CN101355105B - 半导体装置及其制造方法 - Google Patents

半导体装置及其制造方法 Download PDF

Info

Publication number
CN101355105B
CN101355105B CN200810144745XA CN200810144745A CN101355105B CN 101355105 B CN101355105 B CN 101355105B CN 200810144745X A CN200810144745X A CN 200810144745XA CN 200810144745 A CN200810144745 A CN 200810144745A CN 101355105 B CN101355105 B CN 101355105B
Authority
CN
China
Prior art keywords
conductivity type
drain region
source region
grid
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200810144745XA
Other languages
English (en)
Other versions
CN101355105A (zh
Inventor
桥谷雅幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ablic Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Publication of CN101355105A publication Critical patent/CN101355105A/zh
Application granted granted Critical
Publication of CN101355105B publication Critical patent/CN101355105B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7825Lateral DMOS transistors, i.e. LDMOS transistors with trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明提供了形成有用于提供在栅宽方向的凹部的槽部、并有利用栅绝缘膜在槽部顶面内及顶面上提供栅极的半导体装置。通过去除形成在邻近栅极的厚氧化物膜,源区和漏区各自的表面的至少一部分做得比该表面的其它部分低。把源区和漏区各自的表面的所述部分做得更低允许以高密度流过栅极凹部的顶面的电流均匀地流过整个槽部,这增加了凹部的有效栅宽以使在栅宽方向具有变化的深度。

Description

半导体装置及其制造方法
技术领域
本发明涉及包含要求较高驱动能力的MOS晶体管的半导体装置,以及制造该半导体装置的方法。
背景技术
MOS晶体管在电子学中是核心的电子元件。实现MOS晶体管的小型化及其高驱动能力是重要的。给MOS晶体管赋予高驱动能力的方法之一是栅宽扩展以减小ON电阻。然而,存在大的栅宽需要MOS晶体管的宽占有区的问题。作为对此的解决方案,提出了一种技术,通过该技术得到大的栅宽,同时抑制了MOS晶体管的占有区增加。(比如,参见JP2006-49826 A)。
下文中,将参考图4A-4D描述常规半导体装置。如图4A的透视图所示,该常规半导体装置包括设置在阱17内的槽部8及设置在栅绝缘膜9上位于该槽部8内且在其顶面上的栅极10。在阱17的表面部分中,栅极10的一侧设有源区12,其另一侧设有漏区13。图4B是图4A沿切面A-A的平面部分的截面图,图4C是图4A沿切面B-B的截面图。如图4C所示,因为栅极10设置在槽部8内,所以在使与栅绝缘膜9接触的栅极10 B-B方向上延伸的曲线的总长限定了栅宽。
如上所述,由于栅部具有包括凸部和凹部的槽结构,因此实际栅宽能够大于仅制作在平面上的栅宽。相应地,能够不降低MOS晶体管的耐压而减小每单位面积的ON电阻。
本发明的发明者发现一个问题,即在上述半导体装置的结构中,实际的驱动能力不能达到期望的驱动能力。还发现驱动能力依赖于栅长变化且在短栅长的装置中趋低。
假定此现象是由在源极与漏极之间生成的沟道中的不均匀电流引起的:多数电流沿着未形成槽部8的平面部的路径A流动;少数电流沿着作为槽部8侧面的、在连接源区和漏区的方向上与沟道平行的路径B、且沿着作为槽部8底面的路径C流动,如图4D所示。相应地,电流在短栅长装置中趋于集中到路径A,这在短栅长装置中被认为是驱动能力降低的原因。
发明内容
本发明的目标是改善具有槽结构的半导体装置的驱动能力。
为解决上述问题,本发明使用以下手段:
(1)一种半导体装置,包括:第一传导率型半导体衬底;槽部,所述槽部形成在所述第一传导率型半导体衬底上并在栅宽方向具有侧面和底面;栅极,所述栅极通过栅绝缘膜形成在所述槽部内及平面部的顶面的上;第二传导率型的源区,所述第二传导率型的源区形成在所述栅极的一侧上;以及第二传导率型的漏区,所述第二传导率型的漏区设置在所述栅极的另一侧上,其中,所述源区和所述漏区包括其邻近所述栅极的表面的至少一部分,该部分布置在比所述表面的其它部分更低的位置中,且所述源区和所述漏区具有在布置于所述更低的位置的所述表面的所述部分的向下部分中比在所述表面的所述其它部分的向下部分中更深的扩散深度;
(2)一种半导体装置,包括:第一传导率型半导体衬底;第二传导率型的源区和第二传导率型的漏区,所述第二传导率型的源区和第二传导率型的漏区邻近所述第一传导率型半导体衬底相互分离地被设置;平面部,所述平面部是平的且设置在所述源区和所述漏区之间以成为第一沟道区;具有恒定深度的槽部,所述槽部与所述平面部一起设置且具有充当第二沟道区的侧面和底面;栅绝缘膜,所述栅绝缘膜设置在所述平面部的表面及所述槽部的表面;以及栅极,所述栅极设置在所述栅绝缘膜上,其中,所述源区和所述漏区在其表面上包括通过所述槽部面向另一侧的一部分的部分,它布置在比所述表面其它部分更低的位置,且所述源区和所述漏区具有在通过所述槽部面向所述另一侧的一部分的所述部分中比所述表面的所述其它部分深的扩散深度;以及
(3)一种制造半导体装置的方法,包括:准备第一传导率型的半导体衬底;从所述半导体衬底的表面去除部分区成为源区且去除部分区成为漏区以形成凹部;在区中形成具有侧面和底面的槽以成为沟道来布置平面部和槽部;在所述槽部的侧面和底面上以及所述平面部的表面上形成栅绝缘膜;在所述栅绝缘膜上形成栅极;以及形成第二传导率型的源区和第二传导率型的漏区以在所述凹部周围将所述栅极夹入中间。
依照本发明,通过去除采用LOCOS法至少在邻近所述栅极的一部分形成的厚氧化物膜,上述半导体装置的所述源区和所述漏区的表面的一部分能够低于所述表面的其它部分。因为允许相对于晶体管槽部的所述栅极将所述源极和所述漏极至更深的位置,所以能够相应减少在栅宽方向所述凹部的顶端的电流密度,且该电流能够分散到所述凹部的内部以沿深的路径流动,这能增强该半导体装置的驱动能力。
附图说明
在附图中:
图1A-1J是示出了依照本发明第一实施例的制造半导体装置的方法的处理顺序流程的截面图;
图2A是示出了依照本发明第一实施例的具有槽结构的MOS晶体管细节的平面图,图2B和图2C是示出了依照本发明第一实施例的具有槽结构的MOS晶体管细节的截面图;
图3是示出了依照本发明第二实施例的具有槽结构的MOS晶体管细节的平面图,以及
图4A是示出了具有常规技术的槽结构的MOS晶体管的透视图,图4B和图4C是示出了具有常规技术的槽结构的MOS晶体管的截面图,且图4D是示出了流过具有相关技术的槽结构的MOS晶体管的沟道的电流的路径示意图。
具体实施方式
在下文中,将参考附图描述本发明的实施例。
图1A-1J是示出了制造依照本发明的第一实施例的半导体装置的方法的处理顺序流程的截面图。
在图1A中,在比如p型半导体衬底1、或者具有因添加硼在20Ωcm到30Ωcm范围的电阻系数的杂质浓度的半导体衬底的第一传导率型半导体衬底上,形成诸如具有几百
Figure S200810144745XD00041
厚度的热氧化物膜的氧化物膜2。之后,比如以几千
Figure S200810144745XD00042
厚度形成氮化物膜3。注意,此实施例的衬底具有p型传导率,但是衬底的传导率与本发明的实质无关。如图1B所示,用保护膜(resist film)4在氮化物膜3上形成图案,并通过硅局部氧化(LOCOS)法去除该氮化物膜3以形成氧化物膜。本例的氮化物膜在随后的处理中通过LOCOS法用于形成厚氧化物膜。此后,形成保护膜5,而保持保护膜4,且添加杂质以在沟道切割区中形成低浓度扩散层。比如,优选地以1×1011原子/cm2到1×1013原子/cm2的用量离子注入磷。在本例中,砷可以用作杂质。
然后,如图1C所示,去除保护膜4和5并采用LOCOS法形成LOCOS氧化物膜。在本例中,通过以1000℃到1200℃的温度数小时的热氧化形成诸如500nm到1μm厚的氧化物膜。同时,形成在沟道切割区中的低浓度扩散层6。接着,如图1D所示,氮化物膜3去除之后,用保护膜7形成图案以去除LOCOS氧化物膜。氮化物膜或多晶硅膜可以代替保护膜7用作形成图案的掩膜。去除保护膜7和氧化物膜2之后,于是得到图1E所示的结构。该结构具有使要作为源区或漏区的区表面的部分低于其另外的部分的凹部。接着,如图1F所示,在第一传导率型半导体衬底中比如以几百nm到几μm的深度形成槽结构8。
如图1G所示,以几百到几千的厚度形成诸如热氧化膜的栅绝缘膜9之后,多晶硅栅膜优选地以100nm到500nm的厚度沉积在栅绝缘膜9上,且通过预沉积或离子注入引入杂质以减小电阻率来得到栅极10。在本例中,传导率可以是第一传导率型或者第二传导率型。而且,用保护膜11对栅极10形成图案,其提供了如图1H所示结构。如上所述,大致确定了要作为MOS晶体管沟道的区。图1H只显示了要作为槽部的沟道的区,但是同时通过在栅极10上形成图案也形成要作为平面部的沟道的区。
接着,如图1I所示,添加杂质以自对准方式形成源区和漏区。在向源区和漏区的杂质添加中,比如优选地以1×1015原子/cm2到1×1016原子/cm2的用量离子注入砷。而且,在与同一芯片中没有槽结构8的MOS晶体管的条件相同的条件下,能同时进行向源区和漏区的杂质引入。通过上述处理,配置具有槽结构8的MOS晶体管。如图1J所示,然后以800℃到1000℃的温度数小时的热处理形成源区12和漏区13。在本实施例中,在栅极10附近的源区12和漏区13在其表面的部分上具有下降部。相应地,用于形成源区12和漏区13的杂质也分布到比以前更深的部分,允许增加流过槽部侧面或者其底面的电流量。
参考图2A-2C更详细地描述具有槽结构的、使用包括上述处理的方法制造的MOS晶体管的结构。
图2A是本发明的第一实施例的MOS晶体管的平面图,图2B是图2A沿A-A线的截面图,图2C是图2A沿B-B线的截面图。
本发明的半导体装置既具有由在栅宽方向布置的多槽部8组成的栅极,又具有形成在除槽部外构成沟道区的一部分的平面部上的栅极。图2B是图2A沿A-A线的截面图,并显示槽部晶体管18。图2C是图2A沿B-B线的截面图,并显示平面部晶体管19。图2A显示为在栅极10下随从槽部的形状提供的栅绝缘膜9。
图2A显示本发明的第一实施例,其中,从中去除采用LOCOS法制成的厚氧化物膜以使在栅极10附近的源区12和漏区13的表面的至少一部分低于其它部分的区14连续且共同地存在于源区12和漏区13中,且被设置成在槽部晶体管18的栅极10的栅长方向包围两端。而且,在本实施例中,充当布线接触的槽部接触15及平面部接触16布置在栅极附近的表面上的下降部分上,它们在源区12和漏区13中。
图3是示出了依照本发明第二实施例的半导体装置的平面图。在图3中,厚氧化物膜去除区14至少具有在源区12和漏区13的表面上的、比其它部分低的一部分,且有选择地形成在槽部晶体管18的栅极10的栅长方向的延长部分上。与此一道,对于布线接触,槽部15或者平面部接触16布置在不同位置中。比如,平面部接触16设置在到栅极比到槽部接触15更近的距离处以达到减小寄生电阻的目的。而且在图3中,提供栅绝缘膜9以在栅极10下随从槽部的形状。

Claims (8)

1.一种半导体装置,包括:
第一传导率型半导体衬底;
槽部,所述槽部设置在所述第一传导率型半导体衬底上,在栅宽方向具有侧面和底面;
栅极,所述栅极通过栅绝缘膜设置在所述槽部内及平面部的顶面的上方;
第二传导率型的源区,所述第二传导率型的源区设置在所述栅极的一侧上;以及
第二传导率型的漏区,所述第二传导率型的漏区设置在所述栅极的另一侧上,
其中,所述源区和所述漏区中邻近所述栅极的表面具有布置在比所述表面的其它部分更低位置中的至少一部分,并且其中所述源区和所述漏区在所述表面的所述至少一部分的向下部分中具有比在所述表面的所述其它部分的向下部分中更深的扩散深度。
2.一种半导体装置,包括:
第一传导率型半导体衬底;
第二传导率型的源区和第二传导率型的漏区,所述第二传导率型的源区和第二传导率型的漏区邻近所述第一传导率型半导体衬底相互分离地被设置;
平面部,所述平面部是平的且设置在所述源区和所述漏区之间以成为第一沟道区;
具有恒定深度的槽部,所述槽部与所述平面部一起设置且具有充当第二沟道区的侧面和底面;
栅绝缘膜,所述栅绝缘膜设置到所述平面部的表面及所述槽部的表面;以及
栅极,所述栅极设置在所述栅绝缘膜上,
其中,所述源区和所述漏区中邻近所述栅极的表面具有布置在比所述表面的其它部分更低位置中的至少一部分,并且其中所述源区和所述漏区在所述至少一部分的向下部分中具有比在所述表面的所述其它部分的向下部分中更深的扩散深度。
3.依照权利要求2所述的半导体装置,还包括用于在布置于所述更低位置的所述源区和所述漏区中每一个的表面上布线的接触。
4.依照权利要求2所述的半导体装置,其中在所述平面部的所述源区表面上的接触与所述漏区表面上的接触中的每一个与所述栅极之间的距离短于在所述槽部的所述源区表面上的接触与所述漏区表面上的接触中的每一个与所述栅极之间的距离。
5.一种制造半导体装置的方法,包括:
准备第一传导率型的半导体衬底;
从所述半导体衬底的表面去除部分区成为源区且去除部分区成为漏区以形成凹部;
在区中形成具有侧面和底面的槽以成为沟道来布置平面部和槽部;
在所述槽部的侧面和底面上以及所述平面部的表面上形成栅绝缘膜;
在所述栅绝缘膜上形成栅极;以及
形成第二传导率型的源区和第二传导率型的漏区以在所述凹部周围将所述栅极夹入中间,
其中,所述源区和所述漏区中邻近所述栅极的表面具有布置在比所述表面的其它部分更低位置中的至少一部分,并且其中所述源区和所述漏区在所述至少一部分的向下部分中具有比在所述表面的所述其它部分的向下部分中更深的扩散深度。
6.依照权利要求5所述的制造半导体装置的方法,其中,通过采用LOCOS法形成厚氧化物膜并去除所述厚氧化物膜,进行所述从所述半导体衬底的表面去除部分区成为源区且去除部分区成为漏区以形成凹部。
7.依照权利要求5所述的制造半导体装置的方法,其中,所述形成第二传导率型的源区和所述第二传导率型的漏区还包括在与向形成在同一半导体衬底上的其它晶体管的源区和漏区的杂质引入的条件相同的条件下引入杂质。
8.依照权利要求5所述的制造半导体装置的方法,其中,所述形成第二传导率型的源区和所述第二传导率型的漏区还包括通过杂质引入向形成在同一半导体衬底上的其它晶体管的源区和漏区同时引入杂质。
CN200810144745XA 2007-07-27 2008-07-25 半导体装置及其制造方法 Expired - Fee Related CN101355105B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007195492 2007-07-27
JP2007-195492 2007-07-27
JP2007195492A JP5165954B2 (ja) 2007-07-27 2007-07-27 半導体装置

Publications (2)

Publication Number Publication Date
CN101355105A CN101355105A (zh) 2009-01-28
CN101355105B true CN101355105B (zh) 2012-06-27

Family

ID=40294497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200810144745XA Expired - Fee Related CN101355105B (zh) 2007-07-27 2008-07-25 半导体装置及其制造方法

Country Status (5)

Country Link
US (2) US8716142B2 (zh)
JP (1) JP5165954B2 (zh)
KR (1) KR101520485B1 (zh)
CN (1) CN101355105B (zh)
TW (1) TWI459472B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5738094B2 (ja) * 2010-09-14 2015-06-17 セイコーインスツル株式会社 半導体装置の製造方法
JP5881100B2 (ja) * 2011-12-22 2016-03-09 エスアイアイ・セミコンダクタ株式会社 半導体装置の製造方法
DE102015106688B4 (de) 2015-04-29 2020-03-12 Infineon Technologies Ag Schalter mit einem feldeffekttransistor, insbesondere in einer integrierten schaltung zur verwendung in systemen mit lasten
JP2018089845A (ja) * 2016-12-02 2018-06-14 大日本印刷株式会社 個体認証用半導体チップ、個体認証媒体及び個体認証方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956263B1 (en) * 1999-12-28 2005-10-18 Intel Corporation Field effect transistor structure with self-aligned raised source/drain extensions

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264764A (ja) * 1995-03-22 1996-10-11 Toshiba Corp 半導体装置
JPH1065150A (ja) * 1996-08-14 1998-03-06 Yokogawa Electric Corp Dmos fet
JP3405681B2 (ja) * 1997-07-31 2003-05-12 株式会社東芝 半導体装置
JP3461277B2 (ja) * 1998-01-23 2003-10-27 株式会社東芝 半導体装置及びその製造方法
US6066533A (en) * 1998-09-29 2000-05-23 Advanced Micro Devices, Inc. MOS transistor with dual metal gate structure
US6531347B1 (en) * 2000-02-08 2003-03-11 Advanced Micro Devices, Inc. Method of making recessed source drains to reduce fringing capacitance
JP4780818B2 (ja) * 2000-03-03 2011-09-28 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP3651802B2 (ja) * 2002-09-12 2005-05-25 株式会社東芝 半導体装置の製造方法
KR100521369B1 (ko) * 2002-12-18 2005-10-12 삼성전자주식회사 고속도 및 저전력 소모 반도체 소자 및 그 제조 방법
JP2005136150A (ja) * 2003-10-30 2005-05-26 Oki Electric Ind Co Ltd 半導体装置及びその製造方法
JP4837902B2 (ja) * 2004-06-24 2011-12-14 富士通セミコンダクター株式会社 半導体装置
JP5110776B2 (ja) 2004-07-01 2012-12-26 セイコーインスツル株式会社 半導体装置の製造方法
JP2006019518A (ja) * 2004-07-01 2006-01-19 Seiko Instruments Inc 横型トレンチmosfet
US7102201B2 (en) * 2004-07-15 2006-09-05 International Business Machines Corporation Strained semiconductor device structures
JP4515305B2 (ja) * 2005-03-29 2010-07-28 富士通セミコンダクター株式会社 pチャネルMOSトランジスタおよびその製造方法、半導体集積回路装置の製造方法
JP4976658B2 (ja) * 2005-04-05 2012-07-18 セイコーインスツル株式会社 半導体装置の製造方法
US7569443B2 (en) * 2005-06-21 2009-08-04 Intel Corporation Complementary metal oxide semiconductor integrated circuit using raised source drain and replacement metal gate
KR100714307B1 (ko) * 2005-08-05 2007-05-02 삼성전자주식회사 활성영역 가장자리에 리세스영역을 갖는 반도체 장치 및 그형성방법
JP4410195B2 (ja) * 2006-01-06 2010-02-03 株式会社東芝 半導体装置及びその製造方法
DE102006015077B4 (de) * 2006-03-31 2010-12-23 Advanced Micro Devices, Inc., Sunnyvale Transistor mit abgesenkten Drain- und Source-Gebieten und Verfahren zur Herstellung desselben
US7410875B2 (en) * 2006-04-06 2008-08-12 United Microelectronics Corp. Semiconductor structure and fabrication thereof
US7719062B2 (en) * 2006-12-29 2010-05-18 Intel Corporation Tuned tensile stress low resistivity slot contact structure for n-type transistor performance enhancement
JP2008192985A (ja) * 2007-02-07 2008-08-21 Seiko Instruments Inc 半導体装置、及び半導体装置の製造方法
JP2009152394A (ja) * 2007-12-20 2009-07-09 Toshiba Corp 半導体装置及びその製造方法
JP5442951B2 (ja) * 2008-02-26 2014-03-19 セイコーインスツル株式会社 半導体装置の製造方法
JP4770885B2 (ja) * 2008-06-30 2011-09-14 ソニー株式会社 半導体装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6956263B1 (en) * 1999-12-28 2005-10-18 Intel Corporation Field effect transistor structure with self-aligned raised source/drain extensions

Also Published As

Publication number Publication date
US20140191313A1 (en) 2014-07-10
JP5165954B2 (ja) 2013-03-21
TW200924071A (en) 2009-06-01
US9276065B2 (en) 2016-03-01
US20090026537A1 (en) 2009-01-29
KR101520485B1 (ko) 2015-05-14
CN101355105A (zh) 2009-01-28
JP2009032905A (ja) 2009-02-12
TWI459472B (zh) 2014-11-01
KR20090012159A (ko) 2009-02-02
US8716142B2 (en) 2014-05-06

Similar Documents

Publication Publication Date Title
CN103650148B (zh) 绝缘栅双极晶体管
CN100533769C (zh) 半导体装置及其制造方法
US6720618B2 (en) Power MOSFET device
CN101355104B (zh) 半导体装置及其制造方法
TWI451526B (zh) 半導體元件及其製造方法
CN103972236A (zh) 包含鳍式场效电晶体装置的集成电路及其制造方法
KR100758343B1 (ko) 탄화 규소 반도체 장치
CN103875074A (zh) 绝缘栅晶体管及其生产方法
CN104037228B (zh) 半导体器件及其制造方法
US8598026B2 (en) Semiconductor device and method of manufacturing the same
WO2008069309A1 (ja) 半導体装置及びその製造方法
CN101355105B (zh) 半导体装置及其制造方法
US8236648B2 (en) Trench MOS transistor and method of manufacturing the same
JP2009272453A (ja) トランジスタ、半導体装置及びその製造方法
CN104600116B (zh) 场效应半导体构件及其制造方法
CN100570890C (zh) 使用沟槽结构的横向半导体器件及其制造方法
US8173509B2 (en) Semiconductor device and method for manufacturing the same
JP5719899B2 (ja) 半導体装置
JP4127751B2 (ja) 半導体装置及びその製造方法
CN102544072A (zh) 半导体装置以及半导体装置的制造方法
KR20030055088A (ko) 반도체 장치 및 그 제조 방법
JP2011210905A (ja) 半導体装置の製造方法
CN108962991A (zh) 半导体元件及其制造方法
KR960012916B1 (ko) 반도체장치 및 그 제조방법
JP2008060149A (ja) 接合型電界効果トランジスタおよびその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20160311

Address after: Chiba County, Japan

Patentee after: DynaFine Semiconductor Co.,Ltd.

Address before: Chiba, Chiba, Japan

Patentee before: Seiko Instruments Inc.

CP01 Change in the name or title of a patent holder

Address after: Chiba County, Japan

Patentee after: ABLIC Inc.

Address before: Chiba County, Japan

Patentee before: DynaFine Semiconductor Co.,Ltd.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20210725

CF01 Termination of patent right due to non-payment of annual fee