WO2009136572A1 - 葉酸若しくは葉酸誘導体の高分子結合体 - Google Patents

葉酸若しくは葉酸誘導体の高分子結合体 Download PDF

Info

Publication number
WO2009136572A1
WO2009136572A1 PCT/JP2009/058325 JP2009058325W WO2009136572A1 WO 2009136572 A1 WO2009136572 A1 WO 2009136572A1 JP 2009058325 W JP2009058325 W JP 2009058325W WO 2009136572 A1 WO2009136572 A1 WO 2009136572A1
Authority
WO
WIPO (PCT)
Prior art keywords
folic acid
group
acid derivative
polymer conjugate
acceptable salt
Prior art date
Application number
PCT/JP2009/058325
Other languages
English (en)
French (fr)
Inventor
中西 健
原 和久
千恵子 瀬野
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to EP09742696.9A priority Critical patent/EP2284209B1/en
Priority to JP2010511053A priority patent/JP5366940B2/ja
Priority to US12/991,041 priority patent/US9149540B2/en
Publication of WO2009136572A1 publication Critical patent/WO2009136572A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/08Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino-carboxylic acids
    • C08G69/10Alpha-amino-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a polymer conjugate of folic acid or a folic acid derivative, a production method thereof and use thereof.
  • Folic acid is a kind of water-soluble vitamin and is a coenzyme required for the synthesis of amino acids and nucleic acids. Folic acid is converted into tetrahydrofolic acid by a reductase in the body, and further converted to be used for dTMP (deoxythymidine monophosphate) and purine synthesis. Some folic acid derivatives have the action of inhibiting the conversion of folic acid in vivo and stopping cell division. These group of compounds are called antifolate inhibitors, and the representative compound methotrexate has long been used for the treatment of leukemia, sarcoma, gastric cancer and the like.
  • methotrexate also has an immunomodulatory action and has become an essential drug for pharmacotherapy of rheumatoid arthritis.
  • folic acid itself and the folic acid derivative leucovorin are also used as drugs that neutralize folate deficiency and the toxicity of methotrexate.
  • folic acid and folic acid derivatives are useful compounds as pharmaceuticals, and various derivative studies aiming at improving their effects.
  • These derivatives include, for example, aminopterin, plalatrexate, previtrexed, edatrexate, pemetrexed, raltitrexed, raltitrexed, and the like shown below.
  • the mechanism of action of these antifolates is mainly an inhibitory action on dihydrofolate reductase, but some newly developed drugs have an inhibitory action on thymidylate synthetase and are more effective. Development is underway for new drugs.
  • pemetrexed is characterized by inhibiting a plurality of enzymes involved in the folate metabolic system and is approved as a therapeutic agent for malignant pleural mesothelioma.
  • DDS drug delivery system
  • Patent Document 1 and Patent Document 3 describe a water-soluble polymerized pharmaceutical preparation using a micelle formed by an amphiphilic polymer as a carrier.
  • Patent Document 1 binds methotrexate as an example of a hydrophobic segment. Although there is a description of a polymer carrier, methotrexate and an amphiphilic polymer are amide-bonded.
  • Patent Document 3 does not describe a polymer conjugate to which folic acid or a folic acid derivative is bound.
  • Patent Document 2 reports that chemical stability and in vivo drug release efficiency were simultaneously achieved by bonding a polymer compound and camptothecins with a phenyl ester bond. However, this method cannot be used as it is for the carboxy group of folic acid derivatives represented by methotrexate (including folic acid itself).
  • Non-Patent Document 1 and Non-Patent Document 2 describe a polymer conjugate in which an amphiphilic polymer and an alkyl ester bond are used using a carboxy group of methotrexate, but the release rate of the drug is slow, There are doubts about the effectiveness of the drug.
  • the release of the drug from the polymer conjugate depends on the enzyme in the living body, the enzyme activity varies among individuals, so that the drug release rate varies, and as a result, the drug efficacy may vary.
  • the bond between the drug and the amphiphilic polymer in Patent Document 1 is an amide bond
  • the amide bond is chemically stable, and when the polymer conjugate is administered in vivo, the release rate of the drug is considerably high. Slow and impractical.
  • the drug needs to be released from the polymer conjugate at an appropriate rate, and it is not sufficient to simply bind to the polymer compound.
  • the bond between the drug and the polymer compound is weak, not only is the polymer conjugate unstable, making it extremely difficult to formulate, but the release of the drug is fast and the pharmacokinetics can be improved by binding to the polymer compound. I can't expect it. If the binding is too strong, even if the pharmacokinetics are improved, the drug is not released from the polymer conjugate, making it difficult to exert a pharmacological effect.
  • a block copolymer comprising a polymer having polyethylene glycol and a carboxylic acid in the side chain, and folic acid or a folic acid derivative are bound via a specific linker molecule.
  • the present inventors have reached a present invention.
  • the present invention relates to the following (1) to (11).
  • A represents a monocyclic or condensed aromatic group
  • G represents an optionally substituted (C1-C6) alkylene group
  • Y represents a hydrogen atom or a substituent
  • E represents Shows residues of folic acid or folic acid derivatives
  • D is an unsubstituted (C1-C6) alkyl group, the average value of n is 50-1000, the average value of c + d + e is 5-100, and B is an (C1-C6) acyl group A polymer conjugate of folic acid or a folic acid derivative or a pharmacologically acceptable salt thereof according to (4) above.
  • the substituent represented by the formula (I) is represented by the following formula (III) [Wherein E represents a residue of folic acid or a folic acid derivative]
  • An anticancer agent comprising as an active ingredient a polymer conjugate of folic acid or a folic acid derivative according to any one of (1) to (8), or a pharmacologically acceptable salt.
  • a therapeutic agent for inflammatory diseases comprising as an active ingredient a polymer conjugate of folic acid or a folic acid derivative according to any one of (1) to (8) above, or a pharmacologically acceptable salt.
  • high molecular weight compounds have dispersion in molecular weight and composition and are not a single molecule, so it is difficult to perform rigorous chemical analysis, and folic acid or folic acid derivatives have multiple amino groups and carboxy groups. There are multiple modes of binding.
  • separation and purification can be performed after condensing folic acid or a folic acid derivative and a linker molecule, and the condensation reaction between the obtained compound and the block copolymer proceeds relatively easily.
  • the quality of the polymer conjugate of the obtained folic acid or folic acid derivative can be made constant.
  • the polymer conjugate obtained in the present invention has a phenyl ester bond between the drug and the linker molecule, it is possible to simultaneously achieve practical chemical stability and excellent in vivo drug release efficiency, It is possible to enhance the pharmacological effect and reduce side effects.
  • the release rate of the drug from the polymer conjugate of folic acid or folic acid derivative of the present invention can be controlled by changing the substituent of the linker moiety or selecting the carboxy group of the drug to be bound.
  • the release rate of the drug can be adjusted by mixing these polymer conjugates having different release rates, a wider application is possible.
  • the block copolymer comprising a polyethylene glycol and a polymer having a carboxy group in the side chain has the above formula (I) [wherein A represents a monocyclic or condensed aromatic group; Represents an optionally substituted (C1-C6) alkylene group, Y represents a hydrogen atom or a substituent, and E represents a residue of folic acid or a folic acid derivative]. Or a pharmacologically acceptable salt thereof.
  • Polyethylene glycols include polyethylene glycol modified at both ends or one end, and the modifying groups at both ends may be the same or different.
  • the terminal modifying group include an optionally substituted (C1 to C6) alkyl group, preferably a methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s -Butyl group, t-butyl group, benzyl group, dimethoxyethyl group, dietoxyethyl group, aminomethyl group, aminoethyl group, 3-aminopropyl group, 4-aminobutyl group and the like.
  • the molecular weight of the polyethylene glycol moiety is usually about 300 to 500,000, preferably about 500 to 100,000, and more preferably about 1,000 to 50,000.
  • the molecular weight in the present invention is a peak top molecular weight measured by gel permeation chromatography (GPC method).
  • the polymer having a carboxy group in the side chain may be a polymer containing a component having a carboxy group in the side chain.
  • the component having a carboxy group in the side chain include acrylic acid, methacrylic acid, and malic acid. Aspartic acid, glutamic acid, and the like.
  • the polymer having a carboxy group in the side chain include polyacrylic acid, polymethacrylic acid, polymalic acid, polyaspartic acid, polyglutamic acid, and the like.
  • polyaspartic acid and polyglutamic acid are preferable, and polyaspartic acid is particularly preferable.
  • the number of carboxy groups per molecule of the block copolymer is preferably about 3 to 200, and more preferably about 5 to 100.
  • Examples of the block copolymer in the present invention include compounds in which polyethylene glycols having a functional group at a terminal and polycarboxylic acids having a functional group at a terminal are bonded, and terminals described in Patent Document 1, Patent Document 3, and the like. And compounds obtained by a polymerization reaction of an amino acid activated product that starts polymerization with polyethylene glycol having an amino group.
  • a in the above formula (I) is a monocyclic or condensed aromatic group, and is not particularly limited, but is preferably an aromatic group containing no hetero atoms (C6-C18), such as a phenyl group, a naphthyl group, an anthryl group.
  • a phenyl group is particularly preferable.
  • the substitution position of the phenolic hydroxyl group and aminoalkyl group is not particularly limited.
  • Y in A in the above formula (I) is a hydrogen atom or a substituent bonded to a monocyclic or condensed aromatic group.
  • substituent include a methyl group, an ethyl group, and an isopropyl group.
  • the binding strength between folic acid or a folic acid derivative and a linker molecule is greatly influenced by the acidity of the phenolic hydroxyl group when the linker molecule is cleaved.
  • the acidity is changed by changing Y
  • the folic acid or the folic acid derivative and the linker molecule The strength of molecular bonds also changes.
  • A is a phenyl group
  • an electron-withdrawing group such as a cyano group, a nitro group, or a halogen atom is preferable to accelerate release of folic acid or a folic acid derivative, and an electron donating group is used to delay release of folic acid or a folic acid derivative.
  • the alkyl group etc. which are are preferable.
  • the number of Y substitutions is not particularly limited as long as it is a substitutable number. When Y is a substituent, the substitution position is not particularly limited, although it is necessary to consider the influence on the release rate.
  • G in the above formula (I) is an optionally substituted (C1-C6) alkylene group such as methylene group, ethylene group, trimethylene group, tetramethylene group, methylethylene group, dimethylethylene.
  • alkylene group such as methylene group, ethylene group, trimethylene group, tetramethylene group, methylethylene group, dimethylethylene.
  • a linear alkylene group such as a methylene group, an ethylene group, a trimethylene group and a tetramethylene group is preferable, and an ethylene group is particularly preferable.
  • E in the above formula (I) is not particularly limited as long as it is a residue of folic acid or a folic acid derivative that means folic acid or a folic acid derivative in E-CO 2 H, and is a folic acid derivative having a folic acid or a carboxy group.
  • E-CO 2 H includes folic acid, methotrexate, aminopterin, plalatrexate, previtrexed, edatrexate, pemetrexed, raltitrexed, lometrexol, etc. Among them, methotrexate, pemetrexed and the like are preferable.
  • Examples of the polymer conjugate of the present invention include compounds represented by the above formula (II).
  • Examples of the (C1-C6) alkyl group optionally having a substituent in D of the formula (II) include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, an s -Butyl group, t-butyl group, n-pentyl group, n-hexyl group, benzyl group, dimethoxyethyl group, diethoxyethyl group, aminomethyl group, aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, etc. Can be mentioned.
  • D is preferably an unsubstituted (C1 to C6) alkyl group, and particularly preferably a methyl group.
  • n is about 5 to 11,500, preferably about 50 to 1,000, and more preferably about 100 to 300.
  • Examples of the (C2 to C6) alkylene group in J of the above formula (II) include linear alkylene groups such as ethylene group, trimethylene group, tetramethylene group, hexamethylene group, and among them, trimethylene group is preferable.
  • c + d + e represents the total number of aspartic acid in one molecule of the polymer conjugate, and the average value is about 3 to 200, preferably about 5 to 100, more preferably 6 to 60. Degree.
  • Each constituent unit of polyaspartic acid may be bonded at random or may be bonded by forming a block, but c + d is a positive number and e may be 0.
  • the ratio of the ⁇ -amino acid structural unit (c) to the total number of aspartic acids (c + d + e) is preferably 10 to 100%, particularly preferably 20 to 100%. This ratio can be appropriately changed by, for example, selecting the deprotection conditions for the protecting group of polyaspartic acid during the process of the production method according to Patent Document 1 and the like.
  • Examples of the (C1 to C6) acyl group in B of the above formula (II) include formyl group, acetyl group, propionyl group, butyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group and the like.
  • B is preferably a (C2 to C4) acyl group, such as an acetyl group or a propionyl group, and an acetyl group is particularly preferred.
  • R in the above formula (II) examples include a hydroxyl group or a substituent represented by the above formula (I), and at least one R in one molecule is a substituent represented by the formula (I).
  • the substituent represented by formula (I) is as described above, and is preferably a substituent represented by formula (III).
  • E in formula (III) has the same meaning as E in formula (I) above, and preferred compounds are also the same.
  • the polymer conjugate of folic acid or a folic acid derivative of the present invention will be described in the case where the folic acid derivative is methotrexate and the linker molecule is tyramine (4-aminoethylphenol).
  • the present invention is limited to this compound. None happen. Since methotrexate has two carboxy groups, there are two positional isomers in the compound in which tyramine and methotrexate are ester-linked.
  • a compound in which the ⁇ -carboxy group of glutamic acid, which is a partial structure of methotrexate, is bonded to tyramine is called an ⁇ -substituted product
  • a compound in which a ⁇ -carboxy group is bonded to tyramine is called a ⁇ -substituted product.
  • the manufacturing method of these compounds is demonstrated.
  • the amino group of tyramine is protected with a protecting group that can be removed after formation of an ester bond.
  • the protecting group is not particularly limited as long as it is a general amino protecting group. However, there is a protecting group that can be deprotected under neutral or acidic conditions in which the ester bond between tyramine and methotrexate is stable. Desirable examples include benzyloxycarbonyl group, t-butoxycarbonyl (Boc) group, and allyloxycarbonyl group.
  • the tyramine whose amino group is protected is subjected to dehydration condensation using methotrexate and a dehydration condensing agent in an organic solvent.
  • the reaction temperature of the dehydration condensation reaction is usually 4 to 60 ° C., preferably 15 to 50 ° C., and the reaction time is 1 hour to several days, preferably 4 to 48 hours.
  • the organic solvent is not particularly limited as long as the reaction proceeds.
  • aromatic hydrocarbons such as toluene and xylene
  • halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane, tetrahydrofuran, dioxane
  • Ethers such as dimethoxyethane and diethylene glycol dimethyl ether
  • nitriles such as acetonitrile and propionitrile
  • amides such as dimethylformamide, dimethylacetamide and N-methylpyrrolidone
  • ureas such as 1,3-dimethylimidazolidinone or the above solvents
  • amides or ureas preferably dimethylformamide or 1,3-dimethylimidazolidinone.
  • the dehydrating condensing agent is not particularly limited as long as the condensation reaction of amines and carboxyl groups proceeds, but preferably dicyclohexylcarbodiimide, diisopropylcarbodiimide, 1-dimethylaminopropyl-3-ethylcarbodiimide, carbonyldiimidazole, isobutyl chloroformate, Pivalic acid chloride, DMT-MM (4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride), TFFH (tetramethylfluoroformamidinium hexafluorophosphate) ), 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinolinone (EEDQ) or BOP (benzotriazol-1-yloxytris (dimethylamino) phosphonium hexafluorophosphine It is over door).
  • a reaction aid may be used in the dehydration condensation reaction.
  • the reaction aid include N-hydroxysuccinimide, 1-hydroxybenzotriazole, 4-dimethylaminopyridine, 2,6-di-t-butyl-4-methylpyridine, and the like.
  • an appropriate purification treatment is performed as necessary to obtain a mixture of the above ⁇ - and ⁇ -substituted products in which the amino group of tyramine is protected or each separated isomer. Further, the amino-protecting group is deprotected by appropriate treatment to obtain a condensate ( ⁇ -substituted product, ⁇ -substituted product, or mixture thereof) of methotrexate and tyramine.
  • the above folic acid or folic acid derivative and the phenolic hydroxyl group of the compound represented by the above formula (IV) are ester-bonded to remove the amino protecting group
  • Production of a polymer conjugate of folic acid or a folic acid derivative, characterized by dehydrating condensation of the carboxy group of a block copolymer comprising a polyethylene glycol and a polymer having a carboxy group in the side chain to form an amide bond A method is also included. Next, the manufacturing method will be described.
  • the reaction temperature of the dehydration condensation reaction is usually 4 to 60 ° C., preferably 15 to 50 ° C., and the reaction time is 1 hour to several days, preferably 4 to 48 hours.
  • Examples of the organic solvent include the same organic solvents as those used in the condensation reaction of methotrexate and amino-protected tyramine, and preferred organic solvents are also the same.
  • Examples of the dehydrating condensing agent include the same dehydrating condensing agent as the dehydrating condensing agent in the condensation reaction of methotrexate and aminoamine-protected tyramine.
  • a reaction aid may be used, and examples of the reaction aid include the same reaction aids as those in the condensation reaction of methotrexate and tyramine protected with an amino group.
  • the side chain carboxy group of the block copolymer is first activated and then reacted with the amino group of the substituted product.
  • the activation method a method usually used in the production of peptide bonds can be applied, and examples thereof include a method using the above-described reagent. That is, a method of condensing a carboxylic acid and a reaction aid such as N-hydroxysuccinimide with the above-mentioned dehydrating condensing agent, isolating it as an active ester, and then adding an amine to obtain an amide.
  • the amount of folic acid and folic acid derivative bound to the block copolymer composed of polyethylene glycol and a polymer having a carboxy group in the side chain via a linker is:
  • the amount is not particularly limited as long as it has a medicinal effect, but it is usually 1 to 100%, preferably 10 to 90% of the total number of carboxy groups of the polymer.
  • the amount of folic acid and folic acid derivative bound can be determined, for example, from the intensity of the ultraviolet absorption spectrum.
  • the folic acid or folic acid derivative liberated by alkaline hydrolysis of the polymer conjugate of folic acid or folic acid derivative of the present invention can also be determined by quantifying it using, for example, high performance liquid chromatography (HPLC). it can.
  • HPLC high performance liquid chromatography
  • the side chain carboxy group to which the linker molecule is not bound or the carboxy group of folic acid and folic acid derivative that are not an ester may be in a free form or a salt form.
  • the free form it can be converted into the target salt by a method known per se or a method analogous thereto, and when obtained in the salt, the free form or the purpose can be obtained by a method known per se or a method analogous thereto.
  • the salt include lithium salt, sodium salt, potassium salt, magnesium salt, ammonium salt or triethylammonium salt.
  • the polymer conjugate of folic acid or folic acid derivative of the present invention may form micelles having polyethylene glycol as an outer shell in water. By forming micelles, good water solubility, stability in aqueous solution, and enhancement of drug efficacy are expected.
  • the present invention also includes an anticancer agent, an inflammatory disease therapeutic agent, or an antirheumatic agent comprising the above-mentioned folic acid or folic acid derivative polymer conjugate as a medicinal ingredient.
  • the polymer conjugate of folic acid or folic acid derivative can be administered as it is, or as a pharmaceutical composition mixed with a pharmaceutically acceptable substance.
  • the pharmaceutical composition may have any dosage form such as injection, powder, granule, tablet, suppository and the like.
  • These preparations may contain various adjuvants used for pharmaceuticals, that is, additives such as carriers and other auxiliary agents, such as stabilizers, preservatives, soothing agents and emulsifiers.
  • the content of the polymer conjugate of folic acid and folic acid derivative in the preparation varies depending on the preparation, but is usually 0.1 to 100% by weight, preferably 1 to 98% by weight.
  • the obtained precipitate was dissolved in a methylene chloride-methanol mixed solvent (1: 1), dehydrated with anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure.
  • the residue was purified with a silica gel column to obtain two types of MTX monoesters (1.711 g of ⁇ -monoester, 1.332 g of ⁇ -monoester).
  • the retention times for the ⁇ -monoester and ⁇ -monoester were 13.3 minutes and 13.7 minutes, respectively, under HPLC condition 1.
  • HPLC condition 2 Column: Inertsil ODS-3 (5 ⁇ m) 20 ⁇ 250 mm Column temperature: Room temperature Eluent: Liquid A 0.1% trifluoroacetic acid aqueous solution, liquid B Acetonitrile gradient time (min) 0 4.9 5 13 13.1 20 20.1 30 B liquid (%) 10 10 20 20 40 40 10 10 Flow rate: 20 mL / min Detector: UV (254 nm)
  • the produced urea was filtered with a Kiriyama funnel, and the resulting filtrate was diluted with ethyl acetate (39 mL), and then hexane (58 mL) was added to precipitate crystals. After stirring for 15 minutes, the stirring was stopped, the supernatant was removed, and a mixed solvent of hexane-ethyl acetate (3: 2) was further added and stirred. The precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain PEG-Asp33 (OSu) -Ac (454 mg).
  • the precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain crude crystals (261 mg) of the target compound.
  • the crude crystals were dissolved in 52 mL of acetonitrile-water mixed solvent (1: 1), and the ion exchange resins Muromac® C1002 (2.61 g) and Muromac® A203T (2.61 g) (both Muromachi Technos) were used. (Made by Co., Ltd.) was added, and impurities were purified by adsorption. After filtration of the resin, the filtrate was concentrated under reduced pressure and lyophilized to obtain PEG-Asp33 ( ⁇ -Tyramine-MTX) -Ac (172 mg).
  • the MTX content of this polymer conjugate was 19.6% (w / w).
  • the drug (MTX) content was calculated by hydrolyzing the obtained polymer conjugate with an aqueous sodium hydroxide solution and analyzing the released drug (MTX) by HPLC. The same applies to the following polymer conjugates.
  • the precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain crude crystals (270 mg) of the target compound.
  • This crude crystal is dissolved in 54 mL of acetonitrile-water mixed solvent (1: 1), ion exchange resins Muromac® C1002 (2.70 g) and Muromac® A203T (2.70 g) are added, and impurities are added. Adsorption purification. After filtration of the resin, the filtrate was concentrated under reduced pressure and lyophilized to obtain PEG-Asp33 ( ⁇ -Tyramine-MTX) -Ac (170 mg). The MTX content of this polymer conjugate was 25.0% (w / w).
  • the produced urea was filtered with a Kiriyama funnel, and the resulting filtrate was diluted with ethyl acetate (34 mL), and then hexane (50 mL) was added to precipitate crystals. After stirring for 40 minutes, the stirring is stopped, the supernatant is removed, and a mixed solvent of hexane-ethyl acetate (4: 1) is further added and stirred. The precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain PEG-Asp40 (OSu) -Ac (424 mg).
  • the precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain crude crystals (413 mg) of the target compound.
  • the crude crystals are dissolved in 83 mL of acetonitrile-water mixed solvent (1: 1), ion exchange resins Muromac® C1002 (4.13 g) and Muromac® A203T (4.13 g) are added, and impurities are added. It was purified by adsorption. After filtration of the resin, the filtrate was concentrated under reduced pressure and lyophilized to obtain PEG-Asp40 ( ⁇ -Tyramine-MTX) -Ac (263 mg). The MTX content of this polymer conjugate was 23.6% (w / w).
  • the precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain crude crystals (189 mg) of the target compound.
  • the crude crystals are dissolved in 38 mL of acetonitrile-water mixed solvent (1: 1), ion exchange resins Muromac® C1002 (1.89 g) and Muromac® A203T (1.89 g) are added, and impurities are added. It was purified by adsorption.
  • the resin was filtered, concentrated under reduced pressure, and lyophilized to obtain PEG-Asp40 ( ⁇ -tyramine-MTX) -Ac (126 mg).
  • the MTX content of this polymer conjugate was 28.6% (w / w).
  • the precipitate was filtered with a Kiriyama funnel and dried under vacuum to obtain the target compound crude crystals (158 mg).
  • This crude crystal is dissolved in 32 mL of acetonitrile-water mixed solvent (1: 1), ion exchange resins Muromac® C1002 (1.58 g) and Muromac® A203T (1.58 g) are added, and impurities are added. It was purified by adsorption. After filtration of the resin, the filtrate was concentrated under reduced pressure and lyophilized to obtain PEG-Asp44 ( ⁇ -Tyramine-MTX) -Ac (109 mg). The MTX content of this polymer conjugate was 22.7% (w / w).
  • Test Example 1 Measurement of drug release rate (drug release in the absence of hydrolase) About 5 mg of the sample was weighed and dissolved in acetonitrile (250 ⁇ L) and water (250 ⁇ L) (solution A). 0.1N sodium hydroxide solution (900 ⁇ L) was added to solution A (100 ⁇ L) and allowed to stand at room temperature for 1 hour. 50 ⁇ L of this solution was sampled, neutralized with 50 ⁇ L of 0.1N hydrochloric acid, and diluted with PBS solution (400 ⁇ L). This solution was analyzed by HPLC and used as a reference for the total amount of drug contained in the sample.
  • solution A 200 ⁇ L was diluted with a PBS solution (1800 ⁇ L), placed in a 37 ° C. thermostat, sampled over time, and analyzed by HPLC.
  • the drug release rate at each time point is calculated by comparing the peak area of the drug with the reference peak area of the total drug amount, and the results obtained are shown in FIG.
  • MTX_A-33 is PEG-Asp33 ( ⁇ -tyramine-MTX) -Ac obtained in Example 1
  • MTX_G-33 is PEG-Asp33 ( ⁇ -tyramine-MTX) obtained in Example 2.
  • MTX_G-44 is PEG-Asp44 ( ⁇ -tyramine-MTX) -Ac obtained in Example 6
  • MTX_G-40 is PEG-Asp40 ( ⁇ -tyramine-MTX) obtained in Example 4.
  • MTX_A-40 is PEG-Asp40 ( ⁇ -tyramine-MTX) -Ac obtained in Example 3
  • PEM_G-40 is PEG-Asp40 ( ⁇ , ⁇ -tyramine- PEM) -Ac.
  • the polymer conjugate of folic acid or folic acid derivative of the present invention can release a drug in the absence of an enzyme, and the drug release rate depends on the acidity of the carboxylic acid of the drug molecule.
  • the release rate of the ⁇ -substituted product is faster than the release rate of the ⁇ -substituted product.
  • PEM_G-40 since a mixture of ⁇ and ⁇ is bound, the release rate is intermediate between the ⁇ -substituted product and the ⁇ -substituted product. This indicates that the drug release rate can be controlled by mixing the ⁇ -substituted product and the ⁇ -substituted product at an appropriate ratio.
  • Test Example 2 Anti-tumor effect on mouse colon cancer Colon 26 transplanted mouse BALB / c mouse subcultured mouse colon cancer Colon 26 was made into a block of about 2 mm square and transplanted subcutaneously on the dorsal side of CDF1 mice using a trocar. did.
  • the polymer conjugate MTX_A-40 PEG-Asp40 ( ⁇ -tyramine-MTX) -Ac of the present invention obtained in Example 3
  • MTX_G-44 PEG
  • the relative tumor volume on the day of determination for the untreated group was 12.3.
  • 20 mg / kg of MTX was administered daily for 5 days, all animals died from toxicity.
  • the relative tumor volume of 15 mg / kg was almost the same as that of the untreated group, which was 12.2, and no antitumor effect was observed.
  • the polymer conjugate MTX_A-40 of the present invention died of toxicity at 50 mg / kg as MTX, but the relative tumor volume was 4.8.
  • the relative tumor volume of 25 mg / kg is 6.8, and tumor growth is suppressed depending on the dose.
  • MTX_G-44 at 25 mg / kg as MTX died of toxicity, but the relative tumor volume was 2.3.
  • the relative tumor volume of 12.5 mg / kg is 8.2, which suppresses tumor growth depending on the dose.
  • the high molecular weight conjugates of MTX (MTX_A-40, MTX_G-44) of the present invention strongly suppress the growth of tumors after a single administration, and their effects greatly exceed MTX that has been continuously administered, and are useful as anticancer agents. is there.
  • the MTX_A-40 2.5 mg / kg group (MTX equivalent; high dose group) and the MTX_A-40 1.25 mg / kg group (MTX equivalent; low dose group)
  • the 2.5 mg / kg administration group was administered into the tail vein on the 1st and 8th days.
  • Leflonomide (10 mg / kg) was orally administered by gavage for 28 consecutive days from the sensitization date.
  • the left footpad of the rat was observed to score the arthritis that developed, and the results are shown in FIG.
  • the arthritis score criteria in Table 2 were used for scoring.
  • the MTX administration group developed inflammation almost at the same time as the control group, and no anti-inflammatory effect was observed.
  • the MTX_A-40 administration group delayed the onset of inflammation despite the total dose being 1 ⁇ 2 compared to MTX, and the polymer conjugate of MTX enhanced and sustained the anti-inflammatory action of MTX. It has been confirmed that the polymer conjugate of folic acid or folic acid derivative of the present invention is useful as a therapeutic agent for inflammatory diseases.
  • Test Example 4 Anti-inflammatory evaluation 2 using rat collagen arthritis model 2 A 5 mg / mL aqueous solution of MTX_G-40 (PEG-Asp40 ( ⁇ -Tyramine-MTX) -Ac) obtained in Example 4 and a comparative control substance MTX was prepared and used for administration, and the same procedure as in Test Example 3 was performed. The positive target substance leflonomide was suspended in an aqueous solution of sodium carboxymethylcellulose (CMC) and used for administration.
  • MTX_G-40 1.00 mg / kg (converted to MTX), 1.25 mg / kg (converted to MTX) and MTX 2.5 mg / kg were administered on the 1st, 8th and 15th days after sensitization.
  • Leflonomide (10 mg / kg) was orally administered by gavage for 28 consecutive days from the sensitization date. After sensitization, the rat left footpad was observed, and the onset arthritis was scored using Table 2 above, and the results are shown in FIG.
  • the MTX administration group delayed the onset of inflammation compared to the control group.
  • MTX_G-40 was administered at a lower dose of 1.00 mg / kg than MTX and delayed the onset of inflammation further than MTX, and the 28-day onset of inflammation observed in the 1.25 mg / kg administration group It was confirmed that the polymer conjugate of MTX enhanced and sustained the anti-inflammatory action of MTX.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polyamides (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

【課題】葉酸または葉酸誘導体のアミド結合を用いない高分子結合体であり、化学的な安定性と適度な生体内薬剤遊離速度を有する化合物が求められていた。 【解決手段】ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基に下記式(I) [式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Yは水素原子または置換基を示し、Eは葉酸若しくは葉酸誘導体の残基を示す] で表される置換基が結合している葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩を提供する。

Description

葉酸若しくは葉酸誘導体の高分子結合体
 本発明は葉酸若しくは葉酸誘導体の高分子結合体、その製造方法及びその用途に関する。
 葉酸は水溶性ビタミンの1種であり、アミノ酸や核酸の合成に必要とされる補酵素である。葉酸は体内の還元酵素でテトラヒドロ葉酸に変換された後、更に変換されてdTMP(デオキシチミジン一リン酸)やプリン合成に使用される。葉酸誘導体には生体内での葉酸の変換を阻害し細胞分裂を停止させる作用を持つ化合物もある。これらの一群の化合物は葉酸代謝拮抗剤と呼ばれ、その代表的な化合物であるメトトレキサートは白血病、肉腫、胃癌等の治療に古くから用いられてきた。更に、メトトレキサートは免疫調節作用も持ち、関節リウマチの薬物治療には必須な薬剤となっている。
 また、葉酸自身や葉酸誘導体のロイコボリン等は葉酸欠乏症やメトトレキサートの毒性を中和する薬剤としても使用されている。
 このように葉酸(folic acid)や、葉酸誘導体、例えば、メトトレキサート(methotrexate)に代表される葉酸代謝拮抗剤は、医薬品として有用な化合物であり、その効果を改善することを目的に様々な誘導体研究が継続されている。これらの誘導体は、例えば以下に示すアミノプテリン(aminopterin)、プララトレキセート(pralatrexate)、プレビトレキセド(plevitrexed)、エダトレキセート(edatrexate)、ペメトレキセド(pemetrexed)、ラルチトレキセド(raltitrexed)、ロメトレキソール(lometrexol)等がある。これらの葉酸代謝拮抗剤の作用機作は主にジヒドロフォレートリダクターゼの阻害作用であるが、新しく開発されている薬剤の中にはチミジレートシンセターゼの阻害作用を持つものもあり、更に有効な薬剤を求めて開発が進められている。例えば、ペメトレキセドは葉酸代謝系に関与している複数の酵素を阻害することを特徴としており、悪性胸膜中皮腫の治療薬として認可されている。
Figure JPOXMLDOC01-appb-C000005
 一方、低分子の薬剤の毒性軽減、効果増強を目的にした試みがドラッグデリバリーシステム(DDS)研究の一環として行われている。その方法は様々であるが、例えば、薬剤を高分子に結合させたり、ナノサイズのキャリアーに封入する等がある。葉酸誘導体を代表する化合物であるメトトレキサートにおいてもマイクロスフェアー、デンドリマー、ミセルを利用したもの等が報告されている。しかし、いずれの報告もDDS研究の最終的な目的である効果の増強、副作用の軽減を十分に満足しているとはいえない。
 特許文献1、特許文献3には両親媒性高分子が形成するミセルを担体とする水溶性高分子化医薬製剤が記載されており、特許文献1には疎水性セグメントの例としてメトトレキサートが結合した高分子担体の記載があるが、メトトレキサートと両親媒性高分子はアミド結合しているものである。特許文献3には葉酸若しくは葉酸誘導体を結合した高分子結合体について記載されていない。
 特許文献2には高分子化合物とカンプトテシン類をフェニルエステル結合で結合させることによって、化学的な安定性と生体内での薬剤遊離効率を同時に達成したことが報告されている。しかしながら、この方法をそのままメトトレキサートに代表される葉酸誘導体(葉酸自身も含む)のカルボキシ基に用いることはできない。
 また、非特許文献1、非特許文献2には、メトトレキサートのカルボキシ基を用いて両親媒性高分子とアルキルエステル結合させた高分子結合体が記載されているが、薬剤の遊離速度が遅く、薬剤の効果が発揮されるか疑問がある。また、高分子結合体からの薬剤の遊離を生体内の酵素に依存する場合、該酵素活性は個人差があるため薬剤遊離速度にばらつきを生じ、結果として薬効がばらつく恐れがある。
特開平2-300133号公報 国際公開第2004/039869号パンフレット 国際公開第2003/000771号パンフレット
「コロイド アンド サーフェスB:バイオインターフェース」、1999年、第16巻、217-226頁 「ファーマシューティカル リサーチ」、2000年、第17巻、607-611頁
 特許文献1における薬剤と両親媒性高分子との結合はアミド結合であるが、アミド結合は化学的に安定であり、該高分子結合体を生体内に投与した場合、薬剤の遊離速度がかなり遅く実用的ではない。
 薬剤を高分子結合体とすることで薬理効果を向上させるためには薬剤が適度な速度で高分子結合体から遊離する必要があり、単純に高分子化合物に結合させるだけでは不十分である。薬剤と高分子化合物との結合が弱い場合、高分子結合体が不安定となり製剤化が極めて難しくなるばかりではなく、薬剤の遊離が速くて高分子化合物と結合させることによる薬物動態等の改良が期待できない。また、結合が強すぎる場合、薬物動態は改良されたとしても薬剤が高分子結合体から遊離されず薬理効果の発揮が困難となる。
 葉酸または葉酸誘導体のアミド結合を用いない高分子結合体であり、化学的な安定性と適度な生体内薬剤遊離効率を有する化合物が求められていた。
 本発明者等は前記したような課題を解決すべく鋭意努力した結果、ポリエチレングリコール類と側鎖にカルボン酸を有するポリマーからなるブロック共重合体と、葉酸または葉酸誘導体が特定のリンカー分子を介して結合した高分子結合体を見出し、本発明に到達した。
 即ち、本発明は以下の(1)~(11)に関する。
(1)ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基に下記式(I)
Figure JPOXMLDOC01-appb-C000006
[式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Yは水素原子または置換基を示し、Eは葉酸若しくは葉酸誘導体の残基を示す]
で表される置換基が結合している葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
(2)側鎖にカルボキシ基を有するポリマーがポリ酸性アミノ酸である上記(1)に記載の葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
(3)ポリ酸性アミノ酸がポリアスパラギン酸またはポリグルタミン酸である上記(2)に記載の葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
(4)下記式(II)
Figure JPOXMLDOC01-appb-C000007
[式中、Dは水素原子または置換基を有していてもよい(C1~C6)アルキル基を示し、nの平均値は5~11500であり、Jは(C2~C6)アルキレン基を示し、c+d+eの平均値は3~200であり、c+dは正数であり、Rは水酸基または式(I)で表される置換基を示し、1分子中少なくとも1個のRは式(I)で表される置換基であり、Bは水素原子または(C1~C6)アシル基を示す]
で表される上記(1)~(3)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
(5)Dが無置換の(C1~C6)アルキル基であり、nの平均値が50~1000であり、c+d+eの平均値が5~100であり、Bが(C1~C6)アシル基である上記(4)記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
(6)式(I)で表される置換基が下記式(III)
Figure JPOXMLDOC01-appb-C000008
[式中、Eは葉酸若しくは葉酸誘導体の残基を示す]
で表される置換基である上記(1)~(5)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
(7)葉酸の誘導体がメトトレキサートである上記(1)~(6)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
(8)葉酸の誘導体がペメトレキセドである上記(1)~(6)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
(9)上記(1)~(8)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩を有効成分とする抗癌剤。
(10)上記(1)~(8)のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩を有効成分とする炎症疾患治療薬。
(11)葉酸若しくは葉酸誘導体と式(IV)で表される化合物のフェノール性水酸基とをエステル結合させ、アミノ基の保護基を除去し、続いて、得られた脱保護体と、ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基とを脱水縮合してアミド結合を生成することを特徴とする葉酸若しくは葉酸誘導体の高分子結合体の製造方法。
Figure JPOXMLDOC01-appb-C000009
[式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Pはアミノ基の保護基を示し、Yは水素原子または置換基を示す]
 一般的に高分子化合物は分子量や組成に分散を有し、単一の分子ではないため厳密な化学分析が難しく、また、葉酸または葉酸誘導体は複数のアミノ基とカルボキシ基を有しているためその結合様式が複数存在する。しかし、本発明では、葉酸または葉酸誘導体とリンカー分子を縮合した後に分離精製を行うことができ、且つ、得られた化合物とブロック共重合体との縮合反応は比較的容易に進行することから、得られる葉酸若しくは葉酸誘導体の高分子結合体の品質を一定にすることができる。
 また、本発明で得られる高分子結合体は薬剤とリンカー分子がフェニルエステル結合しているので、実用的な化学的安定性と優れた生体内薬剤遊離効率を同時に達成することが可能であり、薬理効果を増強し、副作用を軽減することが可能となる。
 更に、本発明の葉酸若しくは葉酸誘導体の高分子結合体から薬剤の遊離速度をリンカー部分の置換基を変えたり、結合する薬剤のカルボキシ基を選ぶことにより制御することができる。加えて、これらの遊離速度の異なる高分子結合体を混合することでも薬剤の放出速度を調整することができるため、より広い応用が可能である。
試験例1における加水分解酵素非存在下での薬剤遊離速度を高分子結合体に結合している全薬剤量に対する比として示したものである。 試験例2のラットコラーゲン関節炎モデルを用いた抗炎症評価結果を示したものである。 試験例3のラットコラーゲン関節炎モデルを用いた抗炎症評価結果を示したものである。
 本発明は、ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基に上記式(I)[式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Yは水素原子または置換基を示し、Eは葉酸若しくは葉酸誘導体の残基を示す]で表される置換基が結合している葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩である。
 ポリエチレングリコール類としては、両末端または片末端が修飾されたポリエチレングリコールも含まれ、両末端の該修飾基は同一でも異なっていてもよい。末端の修飾基としては置換基を有していてもよい(C1~C6)アルキル基が挙げられ、好ましくはメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、ベンジル基、ジメトキシエチル基、ジエトキエチル基、アミノメチル基、アミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。
 ポリエチレングリコール類部分の分子量は、通常300~500000程度であり、好ましくは500~100000程度、更に好ましくは1000~50000程度である。なお、本発明における分子量とはゲル浸透クロマトグラフィー(GPC法)で測定したピークトップ分子量である。
 側鎖にカルボキシ基を有するポリマーとしては側鎖にカルボキシ基を有する構成成分を含有するポリマーであればよく、側鎖にカルボキシ基を有する構成成分としては、例えば、アクリル酸、メタクリル酸、リンゴ酸、アスパラギン酸、グルタミン酸等が挙げられ、側鎖にカルボキシ基を有するポリマーとしては、例えば、ポリアクリル酸、ポリメタクリル酸、ポリリンゴ酸、ポリアスパラギン酸、ポリグルタミン酸等が挙げられ、中でもポリ酸性アミノ酸が好ましく、例えば、ポリアスパラギン酸やポリグルタミン酸等が好ましく、特にポリアスパラギン酸が好ましい。
 本発明におけるブロック共重合体1分子当たりのカルボキシ基の数は、3~200個程度が好ましく、5~100個程度がより好ましい。
 本発明におけるブロック共重合体としては、末端に官能基を有するポリエチレングリコール類と末端に官能基を有するポリカルボン酸類とを結合した化合物や、特許文献1や特許文献3等に記載されている末端にアミノ基を有するポリエチレングリコール類で重合を開始するアミノ酸活性化物の重合反応によって得られる化合物等が挙げられる。
 上記式(I)のAは単環または縮合した芳香族基であり、特に限定されないが、異項原子を含まない(C6~C18)芳香族基が好ましく、例えば、フェニル基、ナフチル基、アントリル基等が挙げられ、中でもフェニル基が特に好ましい。フェノール性水酸基とアミノアルキル基の置換位置は特に限定されない。
 上記式(I)のAにおけるYとは、単環または縮合した芳香族基に結合している水素原子または置換基であり、該置換基としては、例えば、メチル基、エチル基、イソプロピル基等の(C1~C3)アルキル基、メトキシ基、エトキシ基、プロポキシ基等の(C1~C3)アルコキシ基、塩素原子、臭素原子等のハロゲン原子、ホルミル基、アセチル基等の(C1~C3)アシル基、ニトロ基、シアノ基、水酸基等が挙げられる。
 葉酸若しくは葉酸誘導体とリンカー分子の結合の強さは、リンカー分子が開裂した際のフェノール性水酸基の酸性度に大きく影響され、Yを変えることによりその酸性度を変化させると葉酸若しくは葉酸誘導体とリンカー分子の結合の強さも変化する。例えば、Aがフェニル基の場合、葉酸若しくは葉酸誘導体の遊離を早めるためには電子吸引基であるシアノ基、ニトロ基、ハロゲン原子等が好ましく、葉酸若しくは葉酸誘導体の遊離を遅らせるには電子供与基であるアルキル基等が好ましい。Yの置換数は置換可能な数であれば特に限定されない。
 Yが置換基である場合、その置換位置は、遊離速度に対する影響を考慮する必要はあるが、特に限定されない。
 上記式(I)のGとは、置換基を有していてもよい(C1~C6)アルキレン基であり、例えば、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、メチルエチレン基、ジメチルエチレン基、メトキシエチレン基、エトキシエチレン基、クロロエチレン基、ブロモエチレン基、メチルトリメチレン基、ジメチルトリメチレン基、メトキシトリメチレン基、エトキシトリメチレン基、クロロトリメチレン基、ブロモトリメチレン基等が挙げられ、中でもメチレン基、エチレン基、トリメチレン基、テトラメチレン基等の直鎖アルキレン基が好ましく、エチレン基が特に好ましい。
 上記式(I)のEとしては、E-COHで葉酸若しくは葉酸誘導体を意味する葉酸若しくは葉酸誘導体の残基であり、葉酸若しくはカルボキシ基を有する葉酸誘導体であれば特に限定されず、例えば、E-COHとして上記の葉酸、メトトレキサート、アミノプテリン、プララトレキセート、プレビトレキセド、エダトレキセート、ペメトレキセド、ラルチトレキセド、ロメトレキソール等が挙げられ、中でもメトトレキサート、ペメトレキセド等が好ましい。
 本発明の高分子結合体として、例えば、上記式(II)で表される化合物が挙げられる。
 式(II)のDにおける置換基を有していてもよい(C1~C6)アルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、ベンジル基、ジメトキシエチル基、ジエトキエチル基、アミノメチル基、アミノエチル基、3-アミノプロピル基、4-アミノブチル基等が挙げられる。Dとしては無置換(C1~C6)アルキル基が好ましく、中でもメチル基が特に好ましい。
 上記式(II)中、nの平均値は5から11500程度であり、好ましくは50~1000程度であり、より好ましくは100~300程度である。
 上記式(II)のJにおける(C2~C6)アルキレン基としては、例えば、エチレン基、トリメチレン基、テトラメチレン基、ヘキサメチレン基等の直鎖アルキレン基が挙げられ、中でもトリメチレン基が好ましい。
 上記式(II)中、c+d+eは高分子結合体1分子中の全アスパラギン酸数を表し、その平均値は3~200程度であり、好ましくは5~100程度であり、より好ましくは6~60程度である。ポリアスパラギン酸の各構成単位はランダムに結合していてもブロックを形成して結合していてもよいが、c+dは正数であり、eは0でもよい。
 また、全アスパラギン酸数(c+d+e)に対するα-アミノ酸型構成単位(c)の割合は好ましくは10~100%であり、特に好ましくは20~100%である。この割合は、例えば、特許文献1等に準じた製造方法の工程中、ポリアスパラギン酸の保護基の脱保護条件等を選ぶことにより適宜変えることが可能である。
 上記式(II)のBにおける(C1~C6)アシル基としては、例えば、ホルミル基、アセチル基、プロピオニル基、ブチリル基、バレリル基、イソバレリル基、ピバロイル基またはヘキサノイル基等が挙げられる。Bとしては(C2~C4)アシル基、例えば、アセチル基またはプロピオニル基等が好ましく、アセチル基が特に好ましい。
 上記式(II)のRとしては水酸基または上記式(I)で表される置換基が挙げられ、1分子中少なくとも1個のRは式(I)で表される置換基である。式(I)で表される置換基とは上記した通りであり、好ましくは上記式(III)で表される置換基である。式(III)におけるEとしては上記式(I)におけるEと同じ意味であり、好ましい化合物も同様である。
 次に本発明の葉酸若しくは葉酸誘導体の高分子結合体について、葉酸誘導体がメトトレキサート、リンカー分子がチラミン(Tyramine:4-アミノエチルフェノール)の場合にて説明するが、本発明がこの化合物に限定されることはない。
 メトトレキサートはカルボキシ基を2個有していることから、チラミンとメトトレキサートがエステル結合している化合物にも2つの位置異性体が存在する。以下に示すように、メトトレキサートの部分構造であるグルタミン酸のα-カルボキシ基がチラミンと結合したものをα置換体、γ-カルボキシ基がチラミンと結合したものをγ置換体と呼ぶ。
Figure JPOXMLDOC01-appb-C000010
 これらの化合物の製造方法について説明する。
 まず、チラミンのアミノ基をエステル結合生成後に除去可能な保護基で保護する。該保護基としては、一般的なアミノ基の保護基であれば特に問わないが、チラミンとメトトレキサートのエステル結合が安定である脱保護条件、即ち、中性若しくは酸性条件で脱保護できる保護基が望ましく、例えば、ベンジルオキシカルボニル基、t-ブトキシカルボニル(Boc)基、アリルオキシカルボニル基等が挙げられる。
 次いで、アミノ基が保護されたチラミンを、有機溶媒中メトトレキサートと脱水縮合剤を用いて脱水縮合する。
 脱水縮合反応の反応温度は、通常4~60℃、好ましくは15~50℃であり、反応時間は1時間~数日、好ましくは4~48時間である。
 該有機溶媒としては反応が進行する限り特に限定されないが、例えば、トルエン、キシレン等の芳香族炭化水素類、塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素類、テトラヒドロフラン、ジオキサン、ジメトキシエタン、ジエチレングリコールジメチルエーテル等のエーテル類、アセトニトリル、プロピオニトリル等のニトリル類、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等のアミド類、1,3-ジメチルイミダゾリジノン等のウレア類または前記溶媒の混合溶媒等が挙げられ、好ましくはアミド類またはウレア類であり、より好ましくはジメチルホルムアミドまたは1,3-ジメチルイミダゾリジノンである。
 該脱水縮合剤としてはアミン類とカルボキシル基の縮合反応が進行する限り特に限定されないが、好ましくはジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、1-ジメチルアミノプロピル-3-エチルカルボジイミド、カルボニルジイミダゾール、クロロ蟻酸イソブチル、ピバリン酸クロリド、DMT-MM(4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウム クロリド)、TFFH(テトラメチルフルオロホルムアミジニウム ヘキサフルオロホスフェート)、1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキシキノリノン(EEDQ)またはBOP(ベンゾトリアゾール-1-イルオキシトリス(ジメチルアミノ)ホスフォニウム ヘキサフルオロホスフェート)である。
 脱水縮合反応の際、反応助剤を用いてもよい。該反応助剤としては、例えば、N-ヒドロキシスクシンイミド、1-ヒドロキシベンゾトリアゾール、4-ジメチルアミノピリジンまたは2,6-ジ-t-ブチル-4-メチルピリジン等が挙げられる。
 脱水縮合反応を行った後、必要に応じて適当な精製処理を行い、チラミンのアミノ基が保護された上記のα置換体とγ置換体の混合物若しくは分離された各異性体を得る。更に、アミノ基の保護基を適当な処理を行い脱保護し、上記のメトトレキサートとチラミンの縮合体(α置換体、γ置換体、若しくはその混合体)を得る。
 本発明には上記の葉酸若しくは葉酸誘導体と上記式(IV)で表される化合物のフェノール性水酸基とをエステル結合させ、アミノ基の保護基を除去し、続いて、得られた脱保護体と、ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基とを脱水縮合してアミド結合を生成することを特徴とする葉酸若しくは葉酸誘導体の高分子結合体の製造方法も含まれる。
 続いて該製造方法について説明する。
 上記で得られた置換体と、特許文献3等に記載の方法に準じて製造されたメトキシポリエチレングリコール-ポリアスパラギン酸ブロック共重合体またはメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体とを有機溶媒中、脱水縮合剤を用いて脱水縮合する。
 脱水縮合反応の反応温度は、通常4~60℃、好ましくは15~50℃であり、反応時間は1時間~数日、好ましくは4~48時間である。
 該有機溶媒としては、上記のメトトレキサートとアミノ基を保護したチラミンの縮合反応における有機溶媒と同様な有機溶媒が挙げられ、好ましい有機溶媒も同様である。
 該脱水縮合剤としては、上記のメトトレキサートとアミノ基を保護したチラミンの縮合反応における脱水縮合剤と同様な脱水縮合剤が挙げられる。
 脱水縮合反応の際には反応助剤を用いてもよく、該反応助剤としては、上記のメトトレキサートとアミノ基を保護したチラミンの縮合反応における反応助剤と同様な反応助剤が挙げられる。
 ただし、上記で得られた置換体には遊離のカルボキシ基が残っていることから、ブロック共重合体の側鎖カルボキシ基を最初に活性化し、その後、上記置換体のアミノ基と反応させることが望ましい。
 活性化の方法としては、通常ペプチド結合製造の際に用いられる方法が適用可能であり、例えば、上記の試薬を使用した方法が挙げられる。即ち、カルボン酸類とN-ヒドロキシスクシンイミド等の反応助剤を上記の脱水縮合剤で縮合し、活性エステル体として単離した後にアミン類を加えてアミドを得る方法等である。
 本発明の葉酸若しくは葉酸誘導体の高分子結合体において、ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体にリンカーを介して結合している葉酸及び葉酸誘導体の結合量は、薬効を示す量であれば特に限定されないが、通常該ポリマーの総カルボキシ基数の1~100%、好ましくは10~90%である。
 葉酸及び葉酸誘導体の結合量は、例えば、紫外線吸収スペクトルの強度から求めることができる。また、本発明の葉酸若しくは葉酸誘導体の高分子結合体をアルカリ加水分解することにより遊離する葉酸または葉酸誘導体を、例えば、高速液体クロマトグラフィー(HPLC)等を用いて定量することによっても求めることができる。
 本発明の葉酸若しくは葉酸誘導体の高分子結合体において、リンカー分子が結合していない側鎖カルボキシ基やエステルになっていない葉酸及び葉酸誘導体のカルボキシ基は遊離型でも塩型でもよい。遊離型で得られた場合には自体公知の方法あるいはそれに準じる方法によって目的とする塩に変換することができ、塩で得られた場合には自体公知の方法あるいはそれに準じる方法により遊離型または目的とする他の塩に変換することができる。
 該塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、アンモニウム塩またはトリエチルアンモニウム塩等が挙げられる。
 本発明の葉酸若しくは葉酸誘導体の高分子結合体は、水中でポリエチレングリコール類を外殻とするミセルを形成してもよい。ミセルを形成することにより良好な水溶性,水溶液中での安定性、薬効の増強が期待される。
 本発明には上記の葉酸若しくは葉酸誘導体の高分子結合体を薬効成分とする抗癌剤、炎症疾患治療剤、または抗リウマチ剤も含まれる。該葉酸若しくは葉酸誘導体の高分子結合体は、そのまま投与することも、また、医薬上許容される物質と混合した薬学的組成物として投与することもできる。該薬学的組成物の剤形は注射剤、粉末剤、顆粒剤、錠剤、坐剤等いかなるものでもよい。また、これらの製剤は医薬用に用いられる種々の補助剤、即ち、担体やその他の助剤、例えば、安定剤、防腐剤、無痛化剤、乳化剤等の添加剤を含有していてもよい。
 該製剤中における葉酸及び葉酸誘導体の高分子結合体の含量は製剤により種々異なるが、通常0.1~100重量%、好ましくは1~98重量%である。
 以下に、参考例、実施例及び試験例を示し、本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
参考例1 Boc-Tyramineの合成
 Tyramine(5.49g)をジオキサン110mL、水110mLに溶解し、(Boc)O(ジ-t-ブチルジカーボネート:9.60g)を加えた。室温で4時間攪拌した後、酢酸エチルで抽出した。有機層を無水硫酸ナトリウムで脱水した後、減圧濃縮した。残渣をシリカゲルカラム(ヘキサン-酢酸エチル)で精製し、目的物の画分を減圧濃縮することでBoc-Tyramine(9.05g)を得た。
参考例2 Boc-Tyramine-MTXの合成
 MTX(メトトレキサート:8.18g)、Boc-Tyramine(8.54g)、DMAP(ジメチルアミノピリジン:4.40g)をDMF(ジメチルホルムアミド:164mL)に溶解した後、ジイソプロピルカルボジイミド(5.64mL)を加えた。室温で4時間攪拌した後、酢酸エチル(1.64L)、水(1.64L)で抽出した。水層に20mMクエン酸緩衝液(pH4.6)2.9Lを加え、生成した沈殿を桐山ロートでろ過した。得られた沈殿を塩化メチレン-メタノール混合溶媒(1:1)に溶解させ、無水硫酸ナトリウムで脱水した後、減圧下溶媒を留去した。残渣をシリカゲルカラムで精製し、2種のMTXモノエステル体(α-モノエステル体 1.711g、γ-モノエステル体 1.332g)を得た。α-モノエステル体とγ-モノエステル体はHPLC条件1において保持時間がそれぞれ13.3分、13.7分であった。
HPLC条件1
カラム:Inertsil ODS-3(5μm) 4.6x150mm
カラム温度:40℃
溶離液:A液 0.1%リン酸水溶液、B液 アセトニトリル
グラジエント
時間(分)  0 30 35 35.1 45
B液(%) 10 90 90   10 10
流速:1.0mL/分
検出器:UV(254nm)
参考例3 Boc-Tyramine-PEMの合成
 J.Med.Chem.,1992,35,p4450-4454に記載されている方法で得られたペメトレキセド(PEM:624mg)、Boc-Tyramine(693mg)、DMAP(357mg)をDMF(12.5mL)に溶解した後、ジイソプロピルカルボジイミド(457μL)を加えた。室温で45分攪拌した後、酢酸(334μL)を加えた。HPLC条件2で精製を行い、Boc-Tyramine-PEM(α、γ-モノエステルの混合体:約1:1)277mgを得た。α-エステルとγ-エステルはHPLC条件1において保持時間がそれぞれ18.0分、18.3分であった。
HPLC条件2
カラム:Inertsil ODS-3(5μm) 20x250mm
カラム温度:室温
溶離液:A液 0.1%トリフルオロ酢酸水溶液、B液 アセトニトリル
グラジエント
時間(分)  0 4.9  5 13 13.1 20 20.1 30
B液(%) 10  10 20 20   40 40   10 10
流速:20mL/分
検出器:UV(254nm)
参考例4 α-Tyramine-MTXの合成
 参考例2で得られたα-Boc-Tyramine-MTX(100mg)に酢酸エチル(1.5mL)を加え懸濁させたのち、4N HCl/EtOAc(0.5mL)を加え、室温で1時間攪拌した。沈殿を桐山ロートでろ過し、真空乾燥してα-Tyramine-MTX(111mg)を得た。回収率から3塩酸塩であると考えられる。
参考例5 γ-Tyramine-MTXの合成
 参考例2で得られたγ-Boc-Tyramine-MTX(100mg)に酢酸エチル(1.5mL)を加え懸濁させたのち、4N HCl/EtOAc(0.5mL)を加え、室温で1時間攪拌した。沈殿を桐山ロートでろ過し、真空乾燥してγ-Tyramine-MTX(108mg)を得た。回収率から3塩酸塩であると考えられる。
参考例6 Tyramine-PEM(α、γ混合体)の合成
 参考例3で得られたBoc-Tyramine-PEM(α、γ混合体)100mgに酢酸エチル(1.5mL)を加え懸濁させたのち、4N HCl/ジオキサン(0.5mL)を加え、室温で1時間攪拌した。沈殿を桐山ロートでろ過し、真空乾燥してTyramine-PEM(α、γ混合体)93mgを得た。回収率から2塩酸塩であると考えられる。
参考例7 PEG-Asp33(OSu)-Acの合成
 特許文献3に記載の方法に準じて合成したPEG-Asp33-Ac(片末端メチル片末端アミノプロピルポリエチレングリコールポリアスパラギン酸(33ユニット)のブロック共重合体N-アセチル体:485mg)、HOSu(N-ヒドロキシスクシンイミド:115mg)をDMF(9.7mL)に溶解し33℃のオイルバスで加温した。DCC(ジシクロヘキシルカルボジイミド:206mg)を添加して1時間攪拌した。生成したウレアを桐山ロートでろ過し、得られたろ液に酢酸エチル(39mL)を加え希釈した後に、ヘキサン(58mL)を添加し結晶を析出させた。15分攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(3:2)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥してPEG-Asp33(OSu)-Ac(454mg)を得た。
実施例1 PEG-Asp33(α-Tyramine-MTX)-Acの合成
 参考例7で得られたPEG-Asp33(OSu)-Ac(150mg)と参考例4で得られたα-Tyramine-MTX(113mg)をDMF(1.5mL)に溶解し、トリエチルアミン(69μL)を添加した。室温で4時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)100mL中に滴下した。10分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(261mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)52mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(2.61g)、Muromac(登録商標)A203T(2.61g)(共に、ムロマチテクノス(株)製)を加え、不純物を吸着精製した。樹脂をろ過した後、ろ液を減圧濃縮、凍結乾燥してPEG-Asp33(α-Tyramine-MTX)-Ac(172mg)を得た。この高分子結合体のMTX含有率は19.6%(w/w)であった。薬剤(MTX)含有率は、得られた高分子結合体を水酸化ナトリウム水溶液で加水分解させ、遊離してきた薬剤(MTX)をHPLCで分析することで算出した。以下の高分子結合体でも同様である。
実施例2 PEG-Asp33(γ-Tyramine-MTX)-Acの合成
 参考例7で得られたPEG-Asp33(OSu)-Ac(146mg)と参考例5で得られたγ-Tyramine-MTX(110mg)をDMF(1.5mL)に溶解し、トリエチルアミン(67μL)を添加した。室温で4時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)100mL中に滴下した。10分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(270mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)54mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(2.70g)、Muromac(登録商標)A203T(2.70g)を加え、不純物を吸着精製する。樹脂をろ過した後、ろ液を減圧濃縮、凍結乾燥してPEG-Asp33(γ-Tyramine-MTX)-Ac(170mg)を得た。この高分子結合体のMTX含有率は25.0%(w/w)であった。
参考例8 PEG-Asp40(OSu)-Acの合成
 特許文献3に記載の方法に準じて合成したPEG-Asp40-Ac(片末端メチル片末端アミノプロピルポリエチレングリコールポリアスパラギン酸(40ユニット)のブロック共重合体N-アセチル体:420mg)、HOSu(115mg)をDMF(8.4mL)に溶解し37℃のオイルバスで加温した。DCC(206mg)を添加して1時間攪拌した。生成したウレアを桐山ロートでろ過し、得られたろ液に酢酸エチル(34mL)を加え希釈した後に、ヘキサン(50mL)を添加し結晶を析出させた。40分攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌する。桐山ロートで沈殿をろ過し、真空乾燥してPEG-Asp40(OSu)-Ac(424mg)を得た。
実施例3 PEG-Asp40(α-Tyramine-MTX)-Acの合成
 参考例8で得られたPEG-Asp40(OSu)-Ac(220mg)と参考例4で得られたα-Tyramine-MTX(177mg)をDMF(2.2mL)に溶解し、トリエチルアミン(109μL)を添加した。室温で4時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)100mL中に滴下した。70分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(413mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)83mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(4.13g)、Muromac(登録商標)A203T(4.13g)を加え、不純物を吸着精製した。樹脂をろ過した後、ろ液を減圧濃縮、凍結乾燥してPEG-Asp40(α-Tyramine-MTX)-Ac(263mg)を得た。この高分子結合体のMTX含有率は23.6%(w/w)であった。
実施例4 PEG-Asp40(γ-Tyramine-MTX)-Acの合成
 参考例8で得られたPEG-Asp40(OSu)-Ac(100mg)と参考例5で得られたγ-Tyramine-MTX(81mg)をDMF(1.0mL)に溶解し、トリエチルアミン(49μL)を添加した。室温で4時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)100mL中に滴下した。25分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(189mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)38mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(1.89g)、Muromac(登録商標)A203T(1.89g)を加え、不純物を吸着精製した。樹脂をろ過した後、減圧濃縮、凍結乾燥してPEG-Asp40(γ-Tyramine-MTX)-Ac(126mg)を得た。この高分子結合体のMTX含有率は28.6%(w/w)であった。
実施例5 PEG-Asp40(α、γ-Tyramine-PEM)-Acの合成
 参考例8で得られたPEG-Asp40(OSu)-Ac(129mg)と参考例6で得られたTyramine-PEM(α、γ混合体:93mg)をDMF(1.3mL)に溶解し、トリエチルアミン(42μL)を添加した。室温で2.5時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)130mL中に滴下した。10分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(246mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)50mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(2.5g)、Muromac(登録商標)A203T(2.5g)を加え、不純物を吸着精製した。樹脂をろ過した後、ろ液を減圧濃縮、凍結乾燥してPEG-Asp40(α、γ-Tyramine-PEM)-Ac(150mg)を得た。この高分子結合体のPEM含有率は22.1%(w/w)であった。
参考例9 PEG-Asp44(OSu)-Acの合成
 特許文献3に記載の方法に準じて合成したPEG-Asp44-Ac(片末端メチル片末端アミノプロピルポリエチレングリコールポリアスパラギン酸(44ユニット)のブロック共重合体N-アセチル体:582mg)、HOSu(173mg)をDMF(11.6mL)に溶解し37℃オイルバスで加温した。DCC(309mg)を添加して1時間攪拌した。生成したウレアを桐山ロートでろ過した。得られたろ液に酢酸エチル(46mL)を加え希釈した後に、ヘキサン(70mL)を添加し結晶を析出させた。30分攪拌した後に攪拌をとめて上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥してPEG-Asp44(OSu)-Ac(543mg)を得た。
実施例6 PEG-Asp44(γ-Tyramine-MTX)-Acの合成
 参考例9で得られたPEG-Asp44(OSu)-Ac(100mg)と参考例5で得られたγ-Tyramine-MTX(57mg)をDMF(2mL)に溶解し、トリエチルアミン(35μL)を添加した。室温で4時間攪拌したのち、ヘキサン-酢酸エチル混合溶媒(4:1)100mL中に滴下した。15分間攪拌した後に攪拌をとめ上澄みを除去し、更にヘキサン-酢酸エチル混合溶媒(4:1)を追加し攪拌した。桐山ロートで沈殿をろ過し、真空乾燥して目的化合物の粗結晶(158mg)を得た。
 この粗結晶をアセトニトリル-水混合溶媒(1:1)32mLに溶解し、イオン交換樹脂 Muromac(登録商標)C1002(1.58g)、Muromac(登録商標)A203T(1.58g)を加え、不純物を吸着精製した。樹脂をろ過した後、ろ液を減圧濃縮、凍結乾燥してPEG-Asp44(γ-Tyramine-MTX)-Ac(109mg)を得た。この高分子結合体のMTX含有率は22.7%(w/w)であった。
試験例1 薬剤遊離速度の測定(加水分解酵素非存在下における薬剤放出)
 サンプル約5mgを秤量し、アセトニトリル(250μL)、水(250μL)に溶解させた(溶液A)。溶液A(100μL)に0.1N水酸化ナトリウム溶液(900μL)を加えて1時間室温で静置した。この溶液50μLをサンプリングし、0.1N塩酸50μLで中和後、PBS溶液(400μL)で希釈した。この溶液をHPLCで分析しサンプルに含まれる総薬剤量の基準とした。
 一方、溶液A(200μL)をPBS溶液(1800μL)で希釈後、37℃の恒温槽中に靜置し、経時的にサンプリングしてHPLCで分析を行った。薬剤のピーク面積を上記総薬剤量の基準ピーク面積と比較して各経時点における薬剤放出率を計算し、得られた結果を図1に示す。
 図1中、MTX_A-33は実施例1で得られたPEG-Asp33(α-Tyramine-MTX)-Acを、MTX_G-33は実施例2で得られたPEG-Asp33(γ-Tyramine-MTX)-Acを、MTX_G-44は実施例6で得られたPEG-Asp44(γ-Tyramine-MTX)-Acを、MTX_G-40は実施例4で得られたPEG-Asp40(γ-Tyramine-MTX)-Acを、MTX_A-40は実施例3で得られたPEG-Asp40(α-Tyramine-MTX)-Acを、PEM_G-40は実施例5で得られたPEG-Asp40(α、γ-Tyramine-PEM)-Acを示す。
 図1から明らかなように、本発明の葉酸若しくは葉酸誘導体の高分子結合体は酵素の非存在下で薬剤を遊離することができ、その薬剤遊離速度は薬剤分子のカルボン酸の酸性度に依存し、α置換体の遊離速度がγ置換体の遊離速度より早い。PEM_G-40についてはα、γの混合体が結合していることから、遊離速度がα置換体、γ置換体の中間となっている。このことはα置換体、γ置換体を適当な割合で混合することにより薬剤遊離速度の制御ができることを示している。
試験例2 マウス結腸癌Colon26移植マウスに対する抗腫瘍効果
 BALB/cマウスの皮下で継代したマウス結腸癌Colon26を約2mm角のブロックにし、套管針を用いてCDF1マウスの背側部皮下に移植した。腫瘍移植後7日目に実施例3で得られた本発明の高分子結合体MTX_A-40(PEG-Asp40(α-Tyramine-MTX)-Ac、実施例6で得られたMTX_G-44(PEG-Asp44(γ-Tyramine-MTX)-Acと比較対照物質としてのMTXを尾静脈に投与した。本発明の高分子結合体は注射用水に溶解し単回投与した。対照としたMTXは蒸留水で溶解・稀釈して、1日1回、5日間連日投与した。投与後、腫瘍の長径(Lmm)及び短経(Wmm)を定期的に測定し、腫瘍体積を(L×W)/2により算出した。投与開始日の腫瘍体積を1.0とし、投与開始後12日目を判定日として各投与群の相対腫瘍体積を求めた。その結果を表1に示す。本発明の化合物の用量はMTX換算である。
Figure JPOXMLDOC01-appb-T000011
 無処置群の判定日の相対腫瘍体積は12.3であった。
 MTXの20mg/kgを5日間連日投与すると動物は全匹毒性により死亡した。15mg/kgの相対腫瘍体積は12.2と無処置群の相対腫瘍体積とほとんど変わらず、抗腫瘍効果は見られなかった。
 一方、本発明の高分子結合体MTX_A-40はMTXとして50mg/kgでは1匹が毒性によって死亡したが、相対腫瘍体積は4.8であった。同じく25mg/kgの相対腫瘍体積は6.8であり、投与量に依存して腫瘍増殖を抑制している。MTX_G-44はMTXとして25mg/kgでは1匹が毒性によって死亡したが、相対腫瘍体積は2.3であった。同じく12.5mg/kgの相対腫瘍体積は8.2であり投与量に依存して腫瘍増殖を抑制している。
 以上、本発明のMTXの高分子結合体(MTX_A-40、MTX_G-44)は単回投与において腫瘍の増殖を強く抑制し、その効果は連投したMTXを大きく上回るものであり、抗癌剤として有用である。
試験例3 ラットコラーゲン関節炎モデルを用いた抗炎症評価
 DA/Slcラットの背部にウシII型コラーゲンIIとFreund’s incomplete adjuvantとの乳濁液を背部皮内4箇所に合計0.4mL皮内投与(感作)し、関節炎を誘発した。実施例3で得られたMTX_A-40(PEG-Asp40(α-Tyramine-MTX)-Ac)と比較対照物質MTXは5mg/mL水溶液を調製し投与に用いた。陽性対象物質のレフロノミドはカルボキシメチルセルロースナトリウム(CMC)水溶液で懸濁させて投与に用いた。MTX_A-40の2.5mg/kg投与群(MTX換算;高用量群)は感作後1日目に、MTX_A-40の1.25mg/kg投与群(MTX換算;低用量群)とMTXの2.5mg/kg投与群は1日目と8日目に尾静脈内に投与した。また、レフロノミド(10mg/kg)は感作日から28日間連続して強制経口投与した。感作後、ラット左足蹠を観察し発症した関節炎をスコア化し、結果を図2に示す。スコア化には表2の関節炎スコア基準を用いた。
Figure JPOXMLDOC01-appb-T000012
 図2から明らかなように、MTX投与群は対照群とほぼ同時期に炎症が発症しており抗炎症効果はみられない。
 一方、MTX_A-40投与群はMTXと比べ総投与量が1/2であるにも関わらず炎症の発症時期を遅延させており、MTXの高分子結合体はMTXの抗炎症作用を増強、持続させていることが確認され、本発明の葉酸若しくは葉酸誘導体の高分子結合体は炎症疾患治療薬として有用であることを示している。
試験例4 ラットコラーゲン関節炎モデルを用いた抗炎症評価2
 実施例4で得られたMTX_G-40(PEG-Asp40(γ-Tyramine-MTX)-Ac)と比較対照物質MTXの5mg/mL水溶液を調製し投与に用い、試験例3と同様に行った。陽性対象物質のレフロノミドはカルボキシメチルセルロースナトリウム(CMC)水溶液で懸濁させて投与に用いた。MTX_G-40の1.00mg/kg(MTX換算)、1.25mg/kg(MTX換算)投与群とMTXの2.5mg/kg投与群は感作後1日目、8日目、15日目、22日目に尾静脈内に投与した。また、レフロノミド(10mg/kg)は感作日から28日間連続して強制経口投与した。感作後、ラット左足蹠を観察し、発症した関節炎を上記表2を用いてスコア化し、結果を図3に示す。
 図3から明らかなように、本試験ではMTX投与群は対照群と比べて炎症の発症時期を遅延させた。一方、MTX_G-40はMTXよりも低投与量である1.00mg/kgの投与で、MTXよりも更に炎症の発症時期を遅延させ、1.25mg/kg投与群では観察した28日間炎症の発症を完全に抑制し、MTXの高分子結合体はMTXの抗炎症作用を増強、持続させていることが確認された。

Claims (11)

  1.  ポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基に下記式(I)
    Figure JPOXMLDOC01-appb-C000001
    [式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Yは水素原子または置換基を示し、Eは葉酸若しくは葉酸誘導体の残基を示す]
    で表される置換基が結合している葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
  2.  側鎖にカルボキシ基を有するポリマーがポリ酸性アミノ酸である請求項1に記載の葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
  3.  ポリ酸性アミノ酸がポリアスパラギン酸またはポリグルタミン酸である請求項2に記載の葉酸若しくは葉酸誘導体の高分子結合体、またはその薬理学的に許容される塩。
  4.  下記式(II)
    Figure JPOXMLDOC01-appb-C000002
    [式中、Dは水素原子または置換基を有していてもよい(C1~C6)アルキル基を示し、nの平均値は5~11500であり、Jは(C2~C6)アルキレン基を示し、c+d+eの平均値は3~200であり、c+dは正数であり、Rは水酸基または式(I)で表される置換基を示し、1分子中少なくとも1個のRは式(I)で表される置換基であり、Bは水素原子または(C1~C6)アシル基を示す]
    で表される請求項1~3のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
  5.  Dが無置換(C1~C6)アルキル基であり、nの平均値が50~1000であり、c+d+eの平均値が5~100であり、Bが(C1~C6)アシル基である請求項4記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
  6.  式(I)で表される置換基が下記式(III)
    Figure JPOXMLDOC01-appb-C000003
    [式中、Eは葉酸若しくは葉酸誘導体の残基を示す]
    で表される置換基である請求項1~5のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
  7.  葉酸の誘導体がメトトレキサートである請求項1~6のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
  8.  葉酸の誘導体がペメトレキセドである請求項1~6のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩。
  9.  請求項1~8のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩を有効成分とする抗癌剤。
  10.  請求項1~8のいずれか一項に記載の葉酸若しくは葉酸誘導体の高分子結合体、または薬理学的に許容される塩を有効成分とする炎症疾患治療薬。
  11.  葉酸若しくは葉酸誘導体と下記式(IV)で表される化合物のフェノール性水酸基とをエステル結合させ、アミノ基の保護基を除去し、続いて、得られた脱保護体とポリエチレングリコール類と側鎖にカルボキシ基を有するポリマーからなるブロック共重合体の該カルボキシ基とを脱水縮合してアミド結合を生成することを特徴とする葉酸若しくは葉酸誘導体の高分子結合体の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、Aは単環または縮合した芳香族基を示し、Gは置換基を有していてもよい(C1~C6)アルキレン基を示し、Pはアミノ基の保護基を示し、Yは水素原子または置換基を示す]
PCT/JP2009/058325 2008-05-08 2009-04-28 葉酸若しくは葉酸誘導体の高分子結合体 WO2009136572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09742696.9A EP2284209B1 (en) 2008-05-08 2009-04-28 Polymer conjugate of folic acid or folic acid derivative
JP2010511053A JP5366940B2 (ja) 2008-05-08 2009-04-28 葉酸若しくは葉酸誘導体の高分子結合体
US12/991,041 US9149540B2 (en) 2008-05-08 2009-04-28 Polymer conjugate of folic acid or folic acid derivative

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008122233 2008-05-08
JP2008-122233 2008-05-08

Publications (1)

Publication Number Publication Date
WO2009136572A1 true WO2009136572A1 (ja) 2009-11-12

Family

ID=41264627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058325 WO2009136572A1 (ja) 2008-05-08 2009-04-28 葉酸若しくは葉酸誘導体の高分子結合体

Country Status (4)

Country Link
US (1) US9149540B2 (ja)
EP (1) EP2284209B1 (ja)
JP (1) JP5366940B2 (ja)
WO (1) WO2009136572A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088282A1 (en) * 2010-12-21 2012-06-28 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of pemetrexed-based compounds
JP2016006111A (ja) * 2010-02-02 2016-01-14 アロス・セラピューティクス・インコーポレーテッド 10−プロパルギル−10−デアザアミノプテリンの光学的に純粋なジアステレオマーおよび該ジアステレオマーを用いる方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004082718A1 (ja) * 2003-03-20 2004-09-30 Nippon Kayaku Kabushiki Kaisha 難水溶性抗癌剤と新規ブロック共重合体を含むミセル調製物
KR101203475B1 (ko) * 2004-09-22 2012-11-21 니폰 가야꾸 가부시끼가이샤 신규 블록 공중합체, 미셀 제제물 및 이를 유효성분으로함유하는 항암제
KR20080106254A (ko) * 2006-03-28 2008-12-04 니폰 가야꾸 가부시끼가이샤 탁산류의 고분자 결합체
US8940332B2 (en) * 2006-05-18 2015-01-27 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of podophyllotoxins
JP5548364B2 (ja) * 2006-10-03 2014-07-16 日本化薬株式会社 レゾルシノール誘導体の高分子結合体
EP2080779B1 (en) * 2006-11-06 2016-05-18 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
JP5548365B2 (ja) * 2006-11-08 2014-07-16 日本化薬株式会社 核酸系代謝拮抗剤の高分子誘導体
JP5349318B2 (ja) 2007-09-28 2013-11-20 日本化薬株式会社 ステロイド類の高分子結合体
EP2258397B1 (en) * 2008-03-18 2017-10-11 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of physiologically active substance
CN102421827B (zh) 2009-05-15 2014-07-30 日本化药株式会社 具有羟基的生理活性物质的高分子结合体
EP2641605B1 (en) 2010-11-17 2018-03-07 Nippon Kayaku Kabushiki Kaisha Polymer derivative of cytidine metabolism antagonist
EP2754682B1 (en) 2011-09-11 2017-06-07 Nippon Kayaku Kabushiki Kaisha Method for manufacturing block copolymer
WO2022272307A1 (en) * 2021-06-24 2022-12-29 Lycia Therapeutics, Inc. Bifunctional folate receptor binding compounds

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300133A (ja) 1989-05-11 1990-12-12 Res Dev Corp Of Japan 水溶性高分子化医薬製剤
WO2003000771A1 (fr) 2001-06-20 2003-01-03 Nippon Kayaku Kabushiki Kaisha Copolymere bloc a taux d'impuretes reduit, support polymere, preparations pharmaceutiques sous forme polymere et procede de preparation associe
WO2004039869A1 (ja) 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
WO2006095668A1 (ja) * 2005-03-09 2006-09-14 Toray Industries, Inc. 微粒子および医薬品組成物
WO2006115293A1 (ja) * 2005-04-22 2006-11-02 The University Of Tokyo pH応答性高分子ミセルの調製に用いる新規ブロック共重合体及びその製造法
WO2007022493A2 (en) * 2005-08-19 2007-02-22 Endocyte, Inc. Ligand conjugates of vinca alkaloids, analogs, and derivatives
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2007135910A1 (ja) * 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha ポドフィロトキシン類の高分子結合体
WO2008010463A1 (fr) * 2006-07-19 2008-01-24 Nippon Kayaku Kabushiki Kaisha Conjugué polymère d'une combrétastatine
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467587A (en) 1974-07-11 1977-03-16 Nestle Sa Preparation of an asparagine or a glutamine
GB8500209D0 (en) 1985-01-04 1985-02-13 Ceskoslovenska Akademie Ved Synthetic polymeric drugs
JPS6296088A (ja) 1985-10-22 1987-05-02 Kanebo Ltd 抗腫瘍性物質の製法
US4734512A (en) 1985-12-05 1988-03-29 Bristol-Myers Company Intermediates for the production of podophyllotoxin and related compounds and processes for the preparation and use thereof
CH667874A5 (fr) 1985-12-19 1988-11-15 Battelle Memorial Institute Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.
JPS6310789A (ja) 1986-07-01 1988-01-18 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6323884A (ja) 1986-07-17 1988-02-01 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6461422A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
JPS6461423A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
US5182203A (en) * 1989-03-29 1993-01-26 E. I. Du Pont De Nemours And Company Bifunctional compounds useful in catalyzed reporter deposition
US5543390A (en) * 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
JP3310000B2 (ja) 1990-11-07 2002-07-29 靖久 桜井 水溶性高分子抗癌剤及び薬物担持用担体
JPH05117385A (ja) 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
KR940003548U (ko) 1992-08-14 1994-02-21 김형술 세탁물 건조기
US5614549A (en) 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
JP3270592B2 (ja) 1992-10-26 2002-04-02 日本化薬株式会社 ブロック共重合体−抗癌剤複合体医薬製剤
JP3268913B2 (ja) 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
JPH06206830A (ja) 1992-10-27 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−薬剤複合体及び高分子ブロック共重合体
FR2698543B1 (fr) 1992-12-02 1994-12-30 Rhone Poulenc Rorer Sa Nouvelles compositions à base de taxoides.
US5985548A (en) * 1993-02-04 1999-11-16 E. I. Du Pont De Nemours And Company Amplification of assay reporters by nucleic acid replication
DE4307114A1 (de) 1993-03-06 1994-09-08 Basf Ag Verfahren zur Herstellung von Umsetzungsprodukten aus Polyasparaginsäureamid und Aminosäuren und ihre Verwendung
JP2894923B2 (ja) 1993-05-27 1999-05-24 日立造船株式会社 ウォータージェット式双胴船のジェット水吸込口部構造
US5840900A (en) 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
US5880131A (en) 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5571889A (en) 1994-05-30 1996-11-05 Mitsui Toatsu Chemicals, Inc. Polymer containing monomer units of chemically modified polyaspartic acids or their salts and process for preparing the same
JPH0848766A (ja) 1994-05-30 1996-02-20 Mitsui Toatsu Chem Inc 重合体及びその製造方法
US5552517A (en) 1995-03-03 1996-09-03 Monsanto Company Production of polysuccinimide in an organic medium
SG50747A1 (en) 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
JP2694923B2 (ja) 1995-08-21 1997-12-24 科学技術振興事業団 水溶性高分子化医薬製剤
AU735900B2 (en) 1996-03-12 2001-07-19 Pg-Txl Company, L.P. Water soluble paclitaxel prodrugs
EP0895784B1 (en) 1996-04-15 2005-11-23 Asahi Kasei Kabushiki Kaisha Drug complexes comprising taxane compounds or steroids
US5877205A (en) 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
WO1998002426A1 (fr) 1996-07-15 1998-01-22 Kabushiki Kaisha Yakult Honsha Derives de taxane et medicaments les contenant
EP0941066B1 (en) 1996-08-26 2003-10-29 Transgene S.A. Cationic lipid-nucleic acid complexes
GB9625895D0 (en) * 1996-12-13 1997-01-29 Riley Patrick A Novel compound useful as therapeutic agents and assay reagents
EP0879604B1 (de) * 1997-05-09 2003-04-09 Deutsches Krebsforschungszentrum Stiftung des öffentlichen Rechts Konjugat, umfassend einen Folsäureantagonisten und einen Träger
WO1999030727A1 (en) 1997-12-17 1999-06-24 Enzon, Inc. Polymeric prodrugs of amino- and hydroxyl-containing bioactive agents
US6824766B2 (en) 1998-04-17 2004-11-30 Enzon, Inc. Biodegradable high molecular weight polymeric linkers and their conjugates
US6153655A (en) 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
JPH11335267A (ja) 1998-05-27 1999-12-07 Nano Career Kk 水難溶性薬物を含有するポリマーミセル系
IN191203B (ja) 1999-02-17 2003-10-04 Amarnath Prof Maitra
US6207832B1 (en) 1999-04-09 2001-03-27 University Of Pittsburgh Camptothecin analogs and methods of preparation thereof
US20010041189A1 (en) 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
US6713454B1 (en) 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
US6376470B1 (en) 1999-09-23 2002-04-23 Enzon, Inc. Polymer conjugates of ara-C and ara-C derivatives
US20030054977A1 (en) 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
AU781735B2 (en) 1999-10-12 2005-06-09 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
JP3523821B2 (ja) 2000-02-09 2004-04-26 ナノキャリア株式会社 薬物が封入されたポリマーミセルの製造方法および該ポリマーミセル組成物
CA2397256A1 (en) 2000-02-29 2001-09-07 Mary Ellen Margaret Rybak Farnesyl protein transferase inhibitor combinations with anti-tumor podophyllotoxin derivatives
IL151685A0 (en) 2000-03-17 2003-04-10 Cell Therapeutics Inc Polyglutamic acid-camptothecin conjugates, methods for the preparation thereof and pharmaceutical compositons containing the same
US20020161062A1 (en) 2001-11-06 2002-10-31 Biermann Paul J. Structure including a plurality of cells of cured resinous material, method of forming the structure and apparatus for forming the structure
CA2410526C (en) 2000-06-02 2012-04-17 Eidgenossische Technische Hochschule Zurich Conjugate addition reactions for the controlled delivery of pharmaceutically active compounds
JP2002069184A (ja) 2000-06-12 2002-03-08 Mitsui Chemicals Inc 重合体及びその製造方法
US6743937B2 (en) 2000-07-17 2004-06-01 Oxigene, Inc. Efficient method of synthesizing combretastatin A-4 prodrugs
US20020099013A1 (en) 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
JP2005508832A (ja) 2001-02-16 2005-04-07 セルゲイト, インコーポレイテッド 間隔を開けてアルギニン部分を含むトランスポーター
CA2437989A1 (en) 2001-02-20 2002-08-29 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
US20020161052A1 (en) 2001-02-20 2002-10-31 Choe Yun Hwang Terminally-branched polymeric linkers and polymeric conjugates containing the same
US6919324B2 (en) 2001-10-26 2005-07-19 Oxigene, Inc. Functionalized stilbene derivatives as improved vascular targeting agents
JP4399265B2 (ja) 2001-12-21 2010-01-13 ヴァーナリス(ケンブリッジ)リミテッド 3,4−ジアリールピラゾール、および癌の治療におけるそれらの使用
DE60331049D1 (de) 2002-03-01 2010-03-11 Univ Tulane Konjugate von zytotoxischen mitteln und biologisch aktiven peptiden
CN100475269C (zh) 2002-03-05 2009-04-08 北京键凯科技有限公司 亲水性聚合物-谷氨酸寡肽与药物分子的结合物、包含该结合物的组合物及用途
KR20040097237A (ko) 2002-03-26 2004-11-17 반유 세이야꾸 가부시끼가이샤 항종양성 인돌로피롤로카바졸 유도체와 기타 항암제의 병용
US6596757B1 (en) 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
JP2003342168A (ja) 2002-05-24 2003-12-03 Nano Career Kk 注射用薬物含有ポリマーミセル製剤の製造方法
JP2003342167A (ja) 2002-05-24 2003-12-03 Nano Career Kk カンプトテシン誘導体の製剤およびその調製方法
JP4270485B2 (ja) 2002-05-28 2009-06-03 第一三共株式会社 タキサン類の還元方法
JP2004010479A (ja) * 2002-06-03 2004-01-15 Japan Science & Technology Corp ブロック共重合体とアンスラサイクリン系抗癌剤を含む新規固型製剤及びその製造法
GB0228417D0 (en) 2002-12-05 2003-01-08 Cancer Rec Tech Ltd Pyrazole compounds
GB0229618D0 (en) 2002-12-19 2003-01-22 Cancer Rec Tech Ltd Pyrazole compounds
US7169892B2 (en) 2003-01-10 2007-01-30 Astellas Pharma Inc. Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
DK1611112T3 (da) 2003-02-11 2012-11-19 Cancer Res Inst Isoxazolforbindelser som hæmmere af varmechokproteiner
WO2004082718A1 (ja) 2003-03-20 2004-09-30 Nippon Kayaku Kabushiki Kaisha 難水溶性抗癌剤と新規ブロック共重合体を含むミセル調製物
WO2004084871A1 (en) 2003-03-26 2004-10-07 Ltt Bio-Pharma Co., Ltd. Intravenous nanoparticles for targenting drug delivery and sustained drug release
GB0309637D0 (en) 2003-04-28 2003-06-04 Cancer Rec Tech Ltd Pyrazole compounds
GB0315111D0 (en) 2003-06-27 2003-07-30 Cancer Rec Tech Ltd Substituted 5-membered ring compounds and their use
WO2005018674A1 (ja) 2003-08-22 2005-03-03 Kyowa Hakko Kogyo Co., Ltd. イムノグロブリン遺伝子の転座を伴う疾患の治療薬
CA2542834C (en) * 2003-10-21 2012-04-24 Igf Oncology, Llc Conjugates or co-administration of igf-1 receptor ligands with anti-cancer chemotherapeutic agents
FR2862536B1 (fr) 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
US7176185B2 (en) * 2003-11-25 2007-02-13 Tsrl, Inc. Short peptide carrier system for cellular delivery of agent
RU2390529C2 (ru) 2004-01-07 2010-05-27 Сейкагаку Корпорейшн Производное гиалуроновой кислоты и содержащее его лекарственное средство
KR101203475B1 (ko) 2004-09-22 2012-11-21 니폰 가야꾸 가부시끼가이샤 신규 블록 공중합체, 미셀 제제물 및 이를 유효성분으로함유하는 항암제
DE602005026167D1 (de) 2004-11-16 2011-03-10 Hyperion Catalysis Internat Inc Verfahren zur herstellung von trägerkatalysatoren aus metallbeladenen kohlenstoffnanoröhrchen
ME01498B (me) 2004-11-18 2014-04-20 Synta Pharmaceuticals Corp Jedinjenja triazola koja modulišu aktivnost hsp90
US8399464B2 (en) 2005-03-09 2013-03-19 Nippon Kayaku Kabushiki Kaisha HSP90 inhibitor
CN101160291B (zh) 2005-03-09 2012-09-05 日本化药株式会社 作为hsp90抑制剂的三唑衍生物
JP2008137894A (ja) 2005-03-22 2008-06-19 Nippon Kayaku Co Ltd 新規なアセチレン誘導体
EP1881020B1 (en) 2005-05-11 2010-08-11 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of cytidine metabolic antagonist
EP1880721A4 (en) 2005-05-12 2009-05-27 Nipro Corp MEANS FOR IMPROVING CIRCULAR DISORDER
CN1800238A (zh) 2005-12-05 2006-07-12 中国科学院长春应用化学研究所 有生物功能的脂肪族聚酯—聚氨基酸共聚物及合成方法
JP2007182407A (ja) 2006-01-10 2007-07-19 Medgel Corp 徐放性ハイドロゲル製剤
JP2007191643A (ja) 2006-01-20 2007-08-02 Mitsui Chemicals Inc 生体への定着性が付与されたポリアミノ酸誘導体
EP2080779B1 (en) 2006-11-06 2016-05-18 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
JP5548365B2 (ja) 2006-11-08 2014-07-16 日本化薬株式会社 核酸系代謝拮抗剤の高分子誘導体
JP5349318B2 (ja) 2007-09-28 2013-11-20 日本化薬株式会社 ステロイド類の高分子結合体
EP2258397B1 (en) 2008-03-18 2017-10-11 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of physiologically active substance
ES2396134T3 (es) 2008-05-23 2013-02-19 Nanocarrier Co., Ltd. Derivado polimérico de docetaxel, método de preparación del mismo y sus usos
CN102421827B (zh) 2009-05-15 2014-07-30 日本化药株式会社 具有羟基的生理活性物质的高分子结合体
EP2641605B1 (en) 2010-11-17 2018-03-07 Nippon Kayaku Kabushiki Kaisha Polymer derivative of cytidine metabolism antagonist
EP2754682B1 (en) 2011-09-11 2017-06-07 Nippon Kayaku Kabushiki Kaisha Method for manufacturing block copolymer

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02300133A (ja) 1989-05-11 1990-12-12 Res Dev Corp Of Japan 水溶性高分子化医薬製剤
WO2003000771A1 (fr) 2001-06-20 2003-01-03 Nippon Kayaku Kabushiki Kaisha Copolymere bloc a taux d'impuretes reduit, support polymere, preparations pharmaceutiques sous forme polymere et procede de preparation associe
WO2004039869A1 (ja) 2002-10-31 2004-05-13 Nippon Kayaku Kabushiki Kaisha カンプトテシン類の高分子誘導体
WO2006095668A1 (ja) * 2005-03-09 2006-09-14 Toray Industries, Inc. 微粒子および医薬品組成物
WO2006115293A1 (ja) * 2005-04-22 2006-11-02 The University Of Tokyo pH応答性高分子ミセルの調製に用いる新規ブロック共重合体及びその製造法
WO2007022493A2 (en) * 2005-08-19 2007-02-22 Endocyte, Inc. Ligand conjugates of vinca alkaloids, analogs, and derivatives
WO2007111211A1 (ja) * 2006-03-28 2007-10-04 Nippon Kayaku Kabushiki Kaisha タキサン類の高分子結合体
WO2007135910A1 (ja) * 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha ポドフィロトキシン類の高分子結合体
WO2008010463A1 (fr) * 2006-07-19 2008-01-24 Nippon Kayaku Kabushiki Kaisha Conjugué polymère d'une combrétastatine
WO2008041610A1 (fr) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha Mélange d'un dérivé de résorcinol avec un polymère

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLLOID AND SURFACE B: BIOINTERFACE, vol. 16, 1999, pages 217 - 226
J. MED. CHEM., vol. 35, 1992, pages 4450 - 4454
PHARMACEUTICAL RESEARCH, vol. 17, 2000, pages 607 - 611
See also references of EP2284209A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016006111A (ja) * 2010-02-02 2016-01-14 アロス・セラピューティクス・インコーポレーテッド 10−プロパルギル−10−デアザアミノプテリンの光学的に純粋なジアステレオマーおよび該ジアステレオマーを用いる方法
WO2012088282A1 (en) * 2010-12-21 2012-06-28 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of pemetrexed-based compounds
JP2014500329A (ja) * 2010-12-21 2014-01-09 ウェルズ ファーゴ バンク ナショナル アソシエイション ペメトレキセドベースの化合物のマルチアームポリマープロドラッグコンジュゲート
US10736969B2 (en) 2010-12-21 2020-08-11 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of pemetrexed-based compounds
US11612662B2 (en) 2010-12-21 2023-03-28 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of pemetrexed-based compounds

Also Published As

Publication number Publication date
US20110294980A1 (en) 2011-12-01
EP2284209B1 (en) 2016-08-31
JPWO2009136572A1 (ja) 2011-09-08
EP2284209A4 (en) 2014-11-26
EP2284209A1 (en) 2011-02-16
JP5366940B2 (ja) 2013-12-11
US9149540B2 (en) 2015-10-06

Similar Documents

Publication Publication Date Title
JP5366940B2 (ja) 葉酸若しくは葉酸誘導体の高分子結合体
JP5000512B2 (ja) シチジン系代謝拮抗剤の高分子誘導体
JP5503872B2 (ja) 核酸系代謝拮抗剤の高分子誘導体
JP5249016B2 (ja) タキサン類の高分子結合体
JP5548364B2 (ja) レゾルシノール誘導体の高分子結合体
JP5544357B2 (ja) 水酸基を有する生理活性物質の高分子結合体
JP5548365B2 (ja) 核酸系代謝拮抗剤の高分子誘導体
JP5687899B2 (ja) 生理活性物質の高分子結合体
JP5181347B2 (ja) ポドフィロトキシン類の高分子結合体
WO2008010463A1 (fr) Conjugué polymère d'une combrétastatine
JP5856069B2 (ja) 新規なシチジン系代謝拮抗剤の高分子誘導体
AU2017295938C1 (en) Conjugation method for carrier-linked prodrugs
JP6817956B2 (ja) 新規なグルタミン酸誘導体とブロック共重合体を含有する組成物及びその用途
JP6851977B2 (ja) マクロライド系免疫抑制剤の高分子誘導体
KR20110055681A (ko) 중합체 벤질 카르보네이트-유도체
JP6830907B2 (ja) マクロライド系免疫抑制剤の高分子誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09742696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010511053

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009742696

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009742696

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12991041

Country of ref document: US