WO2017024421A1 - 一种多壁纳米碳管催化剂及其制备方法和应用 - Google Patents

一种多壁纳米碳管催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2017024421A1
WO2017024421A1 PCT/CN2015/000586 CN2015000586W WO2017024421A1 WO 2017024421 A1 WO2017024421 A1 WO 2017024421A1 CN 2015000586 W CN2015000586 W CN 2015000586W WO 2017024421 A1 WO2017024421 A1 WO 2017024421A1
Authority
WO
WIPO (PCT)
Prior art keywords
walled carbon
catalyst
carbon nanotube
preparation
nitrate
Prior art date
Application number
PCT/CN2015/000586
Other languages
English (en)
French (fr)
Inventor
汪黎东
杨玉
许佩瑶
Original Assignee
华北电力大学(保定)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力大学(保定) filed Critical 华北电力大学(保定)
Priority to JP2017546727A priority Critical patent/JP6495470B2/ja
Priority to CN201580054141.4A priority patent/CN107107038B/zh
Priority to PCT/CN2015/000586 priority patent/WO2017024421A1/zh
Publication of WO2017024421A1 publication Critical patent/WO2017024421A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium

Definitions

  • the invention belongs to the technical field of flue gas desulfurization, and particularly relates to a multi-wall carbon nanotube catalyst and a preparation method and application thereof.
  • SO 2 is an important precursor to the pollution phenomena such as acid rain and ash, and has caused great harm to China's atmospheric environment in recent years.
  • Wet flue gas desulfurization is currently the most cost-effective desulfurization process, but due to the relatively slow oxidation rate of by-product sulfite, the investment and energy consumption of desulfurization by-product recovery process is relatively high, and sulfite oxidation is insufficient.
  • the current situation is also likely to cause problems such as system fouling, clogging, low product quality, and secondary pollution of the effluent.
  • the main means to solve the problem of insufficient oxidation capacity of the desulfurization system is to add a metal ion state catalyst to increase the oxidation rate of the sulfite.
  • a metal ion state catalyst to increase the oxidation rate of the sulfite.
  • the present invention provides a multi-walled carbon nanotube catalyst and a preparation method and application thereof, and the specific technical solutions are as follows:
  • the multi-walled carbon nanotubes are of the following four sizes: (1) diameter: 10-20 nm, inner diameter: 5-10 nm, tube length: 10-30 ⁇ m; (2) diameter: 20-30 nm, inner diameter: 5 -10 nm, tube length: 10-30 ⁇ m; (3) diameter: 30-50 nm, inner diameter: 5-12 nm, tube length: 10-20 ⁇ m; (4) diameter: >50 mm, inner diameter: 5-15 nm, tube length: 10 -20 ⁇ m.
  • the multi-walled carbon nanotubes are modified by refluxing with nitric acid, washed by suction to neutrality, dried, dissolved in a mixed solution of manganese nitrate and cobalt nitrate, ultrasonically dispersed, dried, and ground, in N2.
  • the multi-walled carbon nanotube catalyst is obtained by calcination under an atmosphere.
  • step (3) ultrasonically dispersing the multi-walled carbon nanotube obtained in step (2) for 20 to 40 minutes, and drying;
  • the multi-walled carbon nanotube obtained in the step (3) is ground and fired in a N 2 atmosphere to obtain the multi-walled carbon nanotube catalyst.
