CN101103144A - 制备负载在碳纳米管网络上的催化剂的方法 - Google Patents

制备负载在碳纳米管网络上的催化剂的方法 Download PDF

Info

Publication number
CN101103144A
CN101103144A CNA2005800466388A CN200580046638A CN101103144A CN 101103144 A CN101103144 A CN 101103144A CN A2005800466388 A CNA2005800466388 A CN A2005800466388A CN 200580046638 A CN200580046638 A CN 200580046638A CN 101103144 A CN101103144 A CN 101103144A
Authority
CN
China
Prior art keywords
metal
cnt
catalyst
carbon nanotube
metallic catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800466388A
Other languages
English (en)
Other versions
CN101103144B (zh
Inventor
J·马
D·莫伊
A·费希尔
R·霍奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyperion Catalysis International Inc
Original Assignee
Hyperion Catalysis International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyperion Catalysis International Inc filed Critical Hyperion Catalysis International Inc
Publication of CN101103144A publication Critical patent/CN101103144A/zh
Application granted granted Critical
Publication of CN101103144B publication Critical patent/CN101103144B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/745Carbon nanotubes, CNTs having a modified surface
    • Y10S977/748Modified with atoms or molecules bonded to the surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/752Multi-walled

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本文公开了一种制备负载催化剂的新方法。负载催化剂包括含金属催化剂的碳纳米管网络结构。金属催化剂可在形成碳纳米管网络结构前被负载到官能化的碳纳米管上。或者,金属催化剂可被负载到碳纳米管网络结构本身上。

Description

制备负载在碳纳米管网络上的催化剂的方法
交叉参考信息
本申请要求于2004年11月16日提交的美国临时申请No.60/628469的权益和优先权,本文引入其全文作为参考。
发明领域
本发明涉及包括碳纳米管网络的负载催化剂组合物。催化剂或催化剂前体可被预沉积到碳纳米管上,然后形成具有预沉积或负载金属的碳纳米管的碳纳米管网络结构。或者,在形成碳纳米管网络结构后,将催化剂或催化剂前体沉积到碳纳米管上。不管催化剂是在形成碳纳米管网络结构前还是在其后沉积,本发明的结果都为包括碳纳米管网络结构且金属催化剂更均匀和充分地分散在结构中的负载催化剂。因而,本发明的负载催化剂包含较高的金属催化剂浓度和较好的金属催化剂分布,导致更有效和更高的所需最终产物产出。
发明背景
负载催化剂
负载催化剂(即负载在某种表面、结构或载体等上面的催化剂)一般包括惰性载体材料和催化活性材料。由于在高温(有时还在高压下)下和在活性气氛中通常进行多相反应,因此难以确定反应区域内活性催化剂组分的确切化学特性。因此,术语“催化剂”或“负载催化剂”经常被互换用在工业中指被装入到反应区域中既包括惰性载体又包括催化活性材料的组合物。
例如,可通过开始沉积实际催化活性材料的前体到惰性载体上然后在将它们送到反应区域内前相应处理它们(如煅烧)来制备负载催化剂。送到反应区域前的稳定负载催化剂的更昂贵预处理和钝化步骤也是常见的。在常见例子中,金属盐被沉积到惰性载体上,通过在高温下煅烧转化成金属氧化物,然后进一步原位还原成活性纯金属催化剂。
负载催化剂广泛用在石油、石化和化学工业中化学过程的多相催化反应中。这种反应通常用液相反应物和产物和固相催化剂进行。在多相催化反应中,反应在相之间的界面即反应物和产物的液相和负载催化剂的固相之间的界面处发生。因此,多相负载催化剂的表面性质在催化剂的有效利用中是重要因素。
例如,被负载的活性催化剂的表面积和该表面积对反应物吸附和产物脱附的可接近性是重要的。这些因素影响催化剂的活性,即反应物转化成产物的速率。
通常,催化活性与催化剂表面积成比例。因此,高的比面积是理想的。但是,表面积应能对反应物和产物以及热流可达到。催化剂表面对反应物的化学吸附通过该反应物在催化剂内部结构的扩散来进行。
活性催化剂材料可被负载在载体的外部和/或内部结构上。通常,多孔结构形式的载体的内部结构可包含比外部表面大的表面积。因此,当充足数量的活性催化剂位于或负载在载体的内部结构中时,载体内部结构对反应物、产物和热流的可达性是重要的。通过孔隙率和孔径分布度量这种可达性。用作催化剂载体的活性炭和木炭具有约1000平方米/克的表面积和大于1毫升/克的孔隙度。但是,这种表面积和孔隙率的大部分(例如多至50%,经常更多)通常与微孔(即孔径为2纳米或更小的孔)有关。由于扩散限制,这些孔难以进入。它们容易被堵塞并因此被灭活。因此,孔主要在中孔区域(即2-50纳米)或大孔区域(即大于50纳米)中的高孔隙率材料是最理想的。
负载催化剂在使用中不破裂或耗损也是重要的,因为这类碎片可能被夹带在反应流中,并必须在随后从反应混合物中分离出去。置换损耗催化剂的成本、从反应混合物中分离它的成本和污染产物的风险都是过程中的负担。在浆液相中,例如,在从工艺流中过滤固体负载催化剂并循环回到反应区域时,磨碎的细粒可能堵塞过滤器并中断过程。
催化剂和催化剂载体的化学纯度也对催化剂的选择性和催化剂寿命有重要影响,催化剂选择性即催化剂在几种产物中产生一种产物的程度。
催化剂最低限度地减少其对反应物和产物化学污染的贡献也是重要的。在催化剂载体的情况下,这是更加重要的,因为载体是既对它负载的催化剂又是对化学过程的潜在污染源。另外,一些催化剂对污染尤其敏感,这会促进不想要的竞争反应即影响它的选择性,或使催化剂失效,即使它“中毒”。例如,由石油残渣制备的木炭和商业石墨或碳通常包含痕量的硫或氮。农业来源的碳可包含这些污染物以及生物系统所共有的金属,由于这个原因,是不理想的。
影响负载催化剂效率的另一重要因素是活性催化剂在载体中或载体上的量,以及活性催化剂在整个载体自身中或内部的分布。在载体中或载体上包含较多活性催化剂的负载催化剂通常比主要由载体材料组成且具有很少活性催化剂的负载催化剂具有更好的结果和催化活性。另外,在整个载体或载体内部具有更均匀分散的催化材料的负载催化剂通常比在载体中或载体上具有差的催化材料分布的负载催化剂具有高的产率和催化活性。
碳纳米管
碳纳米管已被确定为用作催化剂和催化剂载体的引人注意的材料。碳纳米管以各种形式存在,并通过各种含碳气体在金属表面处的催化分解来制备。
碳纳米管(也称为原纤)为直径小于1.0μ、优选小于0.5μ和甚至更优选小于0.2μ的蠕虫状碳沉积物。碳纳米管可为多壁的(即具有一个以上大致平行于纳米管轴的graphene层)或单壁的(即只有一个平行于纳米管轴的单一graphene层)。碳纳米管的其它类型也是已知的,如鱼骨型原纤(例如其中graphene层相对于纳米管轴以鲱骨状图案布置)等。生产态的碳纳米管可为离散纳米管、纳米管聚集体(即包括缠结的碳纳米管的致密、微观颗粒结构)或两者混合物的形式。
形成碳纳米管的方法是众所周知的。例如,Baker和Harris,Chemistry and Physics of Carbon,Walker and Thrower ed,14卷,1978,83页;Rodriguez,N.,J.Mater.Research,8卷,3233页(1993);Oberlin,A.和Endo,M., J.of Crystal Growth,Vol.32(1976),335-349页;Tennent的美国专利4663230;Tennent等的美国专利5171560;Iijima,Nature  354,56,1991;Weaver,Science  265,1994;de Heer,Walt A.,“Nanotubes and the Pursuitof Application”, MRS Bulletin,2004年4月;等;“Single-shellcarbon nanotubes of 1-nm diameter”,S Iijima和T IchihashiNa ture,vol.363,p.603(1993);“Cobalt-catalysed growth ofcarbon nanotubes with single-atomic-layer walls”,DSBethune,C H Kiang,M S DeVries,G Gorman,R Savoy和R BeyersNature,vol.363,p.605(1993);Bethune等的美国专利5424054;Guo,T.,Nikoleev,P.,Thess,A.,Colbert,D.T.,和Smally,R.E.,Chem.Phys.Lett.243:1-12(1995);Thess,A.,Lee,R.,Nikolaev,P.,Dai,H.,Petit,P.,Robert,J.,Xu,C,Lee,Y.H.,Kim,S.G.,Rinzler,A.G.,Colbert,D.T.,Scuseria,G.E.,Tonarek,D.,Fischer,J.E.,和Smalley,R.E.,Science,273:483-487(1996);Dai.,H.,Rinzler,A.G.,Nikolaev,P.,Thess,A.,Colbert,D.T.,和Smalley,R.E.,Chem.Phys.Lett.260:471-475(1996);Smalley等的美国专利6761870(也为WO00/26138);“Controlled production of single-wall carbonnanotubes by catalytic decomposition of CO on bimetallic Co-Mocatalysts”,Chemical Physics Letters,317(2000)497-503和Resasco等的美国专利6333016等。本文引入所有这些文献作为参考。
制备碳纳米管的最优选方法是由负载或自由漂浮催化剂颗粒调节的烃或其它气态碳化合物如CO进行催化生长。
碳纳米管还可被形成为聚集体,其为缠结碳纳米管的致密微观颗粒结构并类似棉花糖、鸟巢、精梳纱或开网的宏观形貌。聚集体在碳纳米管的产生过程中形成,通过选择催化剂载体控制聚集体的形貌。球形载体在所有方向上生长纳米管,导致形成鸟巢聚集体。使用具有一个或多个易裂开的平表面的载体制备精梳纱和开网聚集体,载体例如沉积在具有一个或多个易裂开表面且表面积为至少1平方米/克的载体材料上的铁或含铁金属催化剂颗粒。关于碳纳米管聚集体形成的更多细节可在以下公开中找到:Moy的美国专利6143689;Tennent的美国专利5165909;Moy等的美国专利5456897;Snyder等,1991年5月1日提交的美国专利5707916,和1989年1月28日提交的PCT申请US89/00322(“Carbon Fibrils”)WO89/07163,和Moy等人,1994年8月2日提交的美国专利5456897,和1990年9月27日提交的PCT申请US90/05498(“Battery”)WO91/05089,和Mandeville等在1995年6月7日提交的美国专利5500200和Moy等在1994年8月2日提交的美国专利5456897以及1994年10月11日提交的美国专利5569635,它们全部被转让给与本发明相同的受让人,本文引入作为参考。
碳纳米管不同于商业上可得到的连续碳纤维。例如,与纵横比(L/D)为至少104和经常106或以上的碳纤维相比,碳纳米管理想地具有大的但不可避免有限的纵横比(例如小于或大于100)。另外,连续碳纤维的直径也远远大于碳纳米管的直径,连续碳纤维的直径总是大于1.0μ和一般为5-7μ,碳纳米管的直径通常1.0μ。碳纳米管还具有远优于碳纤维的强度和导电率。
碳纳米管在物理上和化学上不同于其它碳形式如标准石墨和碳黑。标准石墨由于其结构而能经历氧化到几乎完全饱和。此外,碳黑为通常具有graphene结构的球形颗粒形式的无定形碳,如围绕着无序核的碳层。另一方面,碳纳米管具有基本环绕纳米管圆柱轴布置的有序石墨碳原子的一个或多个层。其中,这些差别使石墨和碳黑成为碳纳米管化学的差的预示。
碳纳米管结构
除了碳纳米管外,已知碳纳米管结构为有用的催化剂载体和催化剂。碳纳米管结构提供超过其它已知碳催化剂载体的特定结构优势,因为内部孔结构的大多数为中孔(即2-50nm)和大孔(即大于50nm)的形式。另外,碳纳米管结构还具有较大的结构强度,因此,与其它已知的碳催化剂载体相比,更不太可能破碎或损耗。
碳纳米管结构包括但不限于以下类别:集合物,网络和刚性多孔结构。
a.集合物为沿三维集合物的一维、优选两维和最理想三维轴具有相对均匀性质的碳纳米管结构(例如美国专利5691054,本文引入作为参考)。通常,通过解聚碳纳米管聚集体然后重新装配它们形成在比原始聚集体更大的距离范围内具有均匀性质的集合物来形成集合物(包括但不限于丛和塞)。通过在水或有机介质中分散碳纳米管然后过滤纳米管形成丛或集合物来制备纳米管丛或集合物。还通过如下制备丛和塞:在流体例如有机溶剂如丙烷中形成纳米管的凝胶或糊,然后加热凝胶或糊到超过介质临界温度的温度,从进行过程的容器中除去超临界流体,最后移出得到的多孔从或塞。在丛或塞形成步骤中可存在接合剂。当集合物干燥时,胶将在纳米管交叉点处浓缩。优选的接合剂或粘合剂包括纤维素基聚合物、羟乙基纤维素、羧甲基纤维素、纤维素、碳水化合物、聚乙烯、聚苯乙烯、尼龙、聚氨酯、聚酯、聚酰胺、聚(二甲基硅氧烷)、丙烯酸聚合物和酚醛树脂。优选地,聚合物不含碱金属盐如钠或钾盐。
b.通过使用位于碳纳米管表面上的官能化基团之间的连接分子将单个官能化碳纳米管(即在表面上包含官能团如但不限于含氧部分的碳纳米管)连接到一起形成网络。(例如PCT/US97/03553或WO97/32571,本文引入作为参考)。例如,通过使碳纳米管与合适的试剂如WO97/32571或美国专利6203814中所述那些接触来官能化纳米管,全部引入它们作为参考。或者,通过用氧化剂如氯酸钾(KClO3)、硫酸(H2SO4)、硝酸(HNO3)、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等氧化(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)来官能化碳纳米管。典型的连接分子或连接试剂为双官能化合物如二胺、二醇等。
c.通过不使用连接分子将单个官能化碳纳米管连接到一起或通过使用接合剂将碳纳米管聚集体接合到一起来形成刚性多孔结构。美国专利6099965公开了官能化纳米管在适宜的热处理后变成自粘合的,本文引入作为参考。例如,通过使碳纳米管与合适的试剂接触(例如WO97/32571,美国专利6203814,本文全部引入它们作为参考)或通过使碳纳米管与氧化剂如氯酸钾(KClO3)、硫酸(H2SO4)、硝酸(HNO3)、过硫酸盐、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等接触(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)来官能化碳纳米管。氧化的纳米管被认为在它们自身之间形成酯、酐、内酯和醚键。
有用地注意到,如上面所定义的集合物和刚性多孔结构基本是“纯纳米管”,至多混合有少量接合剂。另一方面,由于存在“连接剂”和各种分子量和结构的连接剂分子的可用性,所以网络提供了对最终结构的性质的额外控制程度。尤其可调整密度和孔隙率。
为了用作催化剂载体,必须通过方法如造粒、挤出、压缩或粉末团聚将上述结构形成为普遍接受的工业催化剂形式。参见例如“Catalyse de Contact”,J.F.Le Page,Paris编辑,1978,本文引入作为参考。刚性多孔结构可有利地通过以下来制备:挤出官能化纳米管的糊状悬浮液或制备态聚集体和接合剂的混合物,(任选地混合有液体载体),然后通过煅烧步骤逐出输送液体并交联官能化纳米管或热解接合剂。
尽管活性木炭和其它材料已被用作催化剂和催化剂载体,但与碳纳米管结构相比,迄今为止都没有全部以下必要质量:高的表面积,孔隙率,孔径分布,耐损耗性,和用于进行各种选择性石化和精炼过程的纯度。另外,与碳纳米管结构不同,活性木炭和其它材料中多数表面积为不可及微孔的形式。
因此,希望提供包括在其中具有良好或均匀分散的金属催化剂的碳纳米管结构的负载催化剂,负载催化剂因此具有高的可及表面积、高的孔隙率和耐磨耗性,并且它们基本没有微孔、高活性、高选择性并能长期使用而没有明显失活。
发明概述
提供一种制备负载催化剂的新方法,包括步骤:将金属催化剂负载到碳纳米管上形成负载金属的碳纳米管;和由所述负载金属的碳纳米管形成碳纳米管网络结构。
还提供制备负载催化剂的另一新方法,包括步骤:形成碳纳米管网络结构,然后将金属催化剂负载到所述碳纳米管网络结构上。
优选地,碳纳米管网络结构通过包括以下步骤的方法来制备:用官能化剂官能化碳纳米管形成官能化的碳纳米管,和加入合适的试剂到所述官能化的碳纳米管上形成碳纳米管网络结构。这些试剂为连接分子,如能将官能化的碳纳米管固定到一起的二胺或二醇。金属催化剂可在形成碳纳米管网络结构前负载到碳纳米管上,或可在形成后负载到碳纳米管网络结构上。
最直接的官能化是氧化,尤其对于多壁碳纳米管来说。有用的氧化剂包括但不限于氯酸钾、硫酸、硝酸(HNO3)、过硫酸盐、过氧化氢(H2O2)、CO2、O2、水蒸汽(steam)、N2O、NO、NO2、O3或ClO2
用在本发明的方法中的催化剂或催化剂前体包括但不限于金属如钌、锇、铑、铱、钯和铂或它们的混合物,以及其它过渡金属的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物,所述其它过渡金属包括但不限于Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或它们的组合。可通过任何已知的方法如离子交换、浸渍或初始润湿、沉淀、物理或化学吸附或共沉淀将金属催化剂或金属催化剂前体负载到纳米管上。在示例性实施方案中,通过离子交换将金属催化剂预沉积或负载到官能化碳纳米管上,即混合含所述金属催化剂的盐的溶液和官能化碳纳米管,使盐与官能化纳米管的官能团反应并蒸发剩余溶液(例如溶液中的过量溶剂)。或者,通过浸渍或初始润湿将金属催化剂预沉积或负载到碳纳米管上,即用金属盐的溶液润湿大量碳纳米管并蒸发溶剂。或者,可使金属盐在大量碳纳米管存在下从溶液中沉淀,致使所述沉淀的金属盐物理或化学吸附到所述纳米管上,然后蒸发溶剂。
在另一示例性实施方案中,可使用这些相同的负载或沉积步骤(例如离子交换、浸渍、初始润湿、沉淀等)在形成碳纳米管网络结构后将金属催化剂负载或沉积到它上面。
由于阐述了本发明优选实施方案的以下描述,将能确定本发明提供的超过现有技术的其它改进。描述决不用于限制本发明的范围,而仅仅是提供本发明实施方案的工作例。本发明的范围将在附加权利要求中指出。
附图简述
被结合并构成说明书一部分的附图图示了本发明的示例性实施方案。
图1为图示本发明各种实施方案的流程图。
优选实施方案详述
本文提到的所有专利、专利申请和专利公布都被全文引入作为参考。
定义
术语“纳米管”、“纳米纤维”和“原纤”可互换地用于指单壁或多壁碳纳米管。每个都指优选横截面(例如具有边的有角纤维)或直径(例如圆形的)小于1微米(对于多壁纳米管)或小于5nm(对于单壁纳米管)的狭长结构。术语“纳米管”还包括“平向管”和鱼骨形原纤。
“聚集体”是指包括缠结碳纳米管的致密微观颗粒结构。
“集合物”指沿至少一个方向轴具有相对或基本均匀的物理性质并理想地在集合物内的一个或多个面中具有相对或基本均匀物理性质的结构,即它们在这些面内具有各向同性的物理性质。集合物可包括均匀分散的独立互连纳米管或大量连接的纳米管聚集体。在其它实施方案中,整个集合物在其物理性质的一个或多个方面相对或基本各向同性。可容易测量并借此确定均匀性或各向同性的物理性质包括电阻率和光密度。
“graphenic”碳为在形成六边形稠环的基本平面层中碳原子各自连接到三个其它碳原子上的碳形式。层为在直径上只有几个环的薄片,或在长度上具有许多环但在宽度上只有几个环的带。
“石墨”碳由基本彼此平行并相隔不超过3.6埃的层组成。
“内部结构”指碳纳米管结构的内部结构,包括碳纳米管的相对取向、纳米管取向的多样性和总平均值、纳米管彼此的接近性、纤维之间的间隙和空间形成的空隙空间或孔以及由空隙空间和/或孔的连接形成的流道或通路的大小、形状、数目和取向。根据另一种实施方案,结构还可包括与形成集合物的聚集体颗粒的大小、间隔和取向有关的特征。术语“相对取向”指单个纳米管或聚集体相对于其它那些的取向(即排列的对未排列的)。纳米管或聚集体取向的“多样性”和“总平均值”指结构内纳米管取向的范围(相对于结构外部表面的排列和取向)。
“各向同性”是指结构面或体积内物理性质的所有测量值与测量方向无关,为恒定值。应认识到,这种非固体组合物的测量必须在结构的代表性样品上进行,以便考虑空隙空间的平均值。
“大孔”指直径大于或等于50nm的孔。
“中孔”指直径大于或等于2nm但小于50nm的孔。
“微孔”指直径小于2nm的孔。
“非均匀孔结构”指独立的离散纳米管以基本非均匀方式分布并在纳米管之间具有基本不均匀间隔时出现的孔结构。
“物理性质”指多孔结构固有的可测量性质,例如表面积、电阻率、流体流动特性、密度、孔隙率等。
“孔”传统上指催化剂或催化剂载体表面中的开孔或凹陷。包括碳纳米管的催化剂和催化剂载体没有这类传统的孔。相反,在这些材料中,独立纳米管之间的间隔相当于(本文中称为)孔,可通过测量孔径和孔径分布的常规方法(孔隙度测定法)测量纳米管聚集体的等价孔径。通过改变聚集体的密度和结构,可改变等价孔径和孔径分布。
“相对”指在沿结构的轴或在结构平面内或结构体积内(视情况而定)测量时物理性质值的95%在平均值的±20%内。
“基本上”或“主要”指在沿结构的轴或在结构平面内或结构体积内(视情况而定)测量时物理性质值的95%在平均值的±10%内。
“表面积”指可通过本领域中已知的BET技术(一种物理吸附技术)测量的总表面积。氮气或氦气可用作测量表面积的吸附剂。
“均匀孔结构”指独立的离散纳米管或纳米纤维形成结构时出现的孔结构。在这些情况下,颗粒中独立纳米管的分布基本是均匀的,纳米管之间具有基本规则的间隔。这些间隔(类似于常规载体中的孔)随结构的密度而变化。
优选实施方案的方法
本发明提供一种制备包括负载金属的碳纳米管网络结构的负载催化剂的新方法。按照优选实施方案制备的负载催化剂产生金属催化剂在碳纳米管网络结构内的较好分布和较好分散,并因此可产生较好的催化活性。
在优选实施方案中,方法包括负载金属催化剂到碳纳米管上和由负载的碳纳米管形成碳纳米管网络结构。优选地,在负载金属催化剂前,碳纳米管被官能化。
在另一优选实施方案中,方法包括在形成网络结构后负载金属催化剂到碳纳米管网络结构上。
在整个本申请中使用的术语“金属催化剂”包括这类金属催化剂的前体。也就是说,金属催化剂包括金属如钌、锇、铑、铱、钯和铂或它们的混合物,以及其它过渡金属的前体如金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物,其它过渡金属包括但不限于Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或它们的组合。
包含金属催化剂的碳纳米管网络结构表示负载催化剂。当金属催化剂(以金属催化剂前体的形式)被负载到碳纳米管上时,可应用各种处理如煅烧、还原、渗碳、渗氮、磷化和硫化来得到所需的催化剂组合物。
因而,本申请中使用的术语负载催化剂和负载金属催化剂可指以下中的任何一种:其上沉积有金属盐(或活性材料前体)的惰性载体;煅烧或其它预反应处理后的相同材料;或其上具有活性材料的惰性载体,无论在反应区中它呈现什么样的组成。
官能化
在优选实施方案中,碳纳米管(不管是以离散纳米管的形式产生还是制备态的聚集体或两者的混合物)被预沉积或负载金属催化剂,然后负载金属的碳纳米管被制成碳纳米管网络结构。可使用所有类型的碳纳米管,不管是单壁还是多壁。
完成金属催化剂到碳纳米管上预沉积或负载的优选方法是在与金属催化剂或其盐混合前首先官能化碳纳米管表面。使碳纳米管官能化导致官能团如含氧部分取代到碳纳米管表面上,因此产生金属催化剂到碳纳米管表面的较好连接(不管是通过吸附、氢键、粘合、静电吸引、共价键、吸收、范德华力还是能固定、负载、保持或以其它方式保留金属催化剂到碳纳米管表面上的任何其它机理)。讨论了单壁和多壁碳纳米管的关于官能化的相当好的综述文章是Hirsch,A.和Vostrowsky,O.,“Functionalization of Carbon Nanotubes”,Topics in Current Chemistry,(2005)245:193-237页,本文全文引入作为参考。
例如,可通过使碳纳米管接触合适的试剂实现官能化(例如,WO97/32571、美国专利6203814,本文全部引入它们作为参考),或优选通过使它们接触氧化剂如氯酸钾、硫酸、硝酸(HNO3)、过硫酸盐、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)。
在碳纳米管为聚集体形式时,优选破碎或解开聚集体并官能化它们。通过氧化碳纳米管聚集体同时完成这个任务,例如,通过使它们接触氧化剂如氯酸钾、硫酸、硝酸(HNO3)、过硫酸盐、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)。将生产态的聚集体破碎成单独的碳纳米管是优选的(但不是必需的),以便允许官能团更充分分布到碳纳米管表面上,以及更容易地有利于形成碳纳米管结构。因此,当使用氧化剂时,术语“官能化的”和“氧化的”可互换使用。
在一种典型实施方案中,通过使纳米管与臭氧在适合获得所需官能化(在碳纳米管为聚集体形式时,为解开)的条件下接触来氧化碳纳米管。更多细节提供在2004年10月22日提交的题目为“OZONOLYSISOF CARBON NANOTUBES”的美国临时申请No.60/621132中,本文引入作为参考。
用于单壁管的一种特别有用的官能化方法是环加成。参见例如Holzinger,M.等的“[2+1]cycloaddition for cross linkingSWCNTs”,Carbon 42(2004)941-947和Georgakilas,V.等的“Organicfunctionalization of Carbon Nanotubes”,JACS Communications,124(2002)760,761,本文引入这两者作为参考。或者,可按2004年6月23日提交的U.S.S.N.10/875435中所述官能化单壁管,本文引入作为参考。
在沉积或负载金属催化剂后保留的官能团允许独立的碳纳米管形成在位于碳纳米管表面上的官能团之间具有连接分子的碳纳米管网络结构(例如PCT/US97/03553或WO97/32571,本文引入作为参考)。
金属催化剂的预沉积或负载
优选的金属催化剂包括金属如钌、锇、铑、铱、钯和铂或它们的混合物,以及其它过渡金属的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物,所述其它过渡金属包括Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或它们的组合。更优选地,金属催化剂为钯、铂或它们的混合物。
在碳纳米管被预先官能化时,可通过混合金属催化剂材料和碳纳米管来完成金属催化剂到碳纳米管表面上的预沉积或负载。由于官能团存在引起的碳纳米管表面化学的变化,因此可通过吸附、氢键、粘合、静电吸引、共价键、吸收、范德华力还是能固定、负载、保持或以其它方式保留金属催化剂到碳纳米管表面上的任何其它机理来保持或负载金属催化剂到碳纳米管表面上。在官能团用于随后连接单独的纳米管形成碳纳米管结构时,优选沉积或负载到碳纳米管表面上的金属数量不超过或以其它方式“用完”需要在碳纳米管表面上保持或负载金属催化剂的官能团。换句话说,优选在预沉积或负载金属催化剂后在碳纳米管表面上保留有自由的官能团。
此外,金属催化剂可以以盐或衍生物的形式或以含金属胶束的形式被引入到碳纳米管上。如前所述,这些形式通常被称为金属催化剂的前体,但包括在本申请所使用的术语金属催化剂内。例如,金属可以以水溶性盐如硝酸盐、醋酸盐或氯化物的形式被引入到碳纳米管内。作为盐负载到碳纳米管上的金属催化剂然后优选通过还原剂被还原,以进一步完成金属催化剂到碳纳米管表面上的沉积。另外,在作为溶液中的金属盐引入的金属催化剂情况下,优选随后蒸发溶液的溶剂组分。
可使用任何常规混合设备或装置。可相应调整因素如混合速度或时间,以有利于碳纳米管和金属催化剂的接触,和在整个混合物内充分散布金属催化剂,以便形成金属催化剂在碳纳米管上的较好分布。
实现金属催化剂到碳纳米管表面上的预沉积的其它方法包括但不限于浸渍、初始润湿、离子交换、沉淀、物理或化学吸附和共沉淀。
上面沉积了金属催化剂的碳纳米管将被称为“预沉积的碳纳米管”或“负载金属的碳纳米管”。
碳纳米管网络结构
一旦金属催化剂被沉积到碳纳米管的表面上,则随后使用如前所述的常规方法将这些负载金属的碳纳米管用于形成碳纳米管网络结构。
优选地,负载金属的碳纳米管被官能化,例如,通过使它们与合适的试剂如WO97/32571或美国专利6203814中所述那些接触,全部引入它们作为参考。或者,通过用氧化剂如氯酸钾(KClO3)、硫酸(H2SO4)、硝酸(HNO3)、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等氧化(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)来官能化负载金属的碳纳米管。典型的连接分子为双官能化合物如二胺、二醇等。
根据优选实施方案,由于在形成碳纳米管网络结构前,金属催化剂已经以离散形式被沉积、散布和分布在整个碳纳米管内,因此结果是碳纳米管网络结构本身将具有更大和/或甚至更均匀的金属催化剂在整个网络结构和网络结构内部的分布。另外,由于碳纳米管网络结构的孔隙率特性(例如更多的中孔和大孔),金属催化剂对于反应的可及性和可用性大于在以前制备的其它负载催化剂结构中。这种可用性改善对于液相反应尤其明显,此时为了液相反应物达到内部金属催化剂而需要较大的孔。
在优选的另一实施方案中,在负载催化剂前可首先形成碳纳米管结构。因此,碳纳米管被官能化,例如,通过使它们与合适的试剂如WO97/32571或美国专利6203814中所述那些接触,全部引入它们作为参考。或者,通过用氧化剂如氯酸钾(KClO3)、硫酸(H2SO4)、硝酸(HNO3)、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3、ClO2等氧化(例如美国专利5965470、WO95/07316、PCT/US00/18670或WO01/07694,本文全部引入它们作为参考)来官能化碳纳米管。然后加入连接分子如双官能化合物如二胺、二醇等形成碳纳米管网络结构。一旦形成,就使用先前描述的负载/沉积方法(例如离子交换、浸渍或初始润湿、沉淀、物理或化学吸附或共沉淀等)中的任何一种将金属催化剂负载到碳纳米管网络结构上。
这些催化组合物可用作催化以下反应的催化剂:氢化、加氢脱硫、加氢脱氮、加氢脱金属、加氢脱氧、加氢脱芳环、脱氢、氢解、异构化、烷基化、脱烷基化、烷基交换作用、加氢甲酰化、水煤气变换、费-托合成、COx-自由氢产生、氨合成、电催化、氧化、氟化和NOx还原。
实施例
实施例是说明性的,不被认为限制本发明的范围。可对本发明作出大量变化和改进。本文实施例中使用的材料可容易地在商业上得到。
在下面的所有试验中,都使用Hyperion CatalysisInternational of Cambridge,Massachusetts制造的碳纳米管聚集体。碳纳米管聚集体为棉花糖(“CC”)形貌,也称为精梳纱(“CY”)。
实施例1
碳纳米管网络
通过用多官能连接剂的分子将大量纳米管结合到一起制备碳纳米管网络。连接剂可具有两个或多个相同或不同的反应基团,从而连接剂分子上的至少一个官能团将与一个纳米管反应,相同连接剂分子上的至少第二官能团与第二纳米管反应,借此共价连接两个纳米管到一起。多官能连接剂上的官能团可相同或不同,并可被选择直接与未官能化的纳米管反应或被选择与纳米管上已存在的官能团反应。
使用二胺连接剂连接具有羧基官能团的碳纳米管。在双颈圆底烧瓶中在6M硝酸中浆化碳纳米管。烧瓶在一个颈中配备有带水夹套的冷凝器,在另一个颈中配备有带Teflon叶片的悬挂式搅拌器。设定浆液到搅拌和加热到回流1-24小时,在此期间,纳米管被氧化,形成羧基和其它含氧官能团。通过酸碱滴定分析官能化程度。羧基主要在纳米管的端上,尤其在MWNT的情况下,在纳米管的侧壁部位上。
通过使用1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺进行碳二亚胺偶合将羧基化纳米管活化成N-羟基琥珀酰亚胺(NHS)酯。然后用二氧己环和甲醇洗涤纳米管,然后在真空中干燥产生NHS酯-活化的纳米管。
通过在0.2M NaHCO3中加入乙二胺利用二胺(乙二胺)使NHS酯活化的纳米管交联,形成浓缩浆液或糊,以保持发生连接的大量纳米管-纳米管接触点。连接反应在室温下进行4小时。用水、甲醇、醋酸乙酯、甲醇、水和碳酸氢钠(0.2M,pH 8.0)洗涤得到的纳米管连接网络。最后,通过过滤将滤饼形成为丛,或如其它地方所公开的通过挤出形成为挤出物。
实施例2
经过网络形成后沉积的碳纳米管网络负载催化剂
官能化碳纳米管包含各种不同的官能团,例如,阴离子型(例如-SO3H、-COOH)、阳离子型(例如-N(R1,R2,R3)+)或程度不同的络合有机基团如氨基、酰胺、酯、腈、环氧或其它活性中心。然后可通过制备官能化碳纳米管、利用离子交换或用金属化合物浸渍并还原金属化合物到金属态来金属化,进行负载金属的碳纳米管复合材料的制备。
将30ml 0.25wt%PdCl2/HCl溶液装到具有20ml水的烧瓶中。此时溶液的pH为大约4。将实施例1中制备的包含碳纳米管网络的1.001g CNT丛加入到溶液中。在室温下搅拌浆液24小时。过滤浆液产生亮黄色滤液,表明不是所有的Pd离子都被负载到原纤表面上。在用DI水充分洗涤后,在真空中在110℃下干燥滤饼过夜。
发现对于利用离子交换在碳纳米纤维上负载钯,金属载量至多为3wt%(M.L.Toebes,F.F.Prinsloo,J.H.Bitter,A.J.van Dillenand K.P.de Jong,“Synthesis and characterization of carbonnanofibers upported ruthenium catalysts”,在Studies inSurface Science and Catalysis,143卷202页中)。因此,用H2在300℃下还原2小时的样品的CO化学吸附表明,Pd分散度和粒径为33.4%和3.4nm,如果假定3wt%Pd载量的话。
实施例3
经过网络形成前沉积的碳纳米管网络负载催化剂
还可通过离子交换或浸渍途径将金属催化剂预沉积到官能化碳纳米管上。通过初始润湿浸渍制备负载在碳纳米管上的Pd催化剂。首先,将10克CC-型碳纳米管放在250-cc圆底烧瓶中,并在回流条件下用63%硝酸氧化4小时。在用去离子水充分洗涤后,用Pd(NO3)2/丙酮溶液浸渍氧化的纳米管产生5%的金属载量。
然后通过使用1-乙基-3-(3-二甲基氨基丙基)-碳二亚胺进行碳二亚胺偶合将负载Pd的纳米管活化成N-羟基琥珀酰亚胺(NHS)酯。然后用二氧己环和甲醇洗涤产物,然后在真空中干燥产生NHS酯-活化的纳米管。
通过在0.2M NaHCO3中加入乙二胺利用二胺(乙二胺)使NHS酯活化的纳米管交联,形成浓缩浆液或糊,以保持发生连接的大量纳米管-纳米管接触点。连接反应在室温下进行4小时。用水、甲醇、醋酸乙酯、甲醇、水和碳酸氢钠(0.2M,pH 8.0)洗涤得到的纳米管连接网络。最后,通过过滤将滤饼形成为丛,或如其它地方所公开的通过挤出形成为挤出物。
用H2在300℃下还原2小时的样品的CO化学吸附表明,Pd分散度和粒径为44%和2.5nm。
实施例4
在碳纳米管网络负载催化剂上氢化硝基苯
硝基苯的氢化通常被认为是强放热反应并且在许多金属上非常快。过程通常受扩散限制。当碳纳米管网络用作催化剂载体时,消除了使用活性炭作为载体时由无定形碳的微孔产生的扩散限制。因此,与常规活性炭或碳黑负载催化剂相比,这种催化剂提供了较好的性能。
在具有悬挂式搅拌器的三颈圆底烧瓶中在环境温度和压力下进行反应。将按照实施例2制备的0.050g催化剂放到具有50ml异丙醇的烧瓶中。在加入反应物前,通过在搅拌下鼓入氢气2小时原位还原催化剂。向浆液中加入50ml在2-丙醇中的10vol%硝基苯。通过使用装有过滤器的注射器每30分钟取出少量样品(在开始45分钟内每15分钟)直到硝基苯完全消耗,这通过装备有FID和3%OV-17/ChromosorbW-HP柱的GC测定。发现180分钟后硝基苯的转化率达到100%。
使用的术语和表达用作描述性而不是限制性术语,不打算在使用这类术语或表达时排除作为其一部分显示和描述的特征的任何等价物,应认识到,在本发明的范围内,各种变化都是可能的。
因此,尽管描述了目前认为是本发明优选实施方案的实施方案,但本领域那些技术人员能认识到,只要不脱离本发明的真实范围,就可作出其它和进一步改变,打算包括所有这种改变和变化在权利要求的范围内。

Claims (10)

1.一种制备负载催化剂的方法,包括步骤:
将金属催化剂负载到碳纳米管上;和
用连接剂由所述负载金属的碳纳米管形成碳纳米管网络结构。
2.一种制备负载催化剂的方法,包括步骤:
用连接剂形成碳纳米管网络结构;和
将金属催化剂负载到所述碳纳米管网络结构上。
3.权利要求1的方法,其中所述金属催化剂选自钌、锇、铑、铱、钯、铂,或Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或其组合的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物。
4.权利要求2的方法,其中所述金属催化剂选自钌、锇、铑、铱、钯、铂,或Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或其组合的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物。
5.一种制备负载催化剂的方法,包括步骤:
用氧化剂官能化碳纳米管形成官能化的碳纳米管,
将金属催化剂负载到所述官能化的碳纳米管上形成负载金属的碳纳米管,所述金属催化剂选自钌、锇、铑、铱、钯、铂,或Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或其组合的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物;和
用连接剂由所述负载金属的碳纳米管形成碳纳米管网络结构。
6.权利要求5的方法,其中所述氧化剂选自氯酸钾、硫酸、硝酸(HNO3)、过硫酸盐、过氧化氢(H2O2)、CO2、O2、水蒸汽、N2O、NO、NO2、O3或ClO2
7.权利要求5的方法,其中所述连接剂为二胺。
8.权利要求5的方法,其中通过混合包含所述金属催化剂的盐的溶液和所述官能化的碳纳米管并蒸发所述溶液将所述金属催化剂负载到所述官能化的碳纳米管上。
9.权利要求5的方法,其中通过浸渍、初始润湿、离子交换、沉淀、物理或化学吸附或共沉淀将所述金属催化剂负载到所述官能化的碳纳米管上。
10.一种制备负载催化剂的方法,包括步骤:
用氧化剂官能化碳纳米管形成官能化的碳纳米管,
用连接剂由所述官能化的碳纳米管形成碳纳米管网络结构,
负载金属催化剂到所述碳纳米管网络结构上形成负载金属的碳纳米管网络结构,所述金属催化剂选自钌、锇、铑、铱、钯、铂,或Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、La、Ce、W或其组合的金属氧化物、金属卤化物、金属碳化物、金属氮化物、金属磷化物和金属硫化物。
CN2005800466388A 2004-11-16 2005-11-16 制备负载在碳纳米管网络上的催化剂的方法 Expired - Fee Related CN101103144B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US62846904P 2004-11-16 2004-11-16
US60/628,469 2004-11-16
PCT/US2005/041605 WO2006055670A2 (en) 2004-11-16 2005-11-16 Methods for preparing catalysts supported on carbon nanotube networks

Publications (2)

Publication Number Publication Date
CN101103144A true CN101103144A (zh) 2008-01-09
CN101103144B CN101103144B (zh) 2013-02-06

Family

ID=36407734

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2005800463036A Expired - Fee Related CN101098991B (zh) 2004-11-16 2005-11-16 用于由载有金属的碳纳米管制备负载型催化剂的方法
CN2005800466388A Expired - Fee Related CN101103144B (zh) 2004-11-16 2005-11-16 制备负载在碳纳米管网络上的催化剂的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN2005800463036A Expired - Fee Related CN101098991B (zh) 2004-11-16 2005-11-16 用于由载有金属的碳纳米管制备负载型催化剂的方法

Country Status (10)

Country Link
US (3) US20060142148A1 (zh)
EP (2) EP1828447B1 (zh)
JP (2) JP2008520413A (zh)
CN (2) CN101098991B (zh)
AT (2) ATE482029T1 (zh)
CA (2) CA2588124A1 (zh)
DE (2) DE602005023777D1 (zh)
DK (2) DK1828447T3 (zh)
MX (2) MX2007005797A (zh)
WO (2) WO2006060168A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814345A (zh) * 2010-05-22 2010-08-25 西南交通大学 一种疏松的三维立体宏观碳纳米管网的制备方法
CN102471695A (zh) * 2009-12-29 2012-05-23 埃克森美孚研究工程公司 用低纯度含氢气料流加氢处理生物组分原料的方法
CN102471698A (zh) * 2009-07-17 2012-05-23 埃克森美孚研究工程公司 用fcc废气加氢处理生物组分原料
CN102856611A (zh) * 2012-04-09 2013-01-02 中南大学 一种锂空气电池用微纳结构正极材料
CN104136661A (zh) * 2012-02-28 2014-11-05 德国马普弗利兹-哈伯无机化学研究所 使用碳负载MnOX的复合材料电解分解水
CN108377638A (zh) * 2018-03-06 2018-08-07 南京航空航天大学 一种Co/C复合电磁吸波剂及其制备方法
CN110961093A (zh) * 2018-09-28 2020-04-07 中国石油化工股份有限公司 Cr-Zr-O/TiO2-C纳米管催化剂及其制备方法和应用
CN113151856A (zh) * 2021-04-20 2021-07-23 中国矿业大学 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN117107388A (zh) * 2023-09-27 2023-11-24 东莞信鸿工程塑料有限公司 一种抗菌阻燃聚酰胺纤维材料及其制备方法

Families Citing this family (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100021800A1 (en) * 2008-07-24 2010-01-28 Rachid Yazami Carbon cathodes for fluoride ion storage
US8143189B2 (en) * 2008-03-12 2012-03-27 Uchicago Argonne, Llc Subnanometer and nanometer catalysts, method for preparing size-selected catalysts
JP3974646B2 (ja) * 2004-07-06 2007-09-12 三菱商事株式会社 微細炭素繊維・金属複合材料及びその製造方法
JP4019123B2 (ja) * 2004-09-06 2007-12-12 三菱商事株式会社 炭素繊維Ti−Al複合材料及びその製造方法
CA2588124A1 (en) * 2004-11-16 2006-06-08 Hyperion Catalysis International, Inc. Method for preparing supported catalysts from metal loaded carbon nanotubes
US7923403B2 (en) * 2004-11-16 2011-04-12 Hyperion Catalysis International, Inc. Method for preparing catalysts supported on carbon nanotubes networks
WO2006065431A2 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
US20060223243A1 (en) * 2005-03-30 2006-10-05 Marko Radosavljevic Carbon nanotube - metal contact with low contact resistance
WO2008051239A2 (en) * 2005-11-16 2008-05-02 Hyperion Catalysis International, Inc. Mixed structures of single walled and multi walled carbon nanotubes
US20070161501A1 (en) * 2006-01-10 2007-07-12 Atomic Energy Council - Institute Of Nuclear Energy Research Method for making carbon nanotube-supported platinum alloy electrocatalysts
KR20080092983A (ko) * 2006-02-07 2008-10-16 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 탄소나노튜브의 기상 기능화
US8119032B2 (en) 2006-02-07 2012-02-21 President And Fellows Of Harvard College Gas-phase functionalization of surfaces including carbon-based surfaces
US8940332B2 (en) 2006-05-18 2015-01-27 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of podophyllotoxins
DE102006024550A1 (de) * 2006-05-23 2007-11-29 Bayer Materialscience Ag Temperaturstabiler Katalysator für die Gasphasenoxidation
US20080020924A1 (en) * 2006-07-19 2008-01-24 Atomic Energy Council-Institute Of Nuclear Energy Research Method of fabricating platinum alloy electrocatalysts for membrane fuel cell applications
CA2664852A1 (en) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of resorcinol derivatives
US7770646B2 (en) * 2006-10-09 2010-08-10 World Energy Systems, Inc. System, method and apparatus for hydrogen-oxygen burner in downhole steam generator
US7712528B2 (en) * 2006-10-09 2010-05-11 World Energy Systems, Inc. Process for dispersing nanocatalysts into petroleum-bearing formations
WO2008127396A2 (en) * 2006-11-02 2008-10-23 Ohio University A solution synthesis of carbon nanotube/metal-containing nanoparticle conjugated assemblies
JP5194455B2 (ja) * 2007-01-22 2013-05-08 三菱化学株式会社 気相成長炭素繊維製造用触媒及び気相成長炭素繊維
US20080213367A1 (en) * 2007-03-01 2008-09-04 Cromoz Inc. Water soluble concentric multi-wall carbon nano tubes
JP5349318B2 (ja) 2007-09-28 2013-11-20 日本化薬株式会社 ステロイド類の高分子結合体
US20110014550A1 (en) * 2007-12-14 2011-01-20 Nanyang Technological University Nanostructured material loaded with noble metal particles
US8951473B2 (en) 2008-03-04 2015-02-10 Massachusetts Institute Of Technology Devices and methods for determination of species including chemical warfare agents
WO2009116509A1 (ja) 2008-03-18 2009-09-24 日本化薬株式会社 生理活性物質の高分子結合体
JP5453732B2 (ja) * 2008-05-06 2014-03-26 株式会社豊田自動織機 触媒前駆体、触媒材料およびそれらの製造方法
WO2009136572A1 (ja) 2008-05-08 2009-11-12 日本化薬株式会社 葉酸若しくは葉酸誘導体の高分子結合体
DE102008028070A1 (de) * 2008-06-12 2009-12-17 Bayer Technology Services Gmbh Katalysator und Verfahren zur Hydrierung von organischen Verbindungen
WO2010005548A2 (en) * 2008-07-07 2010-01-14 Northwestern University Functionalization of carbon nanotubes with metallic moieties
KR20130081294A (ko) * 2008-08-29 2013-07-16 엑손모빌 케미칼 패턴츠 인코포레이티드 페놀 제조 방법
CN102210042B (zh) * 2008-09-08 2016-01-20 新加坡南洋理工大学 用于金属-空气电池、燃料电池元和超级电容器的电极材料
US9099253B2 (en) * 2008-10-21 2015-08-04 Brookhaven Science Associates, Llc Electrochemical synthesis of elongated noble metal nanoparticles, such as nanowires and nanorods, on high-surface area carbon supports
US20100124713A1 (en) * 2008-11-17 2010-05-20 Xerox Corporation Toners including carbon nanotubes dispersed in a polymer matrix
EP2196260A1 (en) * 2008-12-02 2010-06-16 Research Institute of Petroleum Industry (RIPI) Hydrodesulphurization nanocatalyst, its use and a process for its production
CN102421827B (zh) 2009-05-15 2014-07-30 日本化药株式会社 具有羟基的生理活性物质的高分子结合体
KR101038750B1 (ko) * 2009-05-20 2011-06-03 한국에너지기술연구원 탄소나노튜브의 내부 채널에 금속촉매 나노입자가 담지된 탄소나노튜브 촉매 및 이의 제조방법
CN101920195B (zh) * 2009-06-09 2012-09-05 中国石油化工股份有限公司 一种以纳米碳纤维为载体的对苯二甲酸加氢精制催化剂的制备方法
US8387692B2 (en) * 2009-07-17 2013-03-05 World Energy Systems Incorporated Method and apparatus for a downhole gas generator
CN102039121B (zh) 2009-10-21 2013-06-05 中国科学院大连化学物理研究所 一种铂/碳纳米管催化剂及制法和应用
US9242227B2 (en) 2010-02-05 2016-01-26 Exxonmobil Chemical Patents Inc. Dehydrogenation catalyst and process
WO2011096999A2 (en) 2010-02-05 2011-08-11 Exxonmobil Chemical Patents Inc. Cyclohexanone dehydrogenation catalyst and process
US20110207972A1 (en) * 2010-02-23 2011-08-25 Battelle Memorial Institute Catalysts and processes for the hydrogenolysis of glycerol and other organic compounds for producing polyols and propylene glycol
CA2792597C (en) 2010-03-08 2015-05-26 World Energy Systems Incorporated A downhole steam generator and method of use
CA2712051A1 (en) * 2010-08-12 2012-02-12 The Governors Of The University Of Alberta Method of fabricating a carbon nanotube array
SG10201503888PA (en) 2010-06-25 2015-06-29 Exxonmobil Chem Patents Inc Dehydrogenation process
FR2962140B1 (fr) * 2010-07-05 2012-08-17 Centre Nat Rech Scient Procede de formation d'un depot metallique a la surface d'un substrat et applications
US20120016167A1 (en) * 2010-07-15 2012-01-19 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feeds with low pressure hydrogen-containing streams
US20120171093A1 (en) * 2010-11-03 2012-07-05 Massachusetts Institute Of Technology Compositions comprising functionalized carbon-based nanostructures and related methods
US20120115692A1 (en) * 2010-11-04 2012-05-10 Daryl Bussen Stable Exercise Apparatus
CA2816997A1 (en) 2010-11-17 2012-05-24 Nippon Kayaku Kabushiki Kaisha Novel polymer derivative of cytidine metabolic antagonist
US8394997B2 (en) 2010-12-09 2013-03-12 Eastman Chemical Company Process for the isomerization of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
US8420869B2 (en) 2010-12-09 2013-04-16 Eastman Chemical Company Process for the preparation of 2,2,4,4-tetraalkylcyclobutane-1,3-diols
CN102688744A (zh) * 2011-03-24 2012-09-26 长江大学 一种载铈活性炭的制备方法
EP2514524A1 (en) * 2011-04-21 2012-10-24 Research Institute of Petroleum Industry (RIPI) Nanocatalyst and process for removing sulfur compounds from hydrocarbons
CN103764553B (zh) * 2011-06-23 2016-05-11 分子钢筋设计有限责任公司 纳米片-纳米管复合材料、其生产方法以及由其获得的产品
US9997785B2 (en) 2011-06-23 2018-06-12 Molecular Rebar Design, Llc Nanoplate-nanotube composites, methods for production thereof and products obtained therefrom
JP5765709B2 (ja) * 2011-07-15 2015-08-19 国立研究開発法人物質・材料研究機構 アミン官能化メソ細孔カーボンナノケージおよびその製造方法
BR112014005452B1 (pt) 2011-09-11 2021-03-16 Nippon Kayaku Kabushiki Kaisha método de produção de copolímero de bloco
US20150175876A1 (en) * 2011-10-03 2015-06-25 The Board Of Regents Of The University Of Oklahoma Method and foam composition for recovering hydrocarbons from a subterranean reservoir
US8912525B2 (en) 2011-12-16 2014-12-16 International Business Machines Corporation Chemical oxidation of graphene and carbon nanotubes using Cerium (IV) ammonium nitrate
US9663369B2 (en) 2011-12-16 2017-05-30 International Business Machines Corporation Cerium (IV) salts as effective dopant for carbon nanotubes and graphene
US20150041722A1 (en) * 2012-03-12 2015-02-12 Kunming University Of Science And Technology Process For Purifying Tail Gas From Ore-Smelting Electrical Furnace by Catalytic Oxidization
US20130256123A1 (en) 2012-04-02 2013-10-03 King Abdulaziz City For Science And Technology Electrocatalyst for electrochemical conversion of carbon dioxide
WO2013152144A1 (en) 2012-04-05 2013-10-10 The Research Foundation Of State University Of New York Three-dimensional carbon structures
DE102012209634A1 (de) * 2012-06-08 2013-12-12 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verwendung von thermisch behandelten geträgerten Kobaltkatalysatoren zur Hydrierung von Nitroaromaten
US20140030171A1 (en) * 2012-07-27 2014-01-30 Ripi Nanocatalyst and Process for Removing Sulfur Compounds from Hydrocarbons
RU2624004C2 (ru) * 2012-08-22 2017-06-30 Рисерч Инститьют Питроулеум Индастри (Рипи) Нанокатализатор и способ для удаления соединений серы из углеводородов
TWI482192B (zh) 2012-08-22 2015-04-21 Univ Nat Defense 場發射陰極元件之製造方法、其場發射陰極元件及其場發射發光燈源
ES2907515T3 (es) 2012-10-16 2022-04-25 Martin Bakker Catálisis por nanopartículas metálicas dispersas en un material de carbono jerárquicamente poroso
GB201220691D0 (en) * 2012-11-16 2013-01-02 Univ Bath A catalyst
CN103007965B (zh) * 2013-01-11 2014-08-13 南京大学 一种钛基碳纳米管负载铜钯双金属催化剂及其制备方法
JP6135166B2 (ja) * 2013-02-13 2017-05-31 日本ゼオン株式会社 酸化還元触媒、電極材料、電極、太陽電池、燃料電池、および窒素酸化物除去触媒
CN103691428A (zh) * 2013-12-26 2014-04-02 大连大学 一种炭载贵金属催化剂的制备方法
KR101614283B1 (ko) 2014-07-08 2016-04-21 전북대학교 산학협력단 Cnt-pzt 나노입자 복합체, 그를 이용한 압전소자 및 그의 제조방법
CN104437358B (zh) * 2014-10-20 2015-09-23 深圳市富可森机械设备有限公司 一种同时吸附废气中重金属离子和挥发性有机物的复合吸附材料的制备方法
CN104258689B (zh) * 2014-10-20 2015-09-16 浙江文国重工机械有限公司 一种同时吸附废气中重金属离子和挥发性有机物的吸附柱
CN104437537A (zh) * 2014-11-18 2015-03-25 福州大学 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法
CN105694009A (zh) * 2014-11-25 2016-06-22 上海凯众材料科技股份有限公司 锆/铈-蒙脱土复合催化剂和聚酯二元醇的制备方法
US9238603B1 (en) 2014-12-10 2016-01-19 Eastman Chemical Company Batch process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol
US9238602B1 (en) 2014-12-10 2016-01-19 Eastman Chemical Company Process for the preparation of cis-2,2,4,4-tetramethylcyclobutane-1,3-diol
CN104594021A (zh) * 2015-02-13 2015-05-06 武汉大学 基于软硬酸碱理论的巯基棉后修饰材料及其制备与应用
EP3317380A4 (en) * 2015-06-30 2019-03-06 Hindustan Petroleum Corporation Ltd. SUPPORTED CATALYST FOR REFINERY RESIN CHILLING PHASE HYDROCRACKING AND PREPARATION METHOD THEREOF
WO2017024421A1 (zh) * 2015-08-12 2017-02-16 华北电力大学(保定) 一种多壁纳米碳管催化剂及其制备方法和应用
SG10202005661YA (en) * 2016-01-14 2020-07-29 Agency Science Tech & Res Free-standing mof-derived hybrid porous carbon nanofiber mats
US10195587B2 (en) 2016-03-04 2019-02-05 The Board Of Trustees Of The University Of Alabama Synthesis of hierarchically porous monoliths by a co-gelation method
CN106215949A (zh) * 2016-08-02 2016-12-14 上海应用技术学院 一种低温选择性催化还原脱硝催化剂及其制备方法
CN106423233A (zh) * 2016-09-12 2017-02-22 天津大学 过渡金属磷化物催化剂及制备方法及在愈创木酚氢解反应中的应用
US11167247B2 (en) 2017-02-15 2021-11-09 Nanolc-12, Llc Length-based separation of carbon nanotubes
CN109304199B (zh) * 2017-07-28 2022-03-11 中国石油化工股份有限公司 一种含杂原子纳米碳材料及其制备方法以及一种硫醚氧化方法
US11505467B2 (en) 2017-11-06 2022-11-22 Massachusetts Institute Of Technology High functionalization density graphene
CN108310969B (zh) * 2018-02-26 2021-06-01 江苏中科纳特环境科技有限公司 一种室外空气净化模块和净化方法
US11079387B2 (en) * 2018-04-12 2021-08-03 Zahra Borzooeian Length-based carbon nanotube ladders
US11353424B2 (en) 2018-04-12 2022-06-07 Nano LC-12, LLC Length-based carbon nanotube ladders
CN110577208B (zh) * 2019-08-18 2022-11-18 复旦大学 一种亲钠性导电碳纳米管骨架材料及其制备方法和应用
CN110586153A (zh) * 2019-08-27 2019-12-20 浙江工业大学 碳纳米管内嵌金属粒子催化剂在氨分解反应中的应用
CN111545219B (zh) * 2020-05-01 2023-04-28 陕西元亨医药科技有限责任公司 一种催化剂及其制备方法
CN111924826B (zh) * 2020-07-22 2022-05-27 中国科学院金属研究所 一种窄直径分布、高纯度金属性单壁碳纳米管的制备方法
CN112108139B (zh) * 2020-09-29 2023-05-09 西安凯立新材料股份有限公司 一种硝基苯液相加氢合成苯胺用催化剂及其制备方法
EP3988207A1 (en) 2020-10-22 2022-04-27 Bestrong International Limited Supported metal structure
CN113101934A (zh) * 2021-04-19 2021-07-13 天津大学 一种负载原子级分散金属的碳纳米管催化剂的制备方法及应用
CN113368857B (zh) * 2021-04-29 2022-08-12 中国环境科学研究院 体相金属间化合物负载催化剂的制备方法
WO2023077130A1 (en) * 2021-11-01 2023-05-04 Cdti Advanced Materials Inc. Electrocatalyst, method of making the electrocatalyst, and systems including the electrocatalyst
CN114797826A (zh) * 2022-04-29 2022-07-29 西安工业大学 一种含碳纳米管双活性脱硫剂的制备方法
CN115254089A (zh) * 2022-07-21 2022-11-01 湖北展鹏电子材料有限公司 一种碳纳米管基-TiO2复合纳米材料及其制备方法和应用
CN115282959B (zh) * 2022-07-26 2024-02-27 万华化学集团股份有限公司 一种碳纳米管负载的Ru-Nb-Ce三金属催化剂、方法及其在制备椰子醛中的应用
CN116002842B (zh) * 2022-12-22 2024-04-12 昆明理工大学 碳纳米管负载型催化剂活化过氧乙酸降解卡马西平的方法
CN115845840A (zh) * 2022-12-23 2023-03-28 辽宁大学 一种石墨烯负载原子级分散钯基催化剂及其制备方法和应用

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707916A (en) * 1984-12-06 1998-01-13 Hyperion Catalysis International, Inc. Carbon fibrils
US4663230A (en) 1984-12-06 1987-05-05 Hyperion Catalysis International, Inc. Carbon fibrils, method for producing same and compositions containing same
US6375917B1 (en) * 1984-12-06 2002-04-23 Hyperion Catalysis International, Inc. Apparatus for the production of carbon fibrils by catalysis and methods thereof
US5171560A (en) * 1984-12-06 1992-12-15 Hyperion Catalysis International Carbon fibrils, method for producing same, and encapsulated catalyst
US5165909A (en) * 1984-12-06 1992-11-24 Hyperion Catalysis Int'l., Inc. Carbon fibrils and method for producing same
US4666230A (en) * 1984-12-27 1987-05-19 Microwave Systems & Technology, Inc. Coaxial cable connector assembly
AU3182189A (en) 1988-01-28 1989-08-25 Hyperion Catalysis International Carbon fibrils
KR940000623B1 (ko) * 1989-05-15 1994-01-26 히페리온 카탈리시스 인터내셔날 마이크로 탄소섬유 산화처리방법
ZA907803B (en) 1989-09-28 1991-07-31 Hyperion Catalysis Int Electrochemical cells and preparing carbon fibrils
AU653500B2 (en) 1989-09-28 1994-10-06 Hyperion Catalysis International, Inc. Battery
US5569635A (en) * 1994-05-22 1996-10-29 Hyperion Catalysts, Int'l., Inc. Catalyst supports, supported catalysts and methods of making and using the same
NZ253431A (en) * 1992-05-22 1996-12-20 Hyperion Catalysis Int Catalysts for the production of carbon fibrils; fibrils and catalysts therefrom
IL109497A (en) * 1993-05-05 1998-02-22 Hyperion Catalysis Int Three-dimensional macroscopic clusters of randomly arranged charcoal fibrils and products containing these
US5424054A (en) 1993-05-21 1995-06-13 International Business Machines Corporation Carbon fibers and method for their production
JPH07102120A (ja) 1993-09-10 1995-04-18 Hyperion Catalysis Internatl Inc 炭素フィブリル含有ゴム組成物および空気入りタイヤ
US5456987A (en) * 1993-10-27 1995-10-10 Xerox Corporation Intermediate transfer component coatings of titamer and grafted titamer
US6203814B1 (en) 1994-12-08 2001-03-20 Hyperion Catalysis International, Inc. Method of making functionalized nanotubes
RU2200562C2 (ru) * 1996-03-06 2003-03-20 Хайперион Каталайзис Интернэшнл, Инк. Функционализованные нанотрубки
CN1230283A (zh) * 1996-05-15 1999-09-29 海珀里昂催化国际有限公司 用于电化学电容器中的纳米级石墨纤维
JP4128628B2 (ja) * 1996-05-15 2008-07-30 ハイピリオン カタリシス インターナショナル インコーポレイテッド 堅い多孔質炭素構造体及びその製造方法
US6221330B1 (en) 1997-08-04 2001-04-24 Hyperion Catalysis International Inc. Process for producing single wall nanotubes using unsupported metal catalysts
WO2000026138A1 (en) 1998-11-03 2000-05-11 William Marsh Rice University Gas-phase nucleation and growth of single-wall carbon nanotubes from high pressure co
US6514897B1 (en) * 1999-01-12 2003-02-04 Hyperion Catalysis International, Inc. Carbide and oxycarbide based compositions, rigid porous structures including the same, methods of making and using the same
US6809229B2 (en) * 1999-01-12 2004-10-26 Hyperion Catalysis International, Inc. Method of using carbide and/or oxycarbide containing compositions
US6333016B1 (en) * 1999-06-02 2001-12-25 The Board Of Regents Of The University Of Oklahoma Method of producing carbon nanotubes
EP1226294B1 (en) 1999-07-21 2011-06-29 Hyperion Catalysis International, Inc. Methods of oxidizing multiwalled carbon nanotubes
CN100366528C (zh) * 1999-10-27 2008-02-06 威廉马歇莱思大学 碳质毫微管的宏观有序集合体
TW515129B (en) * 2000-09-29 2002-12-21 Sony Corp Method for manufacturing gas diffusion electrode and method for manufacturing electrochemical device
JP2002110178A (ja) * 2000-09-29 2002-04-12 Sony Corp ガス拡散電極の製造方法及び電気化学デバイスの製造方法
IL142254A0 (en) * 2001-03-26 2002-03-10 Univ Ben Gurion Method for the preparation of stable suspensions of single carbon nanotubes
US6872681B2 (en) * 2001-05-18 2005-03-29 Hyperion Catalysis International, Inc. Modification of nanotubes oxidation with peroxygen compounds
US6656339B2 (en) * 2001-08-29 2003-12-02 Motorola, Inc. Method of forming a nano-supported catalyst on a substrate for nanotube growth
US6713519B2 (en) * 2001-12-21 2004-03-30 Battelle Memorial Institute Carbon nanotube-containing catalysts, methods of making, and reactions catalyzed over nanotube catalysts
US7148269B2 (en) * 2002-03-11 2006-12-12 Trustees Of The University Of Pennsylvania Interfacial polymer incorporation of nanotubes
US6986896B2 (en) * 2002-03-20 2006-01-17 Bradley Pharmaceuticals, Inc. Method of treating fungal conditions of the skin
TWI237064B (en) * 2002-03-25 2005-08-01 Ind Tech Res Inst Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same
JP2004026623A (ja) * 2002-05-10 2004-01-29 Sony Corp 水素吸蔵用複合体材料、その使用方法及びその製造方法、及び水素吸蔵材料及びその使用方法
JP4266752B2 (ja) * 2002-11-01 2009-05-20 三菱レイヨン株式会社 カーボンナノチューブ含有組成物及びその調製方法、またそれを用いた複合体及びその製造方法
US7345005B2 (en) * 2003-02-13 2008-03-18 E.I. Du Pont De Nemours And Company Electrocatalysts and processes for producing
JP2005125187A (ja) * 2003-10-22 2005-05-19 Fuji Xerox Co Ltd ガス分解器、燃料電池用電極およびその製造方法
US7122165B2 (en) * 2003-11-03 2006-10-17 The Research Foundation Of State University Of New York Sidewall-functionalized carbon nanotubes, and methods for making the same
EP1817447A4 (en) 2004-10-22 2012-01-25 Hyperion Catalysis Int IMPROVED OZONOLYSIS OF CARBON NANOTONES
CA2588124A1 (en) * 2004-11-16 2006-06-08 Hyperion Catalysis International, Inc. Method for preparing supported catalysts from metal loaded carbon nanotubes
WO2006065431A2 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
EP2432058B8 (en) * 2004-12-09 2013-09-11 Nanosys, Inc. Nanowire-based membrane electrode assemblies for fuel cells
WO2008051239A2 (en) * 2005-11-16 2008-05-02 Hyperion Catalysis International, Inc. Mixed structures of single walled and multi walled carbon nanotubes

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102471698A (zh) * 2009-07-17 2012-05-23 埃克森美孚研究工程公司 用fcc废气加氢处理生物组分原料
CN102471695A (zh) * 2009-12-29 2012-05-23 埃克森美孚研究工程公司 用低纯度含氢气料流加氢处理生物组分原料的方法
CN101814345A (zh) * 2010-05-22 2010-08-25 西南交通大学 一种疏松的三维立体宏观碳纳米管网的制备方法
CN104136661A (zh) * 2012-02-28 2014-11-05 德国马普弗利兹-哈伯无机化学研究所 使用碳负载MnOX的复合材料电解分解水
CN102856611A (zh) * 2012-04-09 2013-01-02 中南大学 一种锂空气电池用微纳结构正极材料
CN102856611B (zh) * 2012-04-09 2015-02-04 中南大学 一种锂空气电池用微纳结构正极材料
CN108377638A (zh) * 2018-03-06 2018-08-07 南京航空航天大学 一种Co/C复合电磁吸波剂及其制备方法
CN110961093A (zh) * 2018-09-28 2020-04-07 中国石油化工股份有限公司 Cr-Zr-O/TiO2-C纳米管催化剂及其制备方法和应用
CN113151856A (zh) * 2021-04-20 2021-07-23 中国矿业大学 一种高熵合金磷化物纳米粒子催化剂的制备及其在电解水制氢中的应用
CN117107388A (zh) * 2023-09-27 2023-11-24 东莞信鸿工程塑料有限公司 一种抗菌阻燃聚酰胺纤维材料及其制备方法
CN117107388B (zh) * 2023-09-27 2024-03-26 东莞信鸿工程塑料有限公司 一种抗菌阻燃聚酰胺纤维材料及其制备方法

Also Published As

Publication number Publication date
WO2006060168A3 (en) 2006-12-07
EP1831440A4 (en) 2009-08-26
JP2008520413A (ja) 2008-06-19
EP1828447B1 (en) 2011-01-26
ATE497034T1 (de) 2011-02-15
CN101098991B (zh) 2012-10-10
EP1831440A2 (en) 2007-09-12
MX2007005797A (es) 2007-10-03
CA2588109A1 (en) 2006-05-26
DE602005026167D1 (de) 2011-03-10
CN101103144B (zh) 2013-02-06
WO2006060168A2 (en) 2006-06-08
DE602005023777D1 (de) 2010-11-04
EP1828447A4 (en) 2009-09-02
MX2007005793A (es) 2007-10-04
DK1831440T3 (da) 2010-11-08
JP2008520414A (ja) 2008-06-19
JP4971175B2 (ja) 2012-07-11
US20060142149A1 (en) 2006-06-29
EP1828447A2 (en) 2007-09-05
US20060142148A1 (en) 2006-06-29
US20080039315A1 (en) 2008-02-14
WO2006055670A2 (en) 2006-05-26
US7968489B2 (en) 2011-06-28
EP1831440B1 (en) 2010-09-22
WO2006055670A3 (en) 2006-12-07
CN101098991A (zh) 2008-01-02
CA2588124A1 (en) 2006-06-08
ATE482029T1 (de) 2010-10-15
DK1828447T3 (da) 2011-03-21

Similar Documents

Publication Publication Date Title
CN101103144B (zh) 制备负载在碳纳米管网络上的催化剂的方法
US7923403B2 (en) Method for preparing catalysts supported on carbon nanotubes networks
CN101102838A (zh) 由单壁碳纳米管制备催化剂载体和负载催化剂的方法
US9126828B2 (en) Mixed structures of single walled and multi walled carbon nanotubes
Tessonnier et al. Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde
US8852547B2 (en) Processes for the recovery of catalytic metal and carbon nanotubes
CN101189373A (zh) 改进的碳纳米管臭氧分解
Keane Nanofibers and Carbon Nanotubes: Novel Metal Catalyst Supports

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130206

Termination date: 20131116