CN100533769C - 半导体装置及其制造方法 - Google Patents

半导体装置及其制造方法 Download PDF

Info

Publication number
CN100533769C
CN100533769C CNB2007100849511A CN200710084951A CN100533769C CN 100533769 C CN100533769 C CN 100533769C CN B2007100849511 A CNB2007100849511 A CN B2007100849511A CN 200710084951 A CN200710084951 A CN 200710084951A CN 100533769 C CN100533769 C CN 100533769C
Authority
CN
China
Prior art keywords
layer
drift layer
gate electrode
field plate
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2007100849511A
Other languages
English (en)
Other versions
CN101026191A (zh
Inventor
田中秀治
菊地修一
中谷清史
吉武和广
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN101026191A publication Critical patent/CN101026191A/zh
Application granted granted Critical
Publication of CN100533769C publication Critical patent/CN100533769C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0856Source regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0688Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions characterised by the particular shape of a junction between semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/404Multiple field plate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种高耐压MOS晶体管,其具有300V左右的高的源极-漏极耐压Bvds,并且具有低的接通电阻。形成有从源极层(55)侧向栅极电极(54)下方延伸的N型体层(63)。形成有比第一漂移层(65)更深地扩散到外延半导体层(51)中,并从第一漂移层(65)的下方向栅极电极(54)的下方延伸,在该栅极电极(54)的下方与体层(63)形成PN结的P型第二漂移层(64)。该第二漂移层(64)和源极层(55)之间的体层(63)的表面成为沟道区域(CH2)。第一漂移层(65)形成为从容易产生电场集中的栅极电极(54)的左端部(E1)离开。

Description

半导体装置及其制造方法
技术领域
本发明涉及半导体装置及其制造方法,特别是涉及DMOS型(DiffusedMOS-type)高耐压MOS晶体管的结构及其制造方法。
背景技术
高耐压MOS晶体管具有高的源极-漏极耐压或高的栅极耐压,被广泛应用于LCD驱动器等各种驱动器或电源电路等中。特别是近年来需要具有高的源极-漏极耐压Bvds,并且具有低的接通电阻的高耐压MOS晶体管。
图19表示现有的P沟道型高耐压MOS晶体管(下面称作现有HV-PchMOS)的结构。使N型外延半导体层51在P型单晶半导体衬底50上外延生长,在单晶半导体衬底50和外延半导体层51的界面形成N+型埋入半导体层52。在外延半导体层51上经由栅极绝缘膜53形成栅极电极54。在栅极电极54的右侧形成P+型源极层(PSD)55,N型阱层(N+W)56从源极层55侧向栅极电极54下方延伸。
另一方面,在栅极电极54的左侧形成P型漂移层57,其右侧端部向栅极电极54的下方延伸。该漂移层57和源极层55之间的N型阱层56的表面区域为沟道区域CH1,该沟道区域CH1的长度为实效沟道长度Leff1。漂移层57是载流子的漂移区域,其在对漏极层58施加高电压(该情况下对源极层55施加负的高电压)时耗尽,具有将漏极电场缓和的作用。
在漂移层57的左侧,与该漂移层57接触形成P型漏极层58。漏极层58由三个P型层(PSD层、SP+D层、P+D层)构成,表面的PSD层浓度最高,其下方的SP+D层浓度次高,其下方的P+D层浓度最低。通过这样使漏极层58具有浓度梯度,将漏极层58的耗尽层的扩展度增大,实现高耐压化。
另外,形成有经由第一层间绝缘膜59从栅极电极54的一部分上向漂移层57上延伸的第一场电极60和经由第二层间绝缘膜61从第一场电极60的一部分上向漂移层57上延伸的第二场电极62。第一及第二场电极60、62被设定为与源极层55同电位。第一及第二场电极60、62具有使漂移层57的耗尽层扩展,缓和漏极电极的作用。
关于高耐压MOS晶体管,在专利文献1中有记载。
专利文献1:日本特开2004-39774号公报
在上述现有的HV-PchMOS中,虽然可得到300V左右的源漏极耐压Bvds,但存在接通电阻高的问题。因此,本发明者对将该HV-PchMOS进行DMOS化进行了研究,出现了源极-漏极耐压Bvds因DMOS化而降低的问题。
发明内容
本发明的目的在于,提供一种高耐压MOS晶体管,其具有300V左右的高的源极-漏极耐压Bvds,并且具有低的接通电阻。
本发明半导体装置的主要特征在于,具备:经由栅极绝缘膜形成于第一导电型半导体层上的栅极电极;与所述栅极电极的一侧的端部相邻形成的第二导电型源极层;从所述源极层侧向所述栅极电极下方延伸的第一导电型体层;从所述栅极电极另一侧的端部离开而形成的第二导电型第一漂移层;比所述第一漂移层更深地扩散到所述半导体层中,并从所述第一漂移层的下方向所述栅极电极下方延伸,在该栅极电极下方与所述体层形成结的第二导电型第二漂移层。
根据本发明,可通过将高耐压MOS晶体管进行DMOS化而进行低接通电阻化。另外,通过使第一漂移层从栅极电极的端部离开来克服因DMOS化而产生的源极-漏极耐压Bvds的降低。
本发明半导体装置的其它主要特征在于,具备:经由栅极绝缘膜形成于第一导电型半导体层上的栅极电极;与所述栅极电极的一侧的端部相邻形成的第二导电型源极层;从所述源极层侧向所述栅极电极下方延伸的第一导电型体层;从所述栅极电极的另一侧的端部离开而形成的第二导电型第一漂移层;比所述第一漂移层更深地扩散到所述半导体层中,并从所述第一漂移层的下方向所述栅极电极下方延伸,在该栅极电极下方与所述体层形成结的第二导电型第二漂移层,在所述第二漂移层的下部形成有凹部。
本发明中,在第一漂移层从栅极电极的端部离开的DMOS化结构中,通过在第二漂移层的下部形成凹部,进一步提高源极-漏极耐压Bvds。
根据本发明,可提供具有300V左右的高的源极-漏极耐压Bvds,并且具有低的接通电阻的高耐压MOS晶体管。
附图说明
图1是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图2是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图3是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图4是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图5是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图6是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图7是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图8是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图9是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图10是说明本发明第一实施例的半导体装置的制造方法的剖面图;
图11是说明本发明第二实施例的半导体装置的制造方法的剖面图;
图12是说明本发明第二实施例的半导体装置的制造方法的剖面图;
图13是说明本发明第二实施例的半导体装置的制造方法的剖面图;
图14是说明本发明第二实施例的半导体装置的制造方法的剖面图;
图15是说明本发明第二实施例的半导体装置的制造方法的剖面图;
图16是表示源极漏极电流Ids0和第二漂移层形成用离子注入的硼dose量的关系的图;
图17是跨导gm和第二漂移层形成用离子注入的硼dose量的关系的图;
图18是源极-漏极耐压Bvds和第二漂移层形成用离子注入的硼dose量的关系的图;
图19是现有例的半导体装置的剖面图;
图20是参考例的半导体装置的剖面图。
附图标记说明
50  单晶半导体衬底
51  外延半导体层
52  埋入半导体层
53  栅极绝缘膜
54  栅极电极
55  源极层
56  N型阱层
57  漂移层
58  漏极层
59  第一层间绝缘膜
60  第一场电极
61  第二层间绝缘膜
62  第二场电极
63  体层
64、64A  第二漂移层
65  第一漂移层
70  虚设氧化膜
71、72、73、74、75、76  光致抗蚀剂层
71A  光致抗蚀剂片
CH1、CH2  沟道区域
Leff1、Leff2  实效沟道长度
OF  偏移长度
R  凹部
SL  缝隙
具体实施方式
在对本发明实施例进行说明之前,先参照图20对将图19的现有高耐压MOS晶体管(现有的HV-PchMOS)进行DMOS化的、参考例的高耐压MOS晶体管进行说明。该高耐压MOS晶体管中,形成有从源极层55侧向栅极电极54下方延伸的N型基体层(N+D)63。另外,还形成有比第一漂移层57更深地扩散到半导体层51中,并从第一漂移层57的下方向栅极电极54的下方延伸,并在该栅极电极54的下方与体层63形成PN结的P型第二漂移层(SP+L)64。该第二漂移层64和源极层55之间的体层63的表面成为沟道区域CH2。而且,沟道区域CH2的长度为实效沟道长度Leff2。
根据该DMOS结构,与现有的HV-PchMOS(图19)相比,实效沟道长度Leff2缩短(Leff2<Leff1),在第一漂移层57的基础上,第二漂移层64于其下方更深地形成,因此,载流子的漂移通路变宽,从而可降低接通电阻。根据试验,第二漂移层64的经离子注入的硼dose量增加,同时源极漏极电流Ids0及跨导(トランスコンダクタンス)gm增加(参照图16、图17的将以口表示的测定点连接的线)。但是,若硼dose量为2.5E+12/cm2(=2.5×1012/cm2)以上,具有源极-漏极耐压Bvds急剧降低的问题(参照图18的将以口表示的测定点连接的线)。
其原因是,随着硼dose量的增加,接近栅极电极54的左端部的、第一漂移层57端部P的浓度升高,在该端部P产生电场集中,且产生击穿。
(第一实施例)
因此,在本实施例中,如图10所示,使第一漂移层65从容易产生电场集中的栅极电极54的左端部E1离开而形成。第一漂移层65的右端部E3和栅极电极54的左端部E1的距离为偏移长度OF。第一漂移层65的右端部E3优选配置于栅极电极54的左端部E1和第一场电极60的左端部E2之间。当第一漂移层65的右端部E3从第一场电极60的左端部E2向左离开(偏移长度OF大)时,接通电阻过高。另一方面,当第一漂移层65的右端部E3离栅极电极54的左端部E1过近(偏移长度OF小)时,产生源极-漏极耐压Bvds的降低。
因此,第一漂移层65的右端部E3优选配置于栅极电极54的左端部E1和第一场电极60的左端部E2的中央位置。例如,若栅极电极54的左端部E1和第一场电极60的左端部E2之间为12μm,则通过将第一漂移层65的右端部E3配置于其中央,使偏移长度OF为6μm。
根据这样的设计,与偏移长度OF为0μm的DMOS结构(图20)相比,源极漏极电流Ids0及跨导gm减少(参照图16、图17的将以△表示的测定点连接的线)。但是,其在可以容许的范围内,且可通过增加硼dose量补偿。此外,若硼dose量为2.5E+12/cm2以下,则源极漏极耐压Bvds不产生降低(参照图18的将以△表示的测定点连接的线)。
其次,参照附图对本实施例的高耐压MOS晶体管的制造方法进行说明。如图1所示,向P型单晶半导体衬底(例如硅单晶衬底)50的表面高浓度地离子注入N型杂质,在其表面使N型外延半导体层51外延生长。这样,在单晶半导体衬底50和外延半导体层51的界面形成N+型埋入半导体层51。在外延半导体层51的表面形成热氧化得到的虚设(ダミ)氧化膜70。
其次,如图2所示,在虚设氧化膜70上选择性形成光致抗蚀剂层71,以该光致抗蚀剂层71为掩模,通过离子注入硼(B+)在高耐压MOS晶体管的形成区域形成第二漂移层64。其次,如图3所示,在将光致抗蚀剂层71及虚设氧化膜70除去后,通过热氧化形成具有约90nm膜厚的栅极绝缘膜53,在该栅极绝缘膜53上形成具有约400nm膜厚的栅极电极54。栅极电极54由多晶硅、高融点金属硅化物等形成。
其次,如图4所示,从栅极电极54的一部分上以覆盖在栅极电极54左侧的第二漂移层64上的方式形成光致抗蚀剂层72,以栅极电极54及光致抗蚀剂层72为掩模,在栅极电极54右侧的外延半导体层51的表面离子注入磷(P+),形成N型体层63。磷(P+)的dose量约为1×1013/cm2。栅极电极54右侧的第二漂移层64通过磷(P+)补偿。其次,如图5所示,除去光致抗蚀剂层72,形成具有对应于图10的漏极层58的形成区域的开口的光致抗蚀剂层73。以该光致抗蚀剂层73为掩模,通过离子注入硼(B+)而形成漏极层58的P+D层。硼(B+)的dose量约为1×1013/cm2
其次,如图6所示,以1180℃的温度,在N2气氛中进行四小时的热扩散。由此,第二漂移层64、体层63及P+D层深度扩散,体层63和第二漂移层64在栅极电极54的下方形成PN结。其次,如图7所示,从体层63上直到栅极电极54左侧的第二漂移层64的一部分上形成光致抗蚀剂层74,以该光致抗蚀剂层74为掩模,通过离子注入硼(B+)形成第一漂移层65。第一漂移层65的右端部E3和栅极电极54的左端部E1之间为偏移长度OF。其次,如图8所示,在除去光致抗蚀剂层74后,形成光致抗蚀剂层75,以该光致抗蚀剂层75为掩模,通过离子注入硼(B+),在P+D层中形成SP+D层。然后,将光致抗蚀剂层75除去,在1050℃的温度下进行五小时的热扩散,或在1100℃的温度下进行90分钟的热扩散。
其次,如图9所示,形成具有与漏极层58的PSD层形成区域、源极层55的形成区域对应的开口的光致抗蚀剂层76,以该光致抗蚀剂层76为掩模,通过离子注入硼(B+),形成漏极层58的PSD层、源极层55。硼(B+)的dose量约为1×1015/cm2
其次,如图10所示,在将光致抗蚀剂层76除去后,形成经由第一层间绝缘膜59从栅极电极54的一部分上向第一漂移层65上延伸的第一场电极60、和经由第二层间绝缘膜61从第一场电极60的一部分上向第一漂移层65上延伸的第二场电极62。第一及第二层间绝缘膜59、61的膜厚约为1000nm。另外,第一及第二场电极60、62由铝或铝合金这样的导电材料构成。
(第二实施例)
根据第一实施例,在DMOS结构中,通过将第一漂移层65从栅极电极54的左端部E1离开而配置,可提高源极-漏极耐压Bvds。但是,如图18所示,当用于形成第二漂移层64的离子注入的硼dose量为3.0E+12/cm2(=3.0×1012/cm2)以上时,源极-漏极耐压Bvds降低。已知其原因在于,在与第一场电极60的左端部E2和第二场电极62的左端部E4之间对应的区域产生PN结的击穿。在第一实施例中,认为是:由于使第一漂移层65从栅极电极54的左端部E1离开,故在栅极电极54的端部的击穿不会产生,取而代之,在与第一场电极60的左端部E2和第二场电极62的左端部E4之间对应的区域,由于第二漂移层64的浓度提高,耗尽层难以扩展,会产生PN结的击穿。
因此,在本实施例中,如图15所示,通过在与第一场电极60的左端部E2和第二场电极的左端部E4之间对应的区域,在第二漂移层64A的下部形成凹部R,提高源极-漏极耐压Bvds。这是因为,由于在第二漂移层64A的凹部R,P型杂质浓度局部降低,并且第二漂移层64A的凹部R和外延半导体层51的PN结面积也增大,因此,在施加漏极电压时,耗尽层的扩展增大。
第二漂移层64A的凹部R如下形成。首先,如图11所示,在通过离子注入而形成第二漂移层64A时,通过事先形成光致抗蚀剂片71A,在该光致抗蚀剂片71A的下方形成与该光致抗蚀剂宽度对应的缝隙SL。然后,只要进行与第一实施例相同的工序即可。即,如图12所示,形成栅极电极54,如图13所示,形成体层63。然后,在形成P+D层之后,如图14所示,如上所述,以1180℃的温度在N2气氛中进行四小时的热扩散。通过进行该热扩散,引起硼的横向扩散,缝隙SL的宽度变窄,最终缝隙SL的上部被硼填埋,在第二漂移层64A的下部形成凹部R。
根据该高耐压MOS晶体管,与偏移长度OF为6μm的第一实施例(图10)相比,源极漏极电流Ids0及跨导gm减少。图16、图17中,以×表示的测定点表示偏移长度OF为6μm,缝隙SL的长度为4μm的情况,以○表示的测定点表示偏移长度OF为6μm,缝隙SL的长度为6μm的情况。但是,源极漏极电流Ids0及跨导gm的降低在可容许的范围内,可通过增加硼dose量进行补偿。另外,如图18所示,确认了将硼dose量增加到3.5E+12/cm2,源极-漏极耐压Bvds不会产生降低(参照图18的将由×、○表示的测定点连接的线)。
另外,在第二漂移层64A的下部,若凹部R的位置位于与第一场电极60的左端部E2和第二场电极的左端部E4之间对应的区域,则也确认了源极漏极耐压Bvds不会低于300V。

Claims (8)

1、一种半导体装置,其特征在于,具备:经由栅极绝缘膜形成于第一导电型半导体层上的栅极电极;与所述栅极电极的一侧的端部相邻形成的第二导电型源极层;从所述源极层侧向所述栅极电极下方延伸的第一导电型体层;从所述栅极电极另一侧的端部离开而形成的第二导电型第一漂移层;比所述第一漂移层更深地扩散到所述半导体层中,并从所述第一漂移层的下方向所述栅极电极下方延伸,在该栅极电极下方与所述体层形成结的第二导电型第二漂移层,
所述半导体装置还具备:从所述栅极电极的一部分上延伸到所述第一漂移层的一部分上的第一场电极、和从所述第一场电极的一部分上延伸到所述第一漂移层上的第二场电极,
并且,在所述半导体装置中,所述第一漂移层的一端部配置于所述栅极电极的另一侧的端部和所述第一场电极的所述第一漂移层上的一端部的大致中央。
2、一种半导体装置,其特征在于,具备:经由栅极绝缘膜形成于第一导电型半导体层上的栅极电极;与所述栅极电极的一侧的端部相邻形成的第二导电型源极层;从所述源极层侧向所述栅极电极下方延伸的第一导电型体层;从所述栅极电极的另一侧的端部离开而形成的第二导电型第一漂移层;比所述第一漂移层更深地扩散到所述半导体层中,并从所述第一漂移层的下方向所述栅极电极下方延伸,在该栅极电极下方与所述体层形成结的第二导电型第二漂移层,在所述第二漂移层的下部形成有凹部。
3、如权利要求2所述的半导体装置,其特征在于,具备从所述栅极电极的一部分上延伸到所述第一漂移层上的第一场电极、和从所述第一场电极的一部分上延伸到所述第一漂移层上的第二场电极,
所述第二漂移层的凹部在与所述第一场电极及所述第二场电极的所述第一漂移层上的一端部之间对应的区域形成。
4、如权利要求1、2、3中任一项所述的半导体装置,其特征在于,具备与所述第一漂移层及所述第二漂移层接触的漏极层。
5、如权利要求1、2、3中任一项所述的半导体装置,其特征在于,所述半导体层是在第二导电型单晶半导体衬底上外延生长的外延半导体层,在所述单晶半导体衬底和所述半导体层的界面形成有浓度比所述半导体层更高的第一导电型埋入半导体层。
6、如权利要求1或3所述的半导体装置,其特征在于,所述第一场电极及所述第二场电极被设定为与所述源极层同电位。
7、一种半导体装置的制造方法,其特征在于,包括:在第一导电型半导体层上形成具有缝隙的第二导电型的第二漂移层的工序;在所述第二导电型第二漂移层上形成栅极绝缘膜的工序;在所述栅极绝缘膜上形成栅极电极的工序;向所述栅极电极的源极侧导入第一导电型杂质的工序;使所述第一导电型杂质向所述栅极电极的下方热扩散,形成与所述第二漂移层形成结的第一导电型体层,并且利用该热处理在所述第二漂移层的下方形成与所述缝隙对应的凹部的工序;在所述第二漂移层的表面形成从所述栅极电极的漏极侧一端部离开的第二导电型的第一漂移层的工序;在所述体层的表面形成第二导电型源极层的工序。
8、如权利要求7所述的半导体装置的制造方法,其特征在于,包括:形成从所述栅极电极的一部分上延伸到所述第一漂移层上的第一场电极的工序;形成从所述第一场电极的一部分上延伸到所述第一漂移层上的第二场电极的工序;所述第二漂移层的凹部在与所述第一场电极及所述第二场电极的所述第一漂移层上的一端部之间对应的区域上形成。
CNB2007100849511A 2006-02-24 2007-02-17 半导体装置及其制造方法 Expired - Fee Related CN100533769C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP048373/06 2006-02-24
JP2006048373A JP5307973B2 (ja) 2006-02-24 2006-02-24 半導体装置

Publications (2)

Publication Number Publication Date
CN101026191A CN101026191A (zh) 2007-08-29
CN100533769C true CN100533769C (zh) 2009-08-26

Family

ID=38051939

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100849511A Expired - Fee Related CN100533769C (zh) 2006-02-24 2007-02-17 半导体装置及其制造方法

Country Status (6)

Country Link
US (1) US7964915B2 (zh)
EP (1) EP1826815B1 (zh)
JP (1) JP5307973B2 (zh)
KR (1) KR100813391B1 (zh)
CN (1) CN100533769C (zh)
TW (1) TWI341589B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7501669B2 (en) 2003-09-09 2009-03-10 Cree, Inc. Wide bandgap transistor devices with field plates
US9773877B2 (en) 2004-05-13 2017-09-26 Cree, Inc. Wide bandgap field effect transistors with source connected field plates
US11791385B2 (en) 2005-03-11 2023-10-17 Wolfspeed, Inc. Wide bandgap transistors with gate-source field plates
JP4989085B2 (ja) * 2006-02-24 2012-08-01 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
US20080246080A1 (en) * 2006-07-28 2008-10-09 Broadcom Corporation Shallow trench isolation (STI) based laterally diffused metal oxide semiconductor (LDMOS)
US7855414B2 (en) 2006-07-28 2010-12-21 Broadcom Corporation Semiconductor device with increased breakdown voltage
ITTO20060785A1 (it) * 2006-11-02 2008-05-03 St Microelectronics Srl Dispositivo mos resistente alla radiazione ionizzante
US7816744B2 (en) * 2008-07-09 2010-10-19 Taiwan Semiconductor Manufacturing Company, Ltd. Gate electrodes of HVMOS devices having non-uniform doping concentrations
US8283722B2 (en) * 2010-06-14 2012-10-09 Broadcom Corporation Semiconductor device having an enhanced well region
US9123807B2 (en) 2010-12-28 2015-09-01 Broadcom Corporation Reduction of parasitic capacitance in a semiconductor device
US20120175679A1 (en) * 2011-01-10 2012-07-12 Fabio Alessio Marino Single structure cascode device
JP5776217B2 (ja) * 2011-02-24 2015-09-09 富士通株式会社 化合物半導体装置
KR101872942B1 (ko) * 2012-03-29 2018-06-29 삼성전자주식회사 반도체 장치
US9755059B2 (en) 2013-06-09 2017-09-05 Cree, Inc. Cascode structures with GaN cap layers
US9679981B2 (en) 2013-06-09 2017-06-13 Cree, Inc. Cascode structures for GaN HEMTs
US9847411B2 (en) * 2013-06-09 2017-12-19 Cree, Inc. Recessed field plate transistor structures
US9306055B2 (en) 2014-01-16 2016-04-05 Microchip Technology Incorporated High voltage double-diffused MOS (DMOS) device and method of manufacture
US9905428B2 (en) * 2015-11-02 2018-02-27 Texas Instruments Incorporated Split-gate lateral extended drain MOS transistor structure and process
JP6950714B2 (ja) * 2019-01-21 2021-10-13 株式会社デンソー 半導体装置
JP7147703B2 (ja) * 2019-07-16 2022-10-05 株式会社デンソー 半導体装置
KR102224364B1 (ko) * 2019-10-02 2021-03-05 주식회사 키 파운드리 고전압 반도체 소자 및 그 제조 방법
CN111092123A (zh) * 2019-12-10 2020-05-01 杰华特微电子(杭州)有限公司 横向双扩散晶体管及其制造方法
JP7265470B2 (ja) * 2019-12-24 2023-04-26 株式会社東芝 半導体装置
TWI817114B (zh) * 2021-05-05 2023-10-01 世界先進積體電路股份有限公司 半導體結構
US11894430B2 (en) 2021-09-16 2024-02-06 Vanguard International Semiconductor Corporation Semiconductor structure

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61180483A (ja) * 1985-02-05 1986-08-13 Matsushita Electric Ind Co Ltd 高耐圧mos型半導体装置
US4987465A (en) 1987-01-29 1991-01-22 Advanced Micro Devices, Inc. Electro-static discharge protection device for CMOS integrated circuit inputs
GB9106108D0 (en) * 1991-03-22 1991-05-08 Philips Electronic Associated A lateral insulated gate field effect semiconductor device
US5294824A (en) * 1992-07-31 1994-03-15 Motorola, Inc. High voltage transistor having reduced on-resistance
BE1007283A3 (nl) * 1993-07-12 1995-05-09 Philips Electronics Nv Halfgeleiderinrichting met een most voorzien van een extended draingebied voor hoge spanningen.
JPH08236757A (ja) * 1994-12-12 1996-09-13 Texas Instr Inc <Ti> Ldmos装置
DE19811297B4 (de) 1997-03-17 2009-03-19 Fuji Electric Co., Ltd., Kawasaki MOS-Halbleitervorrichtung mit hoher Durchbruchspannung
JP3315356B2 (ja) * 1997-10-15 2002-08-19 株式会社東芝 高耐圧半導体装置
DE19800647C1 (de) 1998-01-09 1999-05-27 Siemens Ag SOI-Hochspannungsschalter
US6111291A (en) 1998-06-26 2000-08-29 Elmos Semiconductor Ag MOS transistor with high voltage sustaining capability
US5973341A (en) * 1998-12-14 1999-10-26 Philips Electronics North America Corporation Lateral thin-film silicon-on-insulator (SOI) JFET device
US6531355B2 (en) * 1999-01-25 2003-03-11 Texas Instruments Incorporated LDMOS device with self-aligned RESURF region and method of fabrication
KR20000060879A (ko) * 1999-03-20 2000-10-16 김영환 고전압 반도체소자의 제조방법
US6211552B1 (en) * 1999-05-27 2001-04-03 Texas Instruments Incorporated Resurf LDMOS device with deep drain region
EP1116273B1 (en) * 1999-06-03 2006-07-26 Koninklijke Philips Electronics N.V. Semiconductor device comprising a high-voltage circuit element
EP1162664A1 (en) * 2000-06-09 2001-12-12 Motorola, Inc. Lateral semiconductor device with low on-resistance and method of making the same
EP1220323A3 (en) * 2000-12-31 2007-08-15 Texas Instruments Incorporated LDMOS with improved safe operating area
JP2002343960A (ja) * 2001-05-11 2002-11-29 Hitachi Ltd 半導体装置
EP1267415A3 (en) * 2001-06-11 2009-04-15 Kabushiki Kaisha Toshiba Power semiconductor device having resurf layer
US6773997B2 (en) * 2001-07-31 2004-08-10 Semiconductor Components Industries, L.L.C. Method for manufacturing a high voltage MOSFET semiconductor device with enhanced charge controllability
WO2003038903A1 (en) * 2001-11-01 2003-05-08 Koninklijke Philips Electronics N.V. Lateral isolated gate bipolar transistor device
EP1482560A4 (en) 2002-03-01 2008-02-27 Sanken Electric Co Ltd SEMICONDUCTOR DEVICE
JP2003343960A (ja) 2002-05-29 2003-12-03 Glocal:Kk 冷凍装置
US6717214B2 (en) * 2002-05-21 2004-04-06 Koninklijke Philips Electronics N.V. SOI-LDMOS device with integral voltage sense electrodes
JP4171251B2 (ja) 2002-07-02 2008-10-22 三洋電機株式会社 半導体装置及びその製造方法
US7576388B1 (en) * 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US20040108544A1 (en) 2002-12-09 2004-06-10 Semiconductor Components Industries, Llc High voltage mosfet with laterally varying drain doping and method
US7019377B2 (en) 2002-12-17 2006-03-28 Micrel, Inc. Integrated circuit including high voltage devices and low voltage devices
JP4357323B2 (ja) * 2004-03-04 2009-11-04 三菱電機株式会社 高耐圧半導体装置
JP2005294584A (ja) 2004-03-31 2005-10-20 Eudyna Devices Inc 半導体装置および不純物導入用マスクならびに半導体装置の製造方法
US7498652B2 (en) * 2004-04-26 2009-03-03 Texas Instruments Incorporated Non-uniformly doped high voltage drain-extended transistor and method of manufacture thereof
US7148540B2 (en) 2004-06-28 2006-12-12 Agere Systems Inc. Graded conductive structure for use in a metal-oxide-semiconductor device
DE102004036387B4 (de) 2004-07-27 2018-05-03 Robert Bosch Gmbh Hochvolt-MOS-Transistor und entsprechendes Herstellungsverfahren
JP4972855B2 (ja) * 2004-08-04 2012-07-11 富士電機株式会社 半導体装置およびその製造方法
TW200715570A (en) * 2005-09-07 2007-04-16 Cree Inc Robust transistors with fluorine treatment
JP4989085B2 (ja) * 2006-02-24 2012-08-01 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
US7618866B2 (en) * 2006-06-09 2009-11-17 International Business Machines Corporation Structure and method to form multilayer embedded stressors

Also Published As

Publication number Publication date
US7964915B2 (en) 2011-06-21
JP5307973B2 (ja) 2013-10-02
EP1826815A2 (en) 2007-08-29
EP1826815B1 (en) 2011-08-03
KR100813391B1 (ko) 2008-03-12
JP2007227746A (ja) 2007-09-06
CN101026191A (zh) 2007-08-29
EP1826815A3 (en) 2008-11-19
TW200735365A (en) 2007-09-16
TWI341589B (en) 2011-05-01
KR20070088377A (ko) 2007-08-29
US20070200195A1 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
CN100533769C (zh) 半导体装置及其制造方法
JP3742400B2 (ja) 半導体装置及びその製造方法
JP7180402B2 (ja) 半導体装置
US7417266B1 (en) MOSFET having a JFET embedded as a body diode
KR0167273B1 (ko) 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
US7928505B2 (en) Semiconductor device with vertical trench and lightly doped region
JP3395473B2 (ja) 横型トレンチmisfetおよびその製造方法
US8035112B1 (en) SIC power DMOSFET with self-aligned source contact
JP2009515332A (ja) 半導体デバイスの製造方法
CN103035725B (zh) 双栅极捆扎的vdmos器件
JPH0897411A (ja) 横型高耐圧トレンチmosfetおよびその製造方法
KR20100067834A (ko) 반도체 소자 및 그 제조 방법
TWI229941B (en) High voltage metal-oxide semiconductor device
US20070034895A1 (en) Folded-gate MOS transistor
US8227862B2 (en) Semiconductor device
KR20060054991A (ko) 실리콘과 실리콘 게르마늄 이종 구조를 가지는 고전압전계효과 트랜지스터 및 그 제조 방법
CN103779414B (zh) 半导体装置及半导体装置的制造方法
CN101026192B (zh) 半导体装置及其制造方法
JPH1079507A (ja) トレンチゲート型mos電界効果トランジスタ及びその製造方法
JP2850852B2 (ja) 半導体装置
KR20100027056A (ko) 반도체 장치 및 그의 제조 방법
CN103762177A (zh) 具有嵌入式硅锗源漏区域的场效应晶体管中邻近效应的减少
TW200304188A (en) Semiconductor component and manufacturing method
KR20100067567A (ko) 반도체 소자 및 이의 제조 방법
US8716142B2 (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20090826

Termination date: 20220217