  • the concentration of manganese nitrate is 0.001-0.072 mol/L
  • the concentration of cobalt nitrate is 0.0019-0.068 mol/L
  • the molar ratio of manganese nitrate to nitrate drill is (0.05-0.95). : 1.
  • the steps (1) and (2) are stirred using a magnetic stirrer at a speed of 100 r/min.
  • the drying temperature in the steps (1) and (3) is 80 to 120 ° C for 2 to 3 hours; in the step (4), the baking temperature is 400 to 500 ° C for 3 to 5 hours.
  • the catalyst is added to the absorption slurry of the wet desulfurization system to carry out the oxidation reaction of sulfite; in the absorption slurry, the concentration of the sulfite is 10 g ⁇ L -1 -160 g ⁇ L -1 .
  • the sulfite is magnesium sulfite.
  • the preparation method has the advantages of simple preparation process, convenient operation and obvious efficiency, and has the following advantages compared with the prior art:
  • the multi-walled carbon nanotubes for accelerating sulfite oxidation of the present invention are cheap and easy to obtain, and the catalyst preparation process is simple, and the catalyst can be made into materials of different shapes and sizes by molding technology without affecting the catalytic performance.
  • the catalyst of the invention has remarkable catalytic effect and can be effectively applied to the optimization of the oxidation system of the wet desulfurization process; the use of the catalyst does not adversely affect the desulfurization system, and the oxidation rate of the magnesium sulfite is increased by about 50% or more.
  • the catalyst has a small amount of active ingredients and high efficiency, which can effectively avoid the secondary pollution problem.
  • Figure 1 is a graph showing the effect of a multi-walled carbon nanotube catalyst for accelerating the catalytic reaction of sulfite oxidation.
  • the following examples are used to accelerate the oxidation of magnesium sulfate by multi-walled carbon nanotubes. Pretreatment is required. The specific steps are as follows: magnetically agitate the multi-walled carbon nanotubes in 60% concentrated nitric acid at a speed of 100 r/min. The mixture was heated under reflux for 5-7 h, suction filtered, washed to neutral, and dried at 120 ° C for 2 h to obtain a modified multi-walled carbon nanotube.
  • the test method for the reaction rate of magnesium sulfite under catalytic conditions is as follows: a certain amount of catalyst is added to the magnesium sulfite oxidation reaction system under the following conditions: a reaction solution volume of 200 ml, a reaction temperature of 45 ° C, and an initial concentration of magnesium sulfite. 20 g ⁇ L -1 , pH 8.0, forced air flow rate of 60 L ⁇ h -1 . The concentration of sulfate in the reactor was measured at intervals of time, and the oxidation rate of magnesium sulfite was expressed by the amount of sulfate formed per unit time, and the reaction rate of magnesium sulfite under catalytic conditions was obtained.
  • the reaction solution volume is 200 ml
  • the reaction temperature is 45 ° C
  • the initial concentration of magnesium sulfite is 20 g ⁇ L -1
  • the pH is 8.0
  • the forced air flow rate is 60 L ⁇ h - 1.
  • the reaction efficiency at this time is 0.01077 mmol/(L ⁇ s), as shown by case 0 in FIG.

Abstract

本发明属于烟气脱硫技术领域,具体涉及一种多壁纳米碳管催化剂及其制备方法和应用。所述催化剂以多壁纳米碳管为载体,以硝酸钴和硝酸锰为催化活性物质。制备方法为:将多壁纳米碳管用硝酸回流改性,抽滤洗涤至中性后干燥,再溶于硝酸锰和硝酸钴的混合溶液中,超声分散、干燥、研磨,在N2气氛下焙烧,得到所述多壁纳米碳管催化剂。本发明催化剂用量少、易回收,催化效果显著,无二次污染,可广泛应用于燃煤烟气脱硫的副产物氧化系统;可在原有氧化工艺基本不变的情况下,使亚硫酸盐氧化速率提高50%以上。

Description

一种多壁纳米碳管催化剂及其制备方法和应用 技术领域
本发明属于烟气脱硫技术领域,具体涉及一种多壁纳米碳管催化剂及其制备方法和应用。
背景技术
SO2是造成酸雨和灰霾等污染现象的重要前驱物,近年来对我国大气环境造成了巨大危害。湿法烟气脱硫是目前最经济有效的脱硫工艺,但由于副产物亚硫酸盐的氧化反应速率相对缓慢,导致脱硫副产物回收工艺的投资和能耗比较高,且亚硫酸盐氧化不充分的现状也容易引起系统结垢、堵塞、产物品质低、排放液二次污染等问题。
目前解决脱硫系统氧化能力不足的主要手段是添加金属离子态催化剂以提高亚硫酸盐的氧化速率。但由于催化剂均以溶液形式加入脱硫浆液,导致应用过程的运行成本较高;且催化剂难以回收,必将引起脱硫副产品及外排液中出现重金属二次污染现象;催化剂的应用和推广受到了极大的限制。
发明内容
为解决现有液相金属离子催化剂的不足,本发明提供了一种多壁纳米碳管催化剂及其制备方法和应用,具体技术方案如下:
一种多壁纳米碳管催化剂,所述催化剂以多壁纳米碳管为载体,以硝酸钴和硝酸锰为催化活性物质。
优选地,所述多壁纳米碳管为以下四种尺寸:(1)直径:10-20nm,内径:5-10nm,管长:10-30μm;(2)直径:20-30nm,内径:5-10nm,管长:10-30μm;(3)直径:30-50nm,内径:5-12nm,管长:10-20μm;(4)直径:>50mm,内径:5-15nm,管长:10-20μm。
如上所述催化剂的制备方法,将多壁纳米碳管用硝酸回流改性,抽滤洗涤至中性后干燥,再溶于硝酸锰和硝酸钴的混合溶液中,超声分散、干燥、研磨,在N2气氛下焙烧,得到所述多壁纳米碳管催化剂。
具体步骤如下:
(1)将多壁纳米碳管浸泡于硝酸溶液中搅拌,加热回流5~7h,抽滤洗涤至中性,干燥,得到改性的多壁纳米碳管;
(2)将改性的多壁纳米碳管浸渍于硝酸锰和硝酸钴的混合无水乙醇溶液中,电磁搅拌2~3h;
(3)将步骤(2)得到的多壁纳米碳管超声分散20~40min,干燥;
(4)将步骤(3)得到的多壁纳米碳管研磨,在N2气氛保护中焙烧,得到所述多壁纳米碳管催化剂。
优选地,所述混合无水乙醇溶液中,硝酸锰的浓度为0.001-0.072mol/L,硝酸钴的浓度为0.0019-0.068mol/L;硝酸锰和硝酸钻的摩尔比为(0.05~0.95)∶1。
优选地,步骤(1)和(2)中使用磁力搅拌器搅拌,转速为100r/min。
优选地,步骤(1)和(3)中干燥温度为80~120℃,时间2~3h;步骤(4)中焙烧温度为400~500℃,时间3~5h。
如上所述催化剂的应用:将所述催化剂加入至湿法脱硫系统的吸收浆液中,进行亚硫酸盐的氧化反应;所述吸收浆液中,亚硫酸盐的浓度为10g·L-1-160g·L-1
优选地,所述亚硫酸盐为亚硫酸镁。
本发明制备过程简单、操作方便、效率明显,同现有技术相比,具有如下优点:
(1)本发明用于加速亚硫酸盐氧化的多壁碳纳米管廉价易得,催化剂制备工艺简单,可通过成型技术将催化剂制成不同形状和尺寸的材质,且不影响其催化效能。
(2)本发明所述催化剂催化效果显著,能够有效应用于湿法脱硫工艺氧化系统的优化;催化剂的使用不会对脱硫系统产生负面影响,同时亚硫酸镁的氧化速率提升约50%以上。
(3)催化剂有效成分用量少,效率高,可有效避免二次污染问题。
附图说明
图1为多壁纳米碳管催化剂用于加速亚硫酸盐氧化时的催化反应效果图。
具体实施方式
为了更清楚地说明本发明的应用方法,列举以下实施例,但其对本发明的范围无任何限制。
下述实施例用于加速亚硫酸镁氧化的多壁纳米碳管,需要进行预处理,具体步骤如下:将多壁纳米碳管在60%的浓硝酸中进行磁力搅拌,转速为100r/min,加热回流5~7h,抽滤,洗涤至中性,120℃干燥2h,得到改性的多壁纳米碳管。
亚硫酸镁在催化条件下的反应速率的测试方法如下:取一定量的催化剂加入至亚硫酸镁氧化反应系统中,反应条件为:反应溶液体积200ml,反应温度为45℃,亚硫酸镁初始浓度20g·L-1,pH为8.0,强制鼓入的空气流量60L·h-1。每间隔一段时间测定反应器内硫酸根的浓度,以单位时间内硫酸根生成量表示亚硫酸镁的氧化反应速率,得到亚硫酸镁在催化条件下的反应速率。
实施例1
亚硫酸镁氧化反应体系中,不添加任何催化剂,反应溶液体积为200ml,反应温度为45℃,亚硫酸镁初始浓度20g·L-1,pH为8.0,强制鼓入的空气流量60L·h-1,此时反应效率为0.01077mmol/(L·s),如图1中case 0所示。
实施例2
将经过预处理,直径10-20nm、内径5-10nm、管长10-30μm的多壁纳米碳管2.000g放入浓度为0.0085mol/L的Mn(NO3)2·4H2O和0.0091mol/L Co(NO3)2·6H2O,两者摩尔比为2/3的溶液中,在恒温磁力搅拌器上100r/min动态浸渍2h,超声分散30min,80℃干燥3h:研磨,并在N2保护下升温至120℃,保持1h,再升温至450℃焙烧5h,得到用于加速亚硫酸镁氧化的多壁纳米碳管催化剂。
取上述催化剂0.2g,加入亚硫酸镁氧化反应体系中,反应溶液体积为200ml。此时反应催化效率为0.04884mmol/(L·s),如图1中case 1所示,较非催化条件下提高了3.53倍。
实施例3
将经过预处理,直径20-30nm、内径5-10nm、管长10-30μm的多壁纳米碳管2.000g放入浓度为0.0126mol/L的Mn(NO3)2·4H2O和0.0179mol/L Co(NO3)2·6H2O,两者摩尔比为1/4的溶液中,在恒温磁力搅拌器上100r/min动态浸渍2h,超声分散40min,80℃干燥2h;研磨,并在N2保护下升温至120℃,保持1h,再升温至500℃焙烧3h,得到用于加速亚硫酸镁氧化的多壁纳米碳管催化剂。
取上述催化剂0.4g,加入亚硫酸镁氧化反应体系中,反应溶液体积为200ml。此时反应催化效率为0.05785mmol/(L·s),如图1中case 2所示,较非催化条件下提高了4.37倍。
实施例4
将经过预处理,直径30-50nm、内径5-12nm、管长10-20μm的多壁纳米碳管2.000g放入浓度为0.0258mol/L的Mn(NO3)2·4H2O和0.0235mol/L Co(NO3)2·6H2O,两者摩尔比为3/5的溶液中,在恒温磁力搅拌器上100r/min动态浸渍3h时,超声分散20min,120℃干燥3h;研磨,并在N2保护下升温至120℃,保持1h,再升温至400℃焙烧5h,得到用于加速亚硫酸镁氧化的多壁纳米碳管催化剂。
取上述催化剂0.25g,加入亚硫酸镁氧化反应体系中,反应溶液体积为200ml。此时反应催化效率为0.05847mmol/(L·s),如图1中case 3所示,较非催化条件下提高了4.43倍。
实施例5
将经过预处理,直径>50nm、内径5-15nm、管长10-20μm的多壁纳米碳管2.000g放入浓度为0.0382mol/L的Mn(NO3)2·4H2O和0.0360mol/L Co(NO3)2·6H2O,两者摩尔比为4/7的溶液中,在恒温磁力搅拌器上100r/min动态浸渍2.5h,超声分散30min,120℃干燥2h;研磨,并在N2保护下升温至120℃,保持1h,再升温至450℃焙烧4h,得到用于加速亚硫酸镁氧化的多壁纳米碳管催化剂。
取上述催化剂0.3g,加入亚硫酸镁氧化反应体系中,反应溶液体积为200ml。此时反应催化效率为0.06259mmol/(L·s),如图1中case 4所示,较非催化条件下提高了4.81倍。

Claims (9)

  1. 一种多壁纳米碳管催化剂,其特征在于,所述催化剂以多壁纳米碳管为载体,以硝酸钴和硝酸锰为催化活性物质。
  2. 根据权利要求1所述的催化剂,其特征在于,所述多壁纳米碳管为以下四种尺寸:(1)直径:10-20nm,内径:5-10nm,管长:10-30μm;(2)直径:20-30nm,内径:5-10nm,管长:10-30μm;(3)直径:30-50nm,内径:5-12nm,管长:10-20μm;(4)直径:>50nm,内径:5-15nm,管长:10-20μm。
  3. 权利要求1或2任一项所述催化剂的制备方法,其特征在于,将多壁纳米碳管用硝酸回流改性,抽滤洗涤至中性后干燥,再溶于硝酸锰和硝酸钴的混合溶液中,超声分散、干燥、研磨,在N2气氛下焙烧,得到所述多壁纳米碳管催化剂。
  4. 根据权利要求3所述的制备方法,其特征在于,具体步骤如下:
    (1)将多壁纳米碳管浸泡于硝酸溶液中搅拌,加热回流5~7h,抽滤洗涤至中性,干燥,得到改性的多壁纳米碳管;
    (2)将改性的多壁纳米碳管浸渍于硝酸锰和硝酸钴的混合无水乙醇溶液中,电磁搅拌2~3h;
    (3)将步骤(2)得到的多壁纳米碳管超声分散20~40min,干燥;
    (4)将步骤(3)得到的多壁纳米碳管研磨,在N2气氛保护中焙烧,得到所述多壁纳米碳管催化剂。
  5. 根据权利要求4所述的制备方法,其特征在于,所述混合无水乙醇溶液中,硝酸锰的浓度为0.001-0.072mol/L,硝酸钴的浓度为0.0019-0.068mol/L;硝酸锰和硝酸钴的摩尔比为(0.05~0.95)∶1。
  6. 根据权利要求4所述的制备方法,其特征在于,步骤(1)和(2)中使用磁力搅拌器搅拌,转速为100r/min。
  7. 根据权利要求4所述的制备方法,其特征在于,步骤(1)和(3)中干燥温度为80~120℃,时间2~3h;步骤(4)中焙烧温度为400~500℃,时间3~5h。
  8. 权利要求1或2任一项所述催化剂的应用,其特征在于,将所述催化剂加入至湿法脱硫系统的吸收浆液中,进行亚硫酸盐的氧化反应;所述吸收浆液中,亚硫酸盐的浓度为10g·L-1-160g·L-1
  9. 根据权利要求8所述的应用,其特征在于,所述亚硫酸盐为亚硫酸镁。
PCT/CN2015/000586 2015-08-12 2015-08-12 一种多壁纳米碳管催化剂及其制备方法和应用 WO2017024421A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017546727A JP6495470B2 (ja) 2015-08-12 2015-08-12 複層カーボン・ナノチューブ触媒、その製造方法およびその使用
CN201580054141.4A CN107107038B (zh) 2015-08-12 2015-08-12 一种多壁纳米碳管催化剂及其制备方法和应用
PCT/CN2015/000586 WO2017024421A1 (zh) 2015-08-12 2015-08-12 一种多壁纳米碳管催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000586 WO2017024421A1 (zh) 2015-08-12 2015-08-12 一种多壁纳米碳管催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2017024421A1 true WO2017024421A1 (zh) 2017-02-16

Family

ID=57982846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000586 WO2017024421A1 (zh) 2015-08-12 2015-08-12 一种多壁纳米碳管催化剂及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP6495470B2 (zh)
CN (1) CN107107038B (zh)
WO (1) WO2017024421A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721692A (zh) * 2018-07-16 2020-01-24 中国石油化工股份有限公司 汽油吸附脱硫催化剂及其制备方法和应用
CN111229207A (zh) * 2020-01-17 2020-06-05 广东省石油与精细化工研究院 一种常温催化氧化甲醛的催化剂及其制备方法
CN114307576A (zh) * 2021-12-27 2022-04-12 山东嘉盛博纳环保科技有限公司 一种中低温脱硫剂及制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110813300B (zh) * 2019-12-02 2022-08-09 华北电力大学(保定) 一种负载钴锌双金属的纳米碳材料及其制备方法和在催化氧化亚硫酸镁中的应用
KR102586634B1 (ko) * 2021-06-30 2023-10-10 주식회사 제이오 탄소나노튜브 분산액의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475307A (zh) * 2002-08-12 2004-02-18 中国科学院大连化学物理研究所 一种用于直接选择氧化邻甲酚的催化剂
CN101098991A (zh) * 2004-11-16 2008-01-02 海珀里昂催化国际有限公司 用于由载有金属的碳纳米管制备负载型催化剂的方法
US20080121531A1 (en) * 2006-10-31 2008-05-29 Anderson Marc A Nanoporous Insulating oxide Deionization Device Having Electrolyte Membrane, and Method of Manufacture and Use Thereof
CN103977832A (zh) * 2014-04-28 2014-08-13 华北电力大学(保定) 一种用于镁法脱硫工艺中负载型固相金属催化剂及其制备方法
WO2014203092A1 (en) * 2013-06-19 2014-12-24 Indian Institute Of Technology Madras Sensors for detecting organophosphorous materials, and methods for their preparation

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2196260A1 (en) * 2008-12-02 2010-06-16 Research Institute of Petroleum Industry (RIPI) Hydrodesulphurization nanocatalyst, its use and a process for its production
CN102040212B (zh) * 2009-10-23 2013-01-09 清华大学 碳纳米管复合结构
CN102309965B (zh) * 2010-06-25 2014-05-28 中国石油化工股份有限公司 一种脱除微量气体杂质的铜基催化剂、其制备方法及其应用
JP5660917B2 (ja) * 2011-02-04 2015-01-28 国立大学法人東京工業大学 燃料電池用空気極触媒とその製造方法
JP2014073436A (ja) * 2012-10-03 2014-04-24 Murata Mfg Co Ltd 炭化水素改質触媒、ならびにそれを用いた炭化水素改質方法およびタール改質方法
CN104241643B (zh) * 2013-06-19 2017-10-03 中国科学院苏州纳米技术与纳米仿生研究所 磷酸锰锂和碳纳米管/纤维的复合材料及其制备方法、锂离子二次电池正极、电池
CN103151495B (zh) * 2013-03-20 2015-03-25 河南师范大学 一种锂离子电池复合负极材料的制备方法
CN103285875B (zh) * 2013-06-21 2015-02-25 华北电力大学(保定) 一种用于镁法脱硫工艺的固相复合型金属催化剂
CN103903873B (zh) * 2014-04-04 2017-02-15 华中师范大学 一种全赝电容超级电容器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1475307A (zh) * 2002-08-12 2004-02-18 中国科学院大连化学物理研究所 一种用于直接选择氧化邻甲酚的催化剂
CN101098991A (zh) * 2004-11-16 2008-01-02 海珀里昂催化国际有限公司 用于由载有金属的碳纳米管制备负载型催化剂的方法
US20080121531A1 (en) * 2006-10-31 2008-05-29 Anderson Marc A Nanoporous Insulating oxide Deionization Device Having Electrolyte Membrane, and Method of Manufacture and Use Thereof
WO2014203092A1 (en) * 2013-06-19 2014-12-24 Indian Institute Of Technology Madras Sensors for detecting organophosphorous materials, and methods for their preparation
CN103977832A (zh) * 2014-04-28 2014-08-13 华北电力大学(保定) 一种用于镁法脱硫工艺中负载型固相金属催化剂及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110721692A (zh) * 2018-07-16 2020-01-24 中国石油化工股份有限公司 汽油吸附脱硫催化剂及其制备方法和应用
CN110721692B (zh) * 2018-07-16 2023-01-13 中国石油化工股份有限公司 汽油吸附脱硫催化剂及其制备方法和应用
CN111229207A (zh) * 2020-01-17 2020-06-05 广东省石油与精细化工研究院 一种常温催化氧化甲醛的催化剂及其制备方法
CN111229207B (zh) * 2020-01-17 2023-06-13 广东省石油与精细化工研究院 一种常温催化氧化甲醛的催化剂及其制备方法
CN114307576A (zh) * 2021-12-27 2022-04-12 山东嘉盛博纳环保科技有限公司 一种中低温脱硫剂及制备方法

Also Published As

Publication number Publication date
JP6495470B2 (ja) 2019-04-03
CN107107038B (zh) 2020-01-03
CN107107038A (zh) 2017-08-29
JP2018510768A (ja) 2018-04-19

Similar Documents

Publication Publication Date Title
WO2017024421A1 (zh) 一种多壁纳米碳管催化剂及其制备方法和应用
WO2015149499A1 (zh) 一种低温高效脱硝催化剂及其制备方法
WO2016078292A1 (zh) 抗二氧化硫型低温锰-铁氧化物脱硝催化剂及其制备方法
WO2019062449A1 (zh) 干法脱硫脱硝剂及其生产方法和应用
CN110354843A (zh) 一种薄壁蜂窝式低温抗硫scr脱硝催化剂及其制备方法
CN108067296A (zh) 一种蜂窝状Mn基低温脱硝催化剂的制备方法
CN109835897B (zh) 一种金属/杂原子改性白酒糟基活性炭及其制备方法
CN107126959B (zh) 一种凹凸棒石负载CoTiO3-CeO2异质结SCR低温脱硝催化剂及其制备方法
CN101804344A (zh) 锰/碳纳米管脱氮催化还原催化剂及制备方法
CN106732581A (zh) 一种用于低温SCR反应的Ru/CeTiOX催化剂的制备方法
CN114307576B (zh) 一种中低温脱硫剂及制备方法
CN107583453A (zh) 一种低成本处理VOCs废气的方法
CN103801325A (zh) 复合氧化物脱硝催化剂的共沉淀制备方法
CN105668649A (zh) 一种立方形貌纳米Co3O4催化剂的制备方法及其应用
CN108465470A (zh) 一种γ-Fe2O3纳米颗粒修饰nf-MnO2/ATP低温脱硝催化剂
CN105148972A (zh) 可见光条件下还原水中硝态氮的新型催化剂的制备方法及其应用
CN112495443A (zh) 一种固载杂多酸的Zr基MOFs复合材料的研磨制备方法及应用
CN106215949A (zh) 一种低温选择性催化还原脱硝催化剂及其制备方法
CN108543536A (zh) 一种钒酸铋-铁酸钙复合光催化剂、制备方法及其应用
CN108579756A (zh) 一种海带状Mn-Fe双金属氧化物负载CeO2催化剂及制备方法和应用
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN108479786A (zh) 一种凹凸棒石负载CeO2-NiTiO3异质结SCR低温脱硝催化剂
CN111013573A (zh) 一种负载型二元锰基低温脱硝催化剂的制备方法及催化剂
CN116216717A (zh) 活性炭和低温scr脱硝催化剂的制备方法以及烟气脱硝方法
CN110327905A (zh) 一种聚苯胺碳纳米管基含氮多孔碳纳米复合材料制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15900620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017546727

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15900620

Country of ref document: EP

Kind code of ref document: A1