖24所示,一方面,腳部102與透鏡部91不直接相接,另一方面,腕部101與透鏡部91直接相接。
於圖24之透鏡樹脂部82a中,藉由將與透鏡部91直接相接之腕部101之長度與厚度遍及透鏡部91之外周整體設為一定,而可帶來均勻地以一定之力支撐透鏡部91整體之作用或效果。
進而,藉由均勻地以一定之力支撐透鏡部91整體,而於例如自包圍 貫通孔83a之載體基板81a遍及貫通孔83a之外周整體施加應力般之情形時,可帶來藉由將其遍及透鏡部91整體均勻地傳遞,而抑制僅偏向透鏡部91之特定之部分傳遞應力之作用或效果。
圖25係對平面形狀為四邊形之貫通孔83之另一例予以顯示之附透鏡之基板41a之載體基板81a與透鏡樹脂部82a之俯視圖與剖視圖。
圖25之附透鏡之基板41a之剖視圖係顯示俯視圖之B-B'線與C-C'線之剖視圖。
於圖25中,亦與圖22同樣,自貫通孔83a之中心至貫通孔83a之上部外緣之距離、及自貫通孔83a之中心至貫通孔83a之下部外緣之距離係於為四邊形之貫通孔83a之邊方向與對角線方向不同,且對角線方向較大。因此,於貫通孔83a之平面形狀為四邊形之情形時,若將透鏡部91設為圓形,則需要將自透鏡部91外周至貫通孔83a側壁之距離、換言之即承載部92之長度於四邊形之邊方向與對角線方向設為不同之長度。
因此,圖25所示之透鏡樹脂部82a具備以下之構造。
(1)將配置於透鏡部91之外周之腳部102之長度沿貫通孔83a之四邊形之4個邊設為一定。
(2)為實現上述(1)之構造,而腕部101之長度係較四邊形之邊方向之腕部之長度將對角線方向之腕部之長度更延長。
如圖25所示,腳部102較佳為樹脂之膜厚厚於腕部101。因此,附透鏡之基板41a之平面方向之平均單位面積之體積亦為腳部102大於腕部101。
於圖25之實施例中,藉由將腳部102之體積儘可能縮小、且沿貫通孔83a之四邊形之4邊設為一定,而於例如產生樹脂之膨脹般之變形之情形 時,可帶來儘可能地抑制其引起之體積變化、且使體積變化遍及透鏡部91之外周整體儘可能均勻之作用或效果。
圖26係顯示附透鏡之基板41之透鏡樹脂部82與貫通孔83之另一實施形態之剖視圖。
圖26所示之透鏡樹脂部82與貫通孔83具備以下之構造。
(1)貫通孔83之側壁為具備階級部221之階級形狀。
(2)透鏡樹脂部82之承載部92之腳部102不僅配置於貫通孔83之側壁上方,亦於貫通孔83所具備之階級部221之上,於附透鏡之基板41之平面方向延伸。
參照圖27,對圖26所示之階級形狀之貫通孔83之形成方法進行說明。
首先,如圖27A所示,於載體基板81W之一側之面,形成具有對貫通孔開口時之濕蝕刻之耐性之蝕刻阻止膜241。蝕刻阻止膜241可設為例如氮化矽膜。
其次,於載體基板81W之另一側之面,形成具有對貫通孔開口時之濕蝕刻之耐性之硬遮罩242。硬遮罩242亦可設為例如氮化矽膜。
其次,如圖27B所示,為第1次蝕刻而將硬遮罩242之特定區域開口。於第1次蝕刻中,蝕刻成為貫通孔83之階級部221之上段之部分。因此,用於第1次蝕刻之硬遮罩242之開口部成為與圖26記載之附透鏡之基板41之上側基板表面之開口對應之區域。
其次,如圖27C所示,藉由濕蝕刻,對應於硬遮罩242之開口部,將載體基板81W蝕刻特定之深度之量。
其次,如圖27D所示,於蝕刻後之載體基板81W之表面,重新形成硬 遮罩243,並對應於成為貫通孔83之階級部221之下側之部分將硬遮罩243開口。第2次之硬遮罩243亦可採用例如氮化矽膜。
其次,如圖27E所示,藉由濕蝕刻,對應於硬遮罩243之開口部,將載體基板81W蝕刻至到達蝕刻阻止膜241。
最後,如圖27F所示,去除載體基板81W之上側表面之硬遮罩243、與下側表面之蝕刻阻止膜241。
如以上,藉由分2次進行用於利用濕蝕刻之貫通孔形成之載體基板81W之蝕刻,可獲得圖26所示之階級形狀之貫通孔83。
圖28係貫通孔83a具有階級部221、且貫通孔83a之平面形狀為圓形之情形之附透鏡之基板41a之載體基板81a與透鏡樹脂部82a之俯視圖與剖視圖。
圖28之附透鏡之基板41a之剖視圖,係顯示俯視圖之B-B'線與C-C'線之剖視圖。
於貫通孔83a之平面形狀為圓形之情形時,貫通孔83a之剖面形狀當然無論直徑之方向如何均為相同。除此以外,透鏡樹脂部82a之外緣、腕部101、及腳部102之剖面形狀亦以無論直徑之方向如何均成為相同之方式形成。
圖28之具有階級形狀之貫通孔83a與於貫通孔83a內不具備階級部221之圖14之貫通孔83a相比,帶來可擴大透鏡樹脂部82之承載部92之腳部102與貫通孔83a之側壁接觸之面積之作用或效果。又,藉此,帶來使透鏡樹脂部82與貫通孔83a之側壁之密接強度,換言之即透鏡樹脂部82a與載體基板81W之密接強度增加之作用或效果。
圖29係貫通孔83a具有階級部221、且貫通孔83a之平面形狀為四邊形 之情形之附透鏡之基板41a之載體基板81a與透鏡樹脂部82a之俯視圖與剖視圖。
圖29之附透鏡之基板41a之剖視圖係顯示俯視圖之B-B'線與C-C'線之剖視圖。
圖29所示之透鏡樹脂部82與貫通孔83具備以下之構造。
(1)配置於透鏡部91之外周之腕部101之長度,於四邊形之邊方向與對角線方向相同。
(2)配置於腕部101之外側、且延伸至貫通孔83a之側壁之腳部102之長度,係與四邊形之邊方向之腳部102之長度相比,對角線方向之腳部102之長度較長。
如圖29所示,腳部102與透鏡部91不直接相接,另一方面,腕部101與透鏡部91直接相接。
於圖29之透鏡樹脂部82a中,與圖24記載之透鏡樹脂部82a同樣,藉由將與透鏡部91直接相接之腕部101之長度與厚度於透鏡部91之外周整體設為一定,而可帶來均勻地以一定之力支撐透鏡部91整體之作用或效果。
進而,藉由均勻地以一定之力支撐透鏡部91整體,而於例如自包圍貫通孔83a之載體基板81a施加應力於貫通孔83a之外周整體般之情形時,可帶來藉由將其遍及透鏡部91整體均勻地傳遞,而抑制僅偏向透鏡部91之特定之部分傳遞應力之作用或效果。
進而,圖29之貫通孔83a之構造與於貫通孔83a內不具備階級部221之圖24等之貫通孔83a相比,帶來可擴大透鏡樹脂部82a之承載部92之腳部102與貫通孔83a之側壁接觸之面積之作用或效果。藉此,帶來透鏡樹脂部82a與貫通孔83a之側壁部之密接強度、換言之即透鏡樹脂部82a與載體 基板81a之密接強度增加之作用或效果。
<11.附透鏡之基板彼此之直接接合>
其次,對形成有複數個附透鏡之基板41之基板狀態之附透鏡之基板41W彼此之直接接合進行說明。
於以下之說明中,如圖30所示,將形成有複數個附透鏡之基板41a之基板狀態之附透鏡之基板41W記為附透鏡之基板41W-a,將形成有複數個附透鏡之基板41b之基板狀態之附透鏡之基板41W記為附透鏡之基板41W-b。對於其他附透鏡之基板41c至41e亦同樣地表示。
參照圖31,對基板狀態之附透鏡之基板41W-a、與基板狀態之附透鏡之基板41W-b之直接接合進行說明。
另,於圖31中,對附透鏡之基板41W-b之與附透鏡之基板41W-a之各部對應之部分,標註與附透鏡之基板41W-a相同之符號進行說明。
於附透鏡之基板41W-a與附透鏡之基板41W-b之上側表面,形成有上側表面層122或125。於附透鏡之基板41W-a與附透鏡之基板41W-b之下側表面,形成有下側表面層123或124。然後,如圖31A所示,對成為附透鏡之基板41W-a與41W-a之接合之面之附透鏡之基板41W-a之包含背側平坦部172之下側表面整體、及附透鏡之基板41W-b之包含表側平坦部171之上側表面整體,施以電漿活性處理。電漿活性處理所使用之氣體為O2、N2、He、Ar、H2等可電漿處理之氣體均可。但,若使用與上側表面層122及下側表面層123之構成元素相同之氣體作為電漿活性處理所使用之氣體,則可抑制上側表面層122及下側表面層123之膜本身之變質,故而較佳。
然後,如圖31B所示,將活性化之表面狀態之附透鏡之基板41W-a之 背側平坦部172、與附透鏡之基板41W-b之表側平坦部171貼合。
藉由該附透鏡之基板彼此之貼合處理,而於附透鏡之基板41W-a之下側表面層123或124之表面之OH基之氫與附透鏡之基板41W-b之上側表面層122或125之表面之OH基之氫之間產生氫鍵。藉此,將附透鏡之基板41W-a與附透鏡之基板41W-b固定。該附透鏡之基板彼此之貼合處理可於大氣壓之條件下進行。
對進行上述貼合處理後之附透鏡之基板41W-a與附透鏡之基板41W-b,施加退火處理。藉此,自OH基彼此氫鍵合之狀態引起脫水縮合,而於附透鏡之基板41W-a之下側表面層123或124、與附透鏡之基板41W-b之上側表面層122或125之間,形成經由氧之共價鍵。或,附透鏡之基板41W-a之下側表面層123或124所包含之元素、與附透鏡之基板41W-b之上側表面層122或125所包含之元素共價鍵合。藉由該等鍵合,將2片附透鏡之基板牢固地固定。將如此般,於配置於上側之附透鏡之基板41W之下側表面層123或124、與配置於下側之附透鏡之基板41W之上側表面層122或125之間形成共價鍵,而藉此固定2片附透鏡之基板41W於本說明書中稱為直接接合。專利文獻1揭示之將複數片附透鏡之基板遍及基板整面藉由樹脂黏著之方法存在樹脂之硬化收縮或熱膨脹與其所引起之透鏡之變形之憂慮。相對於此,本技術之直接接合由於在固定複數片附透鏡之基板41W時不使用樹脂,故帶來不會因其而引起硬化收縮或熱膨脹,即可固定複數片附透鏡之基板41W之作用或效果。
上述退火處理亦可於大氣壓之條件下進行。該退火處理為了進行脫水縮合,可於100℃以上或150℃以上或200℃以上進行。另一方面,該退火處理就自熱保護用於形成透鏡樹脂部82之能量硬化性樹脂191之觀點或 抑制來自能量硬化性樹脂191之釋氣之觀點而言,亦可於400℃以下或350℃以下或300℃以下進行。
於假設為於大氣壓以外之條件下進行上述附透鏡之基板41W彼此之貼合處理或上述附透鏡之基板41W彼此之直接接合處理之情形時,若使已接合之附透鏡之基板41W-a與附透鏡之基板41W-b返回大氣壓之環境,則產生接合後之透鏡樹脂部82與透鏡樹脂部82之間之空間、與透鏡樹脂部82之外部之壓力差。因該壓力差,對透鏡樹脂部82施加壓力,而有透鏡樹脂部82變形之憂慮。
於大氣壓之條件下進行上述附透鏡之基板41W彼此之貼合處理或上述附透鏡之基板彼此之直接接合處理之兩者,帶來可避免於大氣壓以外之條件下進行之情形時所憂慮之透鏡樹脂部82之變形之作用或效果。
因藉由將施以電漿活性處理後之基板直接接合、換言之即電漿接合,而例如可抑制將樹脂用作接著劑之情形時般之流動性、熱膨脹,故可使接合附透鏡之基板41W-a與附透鏡之基板41W-b時之位置精度提高。
於附透鏡之基板41W-a之背側平坦部172、與附透鏡之基板41W-b之表側平坦部171,如上述般,成膜有上側表面層122或下側表面層123。該上側表面層122及下側表面層123係藉由先前進行之電漿活性處理,而容易形成懸鍵。即,附透鏡之基板41W-a之成膜於背側平坦部172之下側表面層123、與附透鏡之基板41W-b之成膜於表側平坦部171之上側表面層122亦具有使接合強度增加之作用。
又,於以氧化膜構成上側表面層122或下側表面層123之情形時,由於不受電漿(O2)所引起之膜質變化之影響,故對透鏡樹脂部82,亦具有抑制電漿所引起之腐蝕之效果。
如以上,將形成有複數個附透鏡之基板41a之基板狀態之附透鏡之基板41W-a、與形成有複數個附透鏡之基板41b之基板狀態之附透鏡之基板41W施加利用電漿之表面活性化處理之後直接接合、換言之、即使用電漿接合接合。
圖32顯示使用參照圖31所說明之基板狀態之附透鏡之基板41W彼此之接合方法,將圖13之對應於積層透鏡構造體11之5片附透鏡之基板41a至41e以基板狀態積層之第1積層方法。
首先,如圖32A所示,準備於積層透鏡構造體11中位於最下層之基板狀態之附透鏡之基板41W-e。
其次,如圖32B所示,將於積層透鏡構造體11中自下數起位於第2層之基板狀態之附透鏡之基板41W-d接合於基板狀態之附透鏡之基板41W-e之上。
其次,如圖32C所示,將於積層透鏡構造體11中自下數起位於第3層之基板狀態之附透鏡之基板41W-c接合於基板狀態之附透鏡之基板41W-d之上。
其次,如圖32D所示,將於積層透鏡構造體11中自下數起位於第4層之基板狀態之附透鏡之基板41W-b接合於基板狀態之附透鏡之基板41W-c之上。
其次,如圖32E所示,將於積層透鏡構造體11中自下數起位於第5層之基板狀態之附透鏡之基板41W-a接合於基板狀態之附透鏡之基板41W-b之上。
最後,如圖32F所示,將於積層透鏡構造體11中位於附透鏡之基板41a之上層之光圈板51W接合於基板狀態之附透鏡之基板41W-a之上。
如以上,藉由將基板狀態之5片附透鏡之基板41W-a至41W-e自積層透鏡構造體11之下層之附透鏡之基板41W至上層之附透鏡之基板41W依序逐片積層,而可獲得基板狀態之積層透鏡構造體11W。
圖33顯示使用參照圖31所說明之基板狀態之附透鏡之基板41W彼此之接合方法,將圖13之對應於積層透鏡構造體11之5片附透鏡之基板41a至41e以基板狀態積層之第2積層方法。
首先,如圖33A所示,準備於積層透鏡構造體11中位於附透鏡之基板41a之上層之光圈板51W。
其次,如圖33B所示,將於積層透鏡構造體11中位於最上層之基板狀態之附透鏡之基板41W-a上下翻轉之後,接合於光圈板51W之上。
其次,如圖33C所示,將於積層透鏡構造體11中自上數起位於第2層之基板狀態之附透鏡之基板41W-b上下翻轉之後,接合於基板狀態之附透鏡之基板41W-a之上。
其次,如圖33D所示,將於積層透鏡構造體11中自上數起位於第3層之基板狀態之附透鏡之基板41W-c上下翻轉之後,接合於基板狀態之附透鏡之基板41W-b之上。
其次,如圖33E所示,將於積層透鏡構造體11中自上數起位於第4層之基板狀態之附透鏡之基板41W-d上下翻轉之後,接合於基板狀態之附透鏡之基板41W-c之上。
最後,如圖33F所示,將於積層透鏡構造體11中自上數起位於第5層之基板狀態之附透鏡之基板41W-e上下翻轉之後,接合於基板狀態之附透鏡之基板41W-d之上。
如以上,藉由將基板狀態之5片附透鏡之基板41W-a至41W-e自積層 透鏡構造體11之上層之附透鏡之基板41W至下層之附透鏡之基板41W依序逐片積層,而可獲得基板狀態之積層透鏡構造體11W。
藉由以圖32或圖33所說明之積層方法積層之基板狀態之5片附透鏡之基板41W-a至41W-e係藉由使用刀片或雷射等按模組單位或晶片單位單片化,而成為積層5片附透鏡之基板41a至41e而成之積層透鏡構造體11。
<12.相機模組之第8及第9實施形態>
圖34係顯示使用應用本技術之積層透鏡構造體之相機模組之第8實施形態之圖。
圖35係顯示使用應用本技術之積層透鏡構造體之相機模組之第9實施形態之圖。
於圖34及圖35之說明中,僅對與圖13所示之相機模組E不同之部分進行說明。
圖34之相機模組1H與圖35之相機模組1J係將圖13所示之相機模組E之構造材73之部分置換為不同之構造。
於圖34之相機模組1H中,將相機模組1J之構造材73之部分置換為構造材301a及301b、與透光性基板302。
具體而言,於受光元件12之上側之一部分,配置有構造材301a。介隔該構造材301a,將受光元件12與透光性基板302固定。構造材301a例如為環氧系之樹脂。
於透光性基板302之上側,配置有構造材301b。介隔該構造材301b,將透光性基板302與積層透鏡構造體11固定。構造材301b例如為環氧系之樹脂。
相對於此,於圖35之相機模組1J中,將圖34之相機模組1H之構造材 301a之部分置換為具有透光性之樹脂層311。
樹脂層311係於受光元件12之上側整面配置。介隔該樹脂層311,將受光元件12與透光性基板302固定。配置於受光元件12之上側整面之樹脂層311於自透光性基板302之上方對透光性基板302施加應力之情形時,帶來防止其於受光元件12之一部分區域集中施加,而使應力分散於受光元件12之整面而承受之作用或效果。
於透光性基板302之上側,配置有構造材301b。介隔該構造材301b,將透光性基板302與積層透鏡構造體11固定。
圖34之相機模組1H與圖35之相機模組1J於受光元件12之上側具備透光性基板302。透光性基板302帶來例如於製造相機模組1H或1J之中途,避免受光元件12受損之作用或效果。
<13.相機模組之第10實施形態>
圖36係顯示使用應用本技術之積層透鏡構造體之相機模組之第10實施形態之圖。
於圖36所示之相機模組1J中,積層透鏡構造體11係收納於透鏡鏡筒74中。透鏡鏡筒74係以沿軸331移動之移動構件332、與固定構件333固定。藉由將透鏡鏡筒74利用未圖示之驅動馬達於軸331之軸向上移動,而調整自積層透鏡構造體11至受光元件12之攝像面之距離。
透鏡鏡筒74、軸331、移動構件332、及固定構件333係收納於殼體334內。於受光元件12之上部配置保護基板335,並將保護基板335與殼體334藉由接著劑336連接。
上述之使積層透鏡構造體11移動之機構帶來使用相機模組1J之相機於拍攝圖像時,可進行自動聚焦動作之作用或效果。
<14.相機模組之第11實施形態>
圖37係顯示使用應用本技術之積層透鏡構造體之相機模組之第11實施形態之圖。
圖37之相機模組1L係追加有利用壓電元件之焦點調節機構之相機模組。
即,於相機模組1L中,與圖34之相機模組1H同樣地,於受光元件12之上側之一部分,配置有構造材301a。介隔該構造材301a,將受光元件12與透光性基板302固定。構造材301a例如為環氧系之樹脂。
於透光性基板302之上側,配置有壓電元件351。介隔該壓電元件351,將透光性基板302與積層透鏡構造體11固定。
於相機模組1L中,藉由對配置於積層透鏡構造體11之下側之壓電元件351施加或遮斷電壓,可使積層透鏡構造體11於上下方向上移動。作為移動積層透鏡構造體11之手段,並不限於壓電元件351,亦可使用藉由電壓之施加及遮斷而形狀變化之其他器件。例如可使用MEMS(micro electromechanical system:微機電系統)器件。
上述之使積層透鏡構造體11移動之機構帶來使用相機模組1L之相機於拍攝圖像時,可進行自動聚焦動作之作用或效果。
<15.與其他構造相比之本構造之效果>
