CN101133565A - 用于时分双工通信系统的信道校准 - Google Patents

用于时分双工通信系统的信道校准 Download PDF

Info

Publication number
CN101133565A
CN101133565A CNA2006800067109A CN200680006710A CN101133565A CN 101133565 A CN101133565 A CN 101133565A CN A2006800067109 A CNA2006800067109 A CN A2006800067109A CN 200680006710 A CN200680006710 A CN 200680006710A CN 101133565 A CN101133565 A CN 101133565A
Authority
CN
China
Prior art keywords
correction factor
matrix
user terminal
access point
overbar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006800067109A
Other languages
English (en)
Other versions
CN101133565B (zh
Inventor
M·S·华莱仕
J·W·凯特彻姆
J·R·沃尔顿
S·J·霍华德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN101133565A publication Critical patent/CN101133565A/zh
Application granted granted Critical
Publication of CN101133565B publication Critical patent/CN101133565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0059Convolutional codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0067Rate matching
    • H04L1/0068Rate matching by puncturing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0244Channel estimation channel estimation algorithms using matrix methods with inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0256Channel estimation using minimum mean square error criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/22Arrangements affording multiple use of the transmission path using time-division multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Abstract

记载了校准下行链路和上行链路信道以解决在接入点和用户终端处的发送和接收链的频率响应中的差异。在一种方法中,在下行链路和上行链路信道上传送导频,并使用其来分别推导下行链路和上行链路信道响应的估计。基于下行链路和上行链路信道响应估计(例如,通过对其执行矩阵比计算或最小均方误差(MMSE)计算)来确定针对接入点的校正因子和针对用户终端的校正因子。使用针对接入点的校正因子和针对用户终端的校正因子来获得互为转置的经校准的下行链路信道和经校准的上行链路信道。此校准可基于无线电传输来实时执行。

Description

用于时分双工通信系统的信道校准
背景
I.领域
本发明一般涉及通信,尤其涉及用于在时分双工(TDD)通信系统中校准下行链路和上行链路信道响应的技术。
II.背景
在无线通信系统中,接入点与用户终端之间的数据传输在无线信道上进行。取决于系统设计,下行链路和上行链路可能使用相同或不同的频带。下行链路(或前向链路)是指从接入点到用户终端的通信链路,而上行链路(或反向链路)是指从用户终端到接入点的通信链路。如果有两个频带可用,则可使用频分双工(FDD)技术向下行链路和上行链路分配单独的频带。如果仅有一个频带可用,则下行链路和上行链路可使用时分双工(TDD)来共用同一频带。
为实现高性能,常常需要知道无线信道的频率响应。例如,接入点可能需要下行链路的响应来为到用户终端的下行链路数据传输执行空间处理(在以下说明)。下行链路信道响应可由用户终端基于接入点所发送的导频来估计。用户终端随后可将下行链路信道响应估计发回接入点供其使用。对于这种信道估计方案,需要在下行链路上发送导频,并且将信道估计发回接入点招致了额外的延迟和资源。
对于具有共用频带的TDD系统,下行链路和上行链路信道响应可被假定为是彼此互易的。亦即,如果H表示从天线阵A到天线阵B的信道响应矩阵,则互易信道意味着从阵B到阵A的耦合由H T给出,其中H T表示矩阵H的转置。由此,对于TDD系统,一条链路的信道响应可基于在另一条链路上发送的导频来估计。例如,上行链路信道响应可基于经由上行链路接收的导频来估计,并且上行链路信道响应估计的转置可被用作下行链路信道响应的估计。
但是,接入点处的发送和接收链的频率响应通常与用户终端处的发送和接收链的频率响应不同。具体而言,用于上行链路传输的发送和接收链的频率响应可能与用于下行链路传输的发送和接收链的频率响应不同。“有效的”下行链路信道响应(包括适用的发送和接收链的响应)从而将因为这些发送和接收链中的差异(即,有效信道响应不是互易的)而异于有效的上行链路信道响应的互易。如果所获得的一条链路的信道响应的互易被用于另一条链路上的空间处理,则发送和接收链的频率响应中的任何差异将代表误差,此误差若不被确定或解决则可能会使性能降级。
因此,本领域中需要在TDD通信系统中校准下行链路和上行链路的技术。
概要
本文中提供校准下行链路和上行链路信道以解决接入点和用户终端处发送和接收链的频率响应中的差异的技术。在校准之后,所获得的一条链路的信道响应的估计可被用来获得另一条链路的信道响应的估计。这可简化信道估计和空间处理。
在一具体实施例中,提供了一种在无线TDD多输入多输出(MIMO)通信系统中校准下行链路和上行链路的方法。根据此方法,在上行链路信道上发送一导频,并使用其来推导上行链路信道响应的估计。还在下行链路信道上发送一导频,并使用其来推导下行链路信道响应的估计。然后基于下行链路和上行链路信道响应估计来确定针对接入点的校正因子和针对用户终端的校正因子。接入点可对其发送侧,或对其接收侧,或对发送和接收两侧应用其校正因子。用户终端也可对其发送侧,或对其接收侧,或对发送和接收两侧应用其校正因子。在接入点应用了其校正因子并且用户终端也应用了其校正因子的情况下,经校准的下行链路和上行链路信道的响应是近似互易的。这些校正因子可如以下所说明地对下行链路和上行链路信道响应估计使用矩阵比计算或最小均方误差(MMSE)计算来确定。
此校准可基于通过无线电传输来实时地执行。系统中的每个用户终端可用由一个或多个接入点来推导其校正因子的方式来执行校准。类似地,每个接入点可用由一个或多个用户终端来推导其校正因子的方式来执行校准。对于正交频分复用(OFDM)系统,可对一组频率子带执行此校准以获得针对该组中每个频率子带的校正因子。针对其它“未经校准的”频率子带的校准因子可基于所获得的针对“经校准的”频率子带的校准因子来内插。
本发明的各个方面和实施例在以下进一步具体地说明。
附图简要说明
结合附图理解以下阐述的具体说明,本发明的特征、本质和优点变得更加显而易见,附图中相同的附图标记始终作相应地标示。
图1示出MIMO系统中接入点和用户终端处的发送和接收链。
图2A示出在接入点和用户终端处的发送和接收两侧应用校正因子。
图2B示出对接入点和用户终端两者处的发送侧应用校正因子。
图2C示出对接入点和用户终端两者处的接收侧应用校正因子。
图3示出在TDD MIMO-OFDM系统中校准下行链路和上行链路信道响应的过程。
图4示出从下行链路和上行链路信道响应估计推导校正矢量的估计的过程。
图5是接入点和用户终端的框图。
图6是发送(TX)空间处理器的框图。
具体说明
本文中所记载的这些校准技术可用于各种无线通信系统。此外,这些技术可用于单输入单输出(SISO)系统、多输入单输出(MISO)系统、单输入多输出(SIMO)系统、以及多输入多输出(MIMO)系统。
MIMO系统采用多个(NT个)发射天线和多个(NR个)接收天线来进行数据传输。由这NT个发射天线和NR个接收天线形成的MIMO信道可被分解成NS个独立信道,其中NR≤min{NT,NR}。这NS个独立信道中的每一个也被称为该MIMO信道的一个空间信道,并对应于一个维度。如果由这多个发射和接收天线创建的额外维度得以被利用,则MIMO系统可提供改善的性能(例如,增大的传输容量)。这通常要求对发射机和接收机之间的信道响应有准确估计。
图1示出MIMO系统中在接入点102和用户终端104处的发送和接收链的框图。对于此系统,下行链路和上行链路以时分双工方式共用同一频带。
对于下行链路,在接入点102处,码元(由“发送”矢量x dn表示)由发送链114处理,并从Nap个天线116通过无线信道发送。在用户终端104处,下行链路信号由Nut个天线152接收,并由接收链154处理以获得接收码元(由“接收”矢量r dn表示)。由发送链114进行的处理通常包括数模转换、放大、滤波、上变频、等等。由接收链154进行的处理通常包括下变频、放大、滤波、模数转换等。
对于上行链路,在用户终端104处,码元(由发送矢量x up表示)由发送链164处理,并从Nut个天线152通过无线信道发送。在接入点102处,上行链路信号由Nap个天线116接收,并由接收链124处理以获得接收码元(由接收矢量r up表示)。
对于下行链路,用户终端处的接收矢量可表达为:
r dnR ut HT ap x dn,式(1)
其中x dn是具有对应于从接入点处的Nap个天线发送的码元的Nap个条目的发送矢量;
r dn是具有对应于在用户终端处的Nut个天线上接收的码元的Nut个条目的接收矢量;
T ap是具有与接入点处的Nap个天线的发送链相关联的复增益对应的条目的Nap×Nap对角矩阵;
R ut是具有与用户终端处的Nut个天线的接收链相关联的复增益对应的条目的Nut×Nut对角矩阵;
H是对应于下行链路的Nut×Nap信道响应矩阵。
发送和接收链的响应以及无线信道的响应通常是频率的函数。为简单起见,这些响应被假定为是平坦衰落的(即,平坦频率响应)。
对于上行链路,接入点处的接收矢量可表达为:
r upR ap H T T ut x up,    式(2)
其中x up是对应于从用户终端处的Nut个天线发送的码元的发送矢量;
r up是对应于在接入点处的Nap个天线上接收的码元的接收矢量;
T ut是具有与用户终端处的Nut个天线的发送链相关联的复增益对应的条目的Nut×Nut对角矩阵;
R ap是具有与接入点处的Nap个天线的接收链相关联的复增益对应的条目的Nap×Nap对角矩阵;
H T是对应于上行链路的Nap×Nut信道响应矩阵。
对于TDD系统,由于下行链路和上行链路信道共用同一频带,因此在下行链路与上行链路信道响应之间通常存在高度相关。由此,下行链路和上行链路信道响应矩阵可被假定为彼此互易(或互为转置),并分别表示为HH T,如式(1)和(2)中所示。但是,接入点处的发送和接收链的响应通常不等于用户终端处的发送和接收链的响应。这些差异从而导致以下不等式R ap H T T ut≠(R ut HT ap)T
从式(1)和(2)看出,包括适用的发送和接收链的响应的“有效”下行链路和上行链路信道响应H dnH up可表达为:
H dnR ut HT ap以及H upR ap H T T ut。    式(3)
将方程组(3)中的这两式组合,这可得到以下关系:
R ‾ ut - 1 H ‾ dn T ‾ ap - 1 = ( R ‾ ap - 1 H ‾ up T ‾ ut - 1 ) T = T ‾ ut - 1 H ‾ up T R ‾ ap - 1 . 式(4)
重排式(4),则得到下式:
H ‾ up T = T ‾ ut R ‾ ut - 1 H ‾ dn T ‾ ap - 1 R ‾ ap = K ‾ ut - 1 H ‾ dn K ‾ ap
H ‾ up = ( K ‾ ut - 1 H ‾ dn K ‾ ap ) T , 式(5)
其中 K ‾ ut = T ‾ ut - 1 R ‾ ut K ‾ ap = T ‾ ap - 1 R ‾ ap . 式(5)还可表达为:
H up K ut=(H dn K ap)T。式(6)
式(6)左手边代表了经校准上行链路信道响应的一种形式,而右手边代表了经校准下行链路信道响应的一种形式的转置。如式(6)中所示地将对角矩阵K utK ap应用于有效下行链路和上行链路响应使得下行链路和上行链路的经校准信道响应能被表达成互为转置。对应于接入点的Nap×Nap对角矩阵K ap是接收链响应R ap与发送链响应T ap之比(或者说 K ‾ ap = R ‾ ap T ‾ ap ),其中该比是逐元地取得的。类似地,对应于用户终端的Nut×Nut对角矩阵K ut是接收链响应R ut与发送链响应T ut之比。
图2A示出对接入点和用户终端处的发送和接收两侧应用校正矩阵以解决接入点和用户终端处发送和接收链中的差异。在下行链路上,首先由单元112将发送矢量x dn与矩阵K tap相乘。由发送链114和接收链154对下行链路进行的处理与图1中所示的相同。由单元156将接收链154的输出与矩阵K rut相乘,从而提供下行链路的接收矢量r dn。在上行链路上,首先由单元162将发送矢量x up与矩阵K ttut相乘。由发送链164和接收链124对上行链路进行的处理与图1中所示的相同。由单元126将接收链124的输出与矩阵K rap相乘,从而提供上行链路的接收矢量r up
在如图2A中所示地在接入点和用户终端处应用校正矩阵的情况下,经校准的下行链路和上行链路信道响应可表达为:
H cdnK rut R ut HT ap K tapH cupK rap R ap H T T ut K tut。    式(7)
如果 H ‾ cdn = H ‾ cup T , 则方程组(7)中的两式可被组合如下:
H ‾ cdn = K ‾ rut R ‾ ut H ‾ T ‾ ap K ‾ tap = ( K ‾ rap R ‾ ap H ‾ T T ‾ ut K ‾ tut ) T = H ‾ cup T 式(8)
重排式(8)中的各项得到下式:
T ‾ ut - 1 R ‾ ut K ‾ tut - 1 K ‾ rut H ‾ = H ‾ R ‾ ap T ‾ ap - 1 K ‾ rap K ‾ tap - 1 . 式(9)
在式(9)中已利用了对角矩阵AB的特性ABBA来改组上述对角矩阵。
式(9)指示,经校准的下行链路和上行链路信道响应可通过满足以下条件来得到:
a · T ‾ ut - 1 R ‾ ut = K ‾ tut K ‾ rut - 1 = K ‾ ut , 以及                                   式(10a)
a · T ‾ ap - 1 R ‾ ap = K ‾ tap K ‾ rap - 1 = K ‾ ap , 式(10b)
其中a是一任意复比例常数。
一般而言,针对接入点的校正因子可被应用于接入点处的发送侧和/或接收侧。类似地,针对用户终端的校正因子可被应用于用户终端处的发送侧和/或接收侧。对于一可能是接入点或用户终端的给定站,针对该站的校正矩阵可被分成针对发送侧的校正矩阵和针对接收侧的校正矩阵。针对一侧(可以是发送侧或接收侧)的校正矩阵可以是单位矩阵I或任选矩阵。另一侧的校正矩阵从而将唯一地指定。这些校正矩阵无需直接解决通常不能被测量到的发送和/或接收链误差。
表1列出在接入点和用户终端处应用校正因子的9种可能配置。对于配置1,校正因子被应用于接入点处的发送和接收两侧,并且还被应用于用户终端处的发送和接收两侧。对于配置2,校正因子被应用于接入点和用户终端两者处的仅发送侧,其中K tapK apK rapIK tutK ut,且K rutI。对于配置3,校正因子被应用于接入点和用户终端两者处的仅接收侧,其中 K ‾ rap = K ‾ ap - 1 , K tapI K ‾ rut = K ‾ ut - 1 , K tutI。其它配置在表1中示出。
表1
配置   接入点   用户终端
  发送   接收   发送   接收
  1   K tap   K rap   K tut   K rut
  2   K ap   I   K ut   I
  3   I   K ap -1   I   K ut -1
  4   K ap   I   I   K ut -1
  5   I   K ap -1   K ut   I
  6   K tap   K rap   K ut   I
  7   K tap   K rap   I   K ut -1
  8   K ap   I   K tut   K rut
  9   I   K ap -1   K tut   K rut
图2B示出配置2的对发送侧应用校正矩阵K apK ut以解决接入点和用户终端处发送和接收链中的差异。在下行链路上,首先由单元112将发送矢量x dn与校正矩阵K ap相乘。由发送链114和接收链154对下行链路进行的后续处理与图1中所示的相同。在上行链路上,首先由单元162将发送矢量x up与校正矩阵K ut相乘。由发送链164和接收链124对上行链路进行的后续处理与图1中所示的相同。分别由用户终端和接入点观察到的经校准的下行链路和上行链路信道响应由此可被表达为:
H cdnH dn K apH cupH up K ut。    式(11)
图2C示出配置3的对接收侧应用校正矩阵K ap -1K ut -1以解决接入点和用户终端处发送和接收链中的差异。在下行链路上,发送矢量x dn由接入点处的发送链114处理。下行链路信号由接收链154处理,并进一步由用户终端处的单元156将其与校正矩阵K ut -1相乘以获得接收矢量r dn。在上行链路上,发送矢量x up由用户终端处的发送链164处理。上行链路信号由接收链124处理,并进一步由接入点处的单元126将其与校正矩阵K ap -1相乘以获得接收矢量r up。分别由用户终端和接入点观察到的经校准的下行链路和上行链路信道响应由此可被表达为:
H ‾ cdn = K ‾ ut - 1 H ‾ dn H ‾ cup = K ‾ ap - 1 H ‾ up . 式(12)
如表1中所示,校正矩阵包括可解决接入点和用户终端处发送和接收链中的差异的值。这由此将允许一条链路的信道响应由另一条链路的信道响应来表达。取决于校正因子在接入点和用户终端处是否被应用,经校准的下行链路和上行链路信道响应可具有各种形式。例如,经校准的下行链路和上行链路信道响应可被表达为如式(7)、(11)和(12)中所示。
可执行校准以确定矩阵K apK ut。通常,真实的信道响应H以及发送和接收链响应是未知的,它们也不能被精确和容易地确定。取而代之,有效的下行链路和上行链路信道响应H dnH up可如下所述地分别基于在下行链路和上行链路上发送的导频来估计。作为“真实”矩阵K apK ut的估计的校正矩阵
Figure A20068000671000153
Figure A20068000671000154
由此可如以下所述地基于下行链路和上行链路信道响应估计
Figure A20068000671000155
Figure A20068000671000156
来推导。矩阵
Figure A20068000671000157
Figure A20068000671000158
包括可解决接入点和用户终端处发送和接收链中的差异的校正因子。一旦发送和接收链已被校准,就可使用所获得的一条链路的经校准信道响应估计(例如,
Figure A20068000671000159
)来确定另一条链路的经校准信道响应的估计(例如,
Figure A200680006710001510
)。
本文中所记载的校准技术还可用于采用OFDM的无线通信系统。OFDM有效地将总系统带宽分成数个(NF个)正交子带,它们也被称为音调、副载波、频率槽或子信道。采用OFDM,每个子带与可用数据调制的一个相应副载波相关联。对于采用OFDM的MIMO系统(即,MIMO-OFDM系统),每个空间信道的每个子带可被视为是一独立的传输信道。
此校准可用各种方式来执行。为清楚起见,以下针对TDD MIMO-OFDM系统来对一具体校准方案进行说明。
图3示出在TDD MIMO-OFDM系统中校准下行链路和上行链路信道响应的过程300的一个实施例的流程图。首先,用户终端使用对该系统定义的获取过程来获取接入点的时基和频率(框310)。然后用户终端可发送一消息来发起与接入点的校准,校准或可由接入点发起。校准可由接入点与用户终端的注册/认证并行地(例如,在呼叫建立期间)执行,并且也可在保用的任何时候执行。
校准可对用于数据传输的所有子带(它们可被称为“数据”子带)执行。不用于数据传输的子带(例如,保护子带)通常不需要被校准。但是,由于接入点和用户终端处的发送和接收链的频率响应在所关注的子带中的大多数上是平坦的,并且由于相邻子带很可能是相关的,因此可仅对这些数据子带的一个子集执行校准。如果不是所有数据子带都被校准,则待校准的子带(它们被称为“指定”子带)可被信令通知接入点(例如,在所发送的发起校准的消息中)。
为进行校准,用户终端在这些指定子带上向接入点发送一MIMO导频(框312)。该MIMO导频的生成在以下具体说明。上行链路MIMO导频传送的持续时间可取决于指定子带的数目。例如,如果对4个子带执行校准,则8个OFDM码元可能是足够的,而更多的子带将需要更多的(例如,20个)OFDM码元。总发射功率通常是固定的。如果该MIMO导频在少量的子带上被发送,则这些子带中的每一个可使用较大量的发射功率,并且每个子带的SNR较高。反之,如果该MIMO导频在大量的子带上被发送,则每个子带可使用较小量的发射功率,并且每个子带的SNR较差。如果每个子带的SNR不够高,则可为该MIMO导频发送更多的OFDM码元,并在接收机处将它们结合为一整体以为此子带获得更高的总SNR。
接入点接收上行链路MIMO导频,并为每个指定子带推导上行链路信道响应的估计
Figure A20068000671000161
其中k代表子带索引。基于MIMO导频的信道估计在以下说明。上行链路响应估计被量化并发送到用户终端(框314)。每个矩阵
Figure A20068000671000162
中的条目是子带k的上行链路的在Nut个发射天线与Nap个接收天线之间的复信道增益。所有矩阵的信道增益由在所有指定子带上共同的一特定比例因子定标以获得所需的动态范围。例如,每个矩阵
Figure A20068000671000163
中的信道增益可由所有的指定子带矩阵的最大信道增益逆定标,以使得最大信道增益的幅值为1。由于校准的目的在于使下行链路和上行链路信道之间的增益/相位差异归一化,因此绝对信道增益并不重要。如果信道增益使用12比特复数值(即,具有12比特同相(I)和12比特正交(Q)分量),则下行链路信道响应估计可在3·Nut·Nap·Nsb字节中被发送给用户终端,其中“3”是对应于用来表示I和Q分量的总共24比特,而Nsb是指定子带的数目。
用户终端也接收由接入点发送的下行链路MIMO导频(框316),并基于接收的导频来为每个指定子带推导下行链路信道响应的估计
Figure A20068000671000171
(框318)。用户终端然后基于上行链路和下行链路响应估计
Figure A20068000671000172
Figure A20068000671000173
来为每个指定子带确定校正因子
Figure A20068000671000174
Figure A20068000671000175
(框320)。
为了推导校正因子,每个子带的下行链路和上行链路信道响应被假定为是互易的,并具有用于解决接入点和用户终端处发送和接收链中的差异的增益/相位校正如下:
H up(k)K ut(k)=(H dn(k)K ap(k))T,k∈K,    式(13)
其中K代表一组所有数据子带。由于在校准期间指定子带只有有效下行链路和上行链路信道响应的估计可用,因此式(13)可被重写为:
H ‾ ^ up ( k ) K ‾ ^ ut ( k ) = ( H ‾ ^ dn ( k ) K ‾ ^ ap ( k ) ) T , k ∈ K ′ , 式(14)
其中K′代表一组所有指定子带。可定义一校正矢量
Figure A20068000671000177
包括
Figure A20068000671000178
的Nut个对角元。由此,
Figure A20068000671000179
Figure A200680006710001710
是等价的。类似地,可定义一校正矢量
Figure A200680006710001711
包括
Figure A200680006710001712
的Nap个对角元。
Figure A200680006710001713
Figure A200680006710001714
也是等价的。
校准因子
Figure A200680006710001715
Figure A200680006710001716
可用各种方式从信道估计
Figure A200680006710001717
来推导,包括通过矩阵比计算和MMSE计算。这两个计算方法均在以下进一步具体说明。也可使用其它计算方法,并且这也落在本发明的范围内。
A.矩阵比计算
图4示出使用矩阵比计算从上行链路和下行链路信道响应估计
Figure A200680006710001719
Figure A200680006710001720
推导校正矢量
Figure A200680006710001721
的过程320a的一个实施例的流程图。过程320a可用于图3中的框320。
首先,为每一指定子带计算一Nut×Nap矩阵C(k)(框412)如下:
C ‾ ( k ) = H ‾ ^ up T ( k ) H ‾ ^ dn ( k ) , 对于k∈K′,                                      式(15)
其中此比是逐元地来取得的。C(k)的每个元由此可计算为:
c i , j ( k ) = h ^ upi , j ( k ) h ^ dni , j ( k ) , 对于i=1、……、Nut以及j=1、……、Nap,       式(16)
其中
Figure A200680006710001725
分别是
Figure A200680006710001727
Figure A200680006710001728
的第(i,j)(行,列)个元,并且ci,j(k)是C(k)的第(i,j)个元。
在一个实施例中,针对接入点的校正矩阵
Figure A200680006710001729
被定义为等于C(k)的各归一化行的平均,并由框420推导。C(k)的每一行首先通过以该行中的第一个元来定标该行中的Nap个元中的每一个来归一化(框422)。由此,如果 c ‾ i ( k ) = [ c i , 1 ( k ) · · · c i , N ap ( k ) ] 是C(k)的第i行,则归一化的行
Figure A20068000671000182
可表达为:
c ‾ ~ i ( k ) = [ c i , 1 ( k ) / c i , 1 ( k ) · · · c i , j ( k ) / c i , j ( k ) · · · c i , N ap ( k ) / c i , 1 ( k ) ] . 式(17)
然后确定这些归一化行的平均为这Nut个归一化行之和除以Nut(框424)。校正矢量被设为等于此平均(框426),即可表达为:
k ‾ ^ ap ( k ) = 1 N ut Σ i = 1 N ut c ‾ ~ i ( k ) , 对于k∈K′。               式(18)
因为此归一化,的第一个元是单位元。
在一个实施例中,针对用户终端的校正矢量
Figure A20068000671000187
被定义为等于C(k)的各归一化列的逆的平均,并由框430推导。C(k)的第j列首先通过以矢量
Figure A20068000671000188
的表示成Kap,j,j(k)的第j个元来定标该列中的每一个元来归一化(框432)。由此,如果 c ‾ j ( k ) = [ c 1 , j ( k ) · · · c N ur , j ( k ) ] T C(k)的第j列元,则归一化的列
Figure A200680006710001810
可表达为:
Figure A200680006710001811
式(19)
然后确定这些归一化列的逆的平均为这Nap个归一化列的逆之和除以Nap(框434)。校正矢量
Figure A200680006710001812
被设为等于此平均(框436),即可表达为:
Figure A200680006710001813
式(20)
其中归一化列
Figure A200680006710001814
的求逆是逐元地执行的。
B.MMSE计算
对于MMSE计算,校正因子
Figure A200680006710001815
是从下行链路和上行链路信道响应估计
Figure A200680006710001818
推导以使经校准的下行链路信道响应与经校准的上行链路信道响应之间的均方误差(MSE)最小化。此条件可表达为:
min | ( H ‾ ^ dn ( k ) K ‾ ^ ap ( k ) ) T - H ‾ ^ up ( k ) K ‾ ^ ut ( k ) | 2 , 对于k∈K,             式(21)
其也可被写为:
min | K ‾ ^ ap ( k ) H ‾ ^ dn T ( k ) - H ‾ ^ up ( k ) K ‾ ^ ut ( k ) | 2 , 对于k∈K,
其中 K ‾ ^ ap T ( k ) = K ‾ ^ ap ( k ) , 因为
Figure A200680006710001822
是对角矩阵。
式(21)受到
Figure A200680006710001823
的首元被设为等于单位元或者说Kap,0,0(k)=1这一约束。若无此约束,则将在矩阵
Figure A200680006710001824
Figure A200680006710001825
的所有元皆被设为等于0的情况下得到平凡解。在式(21)中,首先获得矩阵Y(k)为 Y ‾ ( k ) = K ‾ ^ ap ( k ) H ‾ ^ dn T ( k ) - H ‾ ^ up ( k ) K ‾ ^ ut ( k ) . 接下来得到矩阵Y(k)的Nap·Nut个条目中的每一个的绝对值的平方。由此均方误差(或平方误差,因为除以Nap·Nut被省略)等于全部Nap·Nut个平方值之和。
对每个指定子带执行MMSE计算以获得针对该子带的校正因子
Figure A20068000671000191
Figure A20068000671000192
以下就针对一个子带的MMSE计算进行说明。为简单起见,在以下说明中省略了子带索引k。为简单起见,还将下行链路信道响应估计的元记为{aij},将上行链路信道响应估计
Figure A20068000671000194
的元记为{bij},矩阵
Figure A20068000671000195
的对角元记为{ui}并且矩阵
Figure A20068000671000196
的对角元记为{vj},其中i=1、……、Nap并且j=1、……、Nut
从式(21)可重写均方误差如下:
MSE = Σ j = 1 N ut Σ i = 1 N ap | a ij u i - b ij v j | 2 式(22)
同样受到u1=1的约束。最小均方误差可通过取式(22)对u和v的偏导,并将这两个偏导设为0来得到。这些运算的结果是以下方程组:
Σ j = 1 N ut ( a ij u i - b ij v j ) · a ij * = 0 , 对于i=2、……、Nap,以及式(23a)
Σ i = 1 N ap ( a ij u i - b ij v j ) · b ij * = 0 , 对于j=2、……、Nut,以及                      式(23b)
在式(23a)中,u1=1因此对此情形没有偏导,并且索引i从2走到Nap
方程组(23a)和(23b)中的这组(Nap+Nut-1)个方程可更为方便地表达为矩阵形式如下:
A yz,                                            式(24)
其中
A ‾ = Σ j = 1 N ut | a 2 j | 2 0 . . . 0 - b 21 a 21 * . . . - b 2 N ap a 2 N ut * 0 Σ j = 1 N ut | a 3 j | 2 0 . . . . . . . . . . . . . . . 0 . . . 0 0 . . . 0 Σ j = 1 N ut | a N ap j | 2 - b N ap 1 a N ap 1 * - b N ap N ut a N ap N ut * - a 21 b 21 * . . . - a N ap 1 b N ap 1 * Σ i = 1 N ap | b i 1 | 2 0 . . . 0 . . . . . . 0 Σ i = 1 N ap | b i 2 | 2 0 . . . . . . 0 . . . 0 - a 2 N ut b 2 N ut * . . . - a N ap N ut b N ap N ut * 0 . . . 0 Σ i = 1 N ap | b iN ut | 2
y ‾ = u 2 u 3 . . . u N ap v 1 v 2 . . . v N ut 并且 z ‾ = 0 0 . . . 0 a 11 b 11 * a 12 b 12 * a 1 N ut b 1 N ut * .
矩阵A包括(Nap+Nut-1)个行,其中前Nap-1行对应于来自方程组(23a)的Nap-1个方程,而最后Nut行对应于来自方程组(23b)的Nut个方程。具体而言,矩阵A的第一行是从方程组(23a)以i=2生成的,第二行是以i=3生成的,依此类推。矩阵A的第Nap行是从方程组(23b)以j=1生成的,依此类推,并且最后一行是以j=Nut生成的。如上所示,矩阵A的条目和矢量z的条目可基于矩阵
Figure A20068000671000203
Figure A20068000671000204
中的条目来得到。
校正因子被包括在矢量y中,矢量y可如下得到:
yA -1 z。式(25)
MMSE计算的结果是如式(21)中所示地使经校准的下行链路和上行链路信道响应中的均方误差最小化的校正矩阵
Figure A20068000671000205
Figure A20068000671000206
由于矩阵
Figure A20068000671000207
Figure A20068000671000208
是基于下行链路和上行链路信道响应估计
Figure A20068000671000209
得到的,因此校正矩阵
Figure A200680006710002011
Figure A200680006710002012
的质量依赖于信道估计
Figure A200680006710002013
Figure A200680006710002014
的质量。可在接收机处求MIMO导频的平均以获得对
Figure A200680006710002015
Figure A200680006710002016
的更加准确估计。
基于MMSE计算得到的校正矩阵一般好于基于矩阵比计算得到的校正矩阵,尤其是在其中一些信道增益很小并且测量噪声会使信道增益大大降级的时候。
C.后计算
无论选择使用哪种具体计算方法,在校正矩阵的计算完成之后,用户终端向接入点发送针对所有指定子带的接入点校正矢量
Figure A200680006710002019
如果
Figure A200680006710002020
中每一校正因子使用12比特复数值,则所有指定子带的校正矢量
Figure A200680006710002021
可在3·(Nap-1)·Nsb字节中被发送给接入点,其中“3”是对应用于I和Q分量的总共24比特,(Nap-1)是因每个矢量
Figure A200680006710002022
中的首元等于单位元因而不需要发送而导致的,而Nsb是指定子带的数目。如果首元被设为29-1=+511,则有12dB的净空可用(因为最大正12比特有符号值是211-1=+2047),这将允许12比特值能容纳下行链路与上行链路之间最高达12dB的增益失配。如果下行链路和上行链路匹配到12dB内且首元被归一化到值511,则其它元的绝对值应不大于511·4=2044,并且能用12比特来表示。
每一指定子带获得一对校正矢量
Figure A20068000671000211
Figure A20068000671000212
此校正可以不对所有数据子带执行。例如,可对每n个子带执行校正,其中n可以根据发送和接收链的预期响应来决定(例如,n可以是2、4、8、16等等)。还可对非均匀分布的子带执行校正。例如,由于在通带的边缘处可能有更多的滤波器滚降,而这将在发送和接收链中产生更大的失配,因此可校准较多的靠近频带边缘的子带。一般而言,可校准任意数目的子带以及任意分布的子带,并且这落在本发明的范围之内。
如果不是对所有数据子带执行校准,则可通过内插对指定子带获得的校正因子来获得针对“未经校准的”子带的校正因子。接入点可对k∈K′的
Figure A20068000671000213
执行内插以获得k∈K的校正矢量类似地,用户终端可对k∈K′的
Figure A20068000671000215
执行内插以获得k∈K的校正矢量
此后,接入点和用户终端使用它们各自的校正矢量
Figure A20068000671000217
Figure A20068000671000218
或是相应的校正矩阵
Figure A20068000671000219
Figure A200680006710002110
其中k∈K。接入点可基于其校正矩阵
Figure A200680006710002111
并在式(10a)中所示的约束下推导针对其发送侧的校正矩阵
Figure A200680006710002112
和针对其接收侧的校正矩阵
Figure A200680006710002113
类似地,用户终端可基于其校正矩阵
Figure A200680006710002114
并在式(10b)中所示的约束下推导针对其发送侧的校正矩阵
Figure A200680006710002115
和针对其接收侧的校正矩阵
校正矩阵
Figure A200680006710002117
和校正矩阵
Figure A200680006710002118
各自可被分成两个矩阵以改善动态范围,减小量化误差,解决发送和接收链的限制等等。如果在发送侧有已知的失衡,则发送侧校正矩阵可尝试消除此失衡。例如,如果一个天线有较小的功率放大器,则可通过对发送侧应用合适的校正矩阵来减小具有较强功率放大器的天线的发射功率。但是,在较低功率电平下操作发送侧导致性能损失。由此可在接收侧上进行调节以补偿该已知的发送失衡。如果由于例如较小的天线增益而导致发送和接收链两者对于给定天线皆有较小增益,则此校准不对此天线进行调节,因为发送和接收侧是匹配的。
上述的为接入点和用户终端各自获得一校正因子矢量的校正方案允许在由不同用户终端执行校准时能为接入点推导出“兼容”的校正矢量。如果接入点已被校准(例如,由一个或多个其它用户终端),则当前校正矢量可用新推导出的校正矢量更新。
例如,如果两个用户终端同时执行此校准过程,则来自这两个用户终端的校准结果可被平均以提高性能。但是,通常一次为一个用户终端执行校准。第二用户终端因而将观察到已应用了针对第一用户终端的校正矢量的下行链路。在此情形中,可使用第二校正矢量与原校正矢量之积作为新校正矢量,或者也可使用“加权平均”(在以下说明)。接入点通常对所有用户终端使用单个校正矢量,而不是对不同用户终端使用不同的校正矢量(尽管这也是可实现的)。来自多个用户终端的更新或是来自一个用户终端的顺序更新可用相同方式来对待。更新后的矢量可被直接应用(通过乘法运算)。或者,如果希望进行某种平均来降低测量噪声,则可如下所述地使用加权平均。
如果接入点使用校正矢量
Figure A20068000671000221
来发送可供用户终端据此确定新校正矢量的MIMO导频,则通过将当前和新校正矢量相乘来推导更新后的校正矢量
Figure A20068000671000223
校正矢量
Figure A20068000671000224
Figure A20068000671000225
可由相同或不同用户终端推导。在一个实施例中,更新后的校正矢量被定义为 k ‾ ^ ap 3 ( k ) = k ‾ ^ ap 1 ( k ) · k ‾ ^ ap 2 ( k ) , 其中此乘法是逐元的。在另一个实施例中,更新后的校正矢量被定义为 k ‾ ^ ap 3 ( k ) = k ‾ ^ ap 1 ( k ) · k ‾ ^ ap 2 α ( k ) , 其中α是用于提供加权平均的因子(例如,0<α<1)。如果校准更新不频繁,则接近于1的α值可能性能最好。如果校准更新频繁但有噪,则较小的α值较好。更新后的校正矢量
Figure A20068000671000228
随后可被接入点使用,直至它们再次被更新。
如式(10a)和(10b)中所示,针对给定站(可能是接入点或用户终端)的校正因子解决该站处发送和接收链的响应。接入点可与第一用户终端执行校准以推导其校准因子,然后使用这些校准因子来与第二用户终端通信,而无须与第二用户终端执行校准。类似地,用户终端可与第一接入点执行校准以推导其校正因子,然后使用这些校正因子来与第二接入点通信,而无须与第二接入点执行校准。这可为与多个用户终端通信的接入点和与多个接入点通信的用户终端减少用于校准的额外开销,因为不是每一对通信站都需要校准。
在以上说明中,由用户终端推导k∈K′的校正矢量
Figure A20068000671000229
以及矢量
Figure A200680006710002211
被发回给接入点。此方案有利地将校准处理分布在多址系统的各用户终端间。但是,校准矢量
Figure A200680006710002212
也可由接入点来推导,随后其将矢量
Figure A200680006710002214
发回给用户终端,并且这落在本发明的范围之内。
上述校准方案使得每个用户终端都能经由无线电传输来实时地校准其发送和接收链。这使得具有不同频率响应的用户终端无须严格的频率响应规范或是在厂执行校准就能实现高性能。接入点可由多个用户终端校准以提供改善的准确性。
D.增益考虑
校准可基于下行链路和上行链路信道的“归一化”增益来执行,这些“归一化”增益是相对于接收机处的噪声本底给出的增益。归一化增益的使用使得在下行链路和上行链路已被校准之后,一条链路的特性(例如,每空间信道的信道增益和SNR)能基于另一条链路的增益测量来获得。
接入点和用户终端可初始地平衡它们的接收机输入电平以使接入点和用户终端的接收路径上的噪声电平近似相同。此平衡可通过估计噪声本底,例如通过找到在特定持续时间(例如,一个或两个码元周期)上接收TDD帧(它是下行链路/上行链路传输的单位)里具有最小平均功率的部分来实现。一般而言,就在每个TDD帧开始之前的时间是没有传输的,因为任何上行链路数据必须被接入点接收,然后在接入点在下行链路上进行传输之前需要一接收/发送周转时间。取决于干扰环境,噪声本底可基于多个TDD帧来确定。然后相对于此噪声本底来测量下行链路和上行链路信道响应。更具体地,首先可得到给定发射和接收天线对的给定子带的信道增益为例如该发射和接收天线对的该子带的接收导频码元与发送导频码元之比。然后,归一化增益等于实测增益除以噪声本底。
接入点的归一化增益和用户终端的归一化增益中的很大差异会导致针对用户终端的校正因子大大异于单位元。针对接入点的校正因子接近于单位元,因为矩阵
Figure A20068000671000231
的首元被设为1。
如果针对用户终端的校正因子大大异于单位元,则用户终端也许不能应用计算出的校正因子。这是因为用户终端对其最大发射功率具有约束,并且也许不能针对大校正因子来提高其发射功率。此外,针对小校正因子降低发射功率一般是不合乎需要的,因为这会降低可实现的数据率。
由此,用户终端可使用计算出的校正因子的定标版本来进行发送。定标校准因子可通过由一特定的定标值定标计算出的校正因子来得到,该特定的定标值可被设为等于下行链路和上行链路信道响应之间的增益增量(差或比)。此增益增量可被计算为下行链路和上行链路的归一化增益之差(或增量)的平均。校正因子所用的定标值(或增益增量)可与计算出的针对接入点的校正因子一起被发送给接入点。
有了校正因子以及定标值或增益增量,就可从实测的上行链路信道响应确定下行链路信道特性,反之亦然。如果接入点或用户终端处的噪声本底改变,则增益增量可被更新,并且更新后的增益增量可在一消息中被发送给另一方。
在以上说明中,校准得到对应于每个子带的两组(或矢量或矩阵)校正因子,其中一组
Figure A20068000671000232
由接入点使用,而另一组
Figure A20068000671000233
由用户终端使用。接入点可如上所述地对发送侧和/或接收侧应用其校正因子
Figure A20068000671000241
用户终端也可对发送侧和/或接收侧应用其校正因子
Figure A20068000671000242
一般而言,校准的执行使得无论校正因子被应用于何处,经校准的下行链路和上行链路信道响应均互易。
2.MIMO导频
为了进行校准,由用户终端在上行链路上发送一MIMO导频以使得接入点能估计上行链路信道响应,并由接入点在下行链路上发送一MIMO导频以使得用户终端能估计下行链路信道响应。MIMO导频是由从NT个发射天线发送的NT个导频传输构成的导频,其中来自每个发射天线的导频传输可由接收站标识。MIMO导频可用各种方式来生成和发送。上行链路和下行链路可使用相同或不同的MIMO导频。在任意情形中,下行链路和上行链路所使用的MIMO导频在接入点和用户终端两者处皆是已知的。
在一个实施例中,MIMO导频由从这NT个发射天线中的每一个发送的一特定OFDM码元(记为“P”)构成,其中对于下行链路有NT=Nap,而对于上行链路有NT=Nut。对于每个发射天线,相同的P OFDM码元在指定用于MIMO导频传输的每个码元周期里被发送。但是,每个天线的P OFDM码元被覆盖以指派给该天线的一不同的N码片Walsh序列,其中对于下行链路有N≥Nap,而对于上行链路有N≥Nut。Walsh覆盖维持这NT个发射天线之间的正交性,并使得接收机能区分各个发射天线。
P OFDM码元包括针对这Nsb个指定子带中的每一个的一个调制码元。POFDM码元由此包括可能为便于接收机进行信道估计而选择的Nsb个调制码元的特定“字”。此字还可被定义为使所发送的MIMO导频中的峰均变差最小化。这进而可减少由发送和接收链产生的畸变和非线性的量,而这又进而导致信道估计的准确性提高。
为清楚起见,以下就一具体的MIMO OFDM系统来对一具体的MIMO导频进行说明。对于此系统,接入点和用户终端各自具有4个发射/接收天线。系统带宽被分成64个正交子带,或者说NF=64,它们被赋予+31到-32的索引。在这64个子带当中,48个子带(例如,其索引为±{1,…,6,8,…,20,22,…,26})被用于数据,4个子带(例如,其索引为±{7,21})被用于导频以及可能还用于信令,DC子带(其索引为0)不被使用,并且其余子带也不被使用以起到保护子带的作用。此OFDM子带结构在公开可获得的1999年9月IEEE标准802.11a的题为“Part 11:WirelessLAN Medium Access Control(MAC)and Physical Layer(PHY)specifications:High-speed Physical Layer in the 5GHz Band(第11部分:无线LAN媒体访问控制(MAC)和物理层(PHY)规范:5GHz频带中的高速物理层)”的文档中进一步具体说明。
P OFDM码元包括对应于这48个数据子带和4个导频子带的一组52个QPSK调制码元。此P OFDM码元可给出如下:
P(实)=g·{0,0,0,0,0,0,-1,-1,-1,-1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,1,-1,0,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,1,-,0,0,0,0,0},
P(虚)=g·{0,0,0,0,0,0,-1,1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,0,-1,-1,-1,-1,1,1,-1,1,-1,-1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,1,-1,-1,0,0,0,0,0},
其中g是该导频的增益。{}括号内的值是对子带索引-32到-1(对应于第一行)以及0到+31(对应于第二行)给出的。由此,P(实)和P(虚)的第一行指示码元(-1-j)在子带-26中被发送,码元(-1+j)在子带-25中被发送,依此类推。P(实)和P(虚)的第二行指示码元(1-j)在子带1中被发送,码元(-1-j)在子带2中被发送,依此类推。MIMO导频也可使用其它OFDM码元。
在一个实施例中,4个发射天线被指派以用于MIMO导频的Walsh序列W1=1111,W2=1010,W3=1100,和W4=1001。对于给定Walsh序列,值“1”指示P OFDM码元被发送,而值“0”指示-P OFDM码元被发送(即,P中的52个调制码元中的每一个被反转)。
表2列出为跨度为4个码元周期或者说Nps=4的MIMO导频传输从这4个发射天线中的每一个发射的OFDM码元。
表2
  OFDM码元   天线1   天线2   天线3   天线4
  1   +P   +P   +P   +P
  2   +P   -P   +P   -P
  3   +P   +P   -P   -P
  4   +P   -P   -P   +P
对于更长的MIMO导频传输,对应于每一发射天线的Walsh序列被简单重复。对于这组Walsh序列,MIMO导频传输在4个码元周期的整数倍上发生以确保这4个发射天线间的正交性。
接收机可通过执行互补处理来基于所接收的MIMO导频推导信道响应的估计。具体而言,为了恢复从发射天线i发送并由接收天线j接收的导频,首先以与在发射机处执行的Walsh覆盖互补的方式用指派给发射天线i的Walsh序列对由接收天线j接收的导频进行处理。然后积累该MIMO导频的所有Nps个码元周期的经解覆盖的OFDM码元,在此积累是对用于携带该MIMO导频的52个子带中的每一个单独地执行的。此积累的结果是
Figure A20068000671000261
k=±1,…,26,它是对应于52个数据和导频子带的从发射天线i到接收天线j的有效信道响应的估计,其中包括发射和接收链的响应。
可执行相同的处理以在每个接收天线处恢复来自每个发射天线的该导频。此导频处理提供Nap·Nut个值,这些值是对应于52个信道中的每一个的有效信道响应估计H up(k)或H dn(k)的元。
在另一个实施例中,MIMO导频使用傅立叶矩阵F。该傅立叶矩阵可具有任意方形维度,例如3×3,4×4,5×5,诸如此类。N×N傅立叶矩阵的元可被表达为:
f n , m = e - j 2 π ( n - 1 ) ( m - 1 ) N , n = 1 , . . . , N , 并且m=1,…,N。
每个发射天线被指派以F的一列。所指派列中的元被用于以与Walsh序列的元相似的方式在不同的时间间隔上乘以这些导频码元。一般而言,其元具有单位幅值的任何正交矩阵可被用来乘以MIMO导频的导频码元。
在适用于MIMO-OFDM系统的又一个实施例中,可用于传输的子带被分成NT个不重叠的或者说不相交的子集。对于每个发射天线,导频码元在每个时间间隔里在一个子带子集上被发送。每个发射天线可在对应于MIMO导频的持续时间的NT个时间间隔里循环遍历这NT个子集。MIMO导频也可用其它方式来发送。
无论MIMO导频是如何被发送的,都可由接入点和用户终端在校准期间执行信道估计以分别获得有效上行链路信道响应估计和有效下行链路信道响应估计随后使用这些估计来如上所述地推导校正因子。
3.空间处理
可利用下行链路与上行链路信道响应之间的相关性来为TDD MIMO系统和TDD MIMO-OFDM系统简化接入点和用户终端处的信道估计和空间处理。此简化在执行校准以解决发送和接收链中的差异之后将是可行的。如上文中提及的,经校准的信道响应是:
对于下行链路为 H ‾ cdn ( k ) = K ‾ ^ rut ( k ) H ‾ dn ( k ) K ‾ ^ tap ( k ) , 以及                                式(26a)
对于上行链路为 H ‾ cup ( k ) = K ‾ ^ rap ( k ) H ‾ up ( k ) K ‾ ^ tut ( k ) ≅ H ‾ cdn T ( k ) .                                     式(26b)
式(26b)中最后等式的近似是由于使用了实际校正因子的估计。
每个子带的信道响应矩阵H(k)可被“对角化”以获得对应于该子带的Ns个本征模。这些本征模可被视为正交空间信道。此对角化可通过执行信道响应矩阵H(k)的奇异值分解,或执行H(k)的相关矩阵即R(k)=H H(k)H(k)的本征值分解来实现。
经校准的上行链路信道响应矩阵H cup(k)的奇异值分解可表达为:
H ‾ cup ( k ) = U ‾ ap ( k ) Σ ‾ ( k ) V ‾ ut H ( k ) , k ∈ K , 式(27)
其中U ap(k)是H cup(k)的左本征矢量的Nut×Nut酉阵;
(k)是H cup(k)的奇异值的Nut×Nap对角矩阵;以及
V ut(k)是H cup(k)的右本征矢量的Nap×Nap酉阵。
酉阵M由特性M H MI表征。相应地,经校准的下行链路信道响应矩阵H cdn(k)的奇异值分解可表达为:
H ‾ cdn ( k ) = V ‾ ut * ( k ) Σ ‾ ( k ) U ‾ ap T ( k ) , k ∈ K , 式(28)
矩阵V ut *(k)和U ap *(k)由此也分别是H cdn(k)的左和右本征矢量的矩阵,其中“*”表示复共轭。矩阵V ut(k)、V ut *(k)、V ut T(k)、和V ut H(k)是矩阵V ut(k)的不同形式,并且U ap(k)、U ap *(k)、U ap T(k)、和U ap H(k)也是矩阵U ap(k)的不同形式。为简单起见,在以下说明中对矩阵U ap(k)和V ut(k)的引述也可以指它们的其它各种形式。矩阵U ap(k)和V ut(k)分别由接入点和用户终端用于空间处理,并由其下标作此标示。
奇异值分解由Gilbert Strang在Academic出版社1980年的题为“Linear Algebraand Its Applications(线性代数及其应用)”第二版的书中进一步详细说明,其内容被援引包含于此。
用户终端可基于由接入点发送的MIMO导频来估计经校准的下行链路信道响应。用户终端然后可执行k∈K的经校准的下行链路信道响应估计
Figure A20068000671000273
的奇异值分解以得到k∈K的对角矩阵
Figure A20068000671000275
的左本征矢量矩阵V ut *(k)。此奇异值分解可给出为 H ‾ ^ cdn ( k ) = V ‾ ut * ( k ) Σ ‾ ^ ( k ) U ‾ ^ ap T ( k ) , 其中每个矩阵上面的头标(“”)指示其为实际矩阵的估计。
类似地,接入点可基于由用户终端发送的MIMO导频来估计经校准的上行链路信道响应。接入点然后可执行k∈K的经校准的上行链路信道响应估计
Figure A20068000671000277
的奇异值分解以得到k∈K的对角矩阵
Figure A20068000671000278
Figure A20068000671000279
的左本征矢量矩阵
Figure A200680006710002710
此奇异值分解可给出为 H ‾ ^ cup ( k ) = U ‾ ^ ap ( k ) Σ ‾ ^ ( k ) V ‾ ^ ut H ( k ) .
因为互易信道和校准,只需由用户终端或者接入点执行此奇异值分解就能获得矩阵
Figure A200680006710002712
Figure A200680006710002713
两者。如果由用户终端执行,则矩阵
Figure A200680006710002714
被用于用户终端处的空间处理,而矩阵
Figure A200680006710002715
可被发回到接入点。
接入点也可基于由用户终端发送的受导引基准来得到矩阵
Figure A20068000671000281
Figure A20068000671000282
类似地,用户终端也可基于由接入点发送的受导引基准来得到矩阵
Figure A20068000671000284
此受导引基准在共同转让的于2003年10月23日提交的题为“MIMO WLAN System(MIMO WLAN系统)”的序列号为10/693,419的美国专利申请中详细说明。
矩阵
Figure A20068000671000285
Figure A20068000671000286
可用于在MIMO信道的NS个本征模上发送独立数据流,其中NS≤min{Nap,Nut}。在下行链路和上行链路上发送多个数据流的空间处理在以下说明。
A.上行链路空间处理
由用户终端对上行链路传输进行的空间处理可表达为:
x ‾ up ( k ) = K ‾ ^ tut ( k ) V ‾ ^ ut ( k ) s ‾ up ( k ) , k ∈ K , 式(29)
其中x up(k)是子带k的上行链路的发送矢量;并且
s up(k)是具有最多达NS个对应于要在子带k的NS个本征模上发送的调制码元的非零条目的数据矢量。
在发送之前也可对调制码元执行其它处理。例如,可跨这些数据子带(例如,对每个本征模)应用信道求逆,以使所有数据子带的接收SNR近似相等。此空间处理由此可表达为:
x ‾ up ( k ) = K ‾ ^ tut ( k ) V ‾ ^ ut ( k ) W ‾ up ( k ) s ‾ up ( k ) , k ∈ K , 式(30)
其中W up(k)是具有对应于(可任选的)上行链路信道求逆的权重的矩阵。
信道求逆还可通过在调制发生之前向每个子带指派发射功率来执行,在此情形中矢量s up(k)包括信道求逆系数,并且矩阵W up(k)可从式(30)中被省略。在以下说明中,在方程中使用矩阵W up(k)指示信道求逆系数未被纳入矢量s up(k)中。在方程中没有矩阵W up(k)可指示(1)没有执行信道求逆或者(2)执行了信道求逆并将其纳入矢量s up(k)中。
信道求逆可如在前述序列号为10/693,419的美国专利申请中以及在共同转让的于2002年8月27日提交的题为“Coded MIMO System with Selective ChannelInversion Applied Per Eigenmode(每本征模地应用了选择性信道求逆的编码MIMO系统)”的序列号为10/229,209的美国专利申请中说明地来执行。
接入点处的所接收的上行链路传输可表达为:
r ‾ up ( k ) = K ‾ ^ rap ( k ) H ‾ up ( k ) x ‾ up ( k ) n ‾ ( k ) , k ∈ K , 式(31)
其中r up(k)是子带k的上行链路的接收矢量;
n(k)是子带k的加性高斯白噪声(AWGN);以及
x up(k)如式(29)中所示。
在接入点处对接收的上行链路传输的接收机空间处理(或空间匹配滤波)可表达为:
s ‾ ^ up ( k ) = Σ ‾ ^ - 1 ( k ) U ‾ ^ ap H ( k ) r ‾ up ( k ) ,
= Σ ‾ ^ - 1 ( k ) U ‾ ^ ap H ( k ) ( K ‾ ^ rap ( k ) H ‾ up ( k ) K ‾ ^ tut ( k ) V ‾ ^ ut ( k ) s ‾ up ( k ) + n ‾ ( k ) ) ,
= Σ ‾ ^ - 1 ( k ) U ‾ ^ ap H ( k ) U ‾ ap ( k ) Σ ‾ ( k ) V ‾ ut H ( k ) V ‾ ^ ut ( k ) s ‾ up ( k ) + n ‾ ~ ( k ) ,
= s ‾ up ( k ) + n ‾ ~ ( k ) , k ∈ K , 式(32)
其中
Figure A20068000671000295
是由用户终端在上行链路上发送的数据矢量s up(k)的估计,并且
Figure A20068000671000296
是后处理的噪声。式(32)假定在用户终端处没有执行信道求逆,发送矢量x up(k)如式(29)中所示,并且接收矢量r up(k)如式(31)中所示。
B.下行链路空间处理
由接入点对下行链路传输进行的空间处理可表达为:
x ‾ dn ( k ) = K ‾ ^ tap ( k ) U ‾ ^ ap * ( k ) s ‾ dn ( k ) , k ∈ K , 式(33)
其中x dn(k)是发送矢量,并且s dn(k)是下行链路的数据矢量。
在发送之前也可对调制码元执行其它处理(例如,信道求逆)。此空间处理由此可表达为:
x ‾ dn ( k ) = K ‾ ^ tap ( k ) U ‾ ^ ap * ( k ) W ‾ dn ( k ) s ‾ dn ( k ) , k ∈ K , 式(34)
其中W dn(k)是具有对应于(可任选的)下行链路信道求逆的权重的矩阵。
用户终端处的所接收的下行链路传输可表达为:
r ‾ dn ( k ) = K ‾ ^ rut ( k ) H ‾ dn ( k ) x ‾ dn ( k ) n ‾ ( k ) , k ∈ K , 式(35)
在用户终端处对接收的下行链路传输的接收机空间处理器(或空间匹配滤波)可表达为:
s ‾ ^ dn ( k ) = Σ ‾ ^ - 1 ( k ) V ‾ ^ ut T ( k ) r ‾ dn ( k ) ,
= Σ ‾ ^ - 1 ( k ) V ‾ ^ ut T ( k ) ( K ‾ ^ rut ( k ) H ‾ dn ( k ) K ‾ ^ tap ( k ) U ‾ ^ ap * ( k ) s ‾ dn ( k ) + n ‾ ( k ) ) ,
= Σ ‾ ^ - 1 ( k ) V ‾ ^ ut T ( k ) V ‾ ut * ( k ) Σ ‾ ( k ) U ‾ ap T ( k ) U ‾ ^ ap * ( k ) s ‾ dn ( k ) + n ‾ ( k ) ,
= s ‾ dn ( k ) + n ‾ ~ ( k ) , k ∈ K , 式(36)
式(36)假定在接入点处没有执行信道求逆,发送矢量x dn(k)如式(33)中所示,并且接收矢量r dn(k)如式(35)中所示。
表3总结了接入点和用户终端处对数据发送和接收执行的空间处理。表3假定在发射机处由W(k)执行其它处理。但是,如果没有执行其它处理,则W(k)简单地等于单位矩阵。
表3
Figure A20068000671000301
在以上说明中,并如表3中所示,在接入点处发送侧和接收侧分别使用校正矩阵
Figure A20068000671000302
Figure A20068000671000303
这两个校正矩阵之一可被设为等于单位矩阵。在用户终端处发送侧和接收侧分别使用校正矩阵
Figure A20068000671000304
Figure A20068000671000305
这两个矩阵之一也可被设为等于单位矩阵。校正矩阵
Figure A20068000671000306
Figure A20068000671000307
可与权重矩阵W dn(k)和W up(k)组合以得到增益矩阵G dn(k)和G up(k),其中 G ‾ dn ( k ) = K ‾ ^ tap ( k ) · W ‾ dn ( k ) 并且 G ‾ up ( k ) = K ‾ ^ tut ( k ) · W ‾ up ( k ) .
C.一条链路上的数据传输
给定链路上的数据传输也可通过在发送站处应用校正矩阵并在接收站处使用MMSE接收机来实现。例如,下行链路上的数据传输可通过在接入点的仅发送侧应用校正因子并在用户终端处使用MMSE接收机来实现。为简单起见,此说明针对单个子带,并且在各式中省略子带索引k。经校准的下行链路和上行链路信道响应可被给出为:
H cup(k)=R ap H T T utH up,以及             式(37)
H ‾ cdn ( k ) = K ‾ ut - 1 R ‾ ut H ‾ T ‾ ap K ‾ ap = K ‾ ut - 1 H ‾ dn K ‾ ap = H ‾ cup T . 式(38)
用户终端在上行链路上发送一导频,接入点利用此导频来推导上行链路信道响应的估计。接入点如式(27)中所示地执行上行链路信道响应估计
Figure A200680006710003011
的奇异值分解,并推导矩阵
Figure A200680006710003012
接入点然后使用进行空间处理以如式(33)中所示地在MIMO信道的本征模上发送数据。
用户终端处所接收的下行链路传输可表达为:
r dnH dn x dn+n。                      式(39)
式(39)指示在用户终端处没有应用校正因子。用户终端推导MMSE空间滤波器矩阵如下:
Figure A200680006710003014
式(40)
其中 H ‾ edn = R ‾ ut H ‾ T ‾ ap K ‾ ^ ap U ‾ ^ ap * = H ‾ dn K ‾ ^ ap U ‾ ^ ap * ; 并且
nn是噪声的自协方差矩阵。
如果噪声是AWGN,则
Figure A200680006710003016
其中σn 2是噪声的方差。用户终端可基于由接入点随该数据一起发送的导频来推导H edn
用户终端然后执行MMSE空间处理如下:
s ‾ ^ mmse = M ‾ r ‾ dn ,
= M ‾ ( H ‾ dn K ‾ ^ ap U ‾ ^ ap * s ‾ dn + n ‾ ) ,
= M ‾ H ‾ edn s ‾ dn + M ‾ n ‾ ,
= s ‾ dn + n ‾ mmse , 式(41)
其中n mmse包括经MMSE滤波的噪声和残余串扰,并且
Figure A20068000671000315
是数据矢量s dn的估计。来自MMSE空间滤波器矩阵M的码元估计是这些数据码元的非归一化估计。用户终端可将
Figure A20068000671000316
乘以定标矩阵DD=[diag[MH edn]]-1,以获得这些数据码元的归一化估计。
如果用户终端在其接收侧上应用校正矩阵 K ‾ rut = K ‾ ut - 1 , 则总下行链路信道响应将为H odnK rut H edn。在用户终端处的接收侧上应用了校正矩阵K rut的MMSE空间滤波器矩阵
Figure A20068000671000318
可表达为:
Figure A20068000671000319
式(42)
式(42)中的逆量可被重排如下:
Figure A200680006710003111
式(43)
将式(43)代入式(42),得到下式:
M ‾ ~ = M ‾ K ‾ rut - 1 . 式(44)
在用户终端处的接收侧上应用了校正矩阵K rut的情况下,用户终端处的所接收的下行链路传输可被表达为:
r ‾ ~ dn = K ‾ rut H ‾ dn x ‾ dn + n ‾ = K ‾ rut r ‾ dn . 式(45)
用户终端然后执行MMSE空间处理如下:
s ‾ ~ mmse = M ‾ ~ r ‾ ~ dn = M ‾ K ‾ rut - 1 K ‾ rut r ‾ dn = M ‾ r ‾ dn = s ‾ ~ mmse . 式(46)
式(45)和(46)指示,无论在用户终端处是否应用了校正因子,用户终端皆可获得与MMSE接收机相同的性能。MMSE处理隐式地解决用户终端处的发送和接收链之间的任何失配。如果在用户终端处的接收侧上没有应用校正因子,则用H edn推导MMSE空间匹配滤波器,如果应用了校正因子,则用H odn推导。
类似地,上行链路上的数据传输可通过在用户终端处的发送侧和/或接收侧上应用校正矩阵、并在接入点处使用MMSE接收机来实现。
4.MIMO-OFDM系统
图5示出TDD MIMO-OFDM系统内的接入点502和用户终端504的一个实施例的框图。为简单起见,以下说明假定该接入点和该用户终端各自配备有可用于数据发射和接收的4根天线。
在下行链路上,在接入点502处,发送(TX)数据处理器510从数据源508接收话务数据(即,信息比特),并从控制器530接收信令及其它信息。TX数据处理器510格式化、编码、交织、并调制(即,码元映射)所接收的数据,并为用于数据传输的每个空间信道生成一调制码元流。TX空间处理器520从TX数据处理器510接收这些调制码元流,并执行空间处理以提供4个发送码元流,每个天线一个流。TX空间处理器520还在适当情况下(例如,用于校准)复用进导频码元。
每个调制器(MOD)522接收并处理相应的一个发送码元流以生成相应的一个OFDM码元流。每个OFDM码元流由调制器522内的发送链进一步处理以生成相应的下行链路已调制信号。来自调制器522a到522d的这4个下行链路已调制信号然后分别从4个天线524a到524d发射。
在用户终端504,天线552接收所发送的下行链路已调制信号,并且每一天线将一所接收的信号提供给相应的一个解调器(DEMOD)554。每个解调器554(其包括接收链)执行与在调制器522处所执行的互补的处理,并提供接收码元。接收(RX)空间处理器560对来自所有解调器554的接收码元执行空间处理,并提供已恢复的码元,它们是对由接入点发送的调制码元的估计。RX数据处理器570处理(例如,码元解映射、解交织、以及解码)这些恢复的码元,并提供已解码的数据。已解码数据可包括恢复的话务数据、信令等等,它们被提供给数据宿572以供存储和/或提供给控制器580以供进一步处理。
控制器530和580分别控制接入点和用户终端处各个处理单元的操作。存储器单元532和582分别存储由控制器530和580使用的数据和程序代码。
在校准期间,RX空间处理器560提供基于由接入点发送的MIMO导频推导的下行链路信道响应估计
Figure A20068000671000321
RX数据处理器570提供由接入点推导的并在下行链路上发送的上行链路信道响应估计
Figure A20068000671000322
控制器580接收信道响应估计
Figure A20068000671000323
Figure A20068000671000324
推导校正矩阵
Figure A20068000671000325
Figure A20068000671000326
并将矩阵
Figure A20068000671000327
提供给TX数据处理器590以便传送回接入点。控制器580进一步基于校正矩阵
Figure A20068000671000328
推导校正矩阵
Figure A20068000671000329
Figure A200680006710003210
其中
Figure A200680006710003211
Figure A200680006710003212
中的任何一个可以是单位矩阵,将校正矩阵
Figure A200680006710003213
提供给TX空间处理器592,并将校正矩阵
Figure A200680006710003214
提供给RX空间处理器560。
针对上行链路的处理可与针对下行链路的处理相同或不同。数据和信令由TX数据处理器590处理(例如,编码、交织以及调制),并由TX空间处理器592进一步空间处理,TX空间处理器592还复用进导频码元。这些导频和调制码元进一步由调制器554处理以生成上行链路已调制信号,这些信号随后经由天线552向接入点发送。
在接入点10处,这些上行链路已调制信号被天线524接收到,由解调器522解调,并由RX空间处理器540和RX数据处理器542以与由用户终端执行的处理互补的方式进行处理。在校准期间,RX空间处理器560提供基于由用户终端发送的MIMO导频推导的上行链路信道估计
Figure A20068000671000331
矩阵
Figure A20068000671000332
由控制器530接收,并被提供给TX数据处理器510以便向用户终端传送。
图6示出可用于图5中的TX空间处理器520和592的TX空间处理器520a的框图。为简单起见,以下说明假定所有4个本征模均被选择使用。
在处理器520a内,分用器632接收要在4个本征模上发送的4个调制码元流(记为s1(n)到s4(n)),将每个流分用到对应于ND个数据子带的ND个子流中,并将每个数据子带的4个调制码元子流提供给相应的一个TX子带空间处理器640。每个处理器640对一个子带执行例如式(29)、(30)、(33)或(34)中所示的处理。
在每个TX子带空间处理器640中,这4个调制码元子流(记为s1(k)到s4(k))被提供给对应于该相关联子带的4个本征模的4个波束成形器650a到650d。每个波束成形器650执行波束成形以在一个子带的一个本征模上发送一个码元流。每个波束成形器650接收一个码元子流sm(k),并使用相关联本征模的本征矢量v m(k)来执行波束成形。在每个波束成形器650内,调制码元被提供给4个乘法器652a到652d,这4个乘法器还接收相关联本征模的本征矢量v m(k)的4个元vm,1(k)、vm,2(k)、vm,3(k)、和vm,4(k)。本征矢量v m(k)是对应于下行链路的矩阵
Figure A20068000671000333
的第m列,并且是对应于上行链路的矩阵
Figure A20068000671000334
的第m列。每个乘法器652将经定标的调制码元乘以其本征矢量值vm,j(k),并提供“波束成形的”码元。乘法器652a到652d将4个波束成形的码元子流(要从4个天线发射)分别提供给加法器660a到660d。
每个加法器660接收每个码元周期上对应于4个本征模的4个波束成形码元且将它们求和,并为一相关联发射天线提供一经预处理的码元。加法器660a到660d将对应于4个发射天线的4个经预处理码元子流分别提供至缓冲器/复用器670a到670d。每个缓冲器/复用器670接收导频码元和来自对应于ND个数据子带的TX子带空间处理器640的经预处理码元。每个缓冲器/复用器670随后分别为导频子带、数据子带以及未使用子带复用导频码元、经预处理码元以及零码元,以形成该码元周期上的有NF个码元的序列。在校准期间,导频码元在指定子带上发送。乘法器668a到668d如以上所说明并在表2中示出地分别用指派给这4个天线的Walsh序列W1到W4覆盖对应于这4个天线的导频码元。每个缓冲器/复用器670将一码元流提供至相应的一个乘法器672。
乘法器672a到672d还分别接收校正因子K1(k)、K2(k)、K3(k)、和K4(k)。针对每个数据子带k的校正因子是对应于下行链路的
Figure A20068000671000341
的对角元,以及对应于上行链路的
Figure A20068000671000342
的对角元。每个乘法器672用其校正因子Km(k)来定标其输入码元,并提供发送码元。乘法器672a到672d为4个发射天线提供4个发送码元流。
空间处理和OFDM调制在前述的序列号为10/693,419的美国专利申请中进一步具体说明。
本文中所记载的校准技术可由各种手段来实现。例如,这些技术可用硬件、软件或其组合实现。对于硬件实现,这些校准技术在接入点和用户终端处可在一个或多个专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理装置(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、处理器、控制器、微控制器、微处理器、设计成执行本文中所记载功能的其它电子单元、或其组合内实现。
对于软件实现,这些校准技术可用执行本文中所记载功能的模块(例如,过程、功能等)来执行。软件代码可被存储在存储器单元(例如,图5中的存储器单元532和582)中,并由处理器(例如,适当地由控制器530和580)执行。存储器单元可在处理器内或外实现,在后一种情形中,它可经由本领域中已知的各种手段被通信地耦合到该处理器。
本文中包含小标题以便于参考并协助定位某些章节。这些小标题并不旨在限定其下所记载的概念的范围,并且这些概念将在贯穿整个说明书的其它章节中具适用性。
提供对所公开实施例的以上说明是为了使本领域任何技术人员皆能制作或使用本发明。这些实施例的各种变体对于本领域技术人员将是显而易见的,并且本文中所定义的一般性原理可被应用于其它实施例而不会偏离本发明的精神或范围。由此,本发明并不旨在限定于本文中所示出的实施例,而是应与符合本文中所公开的原理和新颖特征的最广义范围一致。

Claims (40)

1.一种在无线时分双工(TDD)通信系统中校准通信链路的方法,包括:
获得对从接入点至用户终端的下行链路信道的信道响应估计;
获得对从所述用户终端到所述接入点的上行链路信道的信道响应估计;
基于所述对下行链路和上行链路信道的信道响应估计,确定针对所述接入点的校正因子和针对所述用户终端的校正因子,所述针对接入点的校正因子和所述针对用户终端的校正因子被用来获得经校准的下行链路信道响应和经校准的上行链路信道响应。
2.如权利要求1所述的方法,其特征在于,进一步包括:
在所述接入点的发送侧、或接收侧、或所述发送和接收两侧应用所述针对接入点的校正因子。
3.如权利要求1所述的方法,其特征在于,进一步包括:
在所述用户终端的发送侧、或接收侧、或所述发送和接收两侧应用所述针对用户终端的校正因子。
4.如权利要求1所述的方法,其特征在于,确定所述针对接入点的校正因子和所述针对用户终端的校正因子包括
基于下式来确定所述针对接入点的校正因子和所述针对用户终端的校正因子:
  H ‾ ^ up K ‾ ^ ut = ( H ‾ ^ dn K ‾ ^ ap ) T ,
其中是所述对下行链路信道的信道响应估计的矩阵,
Figure A2006800067100002C3
是所述对上行链路信道的信道响应估计的矩阵,
是所述针对接入点的校正因子的矩阵,
Figure A2006800067100002C5
是所述针对用户终端的校正因子的矩阵,并且
“T”表示转置。
5.如权利要求4所述的方法,其特征在于,进一步包括:
基于下式来推导针对所述接入点的发送侧的校正因子和针对所述接入点的接收侧的校正因子:
H ‾ ^ ap = K ‾ ^ tap K ‾ ^ rap - 1 ,
其中
Figure A2006800067100002C7
是所述针对接入点的发送侧的校正因子的矩阵,以及
Figure A2006800067100003C1
是所述针对接入点的接收侧的校正因子的矩阵。
6.如权利要求5所述的方法,其特征在于,进一步包括:
将矩阵
Figure A2006800067100003C2
或矩阵
Figure A2006800067100003C3
设为单位矩阵。
7.如权利要求5所述的方法,其特征在于,进一步包括:将矩阵或矩阵
Figure A2006800067100003C5
设为任意矩阵。
8.如权利要求4所述的方法,其特征在于,进一步包括:
基于下式来推导针对所述用户终端的发送侧的校正因子和针对所述用户终端的接收侧的校正因子:
K ‾ ^ ut = K ‾ ^ tut K ‾ ^ rut - 1 ,
其中
Figure A2006800067100003C7
是所述针对用户终端的发送侧的校正因子的矩阵,以及
是所述针对用户终端的接收侧的校正因子的矩阵。
9.如权利要求4所述的方法,其特征在于,所述确定针对接入点的校正因子和针对用户终端的校正因子包括
计算矩阵C为矩阵
Figure A2006800067100003C9
与矩阵
Figure A2006800067100003C10
的逐元比,以及
基于所述矩阵C来推导矩阵
Figure A2006800067100003C11
Figure A2006800067100003C12
10.如权利要求9所述的方法,其特征在于,所述推导矩阵包括归一化所述矩阵C的多行中的每一行,确定所述矩阵C的所述多个归一化行的平均,以及基于所述多个归一化行的平均来构成所述矩阵
Figure A2006800067100003C14
11.如权利要求9所述的方法,其特征在于,所述推导矩阵
Figure A2006800067100003C15
包括归一化所述矩阵C的多个列中的每一列,确定所述矩阵C的所述多个归一化列的逆的平均,以及基于所述多个归一化列的逆的平均来构成所述矩阵
Figure A2006800067100003C16
12.如权利要求4所述的方法,其特征在于,进一步包括:基于最小均方误差(MMSE)计算来推导矩阵
Figure A2006800067100003C17
Figure A2006800067100003C18
13.如权利要求4所述的方法,其特征在于,进一步包括:基于最小均方误差(MMSE)计算来推导矩阵
Figure A2006800067100003C19
Figure A2006800067100003C20
以使由下式给出的均方误差(MSE)最小化
|H up K ut-(H dn K ap)T|2
14.如权利要求1所述的方法,其特征在于,所述确定针对接入点的校正因子和针对用户终端的校正因子包括
推导对应于第一组频率子带的第一组针对所述接入点的校正因子的矩阵,以及
内插所述第一组矩阵以得到对应于第二组频率子带的第二组针对所述接入点的校正因子的矩阵。
15.如权利要求1所述的方法,其特征在于,所述确定针对接入点的校正因子和针对所述用户终端的校正因子包括
推导对应于第一组频率子带的第一组针对所述用户终端的校正因子的矩阵,以及
内插所述第一组矩阵以得到对应于第二组频率子带的第二组针对所述用户终端的校正因子的矩阵。
16.如权利要求1所述的方法,其特征在于,进一步包括:
在所述上行链路信道上发送一导频,其中所述上行链路信道响应估计是基于所述在上行链路信道上发送的导频来推导的;以及
在所述下行链路信道上接收一导频,其中所述下行链路信道响应估计是基于所述在下行链路信道上接收的导频来推导的。
17.一种无线时分双工(TDD)通信系统中的装置,包括:
用于获得对从接入点至用户终端的下行链路信道的信道响应估计的装置;
用于获得对从所述用户终端至所述接入点的上行链路信道的信道响应估计的装置;以及
用于基于所述对下行链路和上行链路信道的信道响应估计来确定针对所述接入点的校正因子和针对所述用户终端的校正因子的装置,所述针对接入点的校正因子和所述针对用户终端的校正因子被用来获得经校准的下行链路信道响应和经校准的上行链路信道响应。
18.如权利要求17所述的装置,其特征在于,进一步包括:
用于在所述接入点的发送侧、或接收侧、或所述发送和接收两侧应用所述针对接入点的校正因子的装置。
19.如权利要求17所述的装置,其特征在于,进一步包括:
用于基于所述针对接入点的校正因子来推导针对所述接入点的发送侧的校正因子和针对所述接入点的接收侧的校正因子的装置。
20.如权利要求17所述的装置,其特征在于,进一步包括:
用于在所述用户终端的发送侧、或接收侧、或所述发送和接收两侧应用所述针对用户终端的校正因子的装置。
21.如权利要求17所述的装置,其特征在于,进一步包括:
用于基于所述针对用户终端的校正因子来推导针对所述用户终端的发送侧的校正因子和针对所述用户终端的接收侧的校正因子的装置。
22.如权利要求17所述的装置,其特征在于,所述用于确定针对接入点的校正因子和针对用户终端的校正因子的装置包括
用于对所述下行链路和上行链路信道的信道响应估计执行最小均方误差(MMSE)计算以确定所述针对接入点的校正因子和所述针对用户终端的校正因子的装置。
23.如权利要求17所述的装置,其特征在于,所述用于确定针对接入点的校正因子和针对用户终端的校正因子的装置包括
用于对所述下行链路和上行链路信道的信道响应估计执行矩阵比计算以确定所述针对接入点的校正因子和所述针对用户终端的校正因子的装置。
24.一种在无线时分双工(TDD)多输入多输出(MIMO)通信系统中校准通信链路的方法,包括:
在从第一站至第二站的第一通信链路上发送一导频;
获得基于所述在第一通信链路上发送的导频推导的所述第一通信链路的信道响应估计;
在第二通信链路上接收来自所述第二站的一导频;
基于所述在第二通信链路上接收的导频来推导所述第二通信链路的信道响应估计;以及
基于所述第一和第二通信链路的信道响应估计来确定针对所述第一站的校正因子和针对所述第二站的校正因子,所述针对第一站的校正因子和所述针对第二站的校正因子被用来获得所述第一通信链路的经校准的信道响应和所述第二通信链路的经校准的信道响应。
25.如权利要求24所述的方法,其特征在于,进一步包括:
在所述第一站的发送侧、或接收侧、或所述发送和接收两侧应用所述针对第一站的校正因子。
26.如权利要求24所述的方法,其特征在于,进一步包括:
将所述针对第二站的校正因子发送给所述第二站。
27.如权利要求24所述的方法,其特征在于,进一步包括:
基于与多个第二站的校准来更新针对所述第一站的校正因子。
28.一种无线时分双工(TDD)通信系统中的装置,包括:
发送空间处理器,用于在从第一站至第二站的第一通信链路上发送第一导频;
接收空间处理器,用于在来自所述第二站的第二通信链路上接收第二导频,基于所接收的第二导频来推导所述第二通信链路的信道响应估计,并接收基于所发送的第一导频推导的所述第一通信链路的信道响应估计;以及
控制器,用于基于所述第一和第二通信链路的信道响应估计来确定针对所述第一站的校正因子和针对所述第二站的校正因子,所述针对第一站的校正因子和所述针对第二站的校正因子被用来获得所述第一通信链路的经校准的信道响应和所述第二通信链路的经校准的信道响应。
29.如权利要求28所述的装置,其特征在于,所述控制器对所述第一和第二通信链路的信道响应估计执行最小均方误差(MMSE)计算以确定所述针对所述第一站的校正因子和所述针对第二站的校正因子。
30.如权利要求28所述的装置,其特征在于,所述控制器对所述第一和第二通信链路的信道响应估计执行矩阵比计算以确定所述针对所述第一站的校正因子和所述针对第二站的校正因子。
31.如权利要求28所述的装置,其特征在于,所述控制器基于所述针对第一站的校正因子来推导针对所述发送空间处理器的校正因子和针对所述接收空间处理器的校正因子。
32.如权利要求28所述的装置,其特征在于,所述控制器基于与多个第二站的校准来更新所述针对第一站的校正因子。
33.一种在无线时分双工(TDD)多输入多输出(MIMO)通信系统中传送数据的方法,包括:
在第一站的发送侧、或接收侧、或所述发送和接收两侧应用针对所述第一站的校正因子;
在从所述第一站至第二站的第一通信链路上发送一导频;以及
接收在从所述第二站至所述第一站的第二通信链路上发送的数据传输,其中所述数据传输是基于从所述在第一通信链路上发送的导频推导的所述第一通信链路的信道响应估计被空间处理的。
34.如权利要求33所述的方法,其特征在于,进一步包括:
以一匹配滤波器来空间处理所接收的数据传输。
35.如权利要求33所述的方法,其特征在于,所述接收在第二通信链路上发送的数据传输包括
接收在所述第二通信链路的多个本征模上发送的所述数据传输。
36.如权利要求33所述的方法,其特征在于,所述第二站对所述第二站处的发送侧、或接收侧、或所述发送和接收两侧应用校正因子。
37.一种无线时分双工(TDD)多输入多输出(MIMO)通信系统中的装置,包括:
用于对所述第一站处的发送侧、或接收侧、或所述发送和接收两侧应用校正因子的装置;
用于在从所述第一站至第二站的第一通信链路上发送一导频的装置;以及
用于接收在从所述第二站至所述第一站的第二通信链路上发送的数据传输的装置,其中所述数据传输是基于从所述在第一通信链路上发送的导频推导的所述第一通信链路的信道响应估计被空间处理的。
38.一种无线时分双工(TDD)多输入多输出(MIMO)通信系统中的装置,包括:
发送处理器,用于在从第一站至第二站的第一通信链路上发送一导频;以及
接收处理器,用于接收在从所述第二站至所述第一站的第二通信链路上发送的数据传输,其中所述数据传输是基于从所述在第一通信链路上发送的导频推导的所述第一通信链路的信道响应估计被空间处理的,并且所述发送处理器对所发送的导频应用校正因子,或所述接收处理器对所接收的数据传输应用校正因子,或所述发送处理器对所发送的导频应用校正因子并且所述接收处理器对所接收的数据传输应用校正因子。
39.一种在无线时分双工(TDD)多输入多输出(MIMO)通信系统中传送数据的方法,包括:
在从第一站至第二站的第一通信链路上发送一导频;
接收在从所述第二站至所述第一站的第二通信链路上发送的数据传输,其中所述第二站对所述第二站处的发送侧、或接收侧、或所述发送和接收两侧应用校正因子,并且所述数据传输是基于从所述在第一通信链路上发送的导频推导的所述第一通信链路的信道响应被空间处理的;以及
用所述第一站处的最小均方误差(MMSE)接收机来处理所接收的数据传输。
40.如权利要求39所述的方法,其特征在于,所述接收在第二通信链路上发送的数据传输包括
接收在所述第二通信链路的多个本征模上发送的所述数据传输。
CN200680006710.9A 2005-01-27 2006-01-27 用于时分双工通信系统的信道校准的方法和装置 Active CN101133565B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/045,781 2005-01-27
US11/045,781 US8570988B2 (en) 2002-10-25 2005-01-27 Channel calibration for a time division duplexed communication system
PCT/US2006/003203 WO2006081550A2 (en) 2005-01-27 2006-01-27 Channel calibration for a time division duplexed communication system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201110026315XA Division CN102158293B (zh) 2005-01-27 2006-01-27 用于时分双工通信系统的信道校准

Publications (2)

Publication Number Publication Date
CN101133565A true CN101133565A (zh) 2008-02-27
CN101133565B CN101133565B (zh) 2014-12-24

Family

ID=36215812

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201110026315XA Active CN102158293B (zh) 2005-01-27 2006-01-27 用于时分双工通信系统的信道校准
CN200680006710.9A Active CN101133565B (zh) 2005-01-27 2006-01-27 用于时分双工通信系统的信道校准的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201110026315XA Active CN102158293B (zh) 2005-01-27 2006-01-27 用于时分双工通信系统的信道校准

Country Status (11)

Country Link
US (1) US8570988B2 (zh)
EP (1) EP1847036A2 (zh)
JP (2) JP4773461B2 (zh)
KR (2) KR100958957B1 (zh)
CN (2) CN102158293B (zh)
BR (1) BRPI0607131A2 (zh)
CA (2) CA2732214A1 (zh)
RU (1) RU2407151C2 (zh)
SG (2) SG161317A1 (zh)
TW (1) TWI371188B (zh)
WO (1) WO2006081550A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751484B (zh) * 2002-10-25 2010-08-11 高通股份有限公司 时分双工通信系统的信道校准
WO2011097785A1 (zh) * 2010-02-12 2011-08-18 上海贝尔股份有限公司 互易误差校准设备和互易误差校准方法

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8570988B2 (en) * 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US7333788B2 (en) * 2002-12-20 2008-02-19 Texas Instruments Incorporated Method for calibrating automatic gain control in wireless devices
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7206550B2 (en) * 2003-12-29 2007-04-17 Intel Corporation Antenna subsystem calibration apparatus and methods in spatial-division multiple-access systems
US8369790B2 (en) 2003-12-30 2013-02-05 Intel Corporation Communication overhead reduction apparatus, systems, and methods
US8077691B2 (en) * 2004-03-05 2011-12-13 Qualcomm Incorporated Pilot transmission and channel estimation for MISO and MIMO receivers in a multi-antenna system
JP2006033083A (ja) * 2004-07-12 2006-02-02 Oki Electric Ind Co Ltd Ofdm伝送システム。
CA2725658C (en) * 2004-12-22 2014-07-08 Qualcomm Incorporated Methods and apparatus for flexible hopping in a multiple-access communication network
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8340597B1 (en) * 2006-05-02 2012-12-25 Marvell International Ltd. Calibration correction for implicit beamforming in a wireless MIMO communication system
JP5429602B2 (ja) * 2006-11-17 2014-02-26 日本電気株式会社 決定論的通信路を有するmimo通信システム及び方法
US20100150013A1 (en) * 2007-05-29 2010-06-17 Mitsubishi Electric Corporation Calibration method, communication system, frequency control method, and communication device
US8798183B2 (en) 2007-08-13 2014-08-05 Qualcomm Incorporated Feedback and rate adaptation for MIMO transmission in a time division duplexed (TDD) communication system
US8249513B2 (en) 2007-08-13 2012-08-21 Samsung Electronics Co., Ltd. System and method for training different types of directional antennas that adapts the training sequence length to the number of antennas
CN101400117B (zh) * 2007-09-27 2011-12-28 联想(上海)有限公司 下行信道状态信息确定方法与装置及预编码方法与装置
US20090121935A1 (en) * 2007-11-12 2009-05-14 Samsung Electronics Co., Ltd. System and method of weighted averaging in the estimation of antenna beamforming coefficients
WO2009087629A2 (en) * 2008-01-08 2009-07-16 Designart Networks Ltd Mmse method
US8478204B2 (en) 2008-07-14 2013-07-02 Samsung Electronics Co., Ltd. System and method for antenna training of beamforming vectors having reuse of directional information
US7733975B1 (en) * 2008-12-31 2010-06-08 Mediatek Inc. Method for estimating phase error in MIMO OFDM communications system
US20100329236A1 (en) * 2009-06-26 2010-12-30 Qualcomm Incorporated Method and apparatus for multiple user uplink requiring minimal station timing and frequency synchronization
US8665767B2 (en) * 2009-08-25 2014-03-04 Qualcomm Incorporated Method and apparatus for multiple-user communication in a client initiated communication transmission scheme
CN102986181B (zh) * 2009-11-09 2015-07-29 华为技术有限公司 一种微波信号的校正方法、装置和系统
CN102082745B (zh) * 2010-04-19 2013-10-16 电信科学技术研究院 天线校准信息的上报、天线校准因子的确定方法及设备
US8971210B1 (en) * 2011-05-23 2015-03-03 Redpine Signals, Inc. Reconfigurable multi-stream processor for multiple-input multiple-output (MIMO) wireless networks
US8891464B2 (en) 2011-09-19 2014-11-18 Redline Innovations Group, Inc. Architecture, devices and methods for supporting multiple channels in a wireless system
US8625713B2 (en) * 2011-09-19 2014-01-07 Alcatel Lucent Method for beamforming transmissions from a network element having a plurality of antennas, and the network element
US9154969B1 (en) 2011-09-29 2015-10-06 Marvell International Ltd. Wireless device calibration for implicit transmit
CN103037519A (zh) * 2011-10-10 2013-04-10 中兴通讯股份有限公司 多接入点校准方法及装置
US20130095747A1 (en) 2011-10-17 2013-04-18 Mehran Moshfeghi Method and system for a repeater network that utilizes distributed transceivers with array processing
EP2769517B1 (en) * 2011-11-03 2020-03-18 Telefonaktiebolaget LM Ericsson (publ) Channel estimation using reference signals
US9253587B2 (en) 2012-08-08 2016-02-02 Golba Llc Method and system for intelligently controlling propagation environments in distributed transceiver communications
CN103595514B (zh) * 2012-08-13 2018-02-16 中兴通讯股份有限公司 一种对协作ap点发送的数据进行校准的方法和基站
CN103236886B (zh) * 2013-03-27 2015-05-06 大唐移动通信设备有限公司 一种基站通道故障检测方法和系统
EP4243477A3 (en) * 2013-05-24 2023-12-20 Nippon Telegraph And Telephone Corporation Wireless communication apparatus and wireless communication method
US20170093506A1 (en) * 2014-06-12 2017-03-30 Nokia Solutions and Technologies Oy Method, apparatus and computer program
CN105634696B (zh) * 2014-10-31 2019-02-22 富士通株式会社 多载波调制信号的比特分配方法、装置和系统
CN106160820B (zh) * 2015-03-30 2019-04-05 北京信威通信技术股份有限公司 一种基于信道互易性获取下行信道信息的方法
CN110800224B (zh) * 2017-01-09 2023-03-07 高通股份有限公司 针对基于互易性的ul mimo传输的空中校准
US10523345B2 (en) * 2017-03-06 2019-12-31 Samsung Electronics Co., Ltd. Methods and apparatus for calibration and array operation in advanced MIMO system
CN107104742B (zh) * 2017-04-02 2020-11-10 上海无线通信研究中心 一种面向并行多通道无线信道测量的校准方法及其系统
US10321332B2 (en) 2017-05-30 2019-06-11 Movandi Corporation Non-line-of-sight (NLOS) coverage for millimeter wave communication
US10484078B2 (en) 2017-07-11 2019-11-19 Movandi Corporation Reconfigurable and modular active repeater device
US10348371B2 (en) 2017-12-07 2019-07-09 Movandi Corporation Optimized multi-beam antenna array network with an extended radio frequency range
US10862559B2 (en) 2017-12-08 2020-12-08 Movandi Corporation Signal cancellation in radio frequency (RF) device network
US10090887B1 (en) 2017-12-08 2018-10-02 Movandi Corporation Controlled power transmission in radio frequency (RF) device network
US11088457B2 (en) 2018-02-26 2021-08-10 Silicon Valley Bank Waveguide antenna element based beam forming phased array antenna system for millimeter wave communication
US10637159B2 (en) 2018-02-26 2020-04-28 Movandi Corporation Waveguide antenna element-based beam forming phased array antenna system for millimeter wave communication
CN110266620B (zh) * 2019-07-08 2020-06-30 电子科技大学 基于卷积神经网络的3d mimo-ofdm系统信道估计方法
CN115412406B (zh) * 2021-05-27 2023-08-01 大唐移动通信设备有限公司 通道校准方法、装置及处理器可读存储介质

Family Cites Families (458)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1261080A (en) * 1985-12-30 1989-09-26 Shunichiro Tejima Satellite communications system with random multiple access and time slot reservation
US4750198A (en) 1986-12-12 1988-06-07 Astronet Corporation/Plessey U.K. Cellular radiotelephone system providing diverse separately-accessible groups of channels
US4797879A (en) * 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
US5239677A (en) 1991-07-01 1993-08-24 Motorola, Inc. Method and apparatus for initiating communication on an assigned frequency
IT1250515B (it) 1991-10-07 1995-04-08 Sixtel Spa Rete per area locale senza fili.
US5241544A (en) 1991-11-01 1993-08-31 Motorola, Inc. Multi-channel tdm communication system slot phase correction
US5592490A (en) 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US6850252B1 (en) * 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5295159A (en) * 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
RU2015281C1 (ru) 1992-09-22 1994-06-30 Борис Михайлович Кондрашов Запорное устройство
US5404355A (en) 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
GB2300337B (en) 1992-10-05 1997-03-26 Ericsson Ge Mobile Communicat Digital control channel
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
DE69423546T2 (de) 1993-07-09 2000-09-21 Koninkl Philips Electronics Nv Telekommunikationsnetzwerk, Hauptstation und Nebenstation zum Gebrauch in solchem Netzwerk
US5506861A (en) 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5490087A (en) 1993-12-06 1996-02-06 Motorola, Inc. Radio channel access control
US5422733A (en) 1994-02-04 1995-06-06 Motorola, Inc. Method and apparatus for facsimile communication of first and second type information with selective call communication systems
US5491837A (en) * 1994-03-07 1996-02-13 Ericsson Inc. Method and system for channel allocation using power control and mobile-assisted handover measurements
US5493712A (en) * 1994-03-23 1996-02-20 At&T Corp. Fast AGC for TDMA radio systems
CN1149375A (zh) 1994-05-02 1997-05-07 摩托罗拉公司 多路子信道通用协议的方法和装置
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
DE4425713C1 (de) 1994-07-20 1995-04-20 Inst Rundfunktechnik Gmbh Verfahren zur Vielträger Modulation und Demodulation von digital codierten Daten
FR2724084B1 (fr) 1994-08-31 1997-01-03 Alcatel Mobile Comm France Systeme de transmission d'informations par un canal de transmission variant dans le temps, et equipements d'emission et de reception correspondants
MY120873A (en) 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
US5710768A (en) 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
ES2103190B1 (es) * 1994-11-30 1998-04-01 Alcatel Standard Electrica Procedimiento de alineamiento de rafagas.
JP3231575B2 (ja) * 1995-04-18 2001-11-26 三菱電機株式会社 無線データ伝送装置
KR0155818B1 (ko) 1995-04-29 1998-11-16 김광호 다중 반송파 전송시스템에서 적응형 전력 분배 방법 및 장치
US5606729A (en) * 1995-06-21 1997-02-25 Motorola, Inc. Method and apparatus for implementing a received signal quality measurement in a radio communication system
US5729542A (en) 1995-06-28 1998-03-17 Motorola, Inc. Method and apparatus for communication system access
US7929498B2 (en) 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
US5638369A (en) 1995-07-05 1997-06-10 Motorola, Inc. Method and apparatus for inbound channel selection in a communication system
DE69535033T2 (de) 1995-07-11 2007-03-08 Alcatel Zuweisung von Kapazität bei OFDM
GB9514659D0 (en) 1995-07-18 1995-09-13 Northern Telecom Ltd An antenna downlink beamsteering arrangement
US5867539A (en) * 1995-07-21 1999-02-02 Hitachi America, Ltd. Methods and apparatus for reducing the effect of impulse noise on receivers
JP2802255B2 (ja) 1995-09-06 1998-09-24 株式会社次世代デジタルテレビジョン放送システム研究所 直交周波数分割多重伝送方式及びそれを用いる送信装置と受信装置
GB9521739D0 (en) 1995-10-24 1996-01-03 Nat Transcommunications Ltd Decoding carriers encoded using orthogonal frequency division multiplexing
US6005876A (en) 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
US5699365A (en) 1996-03-27 1997-12-16 Motorola, Inc. Apparatus and method for adaptive forward error correction in data communications
US5924015A (en) 1996-04-30 1999-07-13 Trw Inc Power control method and apparatus for satellite based telecommunications system
JPH09307526A (ja) 1996-05-17 1997-11-28 Mitsubishi Electric Corp デジタル放送受信機
EP0807989B1 (en) 1996-05-17 2001-06-27 Motorola Ltd Devices for transmitter path weights and methods therefor
US5822374A (en) 1996-06-07 1998-10-13 Motorola, Inc. Method for fine gains adjustment in an ADSL communications system
FI101920B (fi) 1996-06-07 1998-09-15 Nokia Telecommunications Oy Kanavanvarausmenetelmä pakettiverkkoa varten
US6798735B1 (en) 1996-06-12 2004-09-28 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6072779A (en) 1997-06-12 2000-06-06 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6097771A (en) 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
JPH1051402A (ja) * 1996-08-01 1998-02-20 Nec Corp 受信電界検出回路
US6144711A (en) 1996-08-29 2000-11-07 Cisco Systems, Inc. Spatio-temporal processing for communication
JP2001359152A (ja) 2000-06-14 2001-12-26 Sony Corp 無線通信システム、無線基地局装置、無線移動局装置、無線ゾーン割当て方法及び無線通信方法
JP2846860B2 (ja) * 1996-10-01 1999-01-13 ユニデン株式会社 スペクトル拡散通信方式を用いた送信機、受信機、通信システム及び通信方法
US6275543B1 (en) 1996-10-11 2001-08-14 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
US5886988A (en) 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US6049548A (en) 1996-11-22 2000-04-11 Stanford Telecommunications, Inc. Multi-access CS-P/CD-E system and protocols on satellite channels applicable to a group of mobile users in close proximity
WO1998024192A1 (en) 1996-11-26 1998-06-04 Trw Inc. Cochannel signal processing system
US6232918B1 (en) * 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
US6084915A (en) 1997-03-03 2000-07-04 3Com Corporation Signaling method having mixed-base shell map indices
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100267856B1 (ko) 1997-04-16 2000-10-16 윤종용 이동통신시스템에서오버헤드채널관리방법및장치
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
FR2764143A1 (fr) 1997-05-27 1998-12-04 Philips Electronics Nv Procede de determination d'un format d'emission de symboles dans un systeme de transmission et systeme
JP2856198B2 (ja) * 1997-06-11 1999-02-10 日本電気株式会社 スペクトラム拡散受信機
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6067458A (en) 1997-07-01 2000-05-23 Qualcomm Incorporated Method and apparatus for pre-transmission power control using lower rate for high rate communication
US6108369A (en) 1997-07-11 2000-08-22 Telefonaktiebolaget Lm Ericsson Channelization code allocation for radio communication systems
US6333953B1 (en) 1997-07-21 2001-12-25 Ericsson Inc. System and methods for selecting an appropriate detection technique in a radiocommunication system
EP0895387A1 (de) 1997-07-28 1999-02-03 Deutsche Thomson-Brandt Gmbh Erkennung des Übertragungsmodus eines DVB-Signales
US6141542A (en) 1997-07-31 2000-10-31 Motorola, Inc. Method and apparatus for controlling transmit diversity in a communication system
CN1086061C (zh) 1997-08-12 2002-06-05 鸿海精密工业股份有限公司 电连接器的固持装置
JP2991167B2 (ja) 1997-08-27 1999-12-20 三菱電機株式会社 Tdma可変スロット割当方法
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
EP0899896A1 (de) 1997-08-27 1999-03-03 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Schätzung räumlicher Parameter von Überstragungskanälen
US6167031A (en) 1997-08-29 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting a combination of modulation and channel coding schemes in a digital communication system
US6590928B1 (en) 1997-09-17 2003-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping piconets in an uncoordinated wireless multi-user system
AUPO932297A0 (en) 1997-09-19 1997-10-09 Commonwealth Scientific And Industrial Research Organisation Medium access control protocol for data communications
KR100234329B1 (ko) 1997-09-30 1999-12-15 윤종용 Ofdm 시스템 수신기의 fft 윈도우 위치 복원장치 및 그 방법_
US6178196B1 (en) 1997-10-06 2001-01-23 At&T Corp. Combined interference cancellation and maximum likelihood decoding of space-time block codes
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6377812B1 (en) 1997-11-20 2002-04-23 University Of Maryland Combined power control and space-time diversity in mobile cellular communications
US6122247A (en) 1997-11-24 2000-09-19 Motorola Inc. Method for reallocating data in a discrete multi-tone communication system
US5936569A (en) 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
US6084917A (en) 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
US6088387A (en) 1997-12-31 2000-07-11 At&T Corp. Multi-channel parallel/serial concatenated convolutional codes and trellis coded modulation encoder/decoder
EP2254300B1 (en) 1998-01-06 2013-05-15 Mosaid Technologies Incorporated Multicarrier modulation system with variable symbol rates
US6608874B1 (en) 1998-01-12 2003-08-19 Hughes Electronics Corporation Method and apparatus for quadrature multi-pulse modulation of data for spectrally efficient communication
US5982327A (en) 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
US5973638A (en) 1998-01-30 1999-10-26 Micronetics Wireless, Inc. Smart antenna channel simulator and test system
EP0938208A1 (en) 1998-02-22 1999-08-25 Sony International (Europe) GmbH Multicarrier transmission, compatible with the existing GSM system
JP3082756B2 (ja) 1998-02-27 2000-08-28 日本電気株式会社 マルチキャリア伝送システム及びその方法
WO1999044379A1 (en) 1998-02-27 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Multiple access categorization for mobile station
US6141388A (en) 1998-03-11 2000-10-31 Ericsson Inc. Received signal quality determination method and systems for convolutionally encoded communication channels
US6058107A (en) 1998-04-08 2000-05-02 Motorola, Inc. Method for updating forward power control in a communication system
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6615024B1 (en) 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
US7123628B1 (en) 1998-05-06 2006-10-17 Lg Electronics Inc. Communication system with improved medium access control sub-layer
US6205410B1 (en) * 1998-06-01 2001-03-20 Globespan Semiconductor, Inc. System and method for bit loading with optimal margin assignment
EE200000757A (et) 1998-06-19 2002-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Kaadri sünkroniseerimise tehnikad ja süsteemid laiendatud spektriga raadioside jaoks
US6795424B1 (en) 1998-06-30 2004-09-21 Tellabs Operations, Inc. Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems
JP2000092009A (ja) 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
CN1192651C (zh) 1998-07-16 2005-03-09 三星电子株式会社 移动通信系统中处理分组数据的装置及方法
US6154443A (en) 1998-08-11 2000-11-28 Industrial Technology Research Institute FFT-based CDMA RAKE receiver system and method
CA2340716A1 (en) 1998-08-18 2000-03-02 Beamreach Networks, Inc. Stacked-carrier discrete multiple tone communication technology
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6515617B1 (en) * 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
DE19842712C1 (de) * 1998-09-17 2000-05-04 Siemens Ag Verfahren und Anordnung zur Minimierung des Autokorrelationsfehlers bei der Demodulation eines Spreizspektrum-Signals unter Mehrwegeausbreitung
US6292917B1 (en) 1998-09-30 2001-09-18 Agere Systems Guardian Corp. Unequal error protection for digital broadcasting using channel classification
EP0993211B1 (en) 1998-10-05 2005-01-12 Sony International (Europe) GmbH Random access channel partitioning scheme for CDMA system
EP0993212B1 (en) * 1998-10-05 2006-05-24 Sony Deutschland GmbH Random access channel partitioning scheme for CDMA system
US6711121B1 (en) * 1998-10-09 2004-03-23 At&T Corp. Orthogonal code division multiplexing for twisted pair channels
EP1108317B1 (de) * 1998-10-27 2002-08-28 Siemens Aktiengesellschaft Kanalzuweisungsverfahren und vorrichtung für kodierte und kombinierte informationssätze
JP4287536B2 (ja) * 1998-11-06 2009-07-01 パナソニック株式会社 Ofdm送受信装置及びofdm送受信方法
ES2185244T3 (es) 1998-12-03 2003-04-16 Fraunhofer Ges Forschung Aparato y procedimiento para transmitir informacion y aparato y procedimiento para recibir informacion.
GB9827182D0 (en) * 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
FI108588B (fi) 1998-12-15 2002-02-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
JP2000244441A (ja) 1998-12-22 2000-09-08 Matsushita Electric Ind Co Ltd Ofdm送受信装置
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
US6310909B1 (en) 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
US6463290B1 (en) 1999-01-08 2002-10-08 Trueposition, Inc. Mobile-assisted network based techniques for improving accuracy of wireless location system
RU2152132C1 (ru) 1999-01-26 2000-06-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Линия радиосвязи с пространственной модуляцией
JP3619729B2 (ja) 2000-01-19 2005-02-16 松下電器産業株式会社 無線受信装置および無線受信方法
KR100651457B1 (ko) 1999-02-13 2006-11-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어장치 및 방법
US6574267B1 (en) 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6346910B1 (en) * 1999-04-07 2002-02-12 Tei Ito Automatic array calibration scheme for wireless point-to-multipoint communication networks
US6363267B1 (en) * 1999-04-07 2002-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminal decode failure procedure in a wireless local area network
EP1075093A1 (en) 1999-08-02 2001-02-07 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multi-user transmission
US6594798B1 (en) 1999-05-21 2003-07-15 Microsoft Corporation Receiver-driven layered error correction multicast over heterogeneous packet networks
US6532562B1 (en) * 1999-05-21 2003-03-11 Microsoft Corp Receiver-driven layered error correction multicast over heterogeneous packet networks
US6594473B1 (en) 1999-05-28 2003-07-15 Texas Instruments Incorporated Wireless system with transmitter having multiple transmit antennas and combining open loop and closed loop transmit diversities
KR100605978B1 (ko) 1999-05-29 2006-07-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어를 위한 송수신 장치 및 방법
US7072410B1 (en) 1999-06-01 2006-07-04 Peter Monsen Multiple access system and method for multibeam digital radio systems
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US6385264B1 (en) 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6976262B1 (en) 1999-06-14 2005-12-13 Sun Microsystems, Inc. Web-based enterprise management with multiple repository capability
RU2214688C2 (ru) 1999-07-08 2003-10-20 Самсунг Электроникс Ко., Лтд. Устройство и способ обнаружения скорости передачи данных для системы подвижной связи
US6163296A (en) * 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
RU2168278C2 (ru) 1999-07-16 2001-05-27 Корпорация "Самсунг Электроникс" Способ произвольного доступа абонентов мобильной станции
GB9917512D0 (en) * 1999-07-26 1999-09-29 Univ Southampton Data and/or video communications
US6532225B1 (en) 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
JP2001044930A (ja) 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
US6735188B1 (en) 1999-08-27 2004-05-11 Tachyon, Inc. Channel encoding and decoding method and apparatus
US6278726B1 (en) 1999-09-10 2001-08-21 Interdigital Technology Corporation Interference cancellation in a spread spectrum communication system
US6115406A (en) 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US6426971B1 (en) 1999-09-13 2002-07-30 Qualcomm Incorporated System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
SG80071A1 (en) 1999-09-24 2001-04-17 Univ Singapore Downlink beamforming method
JP3421671B2 (ja) 1999-09-30 2003-06-30 独立行政法人通信総合研究所 通信システム、選択装置、送信装置、受信装置、選択方法、送信方法、受信方法、および、情報記録媒体
EP1219058B1 (en) 1999-10-02 2011-08-10 Samsung Electronics Co., Ltd. Apparatus and method for gating data on a control channel in a cdma communication system
DE19950005A1 (de) 1999-10-18 2001-04-19 Bernhard Walke Verfahren zum Betrieb drahtloser Basisstationen für paketvermittelnde Funksysteme mit garantierter Dienstgüte
DE19951525C2 (de) 1999-10-26 2002-01-24 Siemens Ag Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen
US6492942B1 (en) 1999-11-09 2002-12-10 Com Dev International, Inc. Content-based adaptive parasitic array antenna system
JP3416597B2 (ja) 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
US7088671B1 (en) 1999-11-24 2006-08-08 Peter Monsen Multiple access technique for downlink multibeam digital radio systems
US7110785B1 (en) 1999-12-03 2006-09-19 Nortel Networks Limited Performing power control in a mobile communications system
EP1109326A1 (en) 1999-12-15 2001-06-20 Lucent Technologies Inc. Peamble detector for a CDMA receiver
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
JP3975629B2 (ja) 1999-12-16 2007-09-12 ソニー株式会社 画像復号装置及び画像復号方法
US6298035B1 (en) 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
JP2001186051A (ja) 1999-12-24 2001-07-06 Toshiba Corp データ信号判定回路及び方法
KR100467543B1 (ko) 1999-12-28 2005-01-24 엔티티 도꼬모 인코퍼레이티드 채널추정 방법 및 통신장치
US6718160B2 (en) 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US7254171B2 (en) 2000-01-20 2007-08-07 Nortel Networks Limited Equaliser for digital communications systems and method of equalisation
KR100325367B1 (ko) * 2000-01-28 2002-03-04 박태진 직교 주파수 분할 다중 통신 시스템에서의 비트 오율 측정장치및 방법
JP2001217896A (ja) 2000-01-31 2001-08-10 Matsushita Electric Works Ltd 無線データ通信システム
US7003044B2 (en) * 2000-02-01 2006-02-21 Sasken Communication Technologies Ltd. Method for allocating bits and power in multi-carrier communication system
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6868120B2 (en) * 2000-02-08 2005-03-15 Clearwire Corporation Real-time system for measuring the Ricean K-factor
US6704374B1 (en) 2000-02-16 2004-03-09 Thomson Licensing S.A. Local oscillator frequency correction in an orthogonal frequency division multiplexing system
DE10008653A1 (de) 2000-02-24 2001-09-06 Siemens Ag Verbesserungen an einem Funkkommunikationssystem
US6956814B1 (en) 2000-02-29 2005-10-18 Worldspace Corporation Method and apparatus for mobile platform reception and synchronization in direct digital satellite broadcast system
JP2001244879A (ja) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd 送信電力制御装置及びその方法
US6963546B2 (en) 2000-03-15 2005-11-08 Interdigital Technology Corp. Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
EP1137217A1 (en) 2000-03-20 2001-09-26 Telefonaktiebolaget Lm Ericsson ARQ parameter negociation in a data packet transmission system using link adaptation
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
DE10014676C2 (de) 2000-03-24 2002-02-07 Polytrax Inf Technology Ag Datenübertragung über ein Stromversorgungsnetz
US7113499B2 (en) 2000-03-29 2006-09-26 Texas Instruments Incorporated Wireless communication
EP1843622B1 (en) 2000-04-04 2009-12-30 Sony Deutschland Gmbh Event triggered change of access service class in a random access channel
US7403748B1 (en) 2000-04-07 2008-07-22 Nokia Coporation Multi-antenna transmission method and system
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6757263B1 (en) 2000-04-13 2004-06-29 Motorola, Inc. Wireless repeating subscriber units
ATE357802T1 (de) 2000-04-18 2007-04-15 Aware Inc Datenzuweisung mit änderbaren signal- rauschabstand
US6751199B1 (en) 2000-04-24 2004-06-15 Qualcomm Incorporated Method and apparatus for a rate control in a high data rate communication system
JP3414357B2 (ja) 2000-04-25 2003-06-09 日本電気株式会社 Cdma移動通信システムにおける送信電力制御方式
EP1455493B1 (en) 2000-04-25 2005-11-30 Nortel Networks Limited Radio telecommunications system with reduced delays for data transmission
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
US6744811B1 (en) 2000-06-12 2004-06-01 Actelis Networks Inc. Bandwidth management for DSL modem pool
EP1198908B1 (en) 2000-06-12 2017-08-09 Samsung Electronics Co., Ltd. Method of assigning an uplink random access channel in a cdma mobile communication system
US7248841B2 (en) * 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6760313B1 (en) 2000-06-19 2004-07-06 Qualcomm Incorporated Method and apparatus for adaptive rate selection in a communication system
SE519303C2 (sv) 2000-06-20 2003-02-11 Ericsson Telefon Ab L M Anordning för smalbandig kommunikation i ett multicarrier- system
AU2001255253A1 (en) 2000-06-30 2002-01-14 Iospan Wireless, Inc. Method and system for mode adaptation in wireless communication
US6891858B1 (en) 2000-06-30 2005-05-10 Cisco Technology Inc. Dynamic modulation of modulation profiles for communication channels in an access network
CN1140147C (zh) * 2000-07-01 2004-02-25 信息产业部电信传输研究所 一种外环功率控制的方法和系统
AU2001267891A1 (en) * 2000-07-03 2002-01-14 Matsushita Electric Industrial Co., Ltd. Base station unit and method for radio communication
EP2262157A3 (en) * 2000-07-05 2011-03-23 Sony Deutschland Gmbh Pilot pattern design for a STTD scheme in an OFDM system
FI109393B (fi) 2000-07-14 2002-07-15 Nokia Corp Menetelmä mediavirran enkoodaamiseksi skaalautuvasti, skaalautuva enkooderi ja päätelaite
WO2002007327A1 (en) 2000-07-17 2002-01-24 Koninklijke Philips Electronics N.V. Coding of data stream
KR100493152B1 (ko) 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
EP1176750A1 (en) * 2000-07-25 2002-01-30 Telefonaktiebolaget L M Ericsson (Publ) Link quality determination of a transmission link in an OFDM transmission system
EP1178641B1 (en) 2000-08-01 2007-07-25 Sony Deutschland GmbH Frequency reuse scheme for OFDM systems
EP1746850B1 (en) 2000-08-03 2009-10-21 Infineon Technologies AG Dynamically reconfigurable universal transmitter system
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
US6582088B2 (en) * 2000-08-10 2003-06-24 Benq Corporation Optical path folding apparatus
JP4176463B2 (ja) 2000-08-10 2008-11-05 富士通株式会社 送信ダイバーシチ通信装置
EP1182799A3 (en) 2000-08-22 2002-06-26 Lucent Technologies Inc. Method for enhancing mobile cdma communications using space-time transmit diversity
KR100526499B1 (ko) 2000-08-22 2005-11-08 삼성전자주식회사 두 개 이상 안테나를 사용하는 안테나 전송 다이버시티방법 및 장치
IT1318790B1 (it) 2000-08-29 2003-09-10 Cit Alcatel Metodo per gestire il cambio di allocazione dei time-slot in reti adanello ms-spring di tipo transoceanico.
US6937592B1 (en) 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US6985434B2 (en) 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US7009931B2 (en) * 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
FR2814014B1 (fr) 2000-09-14 2002-10-11 Mitsubishi Electric Inf Tech Methode de detection multi-utilisateur
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6760882B1 (en) * 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US7062294B1 (en) 2000-09-29 2006-06-13 Arraycomm, Llc. Downlink transmission in a wireless data communication system having a base station with a smart antenna system
US7110378B2 (en) 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US7016296B2 (en) 2000-10-16 2006-03-21 Broadcom Corporation Adaptive modulation for fixed wireless link in cable transmission system
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
US6369758B1 (en) 2000-11-01 2002-04-09 Unique Broadband Systems, Inc. Adaptive antenna array for mobile communication
JP3553038B2 (ja) 2000-11-06 2004-08-11 株式会社エヌ・ティ・ティ・ドコモ 信号送信方法、信号受信方法、送信装置、受信装置および記録媒体
US6768727B1 (en) 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
US8634481B1 (en) 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
US7006464B1 (en) * 2000-11-17 2006-02-28 Lucent Technologies Inc. Downlink and uplink channel structures for downlink shared channel system
US6980601B2 (en) 2000-11-17 2005-12-27 Broadcom Corporation Rate adaptation and parameter optimization for multi-band single carrier transmission
JP3695316B2 (ja) 2000-11-24 2005-09-14 株式会社日本自動車部品総合研究所 スペクトラム拡散受信機の相関検出器
US6751480B2 (en) 2000-12-01 2004-06-15 Lucent Technologies Inc. Method for simultaneously conveying information to multiple mobiles with multiple antennas
JP4505677B2 (ja) 2000-12-06 2010-07-21 ソフトバンクテレコム株式会社 送信ダイバーシチ装置および送信電力調整方法
US6952426B2 (en) 2000-12-07 2005-10-04 Nortel Networks Limited Method and apparatus for the transmission of short data bursts in CDMA/HDR networks
KR100353641B1 (ko) 2000-12-21 2002-09-28 삼성전자 주식회사 부호분할다중접속 이동통신시스템의 기지국 전송 안테나다이버시티 장치 및 방법
US6850498B2 (en) * 2000-12-22 2005-02-01 Intel Corporation Method and system for evaluating a wireless link
US6987819B2 (en) * 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US7050510B2 (en) 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
US20020085641A1 (en) 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
US6731668B2 (en) 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
EP1223776A1 (en) * 2001-01-12 2002-07-17 Siemens Information and Communication Networks S.p.A. A collision free access scheduling in cellular TDMA-CDMA networks
US6693992B2 (en) * 2001-01-16 2004-02-17 Mindspeed Technologies Line probe signal and method of use
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7054662B2 (en) 2001-01-24 2006-05-30 Qualcomm, Inc. Method and system for forward link beam forming in wireless communications
JP2002232943A (ja) 2001-01-29 2002-08-16 Sony Corp データ送信処理方法、データ受信処理方法、送信機、受信機、およびセルラー無線通信システム
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6885654B2 (en) 2001-02-06 2005-04-26 Interdigital Technology Corporation Low complexity data detection using fast fourier transform of channel correlation matrix
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
US7006483B2 (en) * 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
AU2002240506A1 (en) 2001-02-26 2002-09-12 Magnolia Broadband, Inc Smart antenna based spectrum multiplexing using a pilot signal
GB0105019D0 (en) 2001-03-01 2001-04-18 Koninkl Philips Electronics Nv Antenna diversity in a wireless local area network
US7039125B2 (en) 2001-03-12 2006-05-02 Analog Devices, Inc. Equalized SNR power back-off
EP1241824A1 (en) 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Multiplexing method in a multicarrier transmit diversity system
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) * 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7248638B1 (en) 2001-03-23 2007-07-24 Lsi Logic Transmit antenna multi-mode tracking
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
GB2373973B (en) 2001-03-30 2003-06-11 Toshiba Res Europ Ltd Adaptive antenna
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
US6785513B1 (en) 2001-04-05 2004-08-31 Cowave Networks, Inc. Method and system for clustered wireless networks
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
FR2823620B1 (fr) 2001-04-12 2003-08-15 France Telecom Procede de codage/decodage d'un flux de donnees numeriques codees avec entrelacement sur bits en emission et en reception multiple en presence d'interference intersymboles et systeme correspondant
US7310304B2 (en) * 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
CN100446612C (zh) * 2001-05-04 2008-12-24 诺基亚公司 借助定向天线的许可控制
EP1255369A1 (en) * 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
DE10122788A1 (de) 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US6718493B1 (en) 2001-05-17 2004-04-06 3Com Corporation Method and apparatus for selection of ARQ parameters and estimation of improved communications
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US7492737B1 (en) * 2001-05-23 2009-02-17 Nortel Networks Limited Service-driven air interface protocol architecture for wireless systems
ES2188373B1 (es) 2001-05-25 2004-10-16 Diseño De Sistemas En Silencio, S.A. Procedimiento de optimizacion de la comunicacion para sistema de transmision digital ofdm multiusuario sobre red electrica.
US6920194B2 (en) 2001-05-29 2005-07-19 Tioga Technologies, Ltd. Method and system for detecting, timing, and correcting impulse noise
US7158563B2 (en) * 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
GB2376315B (en) 2001-06-05 2003-08-06 3Com Corp Data bus system including posted reads and writes
US20020183010A1 (en) 2001-06-05 2002-12-05 Catreux Severine E. Wireless communication systems with adaptive channelization and link adaptation
US7190749B2 (en) 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
EP1265411B1 (en) 2001-06-08 2007-04-18 Sony Deutschland GmbH Multicarrier system with adaptive bit-wise interleaving
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
KR20040008230A (ko) 2001-06-27 2004-01-28 노오텔 네트웍스 리미티드 무선 통신 시스템에서 제어 정보의 통신
US6842460B1 (en) * 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
FR2827731B1 (fr) 2001-07-23 2004-01-23 Nexo Haut-parleur a radiation directe et rayonnement optimise
US6996380B2 (en) * 2001-07-26 2006-02-07 Ericsson Inc. Communication system employing transmit macro-diversity
US6738020B1 (en) 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
EP1284545B1 (en) 2001-08-13 2008-07-02 Motorola, Inc. Transmit diversity wireless communication
KR100703295B1 (ko) 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
US20030039317A1 (en) * 2001-08-21 2003-02-27 Taylor Douglas Hamilton Method and apparatus for constructing a sub-carrier map
FR2828981B1 (fr) 2001-08-23 2004-05-21 Commissariat Energie Atomique Creuset a chauffage par induction et refroidissement par caloducs
EP1289328A1 (en) * 2001-08-28 2003-03-05 Lucent Technologies Inc. A method of sending control information in a wireless telecommunications network, and corresponding apparatus
US6990059B1 (en) * 2001-09-05 2006-01-24 Cisco Technology, Inc. Interference mitigation in a wireless communication system
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
FR2829326A1 (fr) 2001-09-06 2003-03-07 France Telecom Procede et systeme de reception iterative sous optimale pour systeme de transmission haut debit cdma
US7133070B2 (en) 2001-09-20 2006-11-07 Eastman Kodak Company System and method for deciding when to correct image-specific defects based on camera, scene, display and demographic data
US7024163B1 (en) 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US6788948B2 (en) * 2001-09-28 2004-09-07 Arraycomm, Inc. Frequency dependent calibration of a wideband radio system using narrowband channels
US7035359B2 (en) 2001-10-11 2006-04-25 Telefonaktiebolaget L.M. Ericsson Methods and apparatus for demodulation of a signal in a signal slot subject to a discontinuous interference signal
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
KR20030032875A (ko) 2001-10-19 2003-04-26 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 제공하는 이동 통신시스템에서 순방향 데이터 채널 송신 전력을 제어하는장치 및 방법
US7349667B2 (en) 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
WO2003039031A1 (fr) 2001-10-31 2003-05-08 Matsushita Electric Industrial Co., Ltd. Dispositif d'emission radio et procede de communication radio
US7218684B2 (en) 2001-11-02 2007-05-15 Interdigital Technology Corporation Method and system for code reuse and capacity enhancement using null steering
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
AU2002224120A1 (en) 2001-11-28 2003-06-10 Fujitsu Limited Orthogonal frequency-division multiplex transmission method
US7346126B2 (en) 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
US7263119B1 (en) 2001-11-29 2007-08-28 Marvell International Ltd. Decoding method and apparatus
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7155171B2 (en) 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7076514B2 (en) 2001-12-18 2006-07-11 Conexant, Inc. Method and system for computing pre-equalizer coefficients
US7099398B1 (en) 2001-12-18 2006-08-29 Vixs, Inc. Method and apparatus for establishing non-standard data rates in a wireless communication system
US7573805B2 (en) 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
CA2366397A1 (en) 2001-12-31 2003-06-30 Tropic Networks Inc. An interface for data transfer between integrated circuits
US7209433B2 (en) 2002-01-07 2007-04-24 Hitachi, Ltd. Channel estimation and compensation techniques for use in frequency division multiplexed systems
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) * 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7058116B2 (en) 2002-01-25 2006-06-06 Intel Corporation Receiver architecture for CDMA receiver downlink
KR100547845B1 (ko) 2002-02-07 2006-01-31 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서서빙 고속 공통 제어 채널 셋 정보를 송수신하는 장치 및방법
US7046978B2 (en) 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US6980800B2 (en) 2002-02-12 2005-12-27 Hughes Network Systems System and method for providing contention channel organization for broadband satellite access in a communications network
US7292854B2 (en) 2002-02-15 2007-11-06 Lucent Technologies Inc. Express signaling in a wireless communication system
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US20030162519A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6959171B2 (en) 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US6873651B2 (en) * 2002-03-01 2005-03-29 Cognio, Inc. System and method for joint maximal ratio combining using time-domain signal processing
US7042858B1 (en) 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
JP3561510B2 (ja) 2002-03-22 2004-09-02 松下電器産業株式会社 基地局装置及びパケット伝送方法
US20040198276A1 (en) 2002-03-26 2004-10-07 Jose Tellado Multiple channel wireless receiver
US7012978B2 (en) * 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
KR100456693B1 (ko) 2002-03-28 2004-11-10 삼성전자주식회사 다중채널 통신 시스템의 비트 할당을 최적화하여 셋업시간을 최소화하는 방법
US7224704B2 (en) 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US7099377B2 (en) 2002-04-03 2006-08-29 Stmicroelectronics N.V. Method and device for interference cancellation in a CDMA wireless communication system
US6804191B2 (en) 2002-04-05 2004-10-12 Flarion Technologies, Inc. Phase sequences for timing and access signals
US7103325B1 (en) 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
US7623871B2 (en) 2002-04-24 2009-11-24 Qualcomm Incorporated Position determination for a wireless terminal in a hybrid position determination system
US7876726B2 (en) 2002-04-29 2011-01-25 Texas Instruments Incorporated Adaptive allocation of communications link channels to I- or Q-subchannel
US6690660B2 (en) * 2002-05-22 2004-02-10 Interdigital Technology Corporation Adaptive algorithm for a Cholesky approximation
US7327800B2 (en) * 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US6862440B2 (en) * 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7421039B2 (en) * 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
KR100498326B1 (ko) 2002-06-18 2005-07-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치 및 방법
US7184713B2 (en) * 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7359313B2 (en) 2002-06-24 2008-04-15 Agere Systems Inc. Space-time bit-interleaved coded modulation for wideband transmission
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
DE60311464T2 (de) 2002-06-27 2007-08-30 Koninklijke Philips Electronics N.V. Messung von kanaleigenschaften in einem kommunikationssystem
US7342912B1 (en) * 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
EP1379020A1 (en) 2002-07-03 2004-01-07 National University Of Singapore A wireless communication apparatus and method
US7912999B2 (en) 2002-07-03 2011-03-22 Freescale Semiconductor, Inc. Buffering method and apparatus for processing digital communication signals
US20040017785A1 (en) * 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US6683916B1 (en) * 2002-07-17 2004-01-27 Philippe Jean-Marc Sartori Adaptive modulation/coding and power allocation system
US6885708B2 (en) 2002-07-18 2005-04-26 Motorola, Inc. Training prefix modulation method and receiver
KR20040011653A (ko) 2002-07-29 2004-02-11 삼성전자주식회사 채널 특성에 적응적인 직교 주파수 분할 다중 통신 방법및 장치
DE60325612D1 (de) * 2002-07-30 2009-02-12 Ipr Licensing Inc System und verfahren zur funkkommunikation mit mehreren eingängen und mehreren ausgängen (mimo)
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
DE60325921D1 (de) 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
US20040037257A1 (en) * 2002-08-23 2004-02-26 Koninklijke Philips Electronics N.V. Method and apparatus for assuring quality of service in wireless local area networks
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
EP1535410A1 (en) 2002-09-06 2005-06-01 Nokia Corporation Antenna selection method
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US20040052228A1 (en) * 2002-09-16 2004-03-18 Jose Tellado Method and system of frequency and time synchronization of a transceiver to signals received by the transceiver
US7426176B2 (en) 2002-09-30 2008-09-16 Lucent Technologies Inc. Method of power allocation and rate control in OFDMA systems
US7961774B2 (en) 2002-10-15 2011-06-14 Texas Instruments Incorporated Multipath interference-resistant receivers for closed-loop transmit diversity (CLTD) in code-division multiple access (CDMA) systems
US6850511B2 (en) 2002-10-15 2005-02-01 Intech 21, Inc. Timely organized ad hoc network and protocol for timely organized ad hoc network
US7453844B1 (en) 2002-10-22 2008-11-18 Hong Kong Applied Science and Technology Research Institute, Co., Ltd. Dynamic allocation of channels in a wireless network
US7274938B2 (en) 2002-10-22 2007-09-25 Texas Instruments Incorporated Wired control channel for supporting wireless communication in non-exclusive spectrum
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8134976B2 (en) * 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8570988B2 (en) * 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7151809B2 (en) * 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
AU2003285112B2 (en) 2002-10-25 2009-04-02 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
AU2002353638A1 (en) 2002-10-26 2004-05-13 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
EP1416688A1 (en) 2002-10-31 2004-05-06 Motorola Inc. Iterative channel estimation in multicarrier receivers
US7317750B2 (en) * 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
US7280625B2 (en) 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7583637B2 (en) 2003-01-31 2009-09-01 Alcatel-Lucent Usa Inc. Methods of controlling data rate in wireless communications systems
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
EP1447934A1 (en) 2003-02-12 2004-08-18 Institut Eurecom G.I.E. Transmission and reception diversity process for wireless communications
JP2004266586A (ja) 2003-03-03 2004-09-24 Hitachi Ltd 移動通信システムのデータ送受信方法
JP4250002B2 (ja) 2003-03-05 2009-04-08 富士通株式会社 適応型変調伝送システム及び適応型変調制御方法
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7822140B2 (en) 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
JP4259897B2 (ja) 2003-03-25 2009-04-30 シャープ株式会社 無線データ伝送システム及び無線データ送受信装置
US7242727B2 (en) 2003-03-31 2007-07-10 Lucent Technologies Inc. Method of determining transmit power for transmit eigenbeams in a multiple-input multiple-output communications system
US7403503B2 (en) 2003-07-09 2008-07-22 Interdigital Technology Corporation Resource allocation in wireless communication systems
MXPA06000434A (es) 2003-07-11 2006-04-05 Qualcomm Inc Canal de enlace de avance compartido dinamico para un sistema de comunicacion inalambrico.
WO2005014820A1 (fr) 2003-08-08 2005-02-17 Si Chuan Heben Biotic Engineering Co. Ltd. 5-enolpyruvyl-3-phosphoshikimate synthase a bioresistance eleve au glyphosate et sequence de codage
US7065144B2 (en) * 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
ATE487291T1 (de) * 2003-08-27 2010-11-15 Wavion Ltd Wlan-kapazitäts-erweiterung durch verwendung von sdm
US7356089B2 (en) 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
KR100995031B1 (ko) 2003-10-01 2010-11-19 엘지전자 주식회사 다중입력 다중출력 시스템에 적용되는 신호 전송 제어 방법
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
WO2005041515A1 (en) 2003-10-24 2005-05-06 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7231184B2 (en) * 2003-12-05 2007-06-12 Texas Instruments Incorporated Low overhead transmit channel estimation
JP4425925B2 (ja) 2003-12-27 2010-03-03 韓國電子通信研究院 固有ビーム形成技術を使用するmimo−ofdmシステム
US7333556B2 (en) * 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
JP2005223829A (ja) 2004-02-09 2005-08-18 Nec Electronics Corp 分数分周回路及びこれを用いたデータ伝送装置
US7746886B2 (en) 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US7206354B2 (en) 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
US7274734B2 (en) 2004-02-20 2007-09-25 Aktino, Inc. Iterative waterfiling with explicit bandwidth constraints
US7848442B2 (en) 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
US7486740B2 (en) 2004-04-02 2009-02-03 Qualcomm Incorporated Calibration of transmit and receive chains in a MIMO communication system
US7110463B2 (en) 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7606319B2 (en) 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US20060018247A1 (en) * 2004-07-22 2006-01-26 Bas Driesen Method and apparatus for space interleaved communication in a multiple antenna communication system
US7599443B2 (en) 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
KR100905605B1 (ko) * 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
TWI296753B (en) 2004-10-26 2008-05-11 Via Tech Inc Usb control circuit for saving power and the method thereof
CN102170329B (zh) 2004-11-16 2014-09-10 高通股份有限公司 Mimo通信系统的闭环速率控制
US8498215B2 (en) 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
US7525988B2 (en) 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
US8358714B2 (en) * 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8619620B2 (en) * 2008-09-16 2013-12-31 Qualcomm Incorporated Methods and systems for transmission mode selection in a multi channel communication system
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751484B (zh) * 2002-10-25 2010-08-11 高通股份有限公司 时分双工通信系统的信道校准
WO2011097785A1 (zh) * 2010-02-12 2011-08-18 上海贝尔股份有限公司 互易误差校准设备和互易误差校准方法
CN102714525A (zh) * 2010-02-12 2012-10-03 上海贝尔股份有限公司 互易误差校准设备和互易误差校准方法
CN102714525B (zh) * 2010-02-12 2015-11-25 上海贝尔股份有限公司 互易误差校准设备和互易误差校准方法

Also Published As

Publication number Publication date
CN102158293A (zh) 2011-08-17
SG161317A1 (en) 2010-05-27
JP4773461B2 (ja) 2011-09-14
CA2596092C (en) 2013-07-30
WO2006081550A3 (en) 2007-01-11
CA2732214A1 (en) 2006-08-03
KR100958957B1 (ko) 2010-05-20
CN101133565B (zh) 2014-12-24
RU2407151C2 (ru) 2010-12-20
KR20100025593A (ko) 2010-03-09
TWI371188B (en) 2012-08-21
US20050128953A1 (en) 2005-06-16
BRPI0607131A2 (pt) 2009-08-04
WO2006081550A2 (en) 2006-08-03
SG143245A1 (en) 2008-06-27
JP2011234361A (ja) 2011-11-17
US8570988B2 (en) 2013-10-29
EP1847036A2 (en) 2007-10-24
CN102158293B (zh) 2013-08-14
KR20070107073A (ko) 2007-11-06
TW200637230A (en) 2006-10-16
CA2596092A1 (en) 2006-08-03
RU2007132195A (ru) 2009-03-10
JP2008530834A (ja) 2008-08-07

Similar Documents

Publication Publication Date Title
CN102158293B (zh) 用于时分双工通信系统的信道校准
CN1751484B (zh) 时分双工通信系统的信道校准
EP1721431B1 (en) Calibration of downlink and uplink channel responses in a wireless MIMO communication system
CN102176708B (zh) 在mimo通信系统中发射链和接收链的校准
EP1880484B1 (en) Rate selection for eigensteering in a mimo communication system
US8238917B2 (en) Method and system for utilizing tone grouping with Givens rotations to reduce overhead associated with explicit feedback information
JP2010193477A6 (ja) 時分割複信通信システムのためのチャネル校正
CN105450278A (zh) 虚拟天线选择方法和装置
CN101292442B (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1114962

Country of ref document: HK

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1114962

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant