CN101202219A - 利用挤压的承载掺杂剂材料制备太阳能电池 - Google Patents

利用挤压的承载掺杂剂材料制备太阳能电池 Download PDF

Info

Publication number
CN101202219A
CN101202219A CNA2007101989891A CN200710198989A CN101202219A CN 101202219 A CN101202219 A CN 101202219A CN A2007101989891 A CNA2007101989891 A CN A2007101989891A CN 200710198989 A CN200710198989 A CN 200710198989A CN 101202219 A CN101202219 A CN 101202219A
Authority
CN
China
Prior art keywords
dopant
ink
wafer
extrusion
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007101989891A
Other languages
English (en)
Other versions
CN101202219B (zh
Inventor
D·K·福克
E·J·什拉德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarWorld Innovations GmbH
Original Assignee
Palo Alto Research Center Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Palo Alto Research Center Inc filed Critical Palo Alto Research Center Inc
Publication of CN101202219A publication Critical patent/CN101202219A/zh
Application granted granted Critical
Publication of CN101202219B publication Critical patent/CN101202219B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/228Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a liquid phase, e.g. alloy diffusion processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0682Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells back-junction, i.e. rearside emitter, solar cells, e.g. interdigitated base-emitter regions back-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • H01L31/188Apparatus specially adapted for automatic interconnection of solar cells in a module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Abstract

通过将承载掺杂剂材料(掺杂剂墨水)挤压到半导体晶片的一个或多个预定的表面区域上,然后热处理该晶片以使来自掺杂剂墨水的掺杂剂扩散到晶片中以形成相应的掺杂区,可以有效地制造晶片基的太阳能电池。使用多增压室挤压头在晶片表面上以自对准式的布置同时挤压具有两种不同掺杂剂类型(例如,n型掺杂剂墨水和p型掺杂剂墨水)的相互交叉的掺杂剂墨水结构。通过层压定义一个或多个墨水流通道的多片微加工的硅来制备挤压头。非掺杂的或轻掺杂墨水与重掺杂墨水共挤压以用作间隔物或阻挡,并且任选地形成全部覆盖重掺杂墨水的帽盖。混合的热处理利用气态掺杂剂以同时掺杂晶片的暴露部分。

Description

利用挤压的承载掺杂剂材料制备太阳能电池
技术领域
本发明涉及半导体器件的制造,并且更具体地涉及大面积器件例如硅晶片基太阳能电池的低成本制造,和通过利用挤压方法在半导体器件的半导体衬底中形成掺杂区的功率半导体器件。
背景技术
现在的太阳能电池一般包括能够由太阳光产生电能量的大面积的、单层的p-n结二极管。这些电池一般利用被掺杂以包括一个或多个n-型掺杂区和一个或多个p-型掺杂区的硅晶片制成。这些太阳能电池(还称为硅晶片基太阳能电池)当前在太阳能电池的商业制造中是主要技术,并且是本发明的主要焦点。
通常称为交指型后触点(IBC)电池的理想太阳能电池几何形状,包括半导体晶片,如硅,和p-型和n-型掺杂的交替线(交叉条纹)。这个电池结构具有p和n区的所有电极接触可以形成在晶片一侧的优点。当多个晶片连接在一起成为一个模块时,布线全部从一边进行。对于这种器件的器件结构和制备方式已经在题目为“Solar Cell Production UsingNon-Contact Patterning and Direct Write Metallization”的共有和共同未决的美国专利申请序列No.11/336,714中描述了,其通过参考全部并入这里。
用来形成IBC太阳能电池中的交替掺杂线区的一个方法是:在晶片上布置交替掺杂剂类型的承载掺杂剂胶,然后用适当的温度分布加热该晶片以便使掺杂剂进入。一般用成本高的步骤进行太阳能电池掺杂和掺杂区的图形化,该高成本的步骤可包括使用阻挡沉积、阻挡图案化、激光处理、损伤移除和气相炉扩散。利用丝网印刷技术也可以产生期望的交叉掺杂区。然而,丝网印刷明显的缺点是:两个分开的印刷操作将需要写入两种承载掺杂剂材料,并且两次印刷需要精密地很好对准。而且,丝网印刷需要接触晶片,这增加了损伤(破坏)晶片的风险,由此增加了总生产成本。另外,在应用第二丝网印刷步骤之前,需要干燥第一丝网印刷层。
一种通常使用的太阳能电池结构利用电池晶片的背表面作为宽面积金属焊垫,一般为铝,来形成与器件p型侧的接触。在金属焙烧期间,铝和硅相互作用形成p+掺杂层。在某些情况下,也用硼掺杂该背表面,以制造p+层。该层的作用是建立所谓的背面场,其减少背面敷金属上的光电流的复合。该宽区域金属层一般通过丝网印刷或焊垫印刷涂敷,这两种方法都是接触印刷法,并因此增加了破坏晶片的风险。
需要在太阳能电池衬底中制造掺杂区的低成本的方法和系统,避免与接触印刷法有关的问题。具体地,需要用来在IBC太阳能电池的制造中制造自对准p型和n型掺杂区的更简单和更可靠的方法。
发明内容
本发明涉及一种用来制造大面积半导体的低成本的方法和系统,该方法和系统包括:将承载掺杂剂材料(掺杂剂墨水)挤压到半导体衬底(例如,单晶硅晶片)的一个或多个预定表面区域上;然后加热(热处理)该半导体衬底,以便布置在掺杂墨水中的掺杂剂扩散到衬底中,以形成一个或多个期望的掺杂区。与常规丝网印刷技术相比,将掺杂剂材料挤压在衬底上提供了对掺杂区的特征分辨率(feature resolution)的更好控制。另外,通过将掺杂剂墨水挤压到衬底上,掺杂剂墨水可以可靠地布置在期望的衬底区域上,而不接触衬底,由此避免了与常规接触印刷法有关的晶片破坏问题。通过提供更好的特征分辨率和减少晶片损坏,当与常规的制造方法相比较时,本发明减少了与制造大面积半导体器件相关的总体制造成本。
根据本发明的实施例,一种用来制造大面积半导体器件的系统包括:利用上述的挤压方法在半导体衬底的表面中形成期望的掺杂区,在衬底表面上形成钝化层,利用激光烧蚀或其它非接触设备在钝化层中形成接触开口,之后利用直接写金属化设备在该接触开口中沉积接触结构并在钝化层上形成金属化线。通过利用这些非接触处理方法中的每一个,本发明很容易地可靠地制造具有最小晶片损伤的太阳能电池。在一个可选实施例中,在形成钝化层之前,可从衬底表面移除残留的掺杂剂墨水。
根据本发明的一个方面,用来制造IBC型太阳能电池的系统包括:挤压头,其能够同时将具有自对准安排的两种不同掺杂剂类型(例如,n-型掺杂剂墨水和p-型掺杂剂墨水)的交叉掺杂剂墨水结构挤压在衬底表面上。挤压头包括多个喷嘴(出口通道),其分别在它们的入口开口处连通到所选的掺杂剂墨水源,以及具有以自对准布置设置在衬底表面上方的出口开口。在一个实施例中,每个其它喷嘴都与p型掺杂剂墨水源连通,并且剩余的喷嘴与n型掺杂剂墨水源连通,由此每个p型挤压结构设置在两个n型挤压结构之间。该系统包括用于在挤压工艺期间相对于挤压头移动衬底的x-y台或其它机构。通过利用这样的挤压头,p型和n型掺杂剂墨水结构同时以自对准的方式设置在衬底表面上,由此避免了允许第一丝网印刷掺杂剂墨水在沉积第二丝网印刷墨之前干燥所需要的延迟时间,以及也避免了需要精确地对准第二丝网印刷操作。
根据本发明的另一实施例,通过层压多片微加工的硅、塑料或其它非铁材料来制备挤压头。重要的是分配掺杂剂墨而不引入有害的杂质,并且尤其是避免过渡金属杂质。该需求不希望使用铁金属基流体系统。微加工的硅晶片的结合是很好理解且可靠的工艺。可以形成挤压头以便两种掺杂剂墨水从喷嘴阵列的相对两侧供给,或者挤压头可以利用“侧射击”结构形成,其中两种掺杂剂墨水都从同一侧供给到该喷嘴阵列。
根据另外的可选实施例,第三种(例如,相对轻掺杂或非掺杂的)墨水与两种相对重掺杂剂墨水一起挤压以便每个相邻对的重掺杂剂墨水结构被轻或非掺杂墨水结构隔开。非掺杂墨水可用作掺杂剂墨水结构之间的间隔物和/或阻挡以防止掺杂周围环境。在可选的实施例中,由于器件性能的原因,希望重n型和p型掺杂结构被产生两个重掺杂区之间的轻掺杂半导体区域的轻掺杂墨水隔开。
根据又一实施例,重掺杂墨水的窄线嵌入在第二种(例如,非掺杂的)墨水的较宽线之间。窄线是通过形成挤压头产生的,以便选择的喷嘴通道邻接于它们的有关出口开口而聚合。相反,用于非掺杂墨水的喷嘴通道在到达头出口之前分歧,其进一步挤榨窄线并形成连续薄片,其中窄线设置在宽的非掺杂结构之间。线宽的全控制是挤压头设计以及材料的相对流速的函数。
根据本发明的另一实施例,挤压头包括单个增压室(plenum),其提供在挤压头的端面之前终止的几个分歧喷嘴通道,由此生成产生掺杂剂或金属膏的均匀挤压薄片的流量并入部分。该挤压头提供了用于形成所谓的背表面场的交替非接触法,减少了光电流在背面敷金属上的复合,由此避免了与常规的丝网印刷或垫印刷法有关的晶片破坏,减少了制造成本。
根据本发明的另一实施例,混合掺杂法使用固态源掺杂和气相掺杂的组合。以如上描述的方式将掺杂剂墨水结构挤压在晶片上,但还在掺杂剂墨水结构的每侧上形成非掺杂结构,并且有意形成间隙以便所选的表面区域专门暴露在挤压结构之间。然后在包含气相掺杂剂的环境中进行衬底的温度退火。结合掺杂环境的热处理会在覆盖区中导致固态源掺杂,以及在暴露区中导致环境源掺杂。
根据另一实施例,通过共挤压材料来帽盖(全部覆盖)挤压掺杂剂墨水结构。与固态源掺杂有关的已知问题是,当掺杂剂在扩散时,它们扩散出源并扩散到晶片的其它部分上,在晶片的周围部分会产生不希望的掺杂效应。通过帽盖掺杂剂墨水结构,防止掺杂剂墨水污染晶片的其它部分。在完成热处理之后可选择地移除帽盖结构。
附图说明
针对下面的描述、所附权利要求和附图,将更容易理解本发明的这些和其它特征、方面和优点,其中:
图1是示出根据本发明的概括性实施例的晶片处理设备的简化透视图;
图2是示出根据本发明实施例的用来利用图1的晶片处理设备制造晶片基太阳能电池的系统的框图;
图3是示出根据本发明另一实施例的晶片处理设备的多重掺杂剂墨水挤压设备的简化透视图;
图4(A)和4(B)分别是示出根据本发明具体实施例的多重掺杂剂墨水挤压头的一部分的分解和组合透视图;
图5(A)、5(B)、5(C)、5(D)、5(E)、5(F)和5(G)是示出根据本发明的另一个实施例在利用图2的系统和图4(B)的挤压头制备IBC太阳能电池器件期间的各个处理阶段的透视图;
图6是示出根据本发明另一示范性实施例的多重掺杂剂墨水挤压头的一部分的分解透视图;
图7是示出根据本发明另一示范性实施例的多挤压头的简化透视图;
图8是示出由图7的多挤压头形成的示范性挤压结构的截面端视图;
图9是示出根据本发明另一示范性实施例的多挤压头的简化截面顶视图;
图10是示出根据本发明的另一示范性实施例用来产生掺杂剂墨水的宽薄片的挤压头的一部分的简化截面顶视图;
图11是示出根据本发明另一实施例的混合掺杂方法的简化透视图;和
图12是示出根据本发明又一实施例的帽盖掺杂剂墨水结构的简化截面侧视图。
具体实施方式
本发明涉及一种大面积半导体器件制造的改进。提出以下描述能使本领域普通技术人员制造和使用如在特定应用和其需求的上下文中提供的本发明。如这里使用的,方向术语例如“上部的”、“向上的”、“下部的”、“向下的”、“前面的”、“后面的”指的是为了说明提供相对的位置,并且不是指定绝对的观点。另外,这里使用短语“整体连接的”和“整体模铸的”来描述单个模铸的或加工结构的两个部分之间的连接关系,并且不同于术语“连接的”或“耦合的”(没有修饰语“整体地”),其表示借助例如粘接剂、扣件、夹子或可移动接合点结合的两个分离结构。对优选实施例的各种改进对于本领域技术人员是显而易见的,并且这里定义的普遍原理可应用到其它实施例。因此,本发明不是指限制于所示出的和描述的具体实施例,而是最宽的范围与这里公开的原理和新颖的特征一致。
图1是示出根据本发明的概括性实施例用于在半导体衬底101上制造集成电路(例如,太阳能电池)的晶片处理设备100的简化透视图。晶片处理设备100通常包括在第一时间段(T1)期间在衬底101上形成挤压结构120-1至120-4的挤压设备110A和在第二时间段(T2)期间加热衬底101的热处理(加热)设备140,以便掺杂剂从挤压结构120-1至120-4扩散到衬底101中以分别形成掺杂区101-1至101-4。下面描述衬底101的随后处理。
挤压设备110A包括可操作地耦合到含有掺杂剂墨水112的贮液器(掺杂剂墨水源)111的挤压头(模)130。挤压已用在大范围的应用中,但不认为已经用在了大面积半导体器件的制造中,尤其是用在半导体衬底中掺杂区的形成。挤压是很好建立的制造工艺,一般用于建立相对长的、窄目标的固定截面剖面。与传统的挤压工艺相似,掺杂剂墨水112通过利用公知技术(例如,利用合适的泵或螺旋钻)在挤压头130中限定的出口孔135-1至135-4推出和/或汲取,由此产生了多个掺杂剂墨水珠112-1至112-4。出口孔135-1至135-4形成所择的形状(例如,矩形)以便珠112-1至112-4具有所希望的截面形状。利用合适的机构(未示出)在挤压工艺期间相对出口孔135-1至135-4移动衬底101,由此在表面区域102-1至102-4上分别沉积珠112-1至112-4,由此在衬底101上形成挤压结构120-1至120-4。在一个实施例中,挤压结构120-1至120-4被表面102的开放(未覆盖的)区域隔开。例如,挤压结构120-1和120-2被开放的表面区域102-31隔开。
根据实施例,掺杂剂墨水112包括糊状媒介材料,所希望的n型或p型掺杂剂分布到该糊状媒介材料中。例如,合适的可挤压磷掺杂剂墨水包括多种有机金属磷化合物中的一种或多种,其中包含取代基的磷存在于碳链长度可变的化合物中。这些化合物在室温下必须是液体或者明确地说在其它溶剂中完全可溶。磷掺杂剂墨水还包括稀溶液的磷酸。另外,使用在处理期间烧掉或蒸发的易挥发有机媒介。这些媒介一般是高沸点溶剂(b.p.150-300摄氏度)的乙基纤维素溶液,例如2,2,4-三甲基-1,3-戊二醇单异丁酸酯(商标为Texanol)、萜品醇、丁基卡必醇和许多本领域技术人员公知的其它溶液。最后,磷掺杂剂墨水可包括流变性添加剂,例如氢化蓖麻油和增塑剂例如各种邻苯二甲酸酯(邻苯二甲酸二甲酯、邻苯甲酸二丁酯、邻苯二甲酸二辛酯等)。也可包括表面活性剂和润湿剂。适合于挤压的糊形式的其它掺杂剂墨水公开在JalalSalami,FERRO公司,Electronic Materical Systems,USA16thWorkshop on Crystalline Silicon Solar Cells & Modules:Materialsand Processes,2006年8月6-9日,丹佛,美国科罗拉多州的“PasteDevelopment for Low Cost High Efficiency Silicon Solar Cells,”中。
在随后的时间内,也就是在衬底101上形成挤压结构120-1至120-4之后,利用热处理设备140加热衬底101。在一个实施例中,热处理设备140是保持在850℃或更高温度下的烘箱或窑炉(kiln)。该加热处理会导致布置在挤压结构120-1至120-4中的掺杂剂分别通过表面区域102-1至102-4扩散到衬底101中,以及分别形成掺杂区101-1至101-4。在一个实施例中,挤压结构120-1至120-4被分隔开一个足够的距离以使得每个掺杂区与相邻的掺杂区被轻掺杂的或本征(未掺杂的)硅的区域隔开。
例如,掺杂区101-1和101-2被本征区101-31隔开,掺杂区101-2和101-3被本征区101-32隔开,以及掺杂区101-3和101-4被本征区101-33隔开。
图2描绘了根据本发明的另一实施例利用基于挤压的晶片处理设备100(图1)和其它非接触处理技术制备晶片基的太阳能电池的系统200。
如图2的上部所示,该制备工艺利用晶片处理设备100以在晶片(衬底)101中形成一个或多个掺杂区(例如,延伸的掺杂区101-1),然后进一步处理衬底101以包括毯覆盖钝化(电绝缘的)层215。在一个实施例中,晶片处理设备100利用挤压设备110A(参见图1)以形成与以上参考图1描述相似的掺杂区图案。在另一实施例中,晶片处理设备100利用在以下提出的各个具体实施例中描述的各种技术和结构。一旦完成了晶片处理,就利用公知的非接触处理技术在上表面102上形成钝化层215。如这里提到的,包括衬底101和钝化层215的组合结构一般是“晶片”或“器件”201,以及在处理循环的每个阶段参考附加的后缀,其表示器件的当前处理阶段(例如,在形成钝化层215之后和在以下描述的烧蚀工艺之前,器件201称为“器件201T1,后缀“T1”表示处理循环中相对早的点”)。
然后对器件201T1进行各种非接触处理以制造可用的太阳能电池。首先,利用激光烧蚀设备230以通过暴露出衬底101上表面102的对应部分的钝化层215来限定接触孔217,以便接触孔在掺杂扩散区上方布置成直的平行行。合适的烧蚀工艺更详细地描述在2006年11月21日申请的、标题为“MULTIPLE STATION SCAN DISPLACEMENT INVARIANT LASER ABLATIONAPPARATUS”的共有且共同未决的美国专利申请序列No.11/562,383中,其全部通过参考并入这里。在通过钝化层215限定接触孔217之后,将部分处理的晶片201T2传送到直接写金属化设备250,利用该设备250将接触结构218沉积到接触孔217中,以及在钝化层215上形成金属互连线219以便每个金属互连线219连接设置在相关掺杂扩散区上方的接触结构218。涉及直接写金属化器件250的另外详细的和可选的实施例公布在以上引用的共有的美国专利申请序列No.11/336,714中。最后,金属化器件201T3从直接写金属化设备250传送到用于随后处理的任选的后金属化处理设备270以形成完成的太阳能电池201T4。
图3是示出根据本发明另一实施例的晶片处理设备100B的挤压部分的简化图。晶片处理设备100B包括在挤压处理期间在衬底101B上方支撑挤压头130B的挤压设备110B。晶片处理设备100B不同于晶片处理设备100(以上描述的)之处在于,挤压头130B与含有两种不同掺杂剂墨水112和115的两个承载掺杂剂材料源111和114连通,并且能够挤压掺杂剂墨水112和115以便它们将交指型布置的挤压结构(线)120形成到半导体衬底101B上。尤其是,如以下更详细提出的,形成挤压头130B以便掺杂剂墨水112传送到第一组出口孔135(例如,出口孔135-11和135-12),以及掺杂剂墨水115传送到第二不同组的出口孔135(例如,出口135-21和135-22),其中第一组和第二组沿着挤压头130B交替布置。利用这种布置,以交指型布置,沉积掺杂剂墨112为挤压结构120-11和120-12以及沉积掺杂剂墨115为挤压结构120-21和120-22(即,使得挤压结构120-21设置在挤压结构120-11和120-12之间)。
实际使用时,挤压设备110B工作与喷墨印刷设备相似,以提供衬底101B-T1关于挤压头130B的移位(就是说,通过在静止衬底101B上方在方向Y1上移动挤压头130B,或通过在静止的挤压头130B下面在方向Y2上移动衬底101B)。掺杂剂墨水112和115在压力下供给到挤压头130B中。施加的流体压力和相对的头-晶片运动是由自动系统控制以制造受控尺度的线120。
根据本发明的一个方面,交指型掺杂剂墨水线120的间距由设计到挤压头130B中的相邻出口孔135之间的间距控制。例如,露出的表面区域102-31,其设置在被挤压结构120-11覆盖的第一表面区域102-11和被挤压结构120-21覆盖的第二表面区域102-21之间,具有由出口孔135-11和135-21的相邻边界之间的间隔确定的宽度。由于挤压头130B可以用精确的加工方法例如光刻蚀刻和晶片键合制备,所以对于相邻的挤压结构120之间的间隔,可获得微米级的很高精度。写入不同掺杂剂墨水的对准线的这个新颖方式超过了现有技术的丝网印刷法。
图4(A)和4(B)是示出根据本发明具体实施例的挤压头130B-1的一部分的分解和组合透视图。挤压头130B-1包括中心薄片310、上和下供给线路薄片320和330、以及上和下帽盖薄片340和350。对中心薄片310微加工以包括多个平行的喷嘴沟道(例如,喷嘴沟道315-11、315-12、315-21和315-22),其中每个喷嘴沟道都具有限定在侧边缘317中的封闭端和相对的开口端。同样,对供给线路薄片320和330微加工以包括歧管(增压室)和供给沟道,布置它们以将掺杂剂墨水传送到中心薄片310的相应喷嘴。例如,供给线路薄片320包括在垂直于喷嘴沟道的方向上延伸的增压室322,并且包括与增压室322连通的并且分别在喷嘴沟道315-11和315-12的封闭端上方延伸的供给沟道325-11和325-12。同样,供给线路薄片330包括增压室332和分别在喷嘴沟道315-21和315-12的封闭端上方延伸的供给沟道335-21和335-22。
根据本发明的一个方面,利用不引入不希望的杂质尤其是产生载流子复合的杂质的材料制造挤压头130B-1。例如聚四氟乙烯(PTFE)和其它化学惰性聚合物材料或玻璃或硅的材料是用于构造挤压头的优选材料。重要的是分配掺杂剂墨112和115而不引入有害的杂质。尤其是避免过渡金属和其它金属杂质。这些包括金、铜、铁等。这使得不希望使用含铁金属基的流体系统。在优选实施例中,利用微加工的硅制备薄层310至350。如图4(B)所示,然后利用公知技术叠置并结合薄层310至350,以完成挤压头130B-1。
如由图4(B)的虚线所示,在操作期间,第一掺杂剂墨水112沿着增压室322传输,并且通过供给沟道322-11和322-12压入喷嘴沟道315-11和315-12中(图4(A)),并由此排出出口孔135-11和135-12作为掺杂剂墨水珠112-1和112-2。同样,掺杂剂墨水115沿着增压室332传输,并通过供给沟道332-21和332-22压入喷嘴沟道315-21和315-22中(图4(A)),由此通过出口孔135-21和135-22排出作为掺杂剂墨水珠115-1和115-2。
图5(A)至5(G)示出了用于利用系统200(图2)和挤压头130B-1(图4(A)和4(B))制备IBC太阳能电池器件的各个工艺步骤。
图5(A)示出了分别由掺杂剂墨水珠112-1、115-1、112-2和115-2形成的挤压结构120-11、120-21、120-12和120-22(见图4(B))。挤压结构120-11、120-21、120-12和120-22分别设置在衬底101-B1的表面区域102-11、102-21、102-12和102-22上,以便相邻对的挤压结构分别被相应的露出表面区域102-31、102-32和102-33隔开。在一个实施例中,相比露出的表面区域102-31、102-32和102-33,挤压结构120-11、120-21、120-12和120-22相对窄。在该实施例中,掺杂剂墨水112包括p型掺杂剂以及掺杂剂墨水115包括n型掺杂剂。
图5(B)示出了在随后的热处理期间利用热处理设备140的衬底101B-T2,由此来自每个挤压结构120-11、120-21、120-12和120-22的掺杂剂扩散到衬底101B-T2中。具体地,包含在掺杂剂墨水112中的p型掺杂剂通过表面区域102-11和102-12扩散以形成p型(第一)掺杂区101-11和101-12。同样,包含在掺杂剂墨水115中的n型掺杂剂通过表面区域102-21和102-22扩散以形成n型(第二)掺杂区101-11和101-12。注意每个p型掺杂区(例如,掺杂区101-11)与所有的其它p型掺杂区(例如,掺杂区101-12)隔开至少一个n型掺杂区(例如,掺杂区101-21)。另外,每个掺杂区(例如,掺杂区101-11)与它的相邻的邻接掺杂区(例如,掺杂区101-21)被衬底101B-T2的未掺杂(本征)或轻掺杂区(例如,区域101-31)隔开。如上所述,p型掺杂区和n型掺杂区的交替布置有助于制备IBC型太阳能电池。
图5(C)描绘了在完成了加热/扩散处理之后从衬底101-T3的表面区域102-11、102-21、102-12和102-22移除残余的掺杂剂墨水的可选工艺。通过利用具有在加热/扩散处理期间烧掉的媒介的掺杂剂墨水可避免这个墨水移除步骤。注意每个掺杂扩散区101-11、101-21、101-12和101-22都延伸到表面区域102-11、102-21、102-12和102-22。
图5(D)示出了在衬底101-T3的上表面102上随后形成的钝化层215,由此提供了部分形成的器件201-T1(这参考图2如上所述)。
图5(E)示出了随后的激光烧蚀处理,在此期间使用激光脉冲LP来移除部分钝化层215以便定义接触开口217,其暴露出设置在掺杂区101-11、101-21、101-12和101-22上方的表面102的一部分。例如,接触开口217-41和217-42延伸穿过钝化层215到表面区域102-22的相应部分,其如上所述设置在掺杂区101-22上方。同样,形成接触开口217,其延伸穿过钝化层215直至设置在掺杂区101-11、101-21和101-12上方的表面区域。利用激光烧蚀设备230进行激光烧蚀处理,这参考图2如上所述。
图5(F)描绘了接触材料M1从直接写金属化设备250(图2)随后沉积到形成在钝化层215中的每个开口217中,以便接触结构218直接形成在衬底101的露出部分上。例如,接触结构218-41和218-42分别插入到接触开口217-41和217-42中、以及设置在掺杂区101-22上方的表面102的接触部分中。同样,接触结构218形成在设置于掺杂区101-11、101-12和101-21上方的每个接触开口217中。
图5(G)示出了以在钝化层214的上表面上形成金属线结构219-1至219-4的方式沉积金属材料M2的随后工艺,以便每个金属线结构接触设置在相应一个掺杂区101-11、101-12、101-21和101-22上方的一组接触结构。例如,金属线结构219-4接触接触结构218-41和218-42的上端,由此借助接触结构218-41和218-42在掺杂区101-22和金属线结构219-4之间提供电连接。同样,每个金属线结构219-1、219-2和219-3都借助对应的接触结构电连接到掺杂区101-11、101-21和101-12。还利用直接写金属化设备250进行金属线形成工艺,其是参考图2如上所述。
利用包含直通孔和可选的附加增压室的另外层,能够提供一种从挤压头的一侧交指型分配的方式,以及还可选地提供一种以任意的或重复图案分配三种或多种材料的方式。在挤压头的一侧上提供入口能够在相对于衬底较宽范围的角度内操作挤压头,包括所谓的“侧射击”模式,其中挤压材料流几乎平行于衬底排出挤压头。
图6是示出根据本发明示范性实施例的挤压头130B-2的一部分的分解透视图,其利用包括直通孔的六个层以便于从挤压头130B-2的一侧形成交指型的挤压结构。挤压头130B-2包括下薄片410、第一供给线路薄片420、第一直通薄片430、第二供给线路薄片440、上直通薄片450和下帽盖薄片460。下薄片410包括以以上参考图4(A)描述的方式形成的多个平行的喷嘴沟道415-11、415-12、415-21和415-22。第一供给线路薄片420包括第一增压室422和与第一薄片410的相应喷嘴415-11和415-12对准的供给通道425-11和425-12。另外,供给线路薄片420包括与第一薄片410的相应喷嘴415-21和415-22对准的供给孔425-21和425-22。第一直通薄片430包括分别与第一供给线路薄片420的供给孔435-21和435-22对准的第一和第二供给孔435-21和435-22、和与增压室422对准的第三供给孔437。第二供给线路薄片440包括第二增压室442和分别与第一直通薄片430的第一和第二供给孔435-21和435-22对准的供给通道445-21和445-22。上直通薄片450包括与薄片440的供给孔447对准的第一供给孔457和与薄片440的增压室442对准的第二供给孔459。
如由图6中的虚线所示,在操作期间第一掺杂剂墨水112通过供给孔457、447和437传输到增压室422,并且离开增压室422通过供给通道425-11和425-12进入到喷嘴沟道415-11和415-12中,然后从喷嘴通道415-11和415-12排出作为掺杂剂墨水珠112-1和112-2。同样,第二掺杂剂墨水114通过供给孔459传输给增压室442。掺杂剂墨水114的第一部分通过供给通道445-21和供给孔435-21和425-21排出增压室442进到喷嘴沟道415-21中,然后从喷嘴沟道415-21排出作为掺杂剂墨水珠114-1。掺杂剂墨水114的第二部分通过供给通道445-22和供给孔435-22和425-22排出增压室442进到喷嘴沟道415-22中,然后从喷嘴沟道415-22排出作为掺杂剂墨水珠114-2。掺杂剂墨水珠112-1、112-2、114-1和114-2形成与图5(A)所示相似的挤压结构。
在本发明的另一变形中,至少一种类型的掺杂剂墨水与非掺杂墨水一起分配。该非掺杂墨水可用作掺杂剂墨水结构之间的间隔物和/或阻挡层以防止受到来自周围环境的掺杂。处于器件性能的原因,希望具有被本征或轻掺杂的半导体隔开的重n型和p型掺杂材料条带。这可通过提供同时输送三种类型墨水的多挤压头,每个承载不同成分的掺杂剂或根本没有掺杂剂来实现。
图7是示出根据本发明另一实施例的多挤压头130C-1的简化透视图。为了说明的目的以虚线描绘了多挤压头130C-1的喷嘴沟道层,但供给通道、供给孔和增压室,它们以以上描述的方式形成,为了清楚从图中省略了。与在前描述的实施例相似,掺杂剂墨水112从喷嘴515-11和515-12分配,以及掺杂剂墨水115从喷嘴515-21和515-22分配。然而,在该实例中非掺杂墨水117从分别设置在相邻对的喷嘴515-11、515-12、515-21、515-22之间的喷嘴515-31至515-35分配。例如,喷嘴515-32设置在喷嘴515-11和515-21之间。在用于太阳能电池掺杂的实际器件中,掺杂剂源的间距从100微米改变为几毫米。对于一般的晶片尺寸,这暗示一些喷嘴的数量为100至1000数量级,远大于由这里描述的示范性实施例示出的。借助歧管结构,如图8所示,挤压结构120-31至120-35分别由珠117-1至117-5形成,使得非掺杂材料分布在承载每一种掺杂剂的挤压结构120-11、120-21、120-12和120-22的每一侧上。
根据多挤压头130C-1的另一方面,各种喷嘴将墨水流并入到交替材料的连续薄片中,其描绘于图8中。也就是说,由非掺杂材料形成的挤压结构在每个相邻对的掺杂挤压结构的侧边缘之间延伸(例如,非掺杂结构120-32在(第一)挤压结构120-11和(第二)挤压结构120-21的相应侧边缘之间延伸)。为了获得这种聚合,利用锥形指状物512形成喷嘴,其示于图7中。设计喷嘴出口孔的锥度以使得用层状流和最小的混合挤压该材料。在该实施例中,墨水流的相对宽度基本相等。在其它实施例中,希望制造嵌入在非掺杂材料的较宽线之间的很窄的掺杂挤压结构。
图9是示出根据本发明另一实施例的多挤压头130C-2的简化截面顶视图。出于说明的目的,以截面描绘了多挤压头130C-2的喷嘴沟道层(为了清楚省略了其它特征)。多挤压头130C-2的特征在于并入具有锥形喷嘴壁的喷嘴615-11、615-12、615-21和615-22,该壁建立了交叉在非掺杂或轻掺杂材料的较宽的珠117-1至117-5之间的压缩的、相对窄的承载掺杂剂珠112-1、112-2、115-1和115-2的有用嵌入。注意并入喷嘴615-11、615-12、615-21和615-22的端部相对于头端面619往后倒退了一距离C。在单个喷嘴的端部和头端面619之间的挤压头130C-2内的最终内间距使得承载掺杂剂材料在离开挤压头130C-1之前被进一步压缩和变窄以及随后沉积在衬底上。线宽的全控制是挤压头设计以及材料相对流速的函数。
挤压头130C-2尤其有用的应用是将重掺杂半导体指状物的线写入到太阳能电池的表面上。这些半导体指状物用于为载流子提供从电池表面到电池的栅格线的低电阻路径。包含的这些指状物以包括能够实现轻掺杂发射极层而没有大的电阻损耗负担、提高电池的蓝光电响应、减少接触电阻、以及允许栅格线被隔开更远的几种方式改进了电池性能,由此降低了光遮蔽。
在当前实际中,将半导体指状物结合到太阳能电池的发射极中需要额外的工艺步骤,因此会增加成本。一般,首先在磷扩散反应器中处理电池以制造轻掺杂的发射极,如同常规的电池一样,然后增加三个步骤:(1)在硅中激光写入沟槽(2)损伤蚀刻和(3)附加的磷扩散步骤。在对该工艺的有用改善中,在单个挤压操作中同时应用轻和重掺杂源,由此消除了三个附加的工艺步骤。在优选的方法实施例中,相对窄的线是重掺杂墨水,以及相对宽的线是轻掺杂墨水。半导体指状物可应用到半导体晶片的一侧或两侧上。如果对两侧图案化,则可在单个步骤中进行推进掺杂剂的热处理。
图10示出了另一个挤压头130D-1,其包括供给几个喷嘴沟道715-1到715-5的单个增压室722,以参考图9上述的方式,喷嘴沟道715-1到715-5在端面719之前分歧和终止,由此产生流动合并部分,其产生掺杂剂或金属膏的均匀挤压薄片。墨水进入并分布遍及高压室722,在这一点遇到分开的喷嘴沟道715-1至715-5。喷嘴沟道715-1至715-5增加了流动阻抗,这确保了即使墨水从单个点流入增压室,通过每个通道的流也基本相等。例如该头可以用于以非接触的方法用金属或掺杂剂在太阳能电池的宽区域上写,由此避免晶片损坏,晶片损坏是利用常规丝网印刷技术常有的风险。这也可以用于写中间宽度的线,例如上面示出的母线条金属化。在可选实施例中,两个类似于图10中示出的衬底安装在叠置的布置中,其间有分离层,并且两个或多个材料层(例如,掺杂剂墨水和金属膏线)以垂直叠置的布置同时各自从两个结构挤压出。
图11描绘了一种根据本发明另一实施例的混合掺杂方法,其使用固体源掺杂(即,利用掺杂剂墨水掺杂)和气相掺杂的结合。在图11描述的实例中,掺杂剂墨水结构120-1至120-4用以上描述的方式形成在衬底101D上,并且非掺杂结构形成在相关掺杂结构120-1至120-4的每侧上(例如,非掺杂结构120-31和120-32形成在掺杂结构120-1的相对两侧上)。另外,选择的表面区域102-31至102-35有意地暴露在挤压结构之间。例如,非掺杂结构120-32和120-33之间的间隙提供暴露的上表面区域102-22。在本实施例中,衬底101D的温度退火在磷(n型掺杂)环境145中进行,并且使用p型掺杂剂墨水结构120-1至120-4(例如,承载硼膏)。与掺杂环境145结合的热处理将会导致衬底101D的区域101-11至101-14中的固体源掺杂和区域101-21至101-25中的环境源掺杂。本发明的再一个方面是掺杂剂墨水结构120-1至120-4可以与非掺杂材料(例如,非掺杂结构120-31至120-33)一起共同挤压。在具体实施例中,在挤压工艺之后,衬底101D将具有暴露的区域(例如,暴露的表面区域102-22)、掺杂剂阻挡区域(例如,非掺杂结构120-31至120-33下方的表面区域)和掺杂剂墨水覆盖区域(例如,挤压结构120-11至120-14下面的表面区域)。在掺杂剂环境中的热处理之后,被处理的晶片将具有三个具有不同掺杂水平的明显区域。
具有固态掺杂剂源方式的已知问题是,当掺杂剂在扩散时,它们从源扩散出来并扩散到晶片的其它部分上,在晶片的周围部分产生了不希望的掺杂效应。根据图12中所描绘的本发明的另一实施例,在每个掺杂剂墨水挤压结构120-1上方形成帽盖层120E以防止污染晶片的其它部分。帽盖结构120E全部覆盖挤压结构120-1,其中它覆盖结构120-1的侧表面和上表面。掺杂剂结构120-1和帽盖结构120E由于共同挤压工艺而必须相互对准,该工艺描述在2005年11月17日申请的、标题为“Extrusion/Dispensing Systems and Methods”的共有美国专利申请序列No.11/282,882中公开,其通过参考全部并入这里。在本发明的具体实施例中,挤压头利用垂直和水平共挤压的组合,其描述在11/282,882(以上引用的)中,以制造材料复合头,其中固态源不邻接晶片的两侧被帽盖结构帽盖。
更希望的特征是固态掺杂剂源线的端部由帽盖结构帽盖。本发明的一个方面是形成掺杂源和帽盖结构的材料流改变了。该流的变化例如能够制造线两端被帽盖的共挤压线。
尽管已关于某些具体实施例描述了本发明,但对于本领域技术人员很清楚,本发明的发明特征还可应用到其它实施例,其所有的都指的是落入本发明的范围内。例如,图8和9中公开的挤压结构可仅包括一种掺杂剂墨水(例如,n型),而不是两种不同的掺杂剂墨水。在另一实例中,掺杂剂膏,当烘烤时还能产生钝化层或抗反射涂层。在另一实例中,单个直接写印刷步骤能填充介质中的接触开口并在器件上形成导电线。在另一实例中,可使用玻璃粉燃烧穿通(fire through)的方法消除在介质中打开接触开口的分离处理步骤。

Claims (2)

1.一种在半导体衬底上制备器件的方法,该方法包括:
在半导体衬底的表面上挤压承载第一掺杂剂材料,使得该承载第一掺杂剂材料在半导体衬底的第一表面区域上形成第一挤压结构,该承载第一掺杂剂材料包括第一掺杂剂类型的第一掺杂剂;和
加热半导体衬底以使得第一掺杂剂通过第一表面区域扩散进入半导体衬底中,由此形成半导体衬底的第一掺杂区。
2.一种用于在衬底上制备晶片基半导体器件的系统,该系统包括:
用于在半导体衬底的表面上挤压承载第一掺杂剂材料和承载第二掺杂剂材料的装置,使得该承载第一掺杂剂材料在半导体衬底的第一表面区域上形成第一挤压结构,以及该承载第二掺杂剂材料在半导体衬底的第二表面区域上形成第二挤压结构,其中第一和第二表面区域被第三表面区域隔开,以及其中该承载第一掺杂剂材料包括第一掺杂剂类型的第一掺杂剂,以及该承载第二掺杂剂材料包括第二掺杂剂类型的第二掺杂剂,和
用于加热半导体衬底的装置,其使得第一掺杂剂通过第一表面区域扩散进入半导体衬底中,由此形成第一掺杂区,和使得第二掺杂剂通过第二表面区域扩散进入半导体衬底中,由此形成第二掺杂区。
CN2007101989891A 2006-12-12 2007-12-11 在半导体衬底上制备半导体器件的方法及其系统 Expired - Fee Related CN101202219B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/609825 2006-12-12
US11/609,825 US7928015B2 (en) 2006-12-12 2006-12-12 Solar cell fabrication using extruded dopant-bearing materials

Publications (2)

Publication Number Publication Date
CN101202219A true CN101202219A (zh) 2008-06-18
CN101202219B CN101202219B (zh) 2011-08-17

Family

ID=39226761

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007101989891A Expired - Fee Related CN101202219B (zh) 2006-12-12 2007-12-11 在半导体衬底上制备半导体器件的方法及其系统

Country Status (5)

Country Link
US (2) US7928015B2 (zh)
EP (1) EP1933392A3 (zh)
JP (1) JP2008147660A (zh)
KR (1) KR20080054357A (zh)
CN (1) CN101202219B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673776A (zh) * 2008-09-09 2010-03-17 帕洛阿尔托研究中心公司 具有激光烧蚀槽的指叉背接触太阳能硅电池及其制造方法
CN101728453B (zh) * 2008-10-28 2011-10-05 昱晶能源科技股份有限公司 具有差异性掺杂的太阳能电池的制造方法
CN102208482A (zh) * 2010-12-29 2011-10-05 袁晓 硅太阳电池片的光致热扩散制结方法
CN102549761A (zh) * 2009-12-18 2012-07-04 东丽株式会社 半导体器件的制造方法及背面接合型太阳能电池
CN109638118A (zh) * 2018-11-30 2019-04-16 中国科学院半导体研究所 提升氮化物材料p型掺杂效率的方法及氮化物薄膜
CN110168747A (zh) * 2016-09-30 2019-08-23 太阳能公司 用于太阳能电池的导电线的金属化

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7906722B2 (en) * 2005-04-19 2011-03-15 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
US7765949B2 (en) * 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US20070107773A1 (en) * 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US7799371B2 (en) * 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070169806A1 (en) * 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
US7855335B2 (en) * 2006-04-26 2010-12-21 Palo Alto Research Center Incorporated Beam integration for concentrating solar collector
US7851693B2 (en) * 2006-05-05 2010-12-14 Palo Alto Research Center Incorporated Passively cooled solar concentrating photovoltaic device
US7638708B2 (en) * 2006-05-05 2009-12-29 Palo Alto Research Center Incorporated Laminated solar concentrating photovoltaic device
US7922471B2 (en) 2006-11-01 2011-04-12 Palo Alto Research Center Incorporated Extruded structure with equilibrium shape
US8322025B2 (en) * 2006-11-01 2012-12-04 Solarworld Innovations Gmbh Apparatus for forming a plurality of high-aspect ratio gridline structures
US8226391B2 (en) 2006-11-01 2012-07-24 Solarworld Innovations Gmbh Micro-extrusion printhead nozzle with tapered cross-section
US7780812B2 (en) * 2006-11-01 2010-08-24 Palo Alto Research Center Incorporated Extrusion head with planarized edge surface
US20080116183A1 (en) * 2006-11-21 2008-05-22 Palo Alto Research Center Incorporated Light Scanning Mechanism For Scan Displacement Invariant Laser Ablation Apparatus
US20080116182A1 (en) * 2006-11-21 2008-05-22 Palo Alto Research Center Incorporated Multiple Station Scan Displacement Invariant Laser Ablation Apparatus
US7928015B2 (en) 2006-12-12 2011-04-19 Palo Alto Research Center Incorporated Solar cell fabrication using extruded dopant-bearing materials
US7638438B2 (en) * 2006-12-12 2009-12-29 Palo Alto Research Center Incorporated Solar cell fabrication using extrusion mask
US7954449B2 (en) * 2007-05-08 2011-06-07 Palo Alto Research Center Incorporated Wiring-free, plumbing-free, cooled, vacuum chuck
US20090107546A1 (en) 2007-10-29 2009-04-30 Palo Alto Research Center Incorporated Co-extruded compositions for high aspect ratio structures
US8080181B2 (en) 2008-05-13 2011-12-20 Solarworld Innovations Gmbh Coextrusion ink chemistry for improved feature definition
US8053867B2 (en) 2008-08-20 2011-11-08 Honeywell International Inc. Phosphorous-comprising dopants and methods for forming phosphorous-doped regions in semiconductor substrates using phosphorous-comprising dopants
US7951696B2 (en) * 2008-09-30 2011-05-31 Honeywell International Inc. Methods for simultaneously forming N-type and P-type doped regions using non-contact printing processes
US8704086B2 (en) * 2008-11-07 2014-04-22 Solarworld Innovations Gmbh Solar cell with structured gridline endpoints vertices
US8117983B2 (en) 2008-11-07 2012-02-21 Solarworld Innovations Gmbh Directional extruded bead control
US20100221435A1 (en) * 2008-11-07 2010-09-02 Palo Alto Research Center Incorporated Micro-Extrusion System With Airjet Assisted Bead Deflection
US9150966B2 (en) * 2008-11-14 2015-10-06 Palo Alto Research Center Incorporated Solar cell metallization using inline electroless plating
US8080729B2 (en) 2008-11-24 2011-12-20 Palo Alto Research Center Incorporated Melt planarization of solar cell bus bars
US20100130014A1 (en) * 2008-11-26 2010-05-27 Palo Alto Research Center Incorporated Texturing multicrystalline silicon
US8960120B2 (en) 2008-12-09 2015-02-24 Palo Alto Research Center Incorporated Micro-extrusion printhead with nozzle valves
US20100139754A1 (en) * 2008-12-09 2010-06-10 Palo Alto Research Center Incorporated Solar Cell With Co-Planar Backside Metallization
US20100139756A1 (en) * 2008-12-10 2010-06-10 Palo Alto Research Center Incorporated Simultaneously Writing Bus Bars And Gridlines For Solar Cell
US8518170B2 (en) 2008-12-29 2013-08-27 Honeywell International Inc. Boron-comprising inks for forming boron-doped regions in semiconductor substrates using non-contact printing processes and methods for fabricating such boron-comprising inks
US20100206379A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array With Solid Optical Element For Solar-Electricity Generation
US20100206357A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Two-Part Solar Energy Collection System With Replaceable Solar Collector Component
US20100206356A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US20100206302A1 (en) * 2009-02-18 2010-08-19 Palo Alto Research Center Incorporated Rotational Trough Reflector Array For Solar-Electricity Generation
US8324089B2 (en) 2009-07-23 2012-12-04 Honeywell International Inc. Compositions for forming doped regions in semiconductor substrates, methods for fabricating such compositions, and methods for forming doped regions using such compositions
US20110083728A1 (en) * 2009-10-14 2011-04-14 Palo Alto Research Center Incorporated Disordered Nanowire Solar Cell
US20110100419A1 (en) * 2009-11-03 2011-05-05 Palo Alto Research Center Incorporated Linear Concentrating Solar Collector With Decentered Trough-Type Relectors
US8790957B2 (en) 2010-03-04 2014-07-29 Sunpower Corporation Method of fabricating a back-contact solar cell and device thereof
JP4831709B2 (ja) * 2010-05-21 2011-12-07 シャープ株式会社 半導体装置および半導体装置の製造方法
US8586129B2 (en) 2010-09-01 2013-11-19 Solarworld Innovations Gmbh Solar cell with structured gridline endpoints and vertices
US8912083B2 (en) * 2011-01-31 2014-12-16 Nanogram Corporation Silicon substrates with doped surface contacts formed from doped silicon inks and corresponding processes
US8962424B2 (en) * 2011-03-03 2015-02-24 Palo Alto Research Center Incorporated N-type silicon solar cell with contact/protection structures
US8629294B2 (en) 2011-08-25 2014-01-14 Honeywell International Inc. Borate esters, boron-comprising dopants, and methods of fabricating boron-comprising dopants
US9559228B2 (en) * 2011-09-30 2017-01-31 Sunpower Corporation Solar cell with doped groove regions separated by ridges
US8975170B2 (en) 2011-10-24 2015-03-10 Honeywell International Inc. Dopant ink compositions for forming doped regions in semiconductor substrates, and methods for fabricating dopant ink compositions
US10371468B2 (en) 2011-11-30 2019-08-06 Palo Alto Research Center Incorporated Co-extruded microchannel heat pipes
US9120190B2 (en) 2011-11-30 2015-09-01 Palo Alto Research Center Incorporated Co-extruded microchannel heat pipes
US8875653B2 (en) 2012-02-10 2014-11-04 Palo Alto Research Center Incorporated Micro-extrusion printhead with offset orifices for generating gridlines on non-square substrates
US20130206220A1 (en) 2012-02-10 2013-08-15 Palo Alto Research Center Incorporated Method For Generating Gridlines On Non-Square Substrates
US8486747B1 (en) 2012-04-17 2013-07-16 Boris Gilman Backside silicon photovoltaic cell and method of manufacturing thereof
US20150020863A1 (en) 2013-07-22 2015-01-22 International Business Machines Corporation Segmented thin film solar cells
ES2852725T3 (es) 2015-01-26 2021-09-14 1366 Tech Inc Procedimiento para crear una oblea semiconductora que tiene dopado perfilado
FR3139738A1 (fr) * 2022-09-16 2024-03-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Procede de dépôt simultané de plusieurs encres conductrices différentes de manière adjacente sur un même substrat

Family Cites Families (216)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2031387A (en) 1934-08-22 1936-02-18 Schwarz Arthur Nozzle
US2789731A (en) 1955-06-06 1957-04-23 Leonard L Marraffino Striping dispenser
US3032008A (en) 1956-05-07 1962-05-01 Polaroid Corp Apparatus for manufacturing photographic films
US3159313A (en) 1961-05-16 1964-12-01 Dow Chemical Co Multi-component proportioning meter system
US3602193A (en) 1969-04-10 1971-08-31 John R Adams Apparatus for preparing coatings with extrusions
US3973994A (en) 1974-03-11 1976-08-10 Rca Corporation Solar cell with grooved surface
JPS5328751B2 (zh) 1974-11-27 1978-08-16
AT349415B (de) 1975-07-28 1979-04-10 Zimmer Peter Ag Spritzdruckeinrichtung zum bemustern einer ware
US3988166A (en) 1975-01-07 1976-10-26 Beam Engineering, Inc. Apparatus for enhancing the output of photovoltaic solar cells
US4045246A (en) 1975-08-11 1977-08-30 Mobil Tyco Solar Energy Corporation Solar cells with concentrators
US4021267A (en) 1975-09-08 1977-05-03 United Technologies Corporation High efficiency converter of solar energy to electricity
US4053327A (en) 1975-09-24 1977-10-11 Communications Satellite Corporation Light concentrating solar cell cover
US4018367A (en) 1976-03-02 1977-04-19 Fedco Inc. Manifold dispensing apparatus having releasable subassembly
GB1578018A (en) 1976-03-11 1980-10-29 Schmermund A Glue applications
US4086485A (en) 1976-05-26 1978-04-25 Massachusetts Institute Of Technology Solar-radiation collection apparatus with tracking circuitry
US4095997A (en) 1976-10-07 1978-06-20 Griffiths Kenneth F Combined solar cell and hot air collector apparatus
US4084985A (en) 1977-04-25 1978-04-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for producing solar energy panels by automation
US4104091A (en) * 1977-05-20 1978-08-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Application of semiconductor diffusants to solar cells by screen printing
US4131485A (en) 1977-08-08 1978-12-26 Motorola, Inc. Solar energy collector and concentrator
US4177083A (en) 1977-09-06 1979-12-04 Acurex Corporation Photovoltaic concentrator
US4148301A (en) 1977-09-26 1979-04-10 Cluff C Brent Water-borne rotating solar collecting and storage systems
US4153476A (en) 1978-03-29 1979-05-08 Nasa Double-sided solar cell package
US4337758A (en) 1978-06-21 1982-07-06 Meinel Aden B Solar energy collector and converter
US4205216A (en) 1978-09-26 1980-05-27 Western Electric Company, Inc. Laser welding system and method
US4223202A (en) 1978-12-14 1980-09-16 United Technologies Corporation Apparatus and method for welding boat subassemblies utilizing laser radiation
US4221468A (en) 1979-02-26 1980-09-09 Macken John A Multi-cavity laser mirror
US4331703A (en) 1979-03-28 1982-05-25 Solarex Corporation Method of forming solar cell having contacts and antireflective coating
US4254894A (en) 1979-08-23 1981-03-10 The Continental Group, Inc. Apparatus for dispensing a striped product and method of producing the striped product
DE8033450U1 (de) 1980-12-17 1982-07-22 Colgate-Palmolive Co., 10022 New York, N.Y. Laenglicher Behaelter fuer einen Spender fuer pastoeses gut
US4355196A (en) 1981-03-11 1982-10-19 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Solar cell having improved back surface reflector
DE3362994D1 (en) 1982-02-12 1986-05-22 Atomic Energy Authority Uk Laser pipe welder/cutter
JPS58180262A (ja) 1982-04-16 1983-10-21 Fuji Photo Film Co Ltd 塗布方法
US4476165A (en) 1982-06-07 1984-10-09 Acumeter Laboratories, Inc. Method of and apparatus for multi-layer viscous fluid deposition such as for the application of adhesives and the like
US4521457A (en) 1982-09-21 1985-06-04 Xerox Corporation Simultaneous formation and deposition of multiple ribbon-like streams
US4479027A (en) * 1982-09-24 1984-10-23 Todorof William J Multi-layer thin-film, flexible silicon alloy photovoltaic cell
DE3308269A1 (de) 1983-03-09 1984-09-13 Licentia Patent-Verwaltungs-Gmbh Solarzelle
JPS6082680A (ja) 1983-10-07 1985-05-10 Fuji Photo Film Co Ltd 金属ウエブの表面処理装置
US4589191A (en) 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
US4514583A (en) * 1983-11-07 1985-04-30 Energy Conversion Devices, Inc. Substrate for photovoltaic devices
US4602120A (en) 1983-11-25 1986-07-22 Atlantic Richfield Company Solar cell manufacture
US4841946A (en) 1984-02-17 1989-06-27 Marks Alvin M Solar collector, transmitter and heater
GB8510706D0 (en) 1985-04-26 1985-06-05 Marconi Co Ltd Solar cell arrays
EP0257157A1 (en) 1986-08-29 1988-03-02 General Systems Research Inc. Optical apparatus for scanning radiation over a surface
US4796038A (en) 1985-07-24 1989-01-03 Ateq Corporation Laser pattern generation apparatus
US4847349A (en) 1985-08-27 1989-07-11 Mitsui Toatsu Chemicals, Inc. Polyimide and high-temperature adhesive of polyimide from meta substituted phenoxy diamines
US4609037A (en) 1985-10-09 1986-09-02 Tencor Instruments Apparatus for heating and cooling articles
US4849028A (en) 1986-07-03 1989-07-18 Hughes Aircraft Company Solar cell with integrated interconnect device and process for fabrication thereof
JPS63175667A (ja) 1987-01-14 1988-07-20 Matsushita Electric Ind Co Ltd 多列同時塗布方法
US5216543A (en) 1987-03-04 1993-06-01 Minnesota Mining And Manufacturing Company Apparatus and method for patterning a film
US4747517A (en) 1987-03-23 1988-05-31 Minnesota Mining And Manufacturing Company Dispenser for metering proportionate increments of polymerizable materials
US4826777A (en) 1987-04-17 1989-05-02 The Standard Oil Company Making a photoresponsive array
US4746370A (en) 1987-04-29 1988-05-24 Ga Technologies Inc. Photothermophotovoltaic converter
US4792685A (en) 1987-04-29 1988-12-20 Masami Yamakawa Photoelectric sensor
US4938994A (en) 1987-11-23 1990-07-03 Epicor Technology, Inc. Method and apparatus for patch coating printed circuit boards
US4855884A (en) 1987-12-02 1989-08-08 Morpheus Lights, Inc. Variable beamwidth stage light
US4896015A (en) 1988-07-29 1990-01-23 Refractive Laser Research & Development Program, Ltd. Laser delivery system
JPH0255689A (ja) 1988-08-18 1990-02-26 Fanuc Ltd レーザ装置用の産業用多関節ロボットにおける関節構造
US4952026A (en) 1988-10-14 1990-08-28 Corning Incorporated Integral optical element and method
US5004319A (en) 1988-12-29 1991-04-02 The United States Of America As Represented By The Department Of Energy Crystal diffraction lens with variable focal length
US4933623A (en) 1988-12-29 1990-06-12 Westinghouse Electric Corp. Generator voltage regulator power circuit
US5075281A (en) 1989-01-03 1991-12-24 Testardi Louis R Methods of making a high dielectric constant, resistive phase of YBA2 CU3 OX and methods of using the same
JPH02187291A (ja) 1989-01-11 1990-07-23 Hitachi Ltd レーザ光による穿孔方法、及び、同穿孔装置
FR2646049B1 (fr) 1989-04-18 1991-05-24 Cableco Sa Plaque electrique chauffante amovible
US4947825A (en) 1989-09-11 1990-08-14 Rockwell International Corporation Solar concentrator - radiator assembly
US5194721A (en) 1989-11-24 1993-03-16 Optical Recording Corporation Optical scanner
US5011565A (en) 1989-12-06 1991-04-30 Mobil Solar Energy Corporation Dotted contact solar cell and method of making same
US5089055A (en) 1989-12-12 1992-02-18 Takashi Nakamura Survivable solar power-generating systems for use with spacecraft
US5062899A (en) 1990-03-30 1991-11-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Wide acceptance angle, high concentration ratio, optical collector
DK170189B1 (da) 1990-05-30 1995-06-06 Yakov Safir Fremgangsmåde til fremstilling af halvlederkomponenter, samt solcelle fremstillet deraf
JPH04124645A (ja) 1990-09-14 1992-04-24 Fuji Photo Film Co Ltd 写真用支持体及びその製造方法
US5213628A (en) 1990-09-20 1993-05-25 Sanyo Electric Co., Ltd. Photovoltaic device
US5254388A (en) 1990-12-21 1993-10-19 Minnesota Mining And Manufacturing Company Light control film with reduced ghost images
US5151377A (en) * 1991-03-07 1992-09-29 Mobil Solar Energy Corporation Method for forming contacts
US5167724A (en) 1991-05-16 1992-12-01 The United States Of America As Represented By The United States Department Of Energy Planar photovoltaic solar concentrator module
US5180441A (en) 1991-06-14 1993-01-19 General Dynamics Corporation/Space Systems Division Solar concentrator array
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
CA2130468A1 (en) 1992-02-25 1993-09-02 Clive Patrick Ashley Catterall Fluid delivery apparatus
US5353813A (en) 1992-08-19 1994-10-11 Philip Morris Incorporated Reinforced carbon heater with discrete heating zones
JP2613719B2 (ja) 1992-09-01 1997-05-28 キヤノン株式会社 太陽電池モジュールの製造方法
US5344496A (en) 1992-11-16 1994-09-06 General Dynamics Corporation, Space Systems Division Lightweight solar concentrator cell array
EP0632507A3 (en) 1993-05-12 1995-11-22 Optical Coating Laboratory Inc Cover for solar cells which reflects UV / IR rays.
JPH06337366A (ja) 1993-05-21 1994-12-06 Xerox Corp 電子写真プリンターにおけるラスター出力スキャナのための露光装置
WO1994028361A1 (en) 1993-06-02 1994-12-08 Stirbl Robert C Method for changing solar energy distribution
JPH0768208A (ja) 1993-09-06 1995-03-14 Matsushita Electric Ind Co Ltd 間欠塗布装置
US5543333A (en) 1993-09-30 1996-08-06 Siemens Solar Gmbh Method for manufacturing a solar cell having combined metallization
US5559677A (en) 1994-04-29 1996-09-24 Motorola, Inc. Method of forming a device by selectively thermal spraying a metallic conductive material thereon
US5529054A (en) 1994-06-20 1996-06-25 Shoen; Neil C. Solar energy concentrator and collector system and associated method
US5700325A (en) 1994-08-03 1997-12-23 Matsushita Electric Industrial Co., Ltd. Coating device and a method of coating
US5501743A (en) 1994-08-11 1996-03-26 Cherney; Matthew Fiber optic power-generating system
US5540216A (en) 1994-11-21 1996-07-30 Rasmusson; James K. Apparatus and method for concentrating radiant energy emanated by a moving energy source
US5553747A (en) 1994-12-07 1996-09-10 Smithkline Beecham Corporation Container for multisegmental toothpaste
US5981902A (en) 1994-12-15 1999-11-09 Mitsubishi Chemical Corporation Texturing apparatus for magnetic recording medium and magnetic recording medium process thereby
US5569399A (en) 1995-01-20 1996-10-29 General Electric Company Lasing medium surface modification
WO1996024088A1 (en) 1995-02-02 1996-08-08 Minnesota Mining And Manufacturing Company Method and apparatus for applying thin fluid coating stripes
US5538563A (en) 1995-02-03 1996-07-23 Finkl; Anthony W. Solar energy concentrator apparatus for bifacial photovoltaic cells
EP0729189A1 (en) 1995-02-21 1996-08-28 Interuniversitair Micro-Elektronica Centrum Vzw Method of preparing solar cells and products obtained thereof
GB9507572D0 (en) 1995-04-12 1995-05-31 Smithkline Beecham Plc Dispenser
US6459418B1 (en) * 1995-07-20 2002-10-01 E Ink Corporation Displays combining active and non-active inks
US5929530A (en) 1995-08-18 1999-07-27 Mcdonnell Douglas Corporation Advanced solar controller
FR2741194B1 (fr) 1995-11-13 1998-01-30 Photowatt Int Cellule solaire comportant du silicium multicristallin et procede de texturisation de la surface du silicium multicristallin de type p
AUPN703895A0 (en) 1995-12-07 1996-01-04 Unisearch Limited Solar cell contacting machine
DE69716403T2 (de) 1996-01-31 2003-06-18 Airspray Int Bv Sprühvorrichtung zur abgabe von mehrkomponentenmaterial
US6037565A (en) 1996-06-17 2000-03-14 The Regents Of The University Of California Laser illuminator and optical system for disk patterning
US5990413A (en) 1996-06-19 1999-11-23 Ortabasi; Ugur Bifacial lightweight array for solar power
US6047926A (en) 1996-06-28 2000-04-11 Alliedsignal Inc. Hybrid deicing system and method of operation
US6476343B2 (en) 1996-07-08 2002-11-05 Sandia Corporation Energy-beam-driven rapid fabrication system
US5902540A (en) 1996-10-08 1999-05-11 Illinois Tool Works Inc. Meltblowing method and apparatus
US5873495A (en) 1996-11-21 1999-02-23 Saint-Germain; Jean G. Device for dispensing multi-components from a container
US5751436A (en) 1996-12-23 1998-05-12 Rocky Mountain Instrument Company Method and apparatus for cylindrical coordinate laser engraving
EP0851511A1 (en) * 1996-12-24 1998-07-01 IMEC vzw Semiconductor device with two selectively diffused regions
US5916461A (en) 1997-02-19 1999-06-29 Technolines, Llc System and method for processing surfaces by a laser
US6354791B1 (en) 1997-04-11 2002-03-12 Applied Materials, Inc. Water lift mechanism with electrostatic pickup and method for transferring a workpiece
US6180869B1 (en) * 1997-05-06 2001-01-30 Ebara Solar, Inc. Method and apparatus for self-doping negative and positive electrodes for silicon solar cells and other devices
WO1999001342A1 (en) 1997-07-01 1999-01-14 Smithkline Beecham Corporation Apparatus for inserting plural materials into containers
US6011307A (en) 1997-08-12 2000-01-04 Micron Technology, Inc. Anisotropic conductive interconnect material for electronic devices, method of use and resulting product
DE19735281A1 (de) 1997-08-14 1999-02-18 Rolf Hoericht Einrichtung zur Erzeugung von Energie
US6008449A (en) 1997-08-19 1999-12-28 Cole; Eric D. Reflective concentrating solar cell assembly
US6183186B1 (en) 1997-08-29 2001-02-06 Daitron, Inc. Wafer handling system and method
EP1027723B1 (en) 1997-10-14 2009-06-17 Patterning Technologies Limited Method of forming an electric capacitor
US6130465A (en) 1997-10-29 2000-10-10 Light Point Systems Inc. Micro-solar assembly
EP0915523A3 (en) 1997-10-29 2005-11-02 Canon Kabushiki Kaisha A photovoltaic element having a back side transparent and electrically conductive layer with a light incident side surface region having a specific cross section and a module comprising said photovoltaic element
US5986206A (en) * 1997-12-10 1999-11-16 Nanogram Corporation Solar cell
US6379521B1 (en) 1998-01-06 2002-04-30 Canon Kabushiki Kaisha Method of producing zinc oxide film, method of producing photovoltaic element, and method of producing semiconductor element substrate
JP4003273B2 (ja) 1998-01-19 2007-11-07 セイコーエプソン株式会社 パターン形成方法および基板製造装置
US6185030B1 (en) 1998-03-20 2001-02-06 James W. Overbeck Wide field of view and high speed scanning microscopy
US6032997A (en) 1998-04-16 2000-03-07 Excimer Laser Systems Vacuum chuck
US6278054B1 (en) 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
AUPP437598A0 (en) 1998-06-29 1998-07-23 Unisearch Limited A self aligning method for forming a selective emitter and metallization in a solar cell
JP3259692B2 (ja) 1998-09-18 2002-02-25 株式会社日立製作所 集光型太陽光発電モジュール及びその製造方法並びに集光型太陽光発電システム
US6602380B1 (en) 1998-10-28 2003-08-05 Micron Technology, Inc. Method and apparatus for releasably attaching a polishing pad to a chemical-mechanical planarization machine
US6204523B1 (en) 1998-11-06 2001-03-20 Lumileds Lighting, U.S., Llc High stability optical encapsulation and packaging for light-emitting diodes in the green, blue, and near UV range
US6118067A (en) 1998-11-20 2000-09-12 Swales Aerospace Method and apparatus for improved solar concentration arrays
US6274508B1 (en) 1999-02-05 2001-08-14 Alien Technology Corporation Apparatuses and methods used in forming assemblies
US6380729B1 (en) 1999-02-16 2002-04-30 Alien Technology Corporation Testing integrated circuit dice
US6291896B1 (en) 1999-02-16 2001-09-18 Alien Technology Corporation Functionally symmetric integrated circuit die
US6020554A (en) 1999-03-19 2000-02-01 Photovoltaics International, Llc Tracking solar energy conversion unit adapted for field assembly
AU4398700A (en) 1999-04-07 2000-10-23 Siemens Solar Gmbh Device and method for removing thin layers on a support material
JP2000294813A (ja) 1999-04-07 2000-10-20 Bridgestone Corp 太陽電池用バックカバー材及び太陽電池
US6257450B1 (en) 1999-04-21 2001-07-10 Pechiney Plastic Packaging, Inc. Dual dispense container having cloverleaf orifice
US6164633A (en) 1999-05-18 2000-12-26 International Business Machines Corporation Multiple size wafer vacuum chuck
US6203621B1 (en) 1999-05-24 2001-03-20 Trw Inc. Vacuum chuck for holding thin sheet material
US6413113B2 (en) 1999-07-14 2002-07-02 Aehr Test Systems Kinematic coupling
US6924493B1 (en) 1999-08-17 2005-08-02 The Regents Of The University Of California Ion beam lithography system
US6091017A (en) 1999-08-23 2000-07-18 Composite Optics Incorporated Solar concentrator array
FI115295B (fi) 1999-09-01 2005-04-15 Metso Paper Inc Verhopäällystin ja verhopäällystysmenetelmä
JP2001110659A (ja) 1999-10-05 2001-04-20 Toyota Autom Loom Works Ltd 充電用受電器
US6479395B1 (en) 1999-11-02 2002-11-12 Alien Technology Corporation Methods for forming openings in a substrate and apparatuses with these openings and methods for creating assemblies with openings
US6420266B1 (en) 1999-11-02 2002-07-16 Alien Technology Corporation Methods for creating elements of predetermined shape and apparatuses using these elements
US6527964B1 (en) 1999-11-02 2003-03-04 Alien Technology Corporation Methods and apparatuses for improved flow in performing fluidic self assembly
US6623579B1 (en) 1999-11-02 2003-09-23 Alien Technology Corporation Methods and apparatus for fluidic self assembly
JP2001148500A (ja) 1999-11-22 2001-05-29 Sanyo Electric Co Ltd 太陽電池モジュール
ES2157846B1 (es) 1999-12-02 2002-03-01 Univ Madrid Politecnica Dispositivo con lente discontinua de reflexion total interna y dioptrico asferico para concentracion o colimacion de energia radiante.
JP4774146B2 (ja) 1999-12-23 2011-09-14 パナソニック株式会社 レーザを用いて波長より小さなピッチで穴を開けるための方法および装置
JP2001291881A (ja) 2000-01-31 2001-10-19 Sanyo Electric Co Ltd 太陽電池モジュール
US6310281B1 (en) 2000-03-16 2001-10-30 Global Solar Energy, Inc. Thin-film, flexible photovoltaic module
US6433303B1 (en) 2000-03-31 2002-08-13 Matsushita Electric Industrial Co., Ltd. Method and apparatus using laser pulses to make an array of microcavity holes
JP3865036B2 (ja) 2000-04-07 2007-01-10 セイコーエプソン株式会社 光モジュール及びその製造方法並びに光伝達装置
US6423565B1 (en) 2000-05-30 2002-07-23 Kurt L. Barth Apparatus and processes for the massproduction of photovotaic modules
US6232217B1 (en) 2000-06-05 2001-05-15 Chartered Semiconductor Manufacturing Ltd. Post treatment of via opening by N-containing plasma or H-containing plasma for elimination of fluorine species in the FSG near the surfaces of the via opening
WO2002052250A2 (en) 2000-08-03 2002-07-04 Perlegen Sciences Substrate scanning apparatus
DE10047968A1 (de) 2000-09-27 2002-04-18 Flaekt Ab Vorrichtung und Verfahren zur Oberflächenbehandlung von Werkstücken
JP2002111035A (ja) 2000-09-27 2002-04-12 Sanyo Electric Co Ltd 両面発電型太陽電池モジュール
US6398370B1 (en) 2000-11-15 2002-06-04 3M Innovative Properties Company Light control device
US6620645B2 (en) 2000-11-16 2003-09-16 G.T. Equipment Technologies, Inc Making and connecting bus bars on solar cells
US20020149107A1 (en) 2001-02-02 2002-10-17 Avery Dennison Corporation Method of making a flexible substrate containing self-assembling microstructures
KR100378016B1 (ko) 2001-01-03 2003-03-29 삼성에스디아이 주식회사 태양 전지용 반도체 기판의 텍스처링 방법
JP2002289900A (ja) 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
JP3848168B2 (ja) 2001-03-29 2006-11-22 三菱製紙株式会社 カーテン塗布装置
US7186102B2 (en) 2001-04-26 2007-03-06 Strandex Corporation Apparatus and method for low-density cellular wood plastic composites
US6606247B2 (en) 2001-05-31 2003-08-12 Alien Technology Corporation Multi-feature-size electronic structures
US7449070B2 (en) 2001-06-01 2008-11-11 Ulvac, Inc. Waveform generator for microdeposition control system
DE60223196T2 (de) 2001-06-15 2008-02-07 Fujifilm Corp. Verfahren zum Herstellen einer Celluloseesterfolie
CN2606309Y (zh) 2001-06-22 2004-03-10 高增世 双槽面镜式太阳能单向导光聚能板
US6555739B2 (en) 2001-09-10 2003-04-29 Ekla-Tek, Llc Photovoltaic array and method of manufacturing same
US6531653B1 (en) 2001-09-11 2003-03-11 The Boeing Company Low cost high solar flux photovoltaic concentrator receiver
US7208674B2 (en) 2001-09-11 2007-04-24 Eric Aylaian Solar cell having photovoltaic cells inclined at acute angle to each other
US6597510B2 (en) 2001-11-02 2003-07-22 Corning Incorporated Methods and apparatus for making optical devices including microlens arrays
US6697096B2 (en) 2001-11-16 2004-02-24 Applied Materials, Inc. Laser beam pattern generator having rotating scanner compensator and method
CN100401532C (zh) * 2001-11-26 2008-07-09 壳牌阳光有限公司 太阳能电池及其制造方法
WO2003053597A1 (en) 2001-12-13 2003-07-03 Dow Global Technologies Inc. Method and apparatus for curtain coating
CA2422224A1 (en) 2002-03-15 2003-09-15 Affymetrix, Inc. System, method, and product for scanning of biological materials
JP3889644B2 (ja) 2002-03-25 2007-03-07 三洋電機株式会社 太陽電池モジュール
US7270528B2 (en) 2002-05-07 2007-09-18 3D Systems, Inc. Flash curing in selective deposition modeling
AU2003261394A1 (en) 2002-08-05 2004-02-23 Research Foundation Of The State University Of New York System and method for manufacturing embedded conformal electronics
US6818818B2 (en) 2002-08-13 2004-11-16 Esmond T. Goei Concentrating solar energy receiver
US6896381B2 (en) 2002-10-11 2005-05-24 Light Prescriptions Innovators, Llc Compact folded-optics illumination lens
JP2004266023A (ja) 2003-02-28 2004-09-24 Sharp Corp 太陽電池およびその製造方法
US6979798B2 (en) 2003-03-07 2005-12-27 Gsi Lumonics Corporation Laser system and method for material processing with ultra fast lasers
US20050081908A1 (en) 2003-03-19 2005-04-21 Stewart Roger G. Method and apparatus for generation of electrical power from solar energy
JP2004288898A (ja) 2003-03-24 2004-10-14 Canon Inc 太陽電池モジュールの製造方法
US7388147B2 (en) 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US7259323B2 (en) 2003-04-22 2007-08-21 The Aerospace Corporation Thin film solar cell thermal radiator
US7964789B2 (en) 2003-05-07 2011-06-21 Imec Germanium solar cell and method for the production thereof
US7002675B2 (en) 2003-07-10 2006-02-21 Synetics Solutions, Inc. Method and apparatus for locating/sizing contaminants on a polished planar surface of a dielectric or semiconductor material
US6959993B2 (en) 2003-07-10 2005-11-01 Energy Innovations, Inc. Solar concentrator array with individually adjustable elements
IL157716A0 (en) 2003-09-02 2004-03-28 Eli Shifman Solar energy utilization unit and solar energy utilization system
JP4121928B2 (ja) 2003-10-08 2008-07-23 シャープ株式会社 太陽電池の製造方法
JP4232597B2 (ja) 2003-10-10 2009-03-04 株式会社日立製作所 シリコン太陽電池セルとその製造方法
WO2005070224A1 (en) 2004-01-15 2005-08-04 Kellogg Company Nozzle assembly for imprinting patterns on an extruded product
JP2005347628A (ja) 2004-06-04 2005-12-15 Sharp Corp 電極形成方法、電極及び太陽電池
US7169228B2 (en) 2004-04-29 2007-01-30 The Procter & Gamble Company Extrusion applicator having linear motion operability
US7097710B2 (en) 2004-04-29 2006-08-29 The Procter & Gamble Company Extrusion applicator having rotational operability
JP4938998B2 (ja) 2004-06-07 2012-05-23 富士通株式会社 基板及び積層体の切断方法、並びに積層体の製造方法
US7045794B1 (en) 2004-06-18 2006-05-16 Novelx, Inc. Stacked lens structure and method of use thereof for preventing electrical breakdown
US20060046269A1 (en) 2004-09-02 2006-03-02 Thompson Allen C Methods and devices for processing chemical arrays
US7129592B1 (en) 2005-03-02 2006-10-31 Yetter Gary L Portable, human-powered electrical energy source
EP1763086A1 (en) 2005-09-09 2007-03-14 Interuniversitair Micro-Elektronica Centrum Photovoltaic cell with thick silicon oxide and silicon nitride passivation and fabrication method
US20060207650A1 (en) 2005-03-21 2006-09-21 The Regents Of The University Of California Multi-junction solar cells with an aplanatic imaging system and coupled non-imaging light concentrator
US7906722B2 (en) 2005-04-19 2011-03-15 Palo Alto Research Center Incorporated Concentrating solar collector with solid optical element
US7444934B2 (en) 2005-05-24 2008-11-04 Micron Technology, Inc. Supercritical fluid-assisted direct write for printing integrated circuits
US7394016B2 (en) 2005-10-11 2008-07-01 Solyndra, Inc. Bifacial elongated solar cell devices with internal reflectors
US20080047605A1 (en) 2005-07-28 2008-02-28 Regents Of The University Of California Multi-junction solar cells with a homogenizer system and coupled non-imaging light concentrator
US7799371B2 (en) 2005-11-17 2010-09-21 Palo Alto Research Center Incorporated Extruding/dispensing multiple materials to form high-aspect ratio extruded structures
US20070169806A1 (en) 2006-01-20 2007-07-26 Palo Alto Research Center Incorporated Solar cell production using non-contact patterning and direct-write metallization
US7765949B2 (en) 2005-11-17 2010-08-03 Palo Alto Research Center Incorporated Extrusion/dispensing systems and methods
US7928015B2 (en) 2006-12-12 2011-04-19 Palo Alto Research Center Incorporated Solar cell fabrication using extruded dopant-bearing materials

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101673776A (zh) * 2008-09-09 2010-03-17 帕洛阿尔托研究中心公司 具有激光烧蚀槽的指叉背接触太阳能硅电池及其制造方法
CN101673776B (zh) * 2008-09-09 2015-03-11 帕洛阿尔托研究中心公司 具有激光烧蚀槽的指叉背接触太阳能硅电池及其制造方法
CN101728453B (zh) * 2008-10-28 2011-10-05 昱晶能源科技股份有限公司 具有差异性掺杂的太阳能电池的制造方法
CN102549761A (zh) * 2009-12-18 2012-07-04 东丽株式会社 半导体器件的制造方法及背面接合型太阳能电池
CN102208482A (zh) * 2010-12-29 2011-10-05 袁晓 硅太阳电池片的光致热扩散制结方法
CN110168747A (zh) * 2016-09-30 2019-08-23 太阳能公司 用于太阳能电池的导电线的金属化
CN109638118A (zh) * 2018-11-30 2019-04-16 中国科学院半导体研究所 提升氮化物材料p型掺杂效率的方法及氮化物薄膜

Also Published As

Publication number Publication date
US20110111076A1 (en) 2011-05-12
KR20080054357A (ko) 2008-06-17
US20080138456A1 (en) 2008-06-12
EP1933392A2 (en) 2008-06-18
JP2008147660A (ja) 2008-06-26
EP1933392A3 (en) 2009-09-09
CN101202219B (zh) 2011-08-17
US8168545B2 (en) 2012-05-01
US7928015B2 (en) 2011-04-19

Similar Documents

Publication Publication Date Title
CN101202219B (zh) 在半导体衬底上制备半导体器件的方法及其系统
KR101245115B1 (ko) 근접 이격된 높은 종횡비의 압출된 그리드라인
JP5507789B2 (ja) 押出加工/供給システム及び方法
US7922471B2 (en) Extruded structure with equilibrium shape
US7780812B2 (en) Extrusion head with planarized edge surface
JP5166721B2 (ja) 押出加工/供給システム及び方法
US8178777B2 (en) Method of manufacturing solar cell and solar cell manufactured thereby
CN101752439A (zh) 具有共面背侧金属化物的太阳能电池
US8692110B2 (en) Melt planarization of solar cell bus bars
TW201306283A (zh) 背接觸式太陽能電池及其製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SOLARWORLD INNOVATIONS GMBH

Free format text: FORMER OWNER: PALO ALTO RES CT INC.

Effective date: 20110815

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20110815

Address after: Germany Freiberg

Applicant after: Solarworld Innovations GmbH

Address before: American California

Applicant before: Palo Alto Res CT Inc.

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110817

Termination date: 20201211