積層透鏡構造體11係將附透鏡之基板41彼此藉由直接接合黏著之構造(以下,稱為本構造。)。針對本構造之作用及效果,與形成有透鏡之附透鏡之基板之其他構造比較而進行說明。
<比較構造例1>
圖38係用於與本構造比較之第1基板構造(以下,稱為比較構造例 1。),且係於日本專利特開2011-138089號公報(以下,稱為比較文獻1。)作為圖14(b)所揭示之晶圓級積層構造之剖視圖。
圖38所示之晶圓級積層構造1000係具有於在晶圓基板1010上排列有複數個影像感測器1011之感測器陣列基板1012之上,介隔柱狀之間隔件1022積層有2片透鏡陣列基板1021之構造。各透鏡陣列基板1021係以附透鏡之基板1031、與形成於在該附透鏡之基板1031形成有複數處之貫通孔部分之透鏡1032構成。
<比較構造例2>
圖39係用於與本構造比較之第2基板構造(以下,稱為比較構造例2。),且係於日本專利特開2009-279790號公報(以下,稱為比較文獻2。)作為圖5(a)所揭示之透鏡陣列基板之剖視圖。
於圖39所示之透鏡陣列基板1041中,於設置於板狀之基板1051之複數個貫通孔1052各者,設置有透鏡1053。各透鏡1053係以樹脂(能量硬化性樹脂)1054形成,該樹脂1054亦形成於基板1051之上表面。
參照圖40,對圖39之透鏡陣列基板1041之製造方法進行簡單說明。
圖40A顯示將形成有複數個貫通孔1052之基板1051放置於下模1061之上之狀態。下模1061係於隨後之步驟,自下方向上方按壓樹脂1054之模具。
圖40B顯示於複數個貫通孔1052內部與基板1051上表面塗佈樹脂1054之後,將上模1062配置於基板1051之上,並使用上模1062與下模1061加壓成型之狀態。上模1062係自上方向下方按壓樹脂1054之模具。於圖40B所示之狀態下,進行樹脂1054之硬化。
圖40C顯示於樹脂1054硬化之後,使上模1062與下模1061脫模,而 完成透鏡陣列基板1041之狀態。
該透鏡陣列基板1041之特徵在於:(1)形成於基板1051之貫通孔1052之位置之樹脂1054成為透鏡1053,於基板1051形成有複數個該透鏡1053,且,(2)於位於該等複數個透鏡1053之間之基板1051之上側表面整體,形成有樹脂1054之薄層。
於形成將該透鏡陣列基板1041積層複數片而成之構造體之情形時,形成於基板1051之上側表面整體之樹脂1054之薄層帶來作為接著基板彼此之接著劑之作用或效果。
又,於形成將該透鏡陣列基板1041積層複數片而成之構造體之情形時,因與作為比較構造例1顯示之圖38之晶圓級積層構造1000相比,可擴大接著基板彼此之面積,故可以更強之力接著基板彼此。
<於比較構造例2中樹脂所帶來之作用>
於揭示作為比較構造例2之圖39之透鏡陣列基板1041之比較文獻2中,作為成為透鏡1053之樹脂1054之作用,揭示有以下。
於比較構造例2中,使用能量硬化性樹脂作為樹脂1054。且,作為能量硬化性樹脂之一例,使用光硬化性樹脂。於使用光硬化性樹脂作為能量硬化性樹脂之情形時,若對樹脂1054照射UV光,則樹脂1054硬化。藉由該硬化,於樹脂1054,引起硬化收縮。
但,根據圖39之透鏡陣列基板1041之構造,即使引起樹脂1054之硬化收縮,亦因於複數個之透鏡1053之間介置基板1051,而可斷絕樹脂1054之硬化收縮所引起之透鏡1053間之距離之變動,藉此,可抑制配置有複數個透鏡1053之透鏡陣列基板1041之翹曲。
<比較構造例3>
圖41係用於與本構造比較之第3基板構造(以下,稱為比較構造例3。),且係於日本專利特開2010-256563號公報(以下,稱為比較文獻3。)作為圖1所揭示之透鏡陣列基板之剖視圖。
於圖41所示之透鏡陣列基板1081中,於設置於板狀之基板1091之複數個貫通孔1092各者,設置有透鏡1093。各透鏡1093係以樹脂(能量硬化性樹脂)1094形成,該樹脂1094亦形成於未設置貫通孔1092之基板1091之上表面。
參照圖42,對圖41之透鏡陣列基板1081之製造方法進行簡單說明。
圖42A顯示將形成有複數個貫通孔1092之基板1091放置於下模1101之上之狀態。下模1101係於隨後之步驟,自下方向上方按壓樹脂1094之模具。
圖42B顯示於複數個貫通孔1092內部與基板1091上表面塗佈樹脂1094之後,將上模1102配置於基板1091之上,並使用上模1102與下模1101加壓成型之狀態。上模1102係自上方向下方按壓樹脂1094之模具。於圖42B所示之狀態下,進行樹脂1094之硬化。
圖42C顯示於樹脂1094硬化之後,使上模1102與下模1101脫模,而完成透鏡陣列基板1081之狀態。
該透鏡陣列基板1081之特徵在於:(1)形成於基板1091之貫通孔1092之位置之樹脂1094成為透鏡1093,於基板1091形成有複數個該透鏡1093,且,(2)於位於該等複數個透鏡1093之間之基板1091之上側表面整體,形成有樹脂1094之薄層。
<於比較構造例3中樹脂所帶來之作用>
於揭示作為比較構造例3之圖41之透鏡陣列基板1081之比較文獻3 中,作為成為透鏡1093之樹脂1094之作用,揭示有以下。
於比較構造例3中,使用能量硬化性樹脂作為樹脂1094。且,作為能量硬化性樹脂之一例,使用光硬化性樹脂。於使用光硬化性樹脂作為能量硬化性樹脂之情形時,若對樹脂1094照射UV光,則樹脂1094硬化。藉由該硬化,於樹脂1094,引起硬化收縮。
但,根據圖41之透鏡陣列基板1081之構造,即使引起樹脂1094之硬化收縮,亦因於有複數個之透鏡1093之間介置基板1091,而可斷絕樹脂1094之硬化收縮所引起之透鏡1093間之距離之變動,藉此,可抑制配置有複數個透鏡1093之透鏡陣列基板1081之翹曲。
如以上,於比較文獻2及3中,揭示有於光硬化性樹脂硬化時,會引起硬化收縮。另,於光硬化性樹脂硬化時會引起硬化收縮之情況除比較文獻2及3以外,亦揭示於例如日本專利特開2013-1091號公報等。
又,若將樹脂成型為透鏡之形狀,並使成型後之樹脂硬化,則樹脂引起硬化收縮而成為問題之情況並不限於光硬化性樹脂。例如,於與光硬化性樹脂同樣為能量硬化性樹脂之一種之熱硬化性樹脂,於硬化之時引起硬化收縮亦成為問題。此點亦揭示於例如、比較文獻1或3、日本專利特開2010-204631號公報等。
<比較構造例4>
圖43係用於與本構造比較之第4基板構造(以下,稱為比較構造例4。),且係於上述比較文獻2中作為圖6所揭示之透鏡陣列基板之剖視圖。
圖43之透鏡陣列基板1121若與圖39所示之透鏡陣列基板1041比較,則除貫通孔1042部分以外之基板1141之形狀形成為不僅向上側亦向下側突出之形狀之點、及於基板1141之下側表面之一部分亦形成有樹脂1144 之點不同。透鏡陣列基板1121之其他構成與圖39所示之透鏡陣列基板1041相同。
圖44係說明圖43之透鏡陣列基板1121之製造方法之圖,且係對應於圖40B之圖。
圖44顯示於複數個貫通孔1142內部與基板1141上表面塗佈樹脂1144之後,使用上模1152與下模1151加壓成型之狀態。樹脂1144亦注入於基板1141下表面與下模1151之間。於圖44所示之狀態下,進行樹脂1144之硬化。
該透鏡陣列基板1121之特徵在於:(1)形成於基板1141之貫通孔1142之位置之樹脂1144成為透鏡1143,於基板1141形成有複數個該透鏡1143,且,(2)不僅於位於該等複數個透鏡1143之間之基板1141之上側表面整體,形成有樹脂1144之薄層,亦於基板1141之下側表面之一部分,形成有樹脂1144之薄層。
<於比較構造例4中樹脂所帶來之作用>
於揭示作為比較構造例4之圖43之透鏡陣列基板1121之比較文獻2中,作為成為透鏡1143之樹脂1144之作用,揭示有以下。
於作為比較構造例4之圖43之透鏡陣列基板1121中,亦使用能量硬化性樹脂之一例即光硬化性樹脂,作為樹脂1144。因此,若對樹脂1144照射UV光,則樹脂1144硬化。藉由該硬化,與比較構造例2及3同樣,於樹脂1144,引起硬化收縮。
但,於比較構造例4之透鏡陣列基板1121中,不僅於位於複數個透鏡1143之間之基板1141之上側表面整體,亦於基板1141之下側表面之一定區域,形成有樹脂1144之薄層。
如此,藉由設為於基板1141之上側表面與下側表面之兩者形成有樹脂1144之構造,而可將陣列基板1121整體之翹曲之方向相抵消。
相對於此,於作為比較構造例2於圖39所示之透鏡陣列基板1041中,雖於位於複數個透鏡1053之間之基板1051之上側表面整體形成有樹脂1054之薄層,但於基板1051之下側表面,完全不形成樹脂1054之薄層。
因此,以圖43之透鏡陣列基板1121,與圖39之透鏡陣列基板1041相比,可提供將翹曲量進一步縮小之透鏡陣列基板。
<比較構造例5>
圖45係用於與本構造比較之第5基板構造(以下,稱為比較構造例5。),且係於上述比較文獻2中作為圖9所揭示之透鏡陣列基板之剖視圖。
圖45之透鏡陣列基板1161若與圖39所示之透鏡陣列基板1041相比,則於形成於基板1171之貫通孔1172鄰近之基板背面,具有樹脂溢出區域1175之點不同。透鏡陣列基板1161之其他構成與圖39所示之透鏡陣列基板1041相同。
另,圖45之透鏡陣列基板1161係顯示單片化後之狀態。
該透鏡陣列基板1161之特徵在於:(1)形成於基板1171之貫通孔1172之位置之樹脂1174成為透鏡1173,於基板1171形成有複數個該透鏡1173,且,(2)不僅於位於該等複數個透鏡1173之間之基板1171之上側表面整體,形成有樹脂1174之薄層,亦於基板1171之下側表面之一部分,形成有樹脂1174之薄層。
<於比較構造例5中樹脂所帶來之作用>
於揭示作為比較構造例5之圖45之透鏡陣列基板1161之比較文獻2中,作為成為透鏡1173之樹脂1174之作用,揭示有以下。
於作為比較構造例5之圖45之透鏡陣列基板1161中,亦使用能量硬化性樹脂之一例即光硬化性樹脂,作為樹脂1174。因此,若對樹脂1174照射UV光,則樹脂1174硬化。藉由該硬化,與比較構造例2及3同樣,於樹脂1174,引起硬化收縮。
但,於比較構造例5之透鏡陣列基板1171中,不僅於位於複數個透鏡1173之間之基板1171之上側表面整體,亦於基板1171之下側表面之一定區域,形成有樹脂1174之薄層(樹脂溢出區域1175)。藉此,將透鏡陣列基板1171整體之翹曲之方向相抵消,而可提供一種將翹曲量進一步縮小之透鏡陣列基板。
<於比較構造例2至5中樹脂所帶來之作用之比較>
若總結於比較構造例2至5中樹脂所帶來之作用,則成為如下。
(1)於如比較構造例2及3般,於透鏡陣列基板之上表面整體配置有樹脂之層之構造之情形時,於配置有複數個透鏡之基板,產生翹曲。
圖46係模式性表示於如比較構造例2及3般,於透鏡陣列基板之上表面整體配置有樹脂之層之構造之圖,且係說明成為透鏡之樹脂所帶來之作用之圖。
如圖46A及B所示,於配置於透鏡陣列基板1211(省略透鏡及貫通孔之圖示)之上表面之光硬化性樹脂1212之層中,因用於硬化之UV光之照射,而產生硬化收縮。由此,於光硬化性樹脂1212之層內,產生起因於光硬化性樹脂1212之收縮方向之力。
另一方面,透鏡陣列基板1211本身即使照射UV光,亦不收縮或膨脹。即,於透鏡陣列基板1211本身,不產生起因於基板之力。其結果,透鏡陣列基板1211如圖46C所示般,向下翹成凸形狀。
(2)但,於如比較構造例4及5般,於透鏡陣列基板之上表面與下表面之兩者配置有樹脂之層之構造之情形時,因透鏡陣列基板之翹曲之方向相抵消,故可較比較構造例2及3將透鏡陣列基板之翹曲量縮小。
圖47係模式性表示於如比較構造例4及5般,於透鏡陣列基板之上表面與下表面之兩者配置有樹脂之層之構造之圖,且係說明成為透鏡之樹脂所帶來之作用之圖。
如圖47A及B所示,於配置於透鏡陣列基板1211之上表面之光硬化性樹脂1212之層中,因用於硬化之UV光之照射,而產生硬化收縮。由此,於配置於透鏡陣列基板1211之上表面之光硬化性樹脂1212之層內,產生起因於光硬化性樹脂1212之收縮方向之力。因此,於透鏡陣列基板1211之上表面側,作用使透鏡陣列基板1211向下翹成凸形狀之力。
相對於此,透鏡陣列基板1211本身即使照射UV光,亦不收縮或膨脹。即,於透鏡陣列基板1211本身,不產生起因於基板之力。
另一方面,於配置於透鏡陣列基板1211之下表面之光硬化性樹脂1212之層中,因用於硬化之UV光之照射,而產生硬化收縮。由此,於配置於透鏡陣列基板1211之下表面之光硬化性樹脂1212之層內,產生起因於光硬化性樹脂1212之收縮方向之力。因此,於透鏡陣列基板1211之下表面側,作用使透鏡陣列基板1211向上翹成凸形狀之力。
透鏡陣列基板1211之上表面側之使透鏡陣列基板1211向下翹成凸形狀之力、與透鏡陣列基板1211之下表面側之使透鏡陣列基板1211向上翹成凸形狀之力係以相抵消之方式作用。
其結果,如圖47C所示,比較構造例4及5之透鏡陣列基板1211之翹曲量較圖46C所示之比較構造例2及3之翹曲量降低。
如以上,使透鏡陣列基板翹曲之力及透鏡陣列基板之翹曲量受到:(1)於該透鏡陣列基板之上表面對該透鏡陣列基板作用之力之方向及大小,與(2)於該透鏡陣列基板之下表面對該透鏡陣列基板作用之力之方向及大小
之相對關係之影響。
<比較構造例6>
因此,例如考慮如圖48A所示般,將配置於透鏡陣列基板1211之上表面之光硬化性樹脂1212之層及面積、與配置於透鏡陣列基板1211之下表面之光硬化性樹脂1212之層及面積設為相同之透鏡陣列基板構造。將該透鏡陣列基板構造稱為用於與本構造比較之第6基板構造(以下,稱為比較構造例6。)。
於比較構造例6中,於配置於透鏡陣列基板1211之上表面之光硬化性樹脂1212之層內,產生起因於光硬化性樹脂1212之收縮方向之力。對透鏡陣列基板1211本身,不產生起因於基板之力。因此,於透鏡陣列基板1211之上表面側,作用使透鏡陣列基板1211向下翹成凸形狀之力。
另一方面,於配置於透鏡陣列基板1211之下表面之光硬化性樹脂1212之層內,產生起因於光硬化性樹脂1212之收縮方向之力。對透鏡陣列基板1211本身,不產生起因於基板之力。因此,於透鏡陣列基板1211之下表面側,作用使透鏡陣列基板1211向上翹成凸形狀之力。
使透鏡陣列基板1211翹曲之上述2個力較圖47A所示之構造進一步向相抵消之方向作用。其結果,使透鏡陣列基板1211翹曲之力及透鏡陣列基板1211之翹曲量較比較構造例4及5進一步降低。
<比較構造例7>
然而,實際上,構成組入於相機模組之積層透鏡構造體之附透鏡之基板之形狀並非全部相同。更具體而言,構成積層透鏡構造體之複數片附透鏡之基板彼此有時例如附透鏡之基板之厚度或貫通孔之大小不同、或形成於貫通孔之透鏡之厚度或形狀、體積等不同。進一步而言,形成於附透鏡之基板之上表面及下表面之光硬化性樹脂之膜厚等亦有時於各附透鏡之基板不同。
圖49係作為第7基板構造(以下,稱為比較構造例7。)之以3片附透鏡之基板之積層構成之積層透鏡構造體之剖視圖。於該積層透鏡構造體中,與圖48所示之比較構造例6同樣,設為將配置於各附透鏡之基板之上表面及下表面之光硬化性樹脂之層及面積形成為相同。
圖49所示之積層透鏡構造體1311係以3片附透鏡之基板1321至1323構成。
於以下,3片附透鏡之基板1321至1323之中,將正中之附透鏡之基板1321稱為第1附透鏡之基板1321,將最上層之附透鏡之基板1322稱為第2附透鏡之基板1322,將最下層之附透鏡之基板1323稱為第3附透鏡之基板1323。
配置於最上層之第2附透鏡之基板1322、與配置於最下層之第3附透鏡之基板1323係基板之厚度、及透鏡之厚度不同。
更具體而言,透鏡之厚度為第3附透鏡之基板1323形成為厚於第2附透鏡之基板1322,伴隨於此,基板之厚度亦為第3附透鏡之基板1323形成為厚於第2附透鏡之基板1322。
於第1附透鏡之基板1321與第2附透鏡之基板1322之接觸面、及第1 附透鏡之基板1321與第3附透鏡之基板1323之接觸面,遍及整面形成有樹脂1341。
3片附透鏡之基板1321至1323之貫通孔之剖面形狀係較基板之上表面基板之下表面更寬之所謂漸寬形狀。
參照圖50,對形狀不同之3片附透鏡之基板1321至1323所帶來之作用進行說明。
圖50A至C係模式性表示圖49所示之積層透鏡構造體1311之圖。
於如該積層透鏡構造體1311般,於第1附透鏡之基板1321之上表面與下表面,配置有基板之厚度不同之第2附透鏡之基板1322與第3附透鏡之基板1323之情形時,根據遍及3片附透鏡之基板1321至1323之接觸面整面存在之樹脂1341之層存在於積層透鏡構造體1311之厚度方向之哪一位置,而使該積層透鏡構造體1311翹曲之力、及積層透鏡構造體1311之翹曲量變化。
若不將遍及3片附透鏡之基板1321至1323之接觸面整面存在之樹脂1341之層通過積層透鏡構造體1311之中心線、即積層透鏡構造體1311之厚度方向之中點,相對於沿基板平面方向之線對稱地配置,則無法將由配置於第1附透鏡之基板1321之上表面與下表面之樹脂1341之硬化收縮產生之力之作用如圖48C所示般完全相抵消。其結果,積層透鏡構造體1311向某一方向翹曲。
例如,於將第1附透鏡之基板1321之上表面與下表面之2層樹脂1341較積層透鏡構造體1311之厚度方向之中心線向上側方向偏移而配置之情形時,若2層樹脂1341引起硬化收縮,則積層透鏡構造體1311如圖50C所示般,向下翹成凸形狀。
進而,於第2附透鏡之基板1322與第3附透鏡之基板1323中之厚度較薄之基板之貫通孔之剖面形狀為朝向第1附透鏡之基板1321之方向變大之形狀之情形時,透鏡變得缺損或破損之憂慮增加。
於圖49所示之例中,於第2附透鏡之基板1322與第3附透鏡之基板1323中之厚度較薄之第2附透鏡之基板1322之貫通孔之剖面形狀為朝向第1附透鏡之基板1321之方向變大之漸寬形狀。於此種形狀中,於第1附透鏡之基板1321之上表面與下表面之2層樹脂1341硬化收縮時,於積層透鏡構造體1311,如圖50C所示般作用向下翹成凸形狀之力,該力係如圖50D所示般,於第2附透鏡之基板1322,作為透鏡與基板分開之方向之力作用。由該作用,而第2附透鏡之基板1322之透鏡1332變得缺損或破損之憂慮增加。
其次,針對樹脂熱膨脹之情形加以思考。
<比較構造例8>
圖51係作為第8基板構造(以下,稱為比較構造例8。)之以3片附透鏡之基板之積層構成之積層透鏡構造體之剖視圖。於該積層透鏡構造體中,與圖48所示之比較構造例6同樣,設為將配置於各附透鏡之基板之上表面及下表面之光硬化性樹脂之層及面積形成為相同。
圖51之比較構造例8與圖49之比較構造例7之不同點在於,3片附透鏡之基板1321至1323之貫通孔之剖面形狀為較基板之上表面基板之下表面更窄之所謂漸窄形狀。
圖52A至C係模式性表示圖51所示之積層透鏡構造體1311之圖。
於使用者實際使用相機模組時,因伴隨動作之消耗電力之增大而相機之框體內之溫度上升,從而相機模組之溫度亦上升。因該溫度上升,而 於圖51之積層透鏡構造體1311中,配置於第1附透鏡之基板1321之上表面與下表面之樹脂1341熱膨脹。
即使將配置於第1附透鏡之基板1321之上表面與下表面之樹脂1341之面積與厚度如圖48A般設為相同,若不將遍及3片附透鏡之基板1321至1323之接觸面整面存在之樹脂1341之層通過積層透鏡構造體1311之中心線、即積層透鏡構造體1311之厚度方向之中點,相對於沿基板平面方向之線對稱地配置,則無法將由配置於第1附透鏡之基板1321之上表面與下表面之樹脂1341之熱膨脹產生之力之作用如圖48C所示般完全相抵消。其結果,積層透鏡構造體1311向某一方向翹曲。
例如,於將第1附透鏡之基板1321之上表面與下表面之2層樹脂1341較積層透鏡構造體1311之厚度方向之中心線向上側方向偏移而配置之情形時,若2層樹脂1341引起熱膨脹,則積層透鏡構造體1311如圖52C所示般,向上翹成凸形狀。
進而,於圖51所示之例中,於第2附透鏡之基板1322與第3附透鏡之基板1323中之厚度較薄之第2附透鏡之基板1322之貫通孔之剖面形狀為朝向第1附透鏡之基板1321之方向變小之漸窄形狀。於此種形狀中,於第1附透鏡之基板1321之上表面與下表面之2層樹脂1341熱膨脹時,於積層透鏡構造體1311,作用向上翹成凸形狀之力,該力係如圖52D所示般,於第2附透鏡之基板1322,作為透鏡與基板分開之方向之力作用。由該作用,而第2附透鏡之基板1322之透鏡1332變得缺損或破損之憂慮增加。
<本構造>
圖53係顯示採用本構造之包含3片附透鏡之基板1361至1363之積層透鏡構造體1371之圖。
圖53A係與圖49之積層透鏡構造體1311對應之構造,且係貫通孔之剖面形狀為所謂漸寬形狀之構造。另一方面,圖53B係與圖51之積層透鏡構造體1311對應之構造,且係貫通孔之剖面形狀為所謂漸窄形狀之構造。
圖54係為說明本構造所帶來之作用,而模式性顯示圖53之積層透鏡構造體1371之圖。
積層透鏡構造體1371係於正中央之第1附透鏡之基板1361之上方配置有第2附透鏡之基板1362,且於第1附透鏡之基板1361之下方配置有第3附透鏡之基板1363之構造。
配置於最上層之第2附透鏡之基板1362、與配置於最下層之第3附透鏡之基板1363係基板之厚度、及透鏡之厚度不同。更具體而言,透鏡之厚度為第3附透鏡之基板1363形成為厚於第2附透鏡之基板1362,伴隨於此,基板之厚度亦為第3附透鏡之基板1363形成為厚於第2附透鏡之基板1362。
於本構造之積層透鏡構造體1371中,使用基板彼此之直接接合,作為黏著附透鏡之基板彼此之手段。換言之,對所黏著之附透鏡之基板施加電漿活性處理,而將黏著之2片附透鏡之基板電漿接合。進而換言之,即於積層之2片附透鏡之基板各者之表面,形成氧化矽膜,且於使其與羥基鍵合後,將2片附透鏡之基板彼此貼合,並使其升溫而脫水縮合。如此,將2片附透鏡之基板藉由矽-氧共價鍵,直接接合。
因此,於本構造之積層透鏡構造體1371中,不使用利用樹脂之接著作為黏著附透鏡之基板彼此之手段。因此,於附透鏡之基板與附透鏡之基板之間,未配置透鏡形成用之樹脂或用於接著基板之樹脂。又,由於在附透鏡之基板之上表面或下表面未配置樹脂,故於附透鏡之基板之上表面或 下表面,不存在樹脂熱膨脹、或硬化收縮。
因此,於積層透鏡構造體1371中,即使於第1附透鏡之基板1351之上層及下層,配置透鏡之厚度、及基板之厚度不同之第2附透鏡之基板1362與第3附透鏡之基板1363,亦不產生如上述之各比較構造例1至8般之起因於硬化收縮之基板之翹曲、及起因於熱膨脹之基板之翹曲。
即,將附透鏡之基板藉由直接接合黏著之本構造帶來即使於在上方與下方積層有透鏡之厚度、及基板之厚度不同之附透鏡之基板之情形時,亦能夠較上述之各比較構造例1至8更大幅度地抑制基板之翹曲之作用及效果。
<16.各種變化例>
以下對上述之各實施形態之其他變化例進行說明。
<16.1附光學光圈之覆蓋玻璃>
於積層透鏡構造體11之上部,有為保護積層透鏡構造體11之透鏡21之表面,而設置覆蓋玻璃之情形。於該情形時,可使覆蓋玻璃具有光學光圈之功能。
圖55係顯示覆蓋玻璃具備光學光圈之功能之第1構成之圖。
於圖55所示之覆蓋玻璃具備光學光圈之功能之第1構成例中,於積層透鏡構造體11之上部進而積層有覆蓋玻璃1501。且,於積層透鏡構造體11與覆蓋玻璃1501之外側,配置有透鏡鏡筒74。
於覆蓋玻璃1501之附透鏡之基板41a側之面(圖中,覆蓋玻璃1501之下表面),形成有遮光膜1502。此處,距各附透鏡之基板41a至41e之透鏡中心(光學中心)之特定範圍成為未形成遮光膜1502之開口部1503,開口部1503作為光學光圈發揮功能。藉此,例如省略以圖13之相機模組1D等構 成之光圈板51。
圖56係說明形成有遮光膜1502之覆蓋玻璃1501之製造方法之圖。
首先,如圖56A所示,例如於晶圓或面板形態之覆蓋玻璃(玻璃基板)1501W之一側之面整體,藉由旋轉塗佈光吸收材料,而形成遮光膜1502。作為成為遮光膜1502之光吸收材料,例如使用內添有碳黑顏料、或鈦黑顏料之具有光吸收性之樹脂。
其次,藉由利用光微影技術或蝕刻處理去除遮光膜1502之特定區域,而如圖56B所示般,以特定之間隔形成複數個開口部1503。開口部1503之配置係與圖23之載體基板81W之貫通孔83之配置1對1對應。另,作為遮光膜1502與開口部1503之另一形成方法之例,亦可使用對除去開口部1503後之區域藉由噴墨噴射成為遮光膜1502之光吸收材料之方法。
將由以上之方式製造之基板狀態之覆蓋玻璃1501W、與同樣為基板狀態之複數片附透鏡之基板41W彼此貼合後,藉由活用刀片或雷射等之切割等單片化。藉此,完成圖55所示之積層有具備光圈功能之覆蓋玻璃1501之積層透鏡構造體11。
如此,藉由作為半導體製程之一步驟,形成覆蓋玻璃1501,可避免於在另一組裝步驟形成覆蓋玻璃之情形時所憂慮之廢物缺陷之產生。
根據圖55所示之第1構成例,因藉由塗佈形成光學光圈,故可將遮光膜1052以1μm左右之膜厚形成,而可避免起因於因光圈機構具有特定厚度而遮擋入射光之光學性能之劣化(周邊部之減光)。
另,於上述之例中,雖將覆蓋玻璃1501W之單片化於與複數片附透鏡之基板41W接合後進行,但亦可於接合前進行。換言之,即具備遮光膜1502之覆蓋玻璃1501與5片附透鏡之基板41a至41e之接合既可以晶圓級進 行,亦可以晶片級進行。
遮光膜1502之表面亦可設為粗糙。於該情形時,因可減少形成有遮光膜1502之覆蓋玻璃1501表面之表面反射,且使遮光膜1502之表面積增大,故可使覆蓋玻璃1501與附透鏡之基板41之接合強度提高。
作為將遮光膜1502之表面設為粗糙面之方法,有例如、於塗佈成為遮光膜1502之光吸收材料後,藉由蝕刻等加工成粗糙面之方法,於將塗佈光吸收材料前之覆蓋玻璃1501形成為粗糙面後,塗佈光吸收材料之方法,藉由凝聚之光吸收材料於成膜後使表面產生凹凸之方法,藉由包含固體成分之光吸收材料於成膜後使表面產生凹凸之方法等。
又,於遮光膜1502與覆蓋玻璃1501之間,亦可形成抗反射膜。
藉由覆蓋玻璃1501兼用作光圈之支持基板,可將相機模組1之尺寸小型化。
圖57係顯示覆蓋玻璃具備光學光圈之功能之第2構成之圖。
於圖57所示之覆蓋玻璃具備光學光圈之功能之第2構成例中,將覆蓋玻璃1501配置於透鏡鏡筒74之開口部之位置。其他構成與圖55所示之第1構成例相同。
圖58係顯示覆蓋玻璃具備光學光圈之功能之第3構成之圖。
於圖58所示之覆蓋玻璃具備光學光圈之功能之第3構成例中,將遮光膜1502形成於覆蓋玻璃1501之上表面,換言之即與附透鏡之基板41a相反側。其他構成與圖55所示之第1構成例相同。
另,於圖57所示之於透鏡鏡筒74之開口部配置覆蓋玻璃1501之構成中,亦可將遮光膜1502形成於覆蓋玻璃1501之上表面。
<16.2利用貫通孔之光圈形成>
其次,對取代上述之使用光圈板51或覆蓋玻璃1501之光圈,將附透鏡之基板41之貫通孔83之開口本身設為光圈機構之例進行說明。
圖59A係顯示將貫通孔83之開口本身設為光圈機構之第1構成例之圖。
另,於圖59之說明中,僅對與圖58所示之積層透鏡構造體11不同之部分進行說明,而適當省略相同部分之說明。又,於圖59中,為避免圖變繁瑣,僅對說明所需之符號予以圖示。
圖59A所示之積層透鏡構造體11f係設為將構成圖58所示之積層透鏡構造體11之5片附透鏡之基板41a至41e中之位於最靠近光入射側、且距受光元件12最遠之位置之附透鏡之基板41a置換為附透鏡之基板41f之構成。
若將附透鏡之基板41f與圖58之附透鏡之基板41a比較,則於圖58之附透鏡之基板41a中,上表面之孔徑形成為大於下表面之孔徑,相對於此,於圖59之附透鏡之基板41f中,上表面之孔徑D1形成為小於下表面之孔徑D2。即,附透鏡之基板41f之貫通孔83之剖面形狀形成為所謂漸寬形狀。
形成於附透鏡之基板41f之貫通孔83之透鏡21之最表面之高度位置形成為低於圖59A中以一點鏈線顯示之附透鏡之基板41f之最上面之位置。
於積層透鏡構造體11f中,藉由複數片附透鏡之基板41中之最上層之附透鏡之基板41f之貫通孔83之光入射側之孔徑成為最小,而該貫通孔83之孔徑最小之部分(孔徑D1之部分)作為限制入射光之光線之光學光圈發揮功能。
圖59B係顯示將貫通孔83之開口本身設為光圈機構之第2構成例之圖。
圖59B所示之積層透鏡構造體11g係設為依然將構成圖58所示之積層透鏡構造體11之5片附透鏡之基板41a至41e中之最上層之附透鏡之基板41a置換為附透鏡之基板41g之構成。且,設為於附透鏡之基板41g之進而上方,積層有基板1511之構成。
附透鏡之基板41g之貫通孔83之孔徑與圖59A所示之附透鏡之基板41f同樣,形成為光入射側較小之漸寬形狀。基板1511係具有貫通孔83、但不保持透鏡21之基板。附透鏡之基板41g與基板1511之貫通孔83之剖面形狀均形成為所謂漸寬形狀。
藉由於附透鏡之基板41g之上積層基板1511,而入射入射光之平面區域較圖59A所示之附透鏡之基板41f進一步縮窄。基板1511之上表面之孔徑D3構成為小於透鏡21之曲面部分(透鏡部91)之直徑D4。藉此,基板1511之貫通孔83之孔徑最小之部分(孔徑D3之部分)作為限制入射光之光線之光學光圈發揮功能。
光學光圈之位置位於距積層透鏡構造體11g中之最上面之透鏡21儘可能分開之位置可離開射出瞳位置,抑制陰影。
如圖59B所示,藉由於5片附透鏡之基板41b至41e及41g之進而上方積層基板1511,可將光學光圈之位置設為自積層透鏡構造體11g之中成為最上面之透鏡21之附透鏡之基板41g之透鏡21向光入射方向之相反方向大幅度離開之位置,而可抑制陰影。
圖59C係顯示將貫通孔83之開口本身設為光圈機構之第3構成例之圖。
圖59C所示之積層透鏡構造體11h係設為於構成圖58所示之積層透鏡構造體11之5片附透鏡之基板41a至41f中之附透鏡之基板41a之進而上方, 積層有基板1512之構成。
基板1512係具有貫通孔83、但不保持透鏡21之基板。基板1512之貫通孔83係孔徑於基板1512之最上面與最下面不同,且上表面之孔徑D5小於下表面之孔徑D5之所謂漸寬形狀。又,基板1512之最上面之孔徑D5構成為小於透鏡21之曲面部分(透鏡部91)之直徑。藉此,該貫通孔83之孔徑最小之部分(孔徑D5之部分)作為限制入射光之光線之光學光圈發揮功能。另,作為基板1512之形狀之另一例,亦可為上表面之孔徑D5大於下表面之孔徑D5之所謂漸窄形狀。
另,圖59A至C之例均為於構成積層透鏡構造體11之複數片附透鏡之基板41之中,將最上面(距受光元件12最離開之位置)之附透鏡之基板41f之貫通孔83之孔徑構成為光學光圈,或將配置於最上層之基板1511或1512之貫通孔83之孔徑構成為光學光圈之例。
然而,亦可將構成積層透鏡構造體11之複數片附透鏡之基板41中之最上面以外之附透鏡之基板41b至41e任一者貫通孔83之孔徑如上述之附透鏡之基板41f或基板1511或1512般構成,而使其作為光學光圈發揮功能。
但,就抑制陰影之觀點而言,較佳如圖59A至C所示般,將具有光學光圈之功能之附透鏡之基板41配置於最上層、或儘可能上方(距受光元件12最遠之位置)。
如以上,藉由構成積層透鏡構造體11之複數片附透鏡之基板41中之特定之1片附透鏡之基板41、或未保持透鏡21之基板1511或1512兼備作為光學光圈之功能,而可將作為積層透鏡構造體11及相機模組1之尺寸小型化。
藉由將光學光圈設為與保持透鏡21之附透鏡之基板41一體,而最靠近對成像性能賦予影響之光圈之透鏡曲面與光學光圈之位置精度提高,從而可使成像性能提高。
<16.3利用金屬接合之晶圓級接合>
於上述之實施形態中,雖將於貫通孔83形成有透鏡21之附透鏡之基板41W彼此藉由電漿接合貼合,但亦可使用金屬接合貼合。
圖60係說明使用金屬接合之晶圓級之貼合之圖。
首先,如圖60A所示,準備於形成有複數個之貫通孔1532之各者形成有透鏡1533之基板狀態之附透鏡之基板1531W-a,且於該附透鏡之基板1531W-a之上側表面與下側表面,成膜抗反射膜1535。
該附透鏡之基板1531W係對應於上述之基板狀態之附透鏡之基板41W者。又,抗反射膜1535係對應於上述之上側表面層122與下側表面層123者。
此處,假定於形成於附透鏡之基板1531W-a之上側表面之抗反射膜1535之一部分,混入有異物1536之狀態。附透鏡之基板1531W-a之上側表面係於後述之圖60D之步驟,與附透鏡之基板1531W-b接合之面。
其次,如圖60B所示,於附透鏡之基板1531W-a之成為與附透鏡之基板1531W-b之接合面之上側表面形成金屬膜1542。此時,形成有透鏡1533之部分之貫通孔1532之部分係為不形成金屬膜1542,而使用金屬遮罩1541遮住。
作為金屬膜1542之材料,可使用例如作為金屬接合經常使用之Cu。作為金屬膜1542之成膜方法,可使用可於低溫下形成之蒸鍍法或濺鍍法、離子鍍層法等PVD法。
另,作為金屬膜1542之材料,除Cu以外,亦可使用Ni、Co、Mn、Al、Sn、In、Ag、Zn等、或該等2種以上之合金材料。又,只要為容易塑性變形之金屬材料,亦可為例示以外之材料。
作為金屬膜1542之成膜法,除利用PVD法與金屬遮罩之形成以外,亦可使用例如採用銀粒子等金屬奈米粒子之噴墨法。
其次,如圖60C所示,作為接合前之預處理,藉由將於開放於大氣時形成於金屬膜1542之表面之氧化被膜使用甲酸、氫氣、氫自由基等還原性氣體去除,而將金屬膜1542之表面潔淨化。
作為金屬膜1542之表面之潔淨化之方法,除還原性氣體以外,亦可使電漿中之Ar離子入射於金屬表面而藉由濺鍍作用物理性去除氧化被膜。
藉由與上述之圖60A至C相同之步驟,準備接合之另一基板狀態之附透鏡之基板1531W即附透鏡之基板1531W-b。
然後,如圖60D所示,若於將附透鏡之基板1531W-b之接合面、與附透鏡之基板1531W-a之接合面以相對之方式配置,並進行定位後,施加適當之壓力,則將附透鏡之基板1531W-a之金屬膜1542與附透鏡之基板1531W-b之金屬膜1542藉由金屬接合而接合。
此處,於附透鏡之基板1531W-b之成為接合面之附透鏡之基板1531W-b之下側表面,亦設為例如混入有異物1543。然而,即使存在異物1536或異物1543,因使用容易塑性變形之金屬材料作為金屬膜1542,故金屬膜1542變形,而將附透鏡之基板1531W-a與附透鏡之基板1531W-b接合。
最後,如圖60E所示,藉由施加熱處理,而促進金屬之原子間接合、結晶化,提高接合強度。另,亦可省略該熱處理步驟。
由以上之方式,可將於複數個貫通孔1532各者形成有透鏡1533之附透鏡之基板1531W彼此使用金屬接合貼合。
另,亦可為獲得附透鏡之基板1531W-a與金屬膜1542之接合,而於附透鏡之基板1531W-a與金屬膜1542之間形成成為密接層之膜。於該情形時,密接層係形成於抗反射膜1535之上側(外側),換言之即抗反射膜1535與金屬膜1542之間。作為密接層,可使用例如Ti、Ta、或W等。又,亦可使用Ti、Ta、W等之氮化物或氧化物、或氮化物與氧化物之積層構造。關於附透鏡之基板1531W-b與金屬膜1542之接合亦相同。
又,成膜於附透鏡之基板1531W-a之金屬膜1542之材料、與成膜於附透鏡之基板1531W-b之金屬膜1542之材料亦可設為不同之金屬材料。
藉由將基板狀態之附透鏡之基板1531W彼此使用楊氏模數較低容易塑性變形之金屬接合貼合,而即使為於接合面存在異物之情形,亦可藉由利用下按壓力變形而獲得接觸面積。
於將使用金屬接合貼合之複數片附透鏡之基板1531W單片化而設為積層透鏡構造體11,並組入於上述之相機模組1之情形時,金屬膜1542因密封性優異,而可防止來自側面之光或水分之流入,故可製作可靠性較高之積層透鏡構造體11及相機模組1。
<16.4使用高濃度摻雜基板之附透鏡之基板>
圖61係作為上述之附透鏡之基板41a之變化例之附透鏡之基板41a'-1與41a'-2之剖視圖。
於圖61之附透鏡之基板41a'-1與41a'-2之說明中,省略與上述之附透鏡之基板41a相同部分之說明,僅對不同之部分進行說明。
圖61A所示之附透鏡之基板41a'-1係於矽基板,高濃度地擴散(離子 植入)有B(硼)之高濃度摻雜基板。附透鏡之基板41a'-1之雜質濃度係例如1×1019cm-3左右之濃度,而附透鏡之基板41a'-1可有效地吸收較廣範圍之波長之光。
附透鏡之基板41a'-1之其他構成與上述之附透鏡之基板41a相同。
另一方面,於圖61B所示之附透鏡之基板41a'-2中,矽基板之區域分成雜質濃度不同之2個區域、即第1區域1551與第2區域1552。
第1區域1551自光入射之側之基板表面形成至特定之深度(例如,3μm左右)。第1區域1551之雜質濃度例如為1×1016cm-3左右之高濃度。第2區域1552係其雜質濃度設為例如1×1010cm-3左右,設為低於第1濃度之濃度。擴散(離子植入)於第1區域1551及第2區域1552之離子例如與附透鏡之基板41a'-1同樣為B(硼)。
附透鏡之基板41a'-2之成為光入射側之第1區域1551之雜質濃度為1×1016cm-3左右,低於附透鏡之基板41a'-1之雜質濃度(例如1×1019cm-3)。因此,於附透鏡之基板41a'-2中,形成於貫通孔83之側壁之遮光膜121'之膜厚形成為厚於圖61A之附透鏡之基板41a'-1之遮光膜121。例如,若附透鏡之基板41a'-1之遮光膜121之膜厚為2μm,則附透鏡之基板41a'-2之遮光膜121'之膜厚形成為5μm。
附透鏡之基板41a'-2之其他構成與上述之附透鏡之基板41a相同。
如以上,藉由採用高濃度摻雜基板,作為附透鏡之基板41a'-1及41a'-2,因可以基材本身吸收透過遮光膜121或上側表面層122到達至基板之光,故可抑制反射光。摻雜量由於只要可吸收到達至基板之光即可,故可根據到達至基板之光量、或遮光膜121或上側表面層122之膜厚適當設定。
又,因使用容易處理之矽基板作為附透鏡之基板41a'-1及41a'-2,故操作較容易。因可以基材本身吸收透過遮光膜121或上側表面層122到達至基板之光,故可將遮光膜121或上側表面層122、所積層之基板本身之厚度等薄化,而實現薄膜化、構造之簡便化。
另,於附透鏡之基板41a'-1及41a'-2中,於矽基板摻雜之離子並不限於B(硼),此外,例如亦可為磷(P)、砷(As)、或銻(Sb)等,進一步而言,只要為可採用增加光吸收量之能帶構造之元素即可。
又,對於構成積層透鏡構造體11之其他附透鏡之基板41b至41e,亦可設為與附透鏡之基板41a'-1及41a'-2同樣之構成。
<製造方法>
參照圖62,對圖61A所示之附透鏡之基板41a'-1之製造方法進行說明。
首先,如圖62A所示,準備高濃度地擴散(離子植入)有B(硼)之基板狀態之高濃度摻雜基板1561W。高濃度摻雜基板1561W之雜質濃度例如為1×1019cm-3左右。
其次,如圖62B所示,於高濃度摻雜基板1561W之特定位置,藉由蝕刻,形成貫通孔83。於圖62中,雖受紙面之制約,而僅顯示有2個貫通孔83,但實際上,於高濃度摻雜基板1561W之平面方向,形成有多個貫通孔83。
其次,如圖62C所示,於貫通孔83之側壁,藉由利用噴塗塗佈黑色之抗蝕劑材料,而成膜遮光膜121。
然後,如圖62D所示,藉由使用參照圖23所說明之上模201與下模181之加壓成型,於貫通孔83之內側形成包含透鏡21之透鏡樹脂部82。
隨後,雖省略圖示,但於高濃度摻雜基板1561W與透鏡樹脂部82之上側表面成膜上側表面層122,且於高濃度摻雜基板1561W與透鏡樹脂部82之下側表面成膜下側表面層123,並單片化。藉此,完成圖61A所示之附透鏡之基板41a'-1。
其次,參照圖63,對圖61B所示之附透鏡之基板41a'-2之製造方法進行說明。
首先,如圖63A所示,準備以特定之濃度擴散(離子植入)有B(硼)之基板狀態之摻雜基板1571W。摻雜基板1571W之雜質濃度例如為1×1010cm-3左右。
其次,如圖63B所示,於摻雜基板1571W之特定位置,藉由蝕刻,形成貫通孔83。於圖63中,雖受紙面之制約,而僅顯示有2個貫通孔83,但實際上,於摻雜基板1571W之平面方向,形成有多個貫通孔83。
其次,如圖63C所示,自摻雜基板1571W之光入射面側之基板表面至特定之深度(例如,3μm左右),離子植入B(硼)之後,以900℃施加熱處理。其結果,如圖63D所示,形成雜質濃度為高濃度之第1區域1551、與較其低濃度之第2區域1552。
然後,如圖63E所示,於貫通孔83之側壁,藉由利用噴塗塗佈黑色之抗蝕劑材料,而成膜遮光膜121。
又,如圖63F所示,藉由使用參照圖23所說明之上模201與下模181之加壓成型,於貫通孔83之內側形成包含透鏡21之透鏡樹脂部82。
隨後,雖省略圖示,但於摻雜基板1571W與透鏡樹脂部82之上側表面成膜上側表面層122,且於摻雜基板1571W與透鏡樹脂部82之下側表面成膜下側表面層123,並單片化。藉此,完成圖61B所示之附透鏡之基板 41a'-2。
可將構成圖1所示之積層透鏡構造體11之附透鏡之基板41a至41e之各者設為如圖61所示般之高濃度摻雜基板。藉此,可提高基板本身之光吸收量。
<17.受光元件之像素排列與光圈板之構造與用途說明>
其次,對圖10與圖11所示之相機模組1具備之受光元件12之像素排列與光圈板51之構成進一步進行說明。
圖64係表示圖10與圖11所示之相機模組1所具備之光圈板51之平面形狀之例之圖。
光圈板51具備藉由將光吸收或反射而防止入射之遮蔽區域51a、與使光透過之開口區域51b。
圖10與圖11所示之相機模組1所具備之4個光學單元13係光圈板51之開口區域51b之開口徑如圖64A至D所示般,既可為4個均為相同大小,亦可為不同大小。圖64之圖中之「L」、「M」、「S」表示開口區域51b之開口徑為「大」、「中」、「小」。
於圖64A記載之光圈板51係4個開口區域51b之開口徑相同。
於圖64B記載之光圈板51係2個開口區域51b之開口徑之大小為「中」即標準之光圈之開口。其係例如圖13所記載般,將光圈板51略微重疊於附透鏡之基板41之透鏡21即可,換言之,即光圈板51之開口區域51b略小於透鏡21之直徑即可。且,於圖64B記載之光圈板51之其餘2個開口區域51b係開口徑之大小為「大」,即開口徑大於先前所述之開口徑之大小為「中」者。該較大之開口區域51b於例如被攝體之照度較低之情形時,帶來使更多之光入射於相機模組1所具備之受光元件12之作用。
於圖64C記載之光圈板51,2個開口區域51b之開口徑之大小為「中」,即標準之光圈之開口。且,於圖64C記載之光圈板51之其餘2個開口區域51b係開口徑之大小為「小」,即開口徑小於先前所述之開口徑之大小為「中」者。該較小之開口區域51b於例如被攝體之照度較高,若使來自其之光通過開口徑之大小為「中」之開口區域51b入射於相機模組1所具備之受光元件12,於受光元件12所具備之光電轉換部產生之電荷會超過光電轉換部之飽和電荷量般之情形時,可帶來減少入射至受光元件12之光量之作用。
於圖64D記載之光圈板51,2個開口區域51b之開口徑之大小為「中」,即標準之光圈之開口。且,於圖64D記載之光圈板51之其餘2個開口區域51b係開口徑之大小1個為「大」,1個為「小」。該等開口區域51b帶來圖64B及圖64C所述之開口徑之大小為「大」及「小」之開口區域51b相同之作用。
圖65顯示圖10與圖11所示之相機模組1之受光區域之構成。
如圖65所示,相機模組1具備4個光學單元13(未圖示)。且,將入射至該等4個光學單元13之光以與各者之光學單元13對應之受光機構分別接收。因此,圖10與圖11所示之相機模組1係受光元件12具備4個受光區域1601a1至1601a4。
另,作為關於受光手段之另一實施形態,亦可為受光元件12具備1個接收入射至相機模組1所具備之1個光學單元13之光之受光區域1601a,且相機模組1具備相機模組1所具備之光學單元13之個數之量,例如於圖10與圖11記載之相機模組1之情形時為4個此種受光元件12之構成。
受光區域1601a1至1601a4具備將分別接收光之像素排列成陣列狀之 像素陣列1601b1至1601b4。
另,於圖65中,為簡單起見,而省略用於驅動像素陣列所具備之像素之電路及用於讀取像素之電路,並將受光區域1601a1至1601a4、與像素陣列1601b1至1601b4以相同大小顯示。
受光區域1601a1至1601a4所具備之像素陣列1601b1至1601b4,具備包含複數個像素之像素之重複單位1602c1至1602c4,藉由將該等重複單位1602c1至1602c4於縱方向與橫方向之兩者上各自呈矩陣狀排列複數個,而構成像素陣列1601b1至1601b4。
於受光元件12所具備之4個受光區域1601a1至1601a4上,分別配置有光學單元13。4個光學單元13具備光圈板51作為其一部分。於圖65中,作為光圈板51之4個開口區域51b之開口徑之一例,以虛線顯示圖64D所示之光圈板51之開口區域51b。
於圖像之信號處理之領域,作為藉由對原圖像應用而獲得解析度較高之圖像之技術,已知有超解析技術。其一例揭示於例如日本專利特開2015-102794號公報。
圖10與圖11記載之相機模組1可採取於圖13、圖16、圖17、或圖34、圖35、圖37、圖55記載之構造,作為剖面構造。
該等相機模組1係對於模組1之成為光之入射面之表面之縱方向與橫方向之各者各配置有2個之光學單元13所具備之光軸於相同方向延伸。藉此,可一面光軸朝向相同方向,一面使用不同之受光區域,獲得未必相同之複數張圖像。
此種構造之相機模組1適於基於獲得之複數張原圖像,對該等利用超解析技術,而獲得解析度較自1個光學單元13獲得之1張圖像更高之圖 像。
圖66至圖69顯示圖10與圖11所示之相機模組1之受光區域之像素之構成例。
另,於圖66至圖69中,G之像素表示接收綠色波長之光之像素,R之像素表示接收紅色波長之光之像素,B之像素表示接收藍色波長之光之像素。C之像素表示接收可見光之全波長區域之光之像素。
圖66顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第1例。
於4個像素陣列1601b1至1601b4中,分別於列方向及行方向上重複排列有重複單位1602c1至1602c4。圖66之重複單位1602c1至1602c4各者係以R、G、B、G之像素構成。
圖66之像素排列帶來適於將來自被照射可見光之被攝體之入射光分光為紅色(R)、綠色(G)、藍色(B)而獲得包含RGB3色之圖像之作用。
圖67顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第2例。
圖67之像素排列與圖66之像素排列係構成重複單位1602c1至1602c4之各像素接收之光之波長(顏色)之組合不同。於圖67中,重複單位1602c1至1602c4各者係以R、G、B、C之像素構成。
圖67之像素排列具備未如上述般分光為R、G、B而接收可見光之全波長區域之光之C之像素。C之像素接收之光量多於接收分光後之一部分之光之R、G、B之像素。因此,該構成帶來即使於例如被攝體之照度較低之情形時,亦可使用以該受光量較多之C之像素獲得之資訊、例如被攝體之亮度資訊,獲得明亮度更高之圖像或關於亮度之階調性更多之圖像之作 用。
圖68顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第3例。
於圖68中,重複單位1602c1至1602c4各者係以R、C、B、C之像素構成。
於圖68記載之像素之重複單位1602c1至1602c4不具備G之像素。相當於G之像素之資訊係藉由運算處理來自C、R、及B之像素之資訊而獲得。例如,藉由自C之像素之輸出值減去R之像素與B像素之輸出值而獲得。
於圖68記載之像素之重複單位1602c1至1602c4具備成為於圖67記載之重複單位1602c1至1602c4之2倍之2個接收全波長區域之光之C之像素。又,以圖68所具備之像素陣列1601b之C之像素之間距於像素陣列1601b之縱方向與橫方向之兩者上,成為圖67所具備之像素陣列1601b之C之像素之間距之2倍之方式,對圖68記載之像素之重複單位1602c1至1602c4,將2個C之像素配置於重複單位1602c之外形線之對角線方向。
因此,於圖68記載之構成於例如被攝體之照度較低之情形時,可將自受光量較多之C之像素獲得之資訊、例如亮度資訊,與圖67記載之構成相比,以2倍之解析度獲得,藉此,帶來可獲得解析度高2倍且鮮明之圖像之作用。
圖69顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第4例。
於圖69中,重複單位1602c1至1602c4各者係以R、C、C、C之像素構成。
例如,於搭載於汽車而拍攝前方之相機用途之情形時,往往有不必為彩色圖像之情形。要求可識別於前方行駛之汽車之紅色之煞車燈與設置於道路之交通信號燈之紅信號、且可識別其他被攝體之形狀之情形較多。
因此,於圖69記載之構成帶來如下作用:藉由具備R像素而識別汽車之紅色之煞車燈與設置於道路之交通信號燈之紅信號,且藉由較於圖68記載之像素之重複單位1602c具備更多數量之受光量較多之C之像素,而即使於例如被攝體之照度較低之情形時,亦可獲得解析度更高且鮮明之圖像。
另,具備圖66至69所示之受光元件12之相機模組1係其任一者均可使用圖64A至D記載之任一者作為光圈板51之形狀。
具備圖66至69所示之受光元件12之任一者、與圖64A至D任一者之光圈板51之於圖10與圖11記載之相機模組1係對於相機模組1之成為光之入射面之表面之縱方向與橫方向之各者各配置有2個之光學單元13所具備之光軸於相同方向延伸。
此種構造之相機模組1帶來對獲得之複數張原圖像應用超解析技術,而可獲得解析度更高之圖像之作用。
圖70顯示圖66所示之像素排列之變化例。
圖66之重複單位1602c1至1602c4係以R、G、B、G之像素構成,且同色之2個G之像素之構造相同,相對於此,於圖70中,重複單位1602c1至1602c4係以R、G1、B、G2之像素構成,且於同色之2個G之像素即G1之像素與G2之像素,像素之構造不同。
G1之像素與G2之像素係作為像素所具備之信號產生手段(例如二極體),G2之像素較G1之像素具備其適當之動作界限更高者(例如飽和電荷 量較大者)。且,像素所具備之產生信號之轉換手段(例如電荷電壓轉換電容)之大小亦為G2之像素較G1之像素具備更大者。
藉由該等構成,G2之像素由於將平均時間單位產生一定量之信號(例如電荷)之情形之輸出信號抑制為低於G1之像素,且飽和電荷量較大,故例如即使於被攝體之照度較高之情形時,像素亦不會達至動作界限,藉此,帶來可獲得具有較高之階調性之圖像之作用。
另一方面,G1之像素因於將平均時間單位產生一定量之信號(例如電荷)之情形時,可獲得大於G2之像素之輸出信號,故帶來例如即使於被攝體之照度較低之情形時,亦可獲得具有較高之階調性之圖像之作用。
於圖70記載之受光元件12由於具備此種G1之像素與G2之像素,故帶來可於較廣之照度範圍內獲得具有較高階調性之圖像、所謂可獲得動態範圍較廣之圖像之作用。
圖71顯示圖68之像素排列之變化例。
圖68之重複單位1602c1至1602c4係以R、C、B、C之像素構成,且同色之2個C之像素之構造相同,相對於此,於圖71中,重複單位1602c1至1602c4係以R、C1、B、C2之像素構成,且於同色之2個C之像素即C1之像素與C2之像素,像素之構造不同。
C1之像素與C2之像素亦作為像素所具備之信號產生手段(例如二極體),C2之像素較C1之像素具備其動作界限更高者(例如飽和電荷量較大者)。且,像素所具備之產生信號之轉換手段(例如電荷電壓轉換電容)之大小亦為C2之像素較C1之像素具備更大者。
圖72顯示圖69之像素排列之變化例。
圖69之重複單位1602c1至1602c4係以R、C、C、C之像素構成,且 同色之3個C之像素之構造相同,相對於此,於圖72中,重複單位1602c1至1602c4係以R、C1、C2、C3之像素構成,且於同色之3個C之像素即C1至C3之像素,像素之構造不同。
例如,C1至C3之像素亦作為像素所具備之信號產生手段(例如二極體),C2之像素較C1之像素、且C3之像素較C2之像素具備其動作界限更高者(例如飽和電荷量較大者)。且,像素所具備之產生信號之轉換手段(例如電荷電壓轉換電容)之大小亦為C2之像素較C1之像素、C3之像素較C2之像素具備更大者。
於圖71及圖72記載之受光元件12由於具備上述之構成,故與圖70記載之受光元件12同樣,帶來可於較廣之照度範圍內獲得具有較高階調性之圖像、所謂可獲得動態範圍較廣之圖像之作用。
作為具備於圖70至圖72記載之受光元件12之相機模組1之光圈板51之構成,可採用圖64A至D所示之各種光圈板51之構成、或該等之變化例。
具備圖70至圖72所示之受光元件12之任一者、與圖64A至D任一者之光圈板51之於圖10與圖11記載之相機模組1係對於相機模組1之成為光之入射面之表面之縱方向與橫方向之各者各配置有2個之光學單元13所具備之光軸於相同方向延伸。
此種構造之相機模組1帶來對獲得之複數張原圖像應用超解析技術,而可獲得解析度更高之圖像之作用。
圖73A顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第5例。
受光元件12所具備之4個像素陣列1601b1至1601b4並非一定如上述般為相同之構造,亦可如圖73A所示般為不同之構造。
於圖73A所示之受光元件12中,像素陣列1601b1與像素陣列1601b4之構造相同,構成像素陣列1601b1與1601b4之重複單位1602c1與1602c4之構造亦相同。
相對於此,像素陣列1601b2與像素陣列1601b3之構造不同於像素陣列1601b1與像素陣列1601b4。具體而言,像素陣列1601b2與像素陣列1601b3之重複單位1602c2與1602c3所包含之像素尺寸大於像素陣列1601b1與像素陣列1601b4之重複單位1602c1與1602c4之像素尺寸。進一步而言,像素所包含之光電轉換部之大小較大。由於像素尺寸較大,故重複單位1602c2與1602c3之區域尺寸亦大於重複單位1602c1與1602c4之區域尺寸。因此,像素陣列1601b2與像素陣列1601b3同像素陣列1601b1與像素陣列1601b4相比,雖為相同面積,但以更少像素數構成。
作為具備圖73A之受光元件12之相機模組1之光圈板51之構成,可採用圖64A至C所示之各種光圈板51之構成、或圖73B至D所示之光圈板51之構成、或該等之變化例。
一般而言,使用較大像素之受光元件帶來較使用較小像素之受光元件,可獲得信號雜訊比(S/N(Signal/Noise)比)更佳之圖像之作用。
例如於信號之讀出電路或放大讀出之信號之電路之雜訊之大小係於使用較大像素之受光元件與使用較小像素之受光元件幾乎相同,相對於此,以像素所具備之信號產生部產生之信號之大小係像素越大則越變大。
因此,使用較大像素之受光元件帶來較使用較小像素之受光元件,可獲得信號雜訊比(S/N比)更佳之圖像之作用。
另一方面,若像素陣列之大小相同,則使用較小像素之受光元件較使用較大像素之受光元件解析度變高。
因此,使用較小像素之受光元件帶來較使用較大像素之受光元件,可獲得解析度更高之圖像之作用。
於圖73A記載之受光元件12所具備之上述之構成帶來如下作用:於例如、由於被攝體之照度較高而於受光元件12中可獲得較大信號之情形時,使用像素尺寸較小且解析度較高之受光區域1601a1與1601a4,可獲得解析度較高之圖像,進而藉由對該等2張圖像應用超解析技術而亦獲得解析度較高之圖像。
又,亦帶來如下作用:於由於被攝體之照度較低而於受光元件12中無法獲得較大信號,因此,有圖像之S/N比下降之憂慮之情形時,使用可獲得S/N比較高之圖像之受光區域1601a2與1601a3,可獲得S/N比較高之圖像,進而藉由對該等2張圖像應用超解析技術而亦獲得解析度較高之圖像。
於該情形時,具備圖73A所示之受光元件12之相機模組1亦可使用圖73B至D所記載之光圈板51之形狀相關之3片之中、例如於圖73B所記載之光圈板51之形狀,作為光圈板51之形狀。
圖73B至D所記載之光圈板51之形狀相關之3片之中,例如圖73C之光圈板51係同採用較大像素之受光區域1601a2與1601a3組合使用之光圈板51之開口區域51b大於同其他受光區域組合使用之光圈板51之開口區域51b。
因此,將圖73B至D所記載之光圈板51之形狀相關之3片中之圖73C之光圈板51與圖73A所示之受光元件12組合使用之相機模組1較將圖73B之光圈板51與圖73A所示之受光元件12組合使用之相機模組1,帶來於例如由於被攝體之照度較低而於受光元件12中無法獲得較大信號之情形時,於 受光區域1601a2與1601a3中,可獲得S/N比更高之圖像之作用。
圖73B至D所記載之光圈板51之形狀相關之3片之中,例如圖73D之光圈板51係同採用較大像素之受光區域1601a2與1601a3組合使用之光圈板51之開口區域51b小於同其他受光區域組合使用之光圈板51之開口區域51b。
因此,將圖73B至D所記載之光圈板51之形狀相關之3片中之圖73D之光圈板51與圖73A所示之受光元件12組合使用之相機模組1較將圖73B至D所記載之光圈板51之形狀相關之3片中之圖73B之光圈板51與圖73A所示之受光元件12組合使用之相機模組1,帶來於例如由於被攝體之照度較高而於受光元件12中可獲得較大信號之情形時,抑制入射至受光區域1601a2與1601a3之光之量之作用。
藉此,帶來抑制過大之光入射於受光區域1601a2與1601a3所具備之像素,由此超過受光區域1601a2與1601a3所具備之像素之適當之動作界限(例如超過飽和電荷量)之事態之產生之作用。
圖74A顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第6例。
於圖74A所示之受光元件12中,像素陣列1601b1之重複單位1602c1之區域尺寸小於像素陣列1601b2與1601b3之重複單位1602c1與1602c2之區域尺寸。像素陣列1601b4之重複單位1602c4之區域尺寸大於像素陣列1601b2與1601b3之重複單位1602c1與1602c2之區域尺寸。
即,於重複單位1602c1至1602c4之區域尺寸,存在重複單位1602c1<(重複單位1602c2=重複單位1602c3)<重複單位1602c4之關係。
重複單位1602c1至1602c4之區域尺寸越大,像素尺寸亦越大,光電 轉換部之尺寸亦越大。
作為具備於圖74A之受光元件12之相機模組1之光圈板51之構成,可採用圖64A至C所示之各種光圈板51之構成、或圖74B至D所示之光圈板51之構成、或該等之變化例。
於圖74A記載之受光元件12所具備之上述之構成帶來如下作用:於例如、由於被攝體之照度較高而於受光元件12中可獲得較大信號之情形時,使用像素尺寸較小且解析度較高之受光區域1601a1,可獲得解析度較高之圖像。
又,亦帶來如下作用:於由於被攝體之照度較低而於受光元件12中無法獲得較大信號,因此,有圖像之S/N比下降之憂慮之情形時,使用可獲得S/N比較高之圖像之受光區域1601a2與1601a3,可獲得S/N比較高之圖像,進而藉由對該等2張圖像應用超解析技術而亦獲得解析度較高之圖像。
亦帶來如下作用:於由於被攝體之照度進而更低而於受光元件12中有圖像之S/N比進一步下降之憂慮之情形時,使用可獲得S/N進而更高之圖像之受光區域1601a4,而可獲得S/N比進而更高之圖像。
於該情形時,具備圖74A所示之受光元件12之相機模組1亦可使用圖74B至D所記載之光圈板51之形狀相關之3片之中、例如於圖74B所記載之光圈板51之形狀,作為光圈板51之形狀。
圖74B至D所記載之光圈板51之形狀相關之3片之中,例如圖74C之光圈板51係同採用較大像素之受光區域1601a2與1601a3組合使用之光圈板51之開口區域51b大於同使用較小圖像之受光區域1601a1組合使用之光圈板51之開口區域51b。又,與使用更大像素之受光區域1601a4組合使用之 光圈板51之開口區域51b進而更大。
因此,將圖74B至D所記載之光圈板51之形狀相關之3片中之圖74C之光圈板51與圖74A所示之受光元件12組合使用之相機模組1較將圖74B至D所記載之光圈板51之形狀相關之3片中之圖74B之光圈板51與圖74A所示之受光元件12組合使用之相機模組1,帶來如下作用:例如於由於被攝體之照度較低而於受光元件12中無法獲得較大信號之情形時,於受光區域1601a2與1601a3中,可獲得S/N比進而更高之圖像之作用,且於被攝體之照度進而更低之情形時,於受光區域1601a4中,可獲得S/N比進而更高之圖像。
圖74B至D所記載之光圈板51之形狀相關之3片之中,例如圖74D之光圈板51係同採用較大像素之受光區域1601a2與1601a3組合使用之光圈板51之開口區域51b小於同使用較小圖像之受光區域1601a1組合使用之光圈板51之開口區域51b。又,與使用更大像素之受光區域1601a4組合使用之光圈板51之開口區域51b進而更小。
因此,將圖74B至D所記載之光圈板51之形狀相關之3片中之圖74D之光圈板51與圖74A所示之受光元件12組合使用之相機模組1較將圖74B至D所記載之光圈板51之形狀相關之3片中之圖74B之光圈板51與圖74A所示之受光元件12組合使用之相機模組1,帶來於例如由於被攝體之照度較高而於受光元件12中可獲得較大信號之情形時,抑制入射至受光區域1601a2與1601a3之光之量之作用。
藉此,帶來抑制過大之光入射於受光區域1601a2與1601a3所具備之像素,由此超過受光區域1601a2與1601a3所具備之像素之適當之動作界限(例如超過飽和電荷量)之事態之產生之作用。
又,進一步抑制入射至受光區域1601a4之光之量,藉此,帶來亦抑制過大之光入射於受光區域1601a4所具備之像素,由此超過受光區域1601a4所具備之像素之適當之動作界限(例如超過飽和電荷量)之事態之產生之作用。
另,作為另一實施形態,亦可設為如下構造:於相機模組具備光圈板51,該光圈板51係例如為用於一般之相機,而將複數片板組合,且使用藉由改變其位置關係而改變開口之大小之光圈相同之構造,而開口區域51b成為可變,從而可對應於被攝體之照度改變光圈之開口之大小。
例如,於使用圖73A與圖74A記載之受光元件12之情形時,亦可設為如下構造:於被攝體之照度較低之情形時,使用圖73B至D與圖74B至D所記載之光圈板51之形狀相關之3片中之圖73C與圖74C之形狀,於較其被攝體之照度更高之情形時,使用圖73B與74B之形狀,於較其進而被攝體之照度更高之情形時,使用圖73D與圖74D之形狀。
圖75顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第7例。
於圖75所示之受光元件12中,像素陣列1601b1之全部像素係以接收綠色之波長之光之像素構成。像素陣列1601b2之全部像素係以接收藍色之波長之光之像素構成。像素陣列1601b3之全部像素係以接收紅色之波長之光之像素構成。像素陣列1601b4之全部像素係以接收綠色之波長之光之像素構成。
圖76顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第8例。
於圖76所示之受光元件12中,像素陣列1601b1之全部像素係以接收 綠色之波長之光之像素構成。像素陣列1601b2之全部像素係以接收藍色之波長之光之像素構成。像素陣列1601b3之全部像素係以接收紅色之波長之光之像素構成。像素陣列1601b4之全部像素係以接收可見光全體之區域之波長之光之像素構成。
圖77顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第9例。
於圖77所示之受光元件12中,像素陣列1601b1之全部像素係以接收可見光全體之區域之波長之光之像素構成。像素陣列1601b2之全部像素係以接收藍色之波長之光之像素構成。像素陣列1601b3之全部像素係以接收紅色之波長之光之像素構成。像素陣列1601b4之全部像素係以接收可見光全體之區域之波長之光之像素構成。
圖78顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第10例。
於圖78所示之受光元件12中,像素陣列1601b1之全部像素係以接收可見光全體之區域之波長之光之像素構成。像素陣列1601b2之全部像素係以接收可見光全體之區域之光之像素構成。像素陣列1601b3之全部像素係以接收紅色之波長之光之像素構成。像素陣列1601b4之全部像素係以接收可見光全體之區域之波長之光之像素構成。
如圖75至圖78所示,受光元件12之像素陣列1601b1至1601b4可構成為以像素陣列單位接收同一頻帶之波長之光。
先前所知之RGB3板式之固體攝像裝置具備3個受光元件且各者之受光元件拍攝僅R圖像、僅G圖像、僅B圖像。先前所知之RGB3板式之固體攝像裝置將入射至1個光學單元之光藉由稜鏡向3方向分光之後,使用3個 受光元件接收。因此,入射至3個受光元件之被攝體圖像之位置於3個之間相同。因此,難以對該等3個之圖像應用超解析技術,而獲得感度較高之圖像。
相對於此,使用圖75至圖78所示之受光元件12任一者之於圖10與圖11記載之相機模組1係於相機模組1之成為光之入射面之表面上,於其面內之縱方向與橫方向之各者各配置2個光學單元13,且該等4個光學單元13所具備之光軸平行地於相同方向延伸。藉此,可一面光軸朝向相同方向,一面使用受光元件12具備之4個不同之受光區域1601a1至1601a4,獲得未必相同之複數張圖像。
此種構造之相機模組1帶來可基於自上述之配置之4個光學單元13獲得之複數張圖像,對該等利用超解析技術,而獲得解析度較自1個光學單元13獲得之1張圖像更高之圖像之作用。
另,藉由圖75記載之受光元件12,獲得G、R、G、B、4張圖像之構成帶來與圖66記載之受光元件12中,藉由將G、R、G、B、4個像素設為重複單位之構成所帶來之作用相同之作用。
於圖76記載之受光元件12中,獲得R、G、B、C、4張圖像之構成帶來與於圖67記載之受光元件12中,藉由將R、G、B、C、4個像素設為重複單位之構成所帶來之作用相同之作用。
於圖77記載之受光元件12中,獲得R、C、B、C、4張圖像之構成帶來與於圖68記載之受光元件12中,藉由將R、C、B、C、4個像素設為重複單位之構成所帶來之作用相同之作用。
於圖78記載之受光元件12中,獲得R、C、C、C、4張圖像之構成帶來與於圖69記載之受光元件12中,藉由將R、C、C、C、4個像素設為重 複單位之構成所帶來之作用相同之作用。
作為具備圖75至圖78所示之受光元件12任一者之相機模組1之光圈板51之構成,可採用圖64A至D所示之各種光圈板51之構成、或該等之變化例。
圖79A顯示相機模組1之受光元件12所具備之4個像素陣列1601b1至1601b4之像素排列之第11例。
於圖79A所示之受光元件12中,於像素陣列1601b1至1601b4各者,1像素之像素尺寸、或各像素接收之光之波長不同。
關於像素尺寸,構成為像素陣列1601b1最小,像素陣列1601b2與1601b3為相同尺寸,且大於像素陣列1601b1,像素陣列1601b4進而大於像素陣列1601b2與1601b3。像素尺寸之大小與各像素具備之光電轉換部之大小成比例。
關於各像素接收之光之波長,像素陣列1601b1、1601b2、及1601b4係以接收可見光全體之區域之波長之光之像素構成,像素陣列1601b3係以接收紅色之波長之光之像素構成。
於圖79A記載之受光元件12所具備之上述之構成帶來如下作用:於例如、由於被攝體之照度較高而於受光元件12中可獲得較大信號之情形時,使用像素尺寸較小且解析度較高之受光區域1601a1,可獲得解析度較高之圖像。
又,亦帶來如下作用:於由於被攝體之照度較低而於受光元件12中無法獲得較大信號,因此有圖像之S/N比下降之憂慮之情形時,使用可獲得S/N較高之圖像之受光區域1601a2,而可獲得S/N比較高之圖像。
亦帶來如下作用:於由於被攝體之照度進而更低而於受光元件12中 有圖像之S/N比進一步下降之憂慮之情形時,使用可獲得S/N進而更高之圖像之受光區域1601a4,而可獲得S/N比進而更高之圖像。
另,對圖79A記載之受光元件12組合使用圖79B至D所記載之光圈板51之形狀相關之3片中之圖79B之光圈板51之構成帶來與藉由對圖74A所記載之受光元件12組合使用圖74B至D所記載之光圈板51之形狀相關之3片中之圖74B之光圈板51之構成所帶來之作用相同之作用。
又,對圖79A記載之受光元件12組合使用圖79B至D所記載之光圈板51之形狀相關之3片中之圖79C之光圈板51之構成帶來與藉由對圖74A所記載之受光元件12組合使用圖74B至D所記載之光圈板51之形狀相關之3片中之圖74C之光圈板51之構成所帶來之作用相同之作用。
又,對圖79A記載之受光元件12組合使用圖79B至D所記載之光圈板51之形狀相關之3片中之圖79D之光圈板51之構成帶來與藉由對圖74A所記載之受光元件12組合使用圖74B至D所記載之光圈板51之形狀相關之3片中之圖74D之光圈板51所帶來之作用相同之作用。
於具備圖79A之受光元件12之相機模組1,可採用圖64A或D所示之光圈板51之構成、或圖79B至D所示之光圈板51之構成、或該等之變化例。
<18.相機模組之第12實施形態>
圖80係顯示使用應用本技術之積層透鏡構造體之相機模組之第12實施形態之圖。
圖80A係顯示作為相機模組1之第12實施形態之相機模組1M之外觀之模式圖。圖80B係相機模組1M之概略剖視圖。
相機模組1M與圖9所示之第2實施形態之相機模組1B同樣,具備2個 光學單元13。相機模組1M與圖9之相機模組1B之不同點在於,於第2實施形態之相機模組1B中,為2個光學單元13之光學參數不同之構成,相對於此,於第12實施形態之相機模組1M中,構成為2個光學單元13之光學參數相同者。即,於相機模組1M所具備之2個光學單元13中,構成為透鏡21之個數、透鏡21之徑、透鏡21之厚度、透鏡21之表面形狀、透鏡21之材料、及上下鄰接之2片透鏡21之間之距離等相同。
圖80C係顯示構成相機模組1M之積層透鏡構造體11之特定之1層附透鏡之基板41之平面形狀之圖。
圖80D係用於獲得圖80C所示之附透鏡之基板41之基板狀態之附透鏡之基板41W之俯視圖。
圖81係說明圖80所示之相機模組1M之受光元件12之構造之圖。
相機模組1M之受光元件12具備2個受光區域1601a1與1601a2。受光區域1601a1與1601a2具備將分別接收光之像素排列成陣列狀之像素陣列1601b1與1601b2。
像素陣列1601b1與1601b2具備包含複數個或單個之像素之重複單位1602c1與1602c2。更詳細而言,像素陣列1601b1係藉由將重複單位1602c1於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成,像素陣列1601b2係藉由將重複單位1602c2於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成。重複單位1602c1係包含R、G、B、G之各像素之4像素,重複單位1602c2係以1個C之像素構成。
因此,相機模組1M具備輸出彩色圖像信號之1組感測器單元、即具有R、G、B之各像素之像素陣列1601b1與光學單元13之組、與輸出黑白圖像信號之1組感測器單元、即具有C之像素之像素陣列1601b2與光學單 元13之組。
如自國際電信聯盟所規定之將R、G、B之像素信號轉換為亮度信號與色差信號之規格ITU-R BT.601-7之關於亮度信號Y之下式(1)可知,於R、G、B之像素信號之中,G之信號關於亮度之感度最高,B之信號關於亮度之感度最低。
Y=0.299R+0.587G+0.114B‧‧‧式(1)
因此,為簡單起見,於圖81記載之受光區域1601a1中,將以較高感度獲得亮度資訊之像素設為僅G之像素,且若顯示配置以較高之感度獲得亮度資訊之像素之場所,則如圖82所示。
圖82係顯示於圖81所示之受光元件12中,配置有以較高感度獲得亮度資訊之像素之場所之圖。
基於亮度資訊相關之上述之假定,則於受光區域1601a1中以較高感度獲得亮度資訊之像素成為僅G之像素。相對於此,於受光區域1601a2中,構成像素陣列1601b2之所有像素成為藉由接收可見光之全波長區域之光而以較高感度獲得亮度資訊之C之像素。
圖83係顯示以各像素之像素信號之輸出點為像素中心,於圖82所示之受光元件12中,以較高感度獲得亮度資訊之像素(以下,稱為高亮度像素。)之配置間距之圖。
若比較受光區域1601a1與受光區域1601a2之高亮度像素之配置間距,則對於列方向與行方向,成為共通之配置間距P_LEN1。
但,對於相對於列方向及行方向成為45°之傾斜方向,受光區域1601a1之配置間距P_LEN2與受光區域1601a2之配置間距P_LEN3不同。具體而言,受光區域1601a2之配置間距P_LEN3成為受光區域1601a1之配 置間距P_LEN2之1/2之寬度。換言之,即對於相對於列方向及行方向成為45°之傾斜方向,受光區域1601a2可獲得較受光區域1601a1解析度高2倍之圖像。
參照圖80至圖83所說明之2眼構造之相機模組1M除具有R、G、B、G之像素排列作為重複單位1602c1之所謂拜耳排列之受光區域1601a1以外,一併具備構成像素陣列1601b2之所有像素成為C之像素之受光區域1601a2。
此種相機模組1M之構造帶來可獲得較僅自受光區域1601a1獲得之圖像更鮮明之圖像之作用。例如,自受光區域1601a2獲得每一像素之亮度之變化之資訊。若基於該資訊,補充自受光區域1601a2獲得之亮度之資訊,則帶來可獲得較僅自受光區域1601a1獲得之解析度更高之圖像之作用。如上所述,因傾斜方向之解析度與僅自受光區域1601a1獲得之像素資訊之情形相比成為2倍,故可藉由組合受光區域1601a1與受光區域1601a2之兩者之像素資訊,而實現2倍之無損變焦(無畫質劣化之放大圖像)。雖有藉由使用不同之攝像範圍之透鏡之方法實現無損變焦之方法,但於該情形時,相機模組之高度不同。根據相機模組1M,可不改變模組之高度即實現無損變焦。
又,自不具備RGB3種彩色濾光片之受光區域1601a2獲得之亮度信號成為自具備彩色濾光片之受光區域1601a1獲得之亮度信號之約1.7倍之信號位準。因此,可藉由例如、將以受光區域1601a1獲得之G之亮度信號置換為以受光區域1601a2獲得之對應像素之亮度信號等,將受光區域1601a1與受光區域1601a2之兩者之像素資訊組合,而產生提高SN比(Signal to Noise ratio:信號雜訊比)之像素信號並輸出。雖有例如藉由使 用單眼之彩色攝像感測器拍攝複數張圖像,並合成該等之圖像信號,而提昇SN比之技術,但此種方法由於獲得複數張圖像之前之時間變長,故不適於動態物體或動畫。相機模組1M因可將受光區域1601a1與受光區域1601a2同步進行拍攝,故可於短時間內產生高SN比之圖像,而亦適於動畫、動態物體之拍攝。
又,藉由以受光區域1601a2之各像素之像素信號成為對應於受光區域1601a1之像素間之中間位置之位置之方式,組合受光區域1601a1與1601a2之兩者之像素資訊,可獲得僅自受光區域1601a1獲得之圖像之2倍之解析度之超解析圖像。例如,有像素數位20百萬像素,且拍攝4K×2K之8百萬像素之動態圖像之單眼之彩色攝像感測器。於使用與該彩色攝像感測器像素數相同之2眼之相機模組1M之情形時,藉由如上述般相對於受光區域1601a1將受光區域1601a2之像素位置於水平垂直方向各者錯開1/2像素而補充像素資訊,可獲得相當於8K×4K之32百萬像素之超解析動畫。
如以上,根據2眼之相機模組1M,可使用藉由2個受光區域1601a1與受光區域1601a2獲得之像素資訊,產生無畫質劣化之放大圖像、提高SN比之圖像、超解析圖像等、各種用途之圖像。產生哪一用途之圖像係例如藉由組入相機模組1M之攝像裝置之動作模式之設定而選擇決定。
<19.相機模組之第13實施形態>
圖84係顯示使用應用本技術之積層透鏡構造體之相機模組之第13實施形態之圖。
圖84A係顯示作為相機模組1之第13實施形態之相機模組1N之外觀之模式圖。圖84B係相機模組1N之概略剖視圖。
如圖84B所示,相機模組1N具備光學參數相同之3個光學單元13。
圖84C係說明相機模組1N之受光元件12之構造之圖。
相機模組1N之受光元件12於對應於配置於其上側之3個光學單元13之位置,具備3個受光區域1601a1至1601a3。受光區域1601a1至1601a3具備將像素排列成陣列狀之像素陣列1601b1至1601b3。
像素陣列1601b1至1601b3具備包含複數個或單個之像素之重複單位1602c1至1601c3。更詳細而言,像素陣列1601b1係藉由將重複單位1602c1於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成,像素陣列1601b2係藉由將重複單位1602c2於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成,像素陣列1601b3係藉由將重複單位1602c3於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成。重複單位1602c1係包含R、G、B、G之各像素之4像素,重複單位1602c2與1601c3係以1個C之像素構成。
因此,相機模組1N具備輸出彩色圖像信號之1組感測器單元、即具有R、G、B之各像素之像素陣列1601b1與光學單元13之組、與輸出黑白圖像信號之2組感測器單元、即具有C之像素之像素陣列1601b2與光學單元13之組及具有C之像素之像素陣列1601b3與光學單元13之組。
此種相機模組1N之構造與上述之2眼之相機模組1M同樣,帶來可獲得較僅自受光區域1601a1獲得之圖像更鮮明之圖像之作用。即,若利用來自具有以C之像素構成之像素陣列1601b2之受光區域1601a2、與具有以C之像素構成之像素陣列1601b3之受光區域1601a3之像素資訊、例如每一像素之亮度之變化之資訊,補充自具有R、G、B、G之像素排列作為重複單位1602c1之拜耳排列之受光區域1601a1獲得之亮度之資訊,則帶來可獲得解析度較僅自受光區域1601a1獲得之圖像更高之圖像之作用。如上 所述,因傾斜方向之解析度與單眼之彩色攝像感測器相比成為2倍,故可藉由組合受光區域1601a1至1601a3之像素資訊,而實現3倍之無損變焦(無畫質劣化之放大圖像)。雖有藉由使用不同之攝像範圍之透鏡之方法實現無損變焦之方法,但於該情形時,相機模組之高度不同。根據相機模組1N,可不改變相機模組之高度即實現無損變焦。
於3眼之相機模組1N中,亦與上述之2眼之相機模組1M同樣,可藉由同步拍攝受光區域1601a1至1601a3,而實現高SN比之動畫、動態物體之拍攝。又,藉由相對於受光區域1601a1將受光區域1601a2及1601a3之像素位置於水平垂直方向各者錯開1/2像素而補充像素資訊,而可獲得2倍之解析度之超解析圖像。
進而,相機模組1N之構造帶來使用來自以C之像素構成之受光區域1601a2與1601a3之圖像資訊,而與例如日本專利特開2008-286527號公報或國際公開第2011/058876所揭示之測距裝置同樣,可作為複眼測距裝置獲得距離資訊之作用。
於以C之像素構成之受光區域1601a2與1601a3中,可獲得較彩色攝像感測器約1.7倍之信號位準之亮度信號。因此,藉由使用受光區域1601a2與1601a3獲得距離資訊,而帶來即使於被攝體之照度較低,其結果,被攝體之亮度較低之攝影環境下,亦可高速且準確地獲得距離資訊之作用。使用該距離資訊,於例如使用相機模組1N之攝像裝置中,帶來可高速且準確地進行自動聚焦動作之作用。
作為自動聚焦機構,一般而言,於單鏡頭反光相機中使用自動聚焦專用感測器,於小型數位相機等中,使用於圖像感測器之一部分配置有相位差像素之像面相位差方式與對比度AF(auto focus:自動聚焦)方式之組 合。由於相位差像素係以受光區域成為通常像素之例如一半般之像素構成,故像面相位差方向有於低照度下較差之缺點。又,對比度AF方式有聚焦時間較遲之缺點,自動聚焦專用感測器有裝置尺寸變大之缺點。
於相機模組1N中,取得距離資訊之2個受光區域1601a2與1601a3之全部像素係以受光區域未縮小之通常像素構成。又,可使用於獲得距離資訊之受光區域1601a2與1601a3之拍攝與可取得彩色圖像之受光區域1601a1之拍攝同步進行。因此,根據相機模組1N,可小型化、且於低照度下較強、高速地進行自動聚焦。
此外,相機模組1N之構造帶來可輸出與例如日本專利特開2006-318060號公報或日本專利特開2012-15642號公報所揭示之距離圖像同樣,使用距離資訊,藉由濃淡之程度表現距離之距離圖像之作用。
如以上,根據3眼之相機模組1N,可使用藉由3個受光區域1601a1至1601a3獲得之像素資訊,產生無畫質劣化之放大圖像、提高SN比之圖像、超解析圖像、距離圖像等、各種用途之圖像。亦可產生基於受光區域1601a2與1601a3之視差之距離資訊。將自3個受光區域1601a1至1601a3獲得之像素資訊用於哪一用途係例如藉由組入相機模組1N之攝像裝置之動作模式之設定而選擇決定。
圖85顯示使用於3眼之相機模組1N之受光元件12之基板構成例。
如圖85所示,使用於3眼之相機模組1N之受光元件12可由積層有3片半導體基板1701至1703之3層構造形成。
3片半導體基板1701至1703之中,於光入射之側之第1半導體基板1701,形成有與3個光學單元13對應之3個受光區域1601a1至1601a3。
於正中央之第2半導體基板1702,形成有與3個受光區域1601a1至 1601a3對應之3個記憶區域1631a1至1631a3。記憶區域1631a1至1631a3例如將經由第3半導體基板1703之控制區域1642a1至1642a3供給之像素信號保持特定時間。
於第2半導體基板1702之下層之第3半導體基板1703,形成有與3個受光區域1601a1至1601a3對應之邏輯區域1641a1至1641a3及控制區域1642a1至1642a3。控制區域1642a1至1642a3進行自受光區域1601a1至1601a3讀出像素信號之讀出控制、將類比之像素信號轉換成數位之AD(Analog/Digital:類比/數位)轉換處理、及對記憶區域1631a1至1631a3之像素信號之輸出等。邏輯區域1641a1至1641a3進行例如AD轉換後之圖像資料之階調修正處理等、特定之信號處理。
3片半導體基板1701至1703彼此例如藉由貫通孔或Cu-Cu之金屬鍵而電性連接。
如以上,受光元件12可藉由對應於3個受光區域1601a1至1601a3,而於3片半導體基板1701至1703配置有記憶區域1631a1至1631a3、邏輯區域1641a1至1641a3、及控制區域1642a1至1642a3之3層構造構成。
一般而言,若使用單眼之彩色攝像感測器以高速幀速率拍攝,則因1幀之曝光時間變短,而SN比劣化。相對於此,於相機模組1N中,於2個受光區域1601a2及1601a3中,藉由使攝像開始時序錯開1/2曝光時間而拍攝動作,而可於與單眼之彩色攝像感測器相同之幀速率下,確保2倍之曝光時間。藉由將自受光區域1601a1之彩色圖像信號獲得之亮度資訊以設定為其2倍之曝光時間而獲得之2個受光區域1601a2及1601a3之黑白圖像信號(亮度資訊)交錯地置換,而即使於高速幀速率下亦可輸出SN比之圖像。
亦或,於僅使用3個受光區域1601a1至1601a3中之任1個拍攝之情形時,因可對1個受光區域1601使用3個記憶區域1631a1至1631a3,故記憶體容量成為通常之3倍。藉此,於將曝光時間設定為短時間拍攝之超慢動畫中,可將攝像時間增加為3倍。進而,AD轉換處理亦因可使用3個控制區域1642a1至1642a3之各ADC(Analog/Digital converter:類比/數位轉換器),故可實現接近3倍之高速驅動。
又,受光元件12由於對應於3個受光區域1601a1至1601a3,而具備記憶區域1631a1至1631a3,故例如,可如圖86所示般,進行將攝像圖像全體中之車牌之區域之圖像信號輸出至後段等之處理。藉此,因可壓縮傳送之資料量,故可減輕資料輸送之負載,而亦有輸送速度之提高、消耗電力之減少等效果。
如以上,藉由以積層有3片半導體基板1701至1703之3層構造形成相機模組1N之受光元件12,亦擴大自受光元件12獲得之圖像之用途。
<20.相機模組之第14實施形態>
圖87係顯示使用應用本技術之積層透鏡構造體之相機模組之第14實施形態之圖。
圖87A係顯示作為相機模組1之第14實施形態之相機模組1P之外觀之模式圖。圖87B係相機模組1P之概略剖視圖。
相機模組1P具備光學參數相同之4個光學單元13。
圖87C係說明相機模組1P之受光元件12之構造之圖。
相機模組1P之受光元件12於對應於配置於其上側之4個光學單元13之位置,具備4個受光區域1601a1至1601a4。受光區域1601a1至1601a4具備將接收光之像素排列成陣列狀之像素陣列1601b1至1601b4。
像素陣列1601b1至1601b4具備包含複數個或單個之像素之重複單位1602c1至1601c4。更詳細而言,像素陣列1601b1係藉由將重複單位1602c1於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成,像素陣列1601b2係藉由將重複單位1602c2於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成。又,像素陣列1601b3係藉由將重複單位1602c3於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成,像素陣列1601b4係藉由將重複單位1602c4於縱方向與橫方向之兩者上分別呈矩陣狀排列複數個而構成。重複單位1602c1與1602c4係包含R、G、B、G之各像素之4像素,重複單位1602c2與1601c3係以1個C之像素構成。
因此,相機模組1P具備輸出彩色圖像信號之2組感測器單元、即具有R、G、B之各像素之像素陣列1601b1與光學單元13之組及具有R、G、B之各像素之像素陣列1601b4與光學單元13之組,與輸出黑白圖像信號之2組感測器單元、即具有C之像素之像素陣列1601b2與光學單元13之組及具有C之像素之像素陣列1601b3與光學單元13之組。
此種相機模組1P之構造與上述之2眼之相機模組1M同樣,帶來可獲得較僅自受光區域1601a1獲得之圖像更鮮明之圖像之作用。即,若利用來自具有以C之像素構成之像素陣列1601b2之受光區域1601a2、與具有以C之像素構成之像素陣列1601b3之受光區域1601a3之像素資訊、例如每一像素之亮度之變化之資訊,補充自具有R、G、B、G之像素排列作為重複單位1602c1之拜耳排列之受光區域1601a1或1601a4獲得之亮度之資訊,則帶來可獲得解析度較僅自受光區域1601a1或1601a4獲得之圖像更高之圖像之作用。又,因傾斜方向之解析度與單眼或複眼之彩色攝像感測器相 比成為2倍,故可藉由組合受光區域1601a1至1601a4之像素資訊,而實現2倍之無損變焦(無畫質劣化之放大圖像)。雖有藉由使用不同之攝像範圍之透鏡之方法實現無損變焦之方法,但於該情形時,相機模組之高度不同。根據相機模組1P,可不改變模組之高度即實現無損變焦。
於在拍攝彩色圖像之2個受光區域1601a1與1601a4拍攝範圍重複之區域中,由於信號量成為2倍,雜訊成為1.4倍,故可使像素信號之SN比提高。於拍攝黑白圖像之2個受光區域1601a2與1601a3亦進而重複之區域中,由於亮度信號之信號位準為拍攝彩色圖像之受光區域1601a1與1601a4之約1.7倍,故SN比進一步上升。組合4個受光區域1601a1至1601a4之像素資訊之情形時之SN比與單眼之彩色攝像感測器相比,上升至約2.7倍。相機模組1P因可將受光區域1601a1與受光區域1601a2同步進行拍攝,故可於短時間內產生高SN比之圖像,亦適於動畫、動態物體之拍攝。
進而,相機模組1P之構造帶來使用來自以C之像素構成之受光區域1601a2與1601a3之圖像資訊,而與例如日本專利特開2008-286527號公報或國際公開第2011/058876號所揭示之測距裝置同樣,可作為複眼測距裝置獲得距離資訊之作用。
又,藉由使用亮度信號之信號位準較高之以C之像素構成之受光區域1601a2與1601a3獲得距離資訊,而帶來即使於被攝體之照度較低,其結果,被攝體之亮度較低之攝影環境下,亦可高速且準確地獲得距離資訊之作用。使用該距離資訊,於例如使用相機模組1P之攝像裝置中,帶來可高速且準確地進行自動聚焦動作之作用。
於相機模組1P中,取得距離資訊之2個受光區域1601a2及1601a3之 全部像素係並非如相位差像素般以縮小受光區域之像素,而係以通常像素構成。又,可將獲得距離資訊之受光區域1601a2與1601a3與可取得彩色圖像之受光區域1601a1及1601a4同步拍攝。因此,根據相機模組1N,可小型化、且於低照度下較強、高速地進行自動聚焦。
此外,相機模組1P之構造帶來可輸出與例如日本專利特開2006-318060號公報或日本專利特開2012-15642號公報所揭示之距離圖像同樣,使用距離資訊,藉由濃淡之程度表現距離之距離圖像之作用。
又,相機模組1P亦可藉由改變像素之驅動方法,而獲得動態範圍較廣之圖像(高動態範圍圖像)。
圖88係說明用於獲得高動態範圍圖像之像素之驅動方法之圖。
於相機模組1P中,具有以R、G、B、G之像素構成之像素陣列1601b1之受光區域1601a1、與具有以C之像素構成之像素陣列1601b3之受光區域1601a3於被攝體處於某一特定之照度下之情形時,以特定之曝光時間(以下,稱為第1曝光時間。)拍攝圖像。
另一方面,具有以C之像素構成之像素陣列1601b2之受光區域1601a2、與具有以R、G、B、G之像素構成之像素陣列1601b4之受光區域1601a4於被攝體處於上述特定之照度下之情形時,以短於上述第1曝光時間之曝光時間(以下,稱為第2曝光時間。)拍攝圖像。另,於以下之說明中,將第1曝光時間亦稱為長秒曝光時間,將第2曝光時間亦稱為短秒曝光時間。
例如,於被攝體之照度較高之情形時,若以長秒曝光時間拍攝圖像,則拍攝於被攝體之中亮度較高者之像素成為以超過像素之適當之動作界限(例如飽和電荷量)之狀態進行拍攝動作,而有時變成自拍攝之結果獲 得之圖像資料失去階調性之所謂圖像過曝之狀態。即使於此種情形時,於相機模組1P中,亦可自受光區域1601a2與受光區域1601a4獲得以短秒曝光時間拍攝之圖像、換言之即於成為像素之適當之動作範圍內(例如飽和電荷量以下)之狀態下拍攝之圖像。
相機模組1P帶來可將如此獲得之以長秒曝光時間拍攝之圖像與以短秒曝光時間拍攝之圖像與例如日本專利特開平11-75118號公報或日本專利特開平11-27583號公報所揭示之用於擴大動態範圍之像素信號之合成方法同樣地合成,而可獲得高動態範圍圖像之作用。
一般而言,於高動態範圍圖像之產生方法中,有使用單眼之彩色攝像感測器等,按時間差取得長秒曝光時間拍攝之圖像與以短秒曝光時間拍攝之圖像、並合成之方法,或將像素陣列分成長秒曝光像素與短秒曝光像素而拍攝之方法等。以合成以長秒曝光時間拍攝之圖像與以短秒曝光時間拍攝之圖像之2張圖像之方法,不適於動態物體或動畫,以將像素陣列分成長秒曝光像素與短秒曝光像素之方法,會產生解析度之劣化。根據使用4眼之相機模組1P產生高動態範圍圖像之方法,因無解析度之劣化,且亦無幀速率之下降,故亦適於動態物體或動畫。
如以上,根據4眼之相機模組1P,可使用藉由4個受光區域1601a1至1601a4獲得之像素資訊,產生無畫質劣化之放大圖像、提高SN比之圖像、超解析圖像、距離圖像、高動態範圍圖像等、各種用途之圖像。亦可產生基於受光區域1601a2與1601a3之視差之距離資訊。將自4個受光區域1601a1至1601a4獲得之像素資訊用於哪一用途係例如藉由組入相機模組1P之攝像裝置之動作模式之設定而選擇決定。
圖89顯示使用於4眼之相機模組1P之受光元件12之基板構成例。
如圖89所示,使用於4眼之相機模組1P之受光元件12可由積層有3片半導體基板1701至1703之3層構造形成。
3片半導體基板1701至1703之中,於光入射之側之第1半導體基板1701,形成有與4個光學單元13對應之4個受光區域1601a1至1601a4。
於正中央之第2半導體基板1702,形成有與4個受光區域1601a1至1601a4對應之4個記憶區域1631a1至1631a4。於第3半導體基板1703,形成有與4個受光區域1601a1至1601a4對應之邏輯區域1641a1至1641a4及控制區域1642a1至1642a4。
一般而言,若使用單眼之彩色攝像感測器以高速幀速率拍攝,則因1幀之曝光時間變短,而SN比劣化。相對於此,於相機模組1P中,使用4個受光區域1601a1至1601a4,藉由使攝像開始時序錯開1/4曝光時間而拍攝動作,而可於與單眼之彩色攝像感測器相同之幀速率下,確保4倍之曝光時間。藉由將自受光區域1601a1或1601a4之彩色圖像信號獲得之亮度資訊以設定為其4倍之曝光時間而獲得之4個受光區域1601a1至1601a4之亮度資訊依序置換,而即使於高速幀速率下亦可輸出高SN比之圖像。
亦或,於僅使用4個受光區域1601a1至1601a4中之任1個拍攝之情形時,因可對1個受光區域1601使用4個記憶區域1631a1至1631a4,故記憶體容量成為通常之4倍。藉此,於將曝光時間設定為短時間拍攝之超慢動畫中,可將攝像時間增加為4倍。進而,AD轉換處理亦因可使用4個控制區域1642a1至1642a4之各ADC,故可實現接近4倍之高速驅動。
又,受光元件12由於對應於4個受光區域1601a1至1601a4,而具備記憶區域1631a1至1631a4,故可如參照圖86所說明般,進行僅將所需之區域之圖像信號輸出至後段等之處理。藉此,因可壓縮傳送之資料量,故 可減輕資料輸送之負載,而亦有輸送速度之提高、消耗電力之減少等效果。
如以上,藉由以積層有3片半導體基板1701至1703之3層構造形成相機模組1P之受光元件12,亦擴大自受光元件12獲得之圖像之用途。
<21.具有形狀可變透鏡之積層透鏡構造體之例>
積層透鏡構造體11可將所積層之複數片附透鏡之基板41中之至少1片附透鏡之基板41之透鏡21設為可使透鏡形狀變形之形狀可變透鏡21V。
<第1形狀可變透鏡之例>
圖90係於圖11所示之相機模組1D中,將積層透鏡構造體11之1片附透鏡之基板41之透鏡21置換為第1形狀可變透鏡21V-1之相機模組1D之概略剖視圖。
圖90A顯示將所積層之複數片附透鏡之基板41中之最上層之附透鏡之基板41之透鏡21置換為第1形狀可變透鏡21V-1之構成例。
圖90B顯示將所積層之複數片附透鏡之基板41中之最下層之附透鏡之基板41之透鏡21置換為第1形狀可變透鏡21V-1之構成例。
第1形狀可變透鏡21V-1係以使用能夠可逆地形狀變化之物質之透鏡材1721、以夾隔透鏡材1721之方式配置於上表面與下表面各者之蓋材1722、及與上表面之蓋材1722接觸而配置之壓電材料1723構成。
透鏡材1721係以例如、軟質聚合物(美國專利申請公開第2011/149409號說明書)、可撓性聚合物(美國專利申請公開第2011/158617號說明書)、矽油等動態流體(日本專利特開2000-081504號公報)、矽油、彈性橡膠、膠狀物、水等流體(日本專利特開2002-243918號公報)等構成。
蓋材1722係以例如、由可撓性材料製成之覆蓋玻璃(美國專利申請公開第2011/149409號說明書)、可彎曲之透明蓋(美國專利申請公開第2011/158617號說明書)、包含矽酸玻璃之彈性膜(日本專利特開2000-081504號公報)、使用合成樹脂或有機材料之柔軟之基板(日本專利特開2002-243918號公報)等構成。
第1形狀可變透鏡21V-1藉由對壓電材料1723施加電壓,而可使透鏡材1721之形狀變形,藉此,可將焦點設為可變。
圖90係將使用第1形狀可變透鏡21V-1之1片附透鏡之基板41配置於構成積層透鏡構造體11之複數片附透鏡之基板41之最上層或最下層之例,但亦可配置於最上層與最下層之間之中間層。又,亦可將使用第1形狀可變透鏡21V-1之附透鏡之基板41之片數設為複數片而非1片。
<第2形狀可變透鏡之例>
圖91係於圖11所示之相機模組1D中,將積層透鏡構造體11之1片附透鏡之基板41之透鏡21置換為第2形狀可變透鏡21V-2之相機模組1D之概略剖視圖。
圖91A顯示將所積層之複數片附透鏡之基板41中之最上層之附透鏡之基板41之透鏡21置換為第2形狀可變透鏡21V-2之構成例。
圖91B顯示將所積層之複數片附透鏡之基板41中之最下層之附透鏡之基板41之透鏡21置換為第2形狀可變透鏡21V-2之構成例。
第2形狀可變透鏡21V-2係以壓力施加部1731、具有凹部且具有透光性之基材1732、配置於基材1732之凹部之上方且具有透光性之膜1733、及封入於膜1733與基材1732之凹部之間之流動體1734構成。
膜1733係以例如、聚二甲基矽氧烷、聚甲基丙烯酸甲酯、聚對苯二 甲酸乙二酯、聚碳酸酯、聚對二甲苯基、環氧樹脂、感光性聚合物、矽、矽、氧化矽、氮化矽、碳化矽、多晶矽、氮化鈦、金剛石碳、錫氧化銦、鋁、銅、鎳、壓電材料等構成。
流動體1734係以例如、碳酸丙烯酯、水、折射率液體、光學油、離子性液體、或空氣、氮、氦等氣體等構成。
第2形狀可變透鏡21V-2係藉由壓力施加部1731按壓膜1733之外周附近,而膜1733之中央部隆起。藉由控制由壓力施加部1731所按壓之大小,而可使隆起之部分之流動體1734之形狀變形,藉此,可將焦點設為可變。
關於第2形狀可變透鏡21V-2之構造,例如、揭示於美國專利申請公開第2012/170920號說明書等。
圖91係將使用第2形狀可變透鏡21V-2之1片附透鏡之基板41配置於構成積層透鏡構造體11之複數片附透鏡之基板41之最上層或最下層之例,但亦可配置於最上層與最下層之間之中間層。又,亦可將使用第2形狀可變透鏡21V-2之附透鏡之基板41之片數設為複數片而非1片。
<第3形狀可變透鏡之例>
圖92係於圖11所示之相機模組1D中,將積層透鏡構造體11之1片附透鏡之基板41之透鏡21置換為第3形狀可變透鏡21V-3之相機模組1D之概略剖視圖。
圖92A顯示將所積層之複數片附透鏡之基板41中之最上層之附透鏡之基板41之透鏡21置換為第3形狀可變透鏡21V-3之構成例。
圖92B顯示將所積層之複數片附透鏡之基板41中之最下層之附透鏡之基板41之透鏡21置換為第3形狀可變透鏡21V-3之構成例。
第3形狀可變透鏡21V-3係以具有凹部且具有透光性之基材1741、配置於基材1741之凹部之上方且具有透光性之電性活性材料1742、及電極1743構成。
第3形狀可變透鏡21V-3係藉由電極1743對電性活性材料1742施加電壓,而電性活性材料1742之中央部隆起。藉由控制施加之電壓之大小,而可使電性活性材料1742之中央部之形狀變形,藉此,可將焦點設為可變。
關於第3形狀可變透鏡21V-3之構造,例如、揭示於日本專利特表2011-530715號公報等。
圖92係將使用第3形狀可變透鏡21V-3之1片附透鏡之基板41配置於構成積層透鏡構造體11之複數片附透鏡之基板41之最上層或最下層之例,但亦可配置於最上層與最下層之間之中間層。又,亦可將使用第3形狀可變透鏡21V-3之附透鏡之基板41之片數設為複數片而非1片。
<第4形狀可變透鏡之例>
圖93係於圖11所示之相機模組1D中,將積層透鏡構造體11之1片附透鏡之基板41之透鏡21置換為第4形狀可變透鏡21V-4之相機模組1D之概略剖視圖。
圖93A顯示將所積層之複數片附透鏡之基板41中之最上層之附透鏡之基板41之透鏡21置換為第4形狀可變透鏡21V-4之構成例。
圖93B顯示將所積層之複數片附透鏡之基板41中之最下層之附透鏡之基板41之透鏡21置換為第4形狀可變透鏡21V-4之構成例。
第4形狀可變透鏡21V-4係以液晶材料1751、與將其於上下夾入之2片電極1752形成。
第4形狀可變透鏡21V-4係藉由2片電極1752對液晶材料1751施加特定之電壓,而液晶材料1751之配向變化,藉此,透過液晶材料1751之光之折射率變化。藉由控制對液晶材料1751施加之電壓之大小,使光之折射率變化,而可將焦點設為可變。
關於第4形狀可變透鏡21V-4之構造,例如、揭示於美國專利申請公開第2014/0036183號說明書等。
圖93係將使用第4形狀可變透鏡21V-4之1片附透鏡之基板41配置於構成積層透鏡構造體11之複數片附透鏡之基板41之最上層或最下層之例,但亦可配置於最上層與最下層之間之中間層。又,亦可將使用第4形狀可變透鏡21V-4之附透鏡之基板41之片數設為複數片而非1片。
<22.對電子機器之應用例>
上述之相機模組1可以組入於數位靜態相機或視頻攝像機等攝像裝置、具有攝像功能之便攜式終端裝置、或於圖像讀取部使用固體攝像裝置之複印機等、於圖像取得部(光電轉換部)使用固體攝像裝置之電子機器之形式使用。
圖94係顯示作為應用本技術之電子機器之攝像裝置之構成例之方塊圖。
圖94之攝像裝置2000具備相機模組2002、及相機信號處理電路即DSP(Digital Signal Processor:數位信號處理器)電路2003。又,攝像裝置2000亦具備圖框記憶體2004、顯示部2005、記錄部2006、操作部2007、及電源部2008。DSP電路2003、圖框記憶體2004、顯示部2005、記錄部2006、操作部2007及電源部2008經由匯流排線2009而相互連接。
相機模組2002內之影像感測器2001取入來自被攝體之入射光(像光) 並將成像於攝像面上之入射光之光量以像素單位轉換為電性信號且作為像素信號輸出。作為該相機模組2002,採用上述之相機模組1,影像感測器2001對應於上述之受光元件12。
顯示部2005係包含例如液晶面板或有機EL(Electro Luminescence:電致發光)面板等面板型顯示裝置,顯示由影像感測器2001拍攝之動態圖像或靜態圖像。記錄部2006係於硬碟或半導體記憶體等記錄媒體記錄由影像感測器2001所拍攝之動態圖像或靜態圖像。
操作部2007係於使用者之操作下,對攝像裝置2000具有之各種功能發出操作指令。電源部2008係將成為DSP電路2003、圖框記憶體2004、顯示部2005、記錄部2006、及操作部2007之動作電源之各種電源對該等供給對象適當供給。
如上述,藉由作為相機模組2002,使用搭載有高精度地定位而接合(積層)之積層透鏡構造體11之相機模組1,而可實現高畫質化及小型化。因此,於攝錄影機或數位靜態相機、進而可攜式電話機等行動機器專用之相機模組等攝像裝置2000中,亦可謀求半導體封裝之小型化、與攝像圖像之高畫質化之併存。
<23.影像感測器之使用例>
圖95係顯示使用作為相機模組1構成之影像感測器之使用例之圖。
作為相機模組1構成之影像感測器例如可於如以下般感測可見光、紅外光、紫外光、X射線等光之各種實例中使用。
.數位相機、或附相機功能之攜帶式機器等、拍攝供欣賞用之圖像之裝置
.為了自動停止等安全駕駛、或識別駕駛者之狀態等,而拍攝汽車之 前方或後方、周圍、車內等之車載用感測器、監視行駛車輛或道路之監視相機、進行車輛間等之測距之測距感測器等、供交通用之裝置
.為了拍攝使用者之姿勢而進行遵照該姿勢之機器操作,而供用於TV、冰箱、空調等家電之裝置
.內視鏡、或利用紅外光之受光進行血管攝影之裝置等、供醫療或保健用之裝置
.防盜用途之監視相機、或人物認證用途之相機等、供安全用之裝置
.拍攝皮膚之皮膚檢測器、或拍攝頭皮之顯微鏡等、供美容用之裝置
.適於運動用途等之運動相機或穿戴式相機等、供運動用之裝置
.用於監視農田或作物之狀態之相機等、供農業用之裝置
本技術之實施形態並非限定於上述之實施形態,在不脫離本技術之要旨之範圍內,可進行各種變更。
例如,本技術並不限於對檢測可見光之入射光量之分佈且拍攝為圖像之固體攝像裝置之應用,可對將紅外線或X射線、或粒子等之入射量之分佈拍攝為圖像之固體攝像裝置、或廣義而言檢測壓力或靜電電容等其他物理量之分佈並拍攝為圖像之指紋檢測感測器等之固體攝像裝置(物理量分佈檢測裝置)全部進行應用。
例如,可採用組合上述之複數個實施形態之全部或一部分之形態。
再者,本說明書所記載之效果僅為例示而非限定性者,亦可具有本說明書所記載內容以外之效果。
另,本技術亦可採取如以下之構成。
(1)
一種相機模組,其具備: 第1像素陣列,其係將接收R、G或B之波長之光之像素矩陣狀地2維配置而成;第2像素陣列,其係將接收可見光之波長區域之光之像素矩陣狀地2維配置而成;第1光學單元,其使入射光聚光於上述第1像素陣列;及第2光學單元,其使上述入射光聚光於上述第2像素陣列。
(2)
如上述(1)之相機模組,其具備:1個上述第1像素陣列與上述第1光學單元之組、與2個上述第2像素陣列與上述第2光學單元之組。
(3)
如上述(1)之相機模組,其具備:2個上述第1像素陣列與上述第1光學單元之組、與2個上述第2像素陣列與上述第2光學單元之組。
(4)
如上述(1)至(3)中任一項之相機模組,其中上述第1像素陣列及上述第2像素陣列係形成於積層有第1至第3半導體基板之3片半導體基板之上述第1半導體基板;於上述第2半導體基板,形成有將由上述第1像素陣列及上述第2像素陣列產生之像素信號保持特定時間之記憶區域;於上述第3半導體基板,形成有進行上述像素信號之讀出控制與AD轉換處理之控制區域。
(5)
如上述(1)至(4)中任一項之相機模組,其中 上述第1光學單元與上述第2光學單元各者係以積層透鏡構造體構成,該積層透鏡構造體係:將於形成於基板之貫通孔之內側配置有透鏡之附透鏡之基板彼此藉由直接接合而接合並積層。
(6)
如上述(1)至(4)中任一項之相機模組,其中上述第1光學單元與上述第2光學單元各者係以積層透鏡構造體構成,該積層透鏡構造體係:至少積層有於基板形成貫通孔、且於該貫通孔之內側形成有透鏡之附透鏡之基板即第1至第3附透鏡之基板之3片附透鏡之基板;於上述第1附透鏡之基板之上方,配置上述第2附透鏡之基板;於上述第1附透鏡之基板之下方,配置上述第3附透鏡之基板;於上述第2附透鏡之基板與第3附透鏡之基板中,基板之厚度或上述透鏡之厚度不同;將上述第1與第2附透鏡之基板之基板彼此、及上述第1與第3附透鏡之基板之基板彼此藉由直接接合而接合。
(7)
如上述(5)或(6)之相機模組,其中上述積層透鏡構造體之積層之上述附透鏡之基板之中,至少1片上述附透鏡基板之上述透鏡係以形狀可變透鏡構成。
(8)
一種電子機器,其具備相機模組,該相機模組具備: 第1像素陣列,其係將接收R、G或B之波長之光之像素矩陣狀地2維配置而成;第2像素陣列,其係將接收可見光之波長區域之光之像素矩陣狀地2維配置而成;第1光學單元,其使入射光聚光於上述第1像素陣列;及第2光學單元,其使上述入射光聚光於上述第2像素陣列。
1A:相機模組
11:積層透鏡構造體
12:受光元件
13:光學單元
21:透鏡

Claims (11)

  1. 一種複眼透鏡模組,其包含:第1透鏡基板,其具有第1貫通孔及第2貫通孔;第1透鏡,其配置於上述第1透鏡基板之上述第1貫通孔中,以便朝向第1像素陣列引導入射光;第2透鏡,其配置於上述第1透鏡基板之上述第2貫通孔中,以便朝向第2像素陣列引導入射光;第2透鏡基板,其具有第1貫通孔及第2貫通孔;第3透鏡,其配置於上述第2透鏡基板之上述第1貫通孔中,以便朝向上述第1像素陣列引導入射光;第4透鏡,其配置於上述第2透鏡基板之上述第2貫通孔中,以便朝向上述第2像素陣列引導入射光,其中上述第1透鏡基板與上述第2透鏡基板積層;及光圈板,其積層於上述第1透鏡基板上,其中配置於上述第1透鏡基板之上述第1貫通孔上方的上述光圈板中之第1開口的大小係與配置於上述第1透鏡基板之上述第2貫通孔上方的上述光圈板中之第2開口的大小不同。
  2. 如請求項1之複眼透鏡模組,其進一步包含受光元件,上述受光元件具備上述第1像素陣列及上述第2像素陣列。
  3. 如請求項2之複眼透鏡模組,其進一步包含:第1遮光膜,其配置於上述第1透鏡基板之上述第1貫通孔的表面上;第2遮光膜,其配置於上述第1透鏡基板之上述第2貫通孔的表面上;第3遮光膜,其配置於上述第2透鏡基板之上述第1貫通孔的表面上;及第4遮光膜,其配置於上述第2透鏡基板之上述第2貫通孔的表面上。
  4. 如請求項1之複眼透鏡模組,其進一步包含:第1光學單元,其具備上述第1及第3透鏡;及第2光學單元,其具備上述第2及第4透鏡,其中上述第2光學單元具有與上述第1光學單元之光學特性不同的光學特性。
  5. 如請求項4之複眼透鏡模組,其中上述第1光學單元具備第1複數個透鏡且上述第2光學單元具備第2複數個透鏡,上述第1複數個透鏡與上述第2複數個透鏡不同。
  6. 如請求項4之複眼透鏡模組,其中上述第1光學單元之焦點距離係與上述第2光學單元之焦點距離不同。
  7. 如請求項1之複眼透鏡模組,其中上述第1像素陣列中之像素的像素大小係與上述第2像素陣列中之像素的像素大小不同。
  8. 如請求項1之複眼透鏡模組,其中上述第1像素陣列中之像素對第1波長範圍的光敏感,而上述第2像素陣列中之像素僅對第2波長範圍之光敏感,上述第2波長範圍為上述第1波長範圍的子集。
  9. 一種複眼相機模組,其包含如請求項1至8中任一項之複眼透鏡模組。
  10. 如請求項9之複眼相機模組,其進一步包含積層的第1、第2及第3半導體基板,上述第1半導體基板具備受光區域,上述第2半導體基板具備記憶區域,且上述第3半導體基板具備邏輯區域。
  11. 如請求項9之複眼相機模組,其中上述第1像素陣列及上述第2像素陣列經組態以獲得距離資訊及圖像資訊,且其中上述第1及第2像素陣列的大小相同。
TW105133820A 2015-11-24 2016-10-20 複眼透鏡模組及複眼相機模組 TWI781085B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP??2015-228426 2015-11-24
JP2015228426 2015-11-24

Publications (2)

Publication Number Publication Date
TW201719916A TW201719916A (zh) 2017-06-01
TWI781085B true TWI781085B (zh) 2022-10-21

Family

ID=58763153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133820A TWI781085B (zh) 2015-11-24 2016-10-20 複眼透鏡模組及複眼相機模組

Country Status (7)

Country Link
US (1) US10375282B2 (zh)
EP (1) EP3383019A4 (zh)
JP (1) JP6859263B2 (zh)
KR (1) KR20180084629A (zh)
CN (1) CN107431746B (zh)
TW (1) TWI781085B (zh)
WO (1) WO2017090437A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10488632B2 (en) * 2016-01-20 2019-11-26 Mems Optical Zoom Corporation MEMS lens actuator
CN208572211U (zh) * 2017-02-08 2019-03-01 宁波舜宇光电信息有限公司 摄像模组及其模塑感光组件以及电子设备
CN110771152B (zh) * 2017-06-26 2022-03-01 三菱电机株式会社 复眼摄像装置、图像处理方法以及记录介质
TWI627460B (zh) * 2017-07-19 2018-06-21 大立光電股份有限公司 成像鏡頭、相機模組及電子裝置
JP2019040892A (ja) * 2017-08-22 2019-03-14 ソニーセミコンダクタソリューションズ株式会社 撮像装置、カメラモジュール、及び、電子機器
JP6957271B2 (ja) * 2017-08-31 2021-11-02 ソニーセミコンダクタソリューションズ株式会社 積層レンズ構造体、固体撮像素子、および、電子機器
US10425561B2 (en) * 2017-09-08 2019-09-24 Apple Inc. Portable electronic device
US20190187471A1 (en) * 2017-12-18 2019-06-20 Flex Ltd. Dynamically controlled focal plane for optical waveguide-based displays
KR102572974B1 (ko) * 2018-04-26 2023-08-31 엘지이노텍 주식회사 카메라 모듈 및 그의 깊이 정보 추출 방법
RU186570U1 (ru) * 2018-10-08 2019-01-24 Общество с ограниченной ответственностью "ИРВЭЙ" Камера системы ночного видения
RU2694553C1 (ru) * 2018-10-08 2019-07-16 Общество с ограниченной ответственностью "ИРВЭЙ" Камера системы ночного видения
KR102558301B1 (ko) 2018-12-13 2023-07-24 에스케이하이닉스 주식회사 유기 픽셀 어레이 및 무기 픽셀 어레이를 갖는 이미지 센싱 디바이스
JP7172553B2 (ja) * 2018-12-18 2022-11-16 株式会社デンソー レンズモジュール及び車両用撮像装置
CN112462481B (zh) * 2019-09-09 2022-07-15 玉晶光电(厦门)有限公司 支撑组件与可携式光学成像镜头
TWI707169B (zh) * 2019-11-29 2020-10-11 大立光電股份有限公司 成像鏡頭、相機模組及電子裝置
US11343435B2 (en) 2019-12-26 2022-05-24 Waymo Llc Microlensing for real-time sensing of stray light
CN111152452B (zh) * 2020-01-14 2023-04-18 青岛理工大学 一种PDMS/SiC功能梯度衬底及其制备方法与应用
TWI781458B (zh) 2020-10-08 2022-10-21 大立光電股份有限公司 光學指紋辨識系統
DE102021202164B3 (de) * 2021-03-05 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Tandemblendenarchitektur zur Füllfaktorerhöhung von kompakten Multikanalabbildungssystemen
JP2022147493A (ja) * 2021-03-23 2022-10-06 株式会社ダイセル 光学素子、光学モジュール及び、光学素子または光学モジュールの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057278A1 (en) * 2003-12-11 2005-06-23 Nokia Corporation Method and device for capturing multiple images
CN101427372A (zh) * 2004-08-25 2009-05-06 美商新美景股份有限公司 用于多个相机装置的设备和操作该设备的方法
TWM359700U (en) * 2008-08-21 2009-06-21 Fujinon Corp Stacked-type camera module and photographing device
JP2009251366A (ja) * 2008-04-08 2009-10-29 Konica Minolta Opto Inc 撮像レンズの製造方法、撮像レンズ及び撮像装置
US20130016251A1 (en) * 2011-07-15 2013-01-17 Kabushiki Kaisha Toshiba Solid-state imaging device, image processing apparatus, and camera module

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858361B2 (ja) 1997-07-08 2006-12-13 ソニー株式会社 固体撮像装置及びその駆動方法、並びにカメラ
JPH1175118A (ja) 1997-08-29 1999-03-16 Matsushita Electric Ind Co Ltd ビデオカメラ
JP4144079B2 (ja) 1998-09-04 2008-09-03 株式会社デンソー 可変焦点レンズ
JP2002243918A (ja) 2001-02-14 2002-08-28 Olympus Optical Co Ltd 可変焦点レンズ、光学特性可変光学素子及び光学装置
WO2003021326A1 (en) * 2001-08-28 2003-03-13 Sony Corporation Projection lens
JP4465958B2 (ja) * 2002-12-18 2010-05-26 株式会社ニコン カラー撮像装置
US7483065B2 (en) * 2004-12-15 2009-01-27 Aptina Imaging Corporation Multi-lens imaging systems and methods using optical filters having mosaic patterns
JP2006318060A (ja) 2005-05-10 2006-11-24 Olympus Corp 画像処理装置、画像処理方法、および画像処理用プログラム
US8189100B2 (en) * 2006-07-25 2012-05-29 Qualcomm Incorporated Mobile device with dual digital camera sensors and methods of using the same
NO326372B1 (no) 2006-09-21 2008-11-17 Polight As Polymerlinse
JP2008092247A (ja) * 2006-10-02 2008-04-17 Sanyo Electric Co Ltd 固体撮像素子
JP4396684B2 (ja) * 2006-10-04 2010-01-13 ソニー株式会社 固体撮像装置の製造方法
US20110158617A1 (en) 2007-02-12 2011-06-30 Polight As Device for providing stabilized images in a hand held camera
JP2008286527A (ja) 2007-05-15 2008-11-27 Panasonic Corp 複眼測距装置
KR100969987B1 (ko) * 2008-01-10 2010-07-15 연세대학교 산학협력단 광학패키지 웨이퍼스케일 어레이 및 그 제조방법
JP2009279790A (ja) 2008-05-20 2009-12-03 Sharp Corp レンズ及びその製造方法、並びに、レンズアレイ、カメラモジュール及びその製造方法、電子機器
CN102057315A (zh) 2008-06-06 2011-05-11 兰斯维克托公司 可调谐液晶光学装置
WO2010015093A1 (en) 2008-08-08 2010-02-11 Optotune Ag Electroactive optical device
JP5183441B2 (ja) * 2008-11-27 2013-04-17 キヤノン株式会社 撮像装置
JP2010204631A (ja) 2009-02-06 2010-09-16 Fujifilm Corp ウェハレベルレンズアレイの製造方法、ウェハレンズアレイ、レンズモジュール及び撮像ユニット
JP5171681B2 (ja) 2009-02-13 2013-03-27 オリンパス株式会社 レンズモジュールの製造方法
JP2010256563A (ja) 2009-04-23 2010-11-11 Sharp Corp レンズアレイおよび当該レンズアレイの製造方法、並びに、その利用
FR2950154B1 (fr) 2009-09-15 2011-12-23 Commissariat Energie Atomique Dispositif optique a membrane deformable a actionnement piezoelectrique en forme de couronne continue
WO2011058876A1 (ja) 2009-11-13 2011-05-19 富士フイルム株式会社 測距装置、測距方法、測距プログラムおよび測距システムならびに撮像装置
JP2011138089A (ja) 2010-01-04 2011-07-14 Fujifilm Corp ウェハレベルレンズアレイ、レンズモジュール及び撮像ユニット
JP2012015642A (ja) 2010-06-29 2012-01-19 Sanyo Electric Co Ltd 撮像装置
JP5501918B2 (ja) * 2010-09-30 2014-05-28 株式会社トプコン 光学素子の製造方法およびその方法により作製された光学素子
JP2012205117A (ja) * 2011-03-25 2012-10-22 Kyocera Corp 電子機器
JP2013001091A (ja) 2011-06-21 2013-01-07 Konica Minolta Advanced Layers Inc 光学素子の製造方法
US20130265459A1 (en) * 2011-06-28 2013-10-10 Pelican Imaging Corporation Optical arrangements for use with an array camera
JP5734776B2 (ja) * 2011-07-15 2015-06-17 株式会社東芝 カメラモジュール
JP6112824B2 (ja) * 2012-02-28 2017-04-12 キヤノン株式会社 画像処理方法および装置、プログラム。
JP2015088691A (ja) * 2013-11-01 2015-05-07 ソニー株式会社 固体撮像装置およびその製造方法、並びに電子機器
JP6257285B2 (ja) 2013-11-27 2018-01-10 キヤノン株式会社 複眼撮像装置
TWI741988B (zh) * 2015-07-31 2021-10-11 日商新力股份有限公司 堆疊式透鏡結構及其製造方法,以及電子裝置
US9973669B2 (en) * 2015-08-28 2018-05-15 Apple Inc. Dual overmolded reconstructed camera module
KR20170035237A (ko) * 2015-09-22 2017-03-30 엘지전자 주식회사 이동 단말기 및 그 제어방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057278A1 (en) * 2003-12-11 2005-06-23 Nokia Corporation Method and device for capturing multiple images
CN101427372A (zh) * 2004-08-25 2009-05-06 美商新美景股份有限公司 用于多个相机装置的设备和操作该设备的方法
JP2009251366A (ja) * 2008-04-08 2009-10-29 Konica Minolta Opto Inc 撮像レンズの製造方法、撮像レンズ及び撮像装置
TWM359700U (en) * 2008-08-21 2009-06-21 Fujinon Corp Stacked-type camera module and photographing device
US20130016251A1 (en) * 2011-07-15 2013-01-17 Kabushiki Kaisha Toshiba Solid-state imaging device, image processing apparatus, and camera module

Also Published As

Publication number Publication date
US10375282B2 (en) 2019-08-06
EP3383019A4 (en) 2019-10-09
CN107431746B (zh) 2021-12-14
TW201719916A (zh) 2017-06-01
KR20180084629A (ko) 2018-07-25
CN107431746A (zh) 2017-12-01
WO2017090437A1 (ja) 2017-06-01
JPWO2017090437A1 (ja) 2018-09-13
EP3383019A1 (en) 2018-10-03
US20180270404A1 (en) 2018-09-20
JP6859263B2 (ja) 2021-04-14

Similar Documents

Publication Publication Date Title
TWI781085B (zh) 複眼透鏡模組及複眼相機模組
US11342371B2 (en) Stacked lens structure, method of manufacturing the same, and electronic apparatus
KR102074046B1 (ko) 렌즈부착 기판, 적층 렌즈 구조체, 카메라 모듈 및 제조 장치 및 방법
EP3007228B1 (en) Monolithic integration of plenoptic lenses on photosensor substrates
CN107735246B (zh) 透镜基板的制造方法
CN108025515B (zh) 透镜基板、半导体装置的制造方法以及电子设备
JP2019045651A (ja) 積層レンズ構造体、固体撮像素子、および、電子機器
JP2017032797A (ja) 積層レンズ構造体およびその製造方法、並びに電子機器
JP6660115B2 (ja) レンズ付き基板、及び、積層レンズ構造体の製造方法
JP6670565B2 (ja) 積層レンズ構造体の製造方法及び型
JP2018120115A (ja) Afモジュール、カメラモジュール、および、電子機器
JP2019066610A (ja) 撮像素子、撮像素子の製造方法、および、電子機器
JP2019045652A (ja) 積層レンズ構造体およびその製造方法、並びに、電子機器
WO2019065294A1 (ja) 撮像素子、撮像素子の製造方法、および、電子機器

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent