CN100520995C - Mn-Zn系铁氧体材料 - Google Patents

Mn-Zn系铁氧体材料 Download PDF

Info

Publication number
CN100520995C
CN100520995C CNB2007100849013A CN200710084901A CN100520995C CN 100520995 C CN100520995 C CN 100520995C CN B2007100849013 A CNB2007100849013 A CN B2007100849013A CN 200710084901 A CN200710084901 A CN 200710084901A CN 100520995 C CN100520995 C CN 100520995C
Authority
CN
China
Prior art keywords
counted
conversion
ferrite material
magnetic field
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2007100849013A
Other languages
English (en)
Other versions
CN101051545A (zh
Inventor
石仓友和
坂野伸一
渡边雅彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Publication of CN101051545A publication Critical patent/CN101051545A/zh
Application granted granted Critical
Publication of CN100520995C publication Critical patent/CN100520995C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2683Other ferrites containing alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/42Magnetic properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • C04B2235/3277Co3O4
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明提供在1MHz以上的高频率区域中磁场劣化少的Mn-Zn系铁氧体材料。在该Mn-Zn系铁氧体材料中,作为主成分含有Fe2O3:53~56mol%,ZnO:7mol%以下(包括0mol%),剩余部分:MnO;作为副成分含有以Co3O4换算计为0.15~0.65wt%的Co,以SiO2换算计为0.01~0.045wt%的Si,以CaCO3换算计为0.05~0.40wt%的Ca,其中下述铁氧体组成式(1)中的表示阳离子缺陷量的δ值为3×10-3≤δ≤7×10-3,而且平均结晶粒径为大于8μm且不超过15μm,其中,a+b+c+d+e+f+g+h=3,δ=a+2b+c+(3/2)d+e+(3/2)f+g+(3/2)h-4,[g∶h=1∶2]。(Zna 2+,Tib 4+,Mnc 2+,Mnd 3+,Fee 2+,Fef 3+,Cog 2+,Coh 3+)3O4+δ组成式(1)。

Description

Mn-Zn系铁氧体材料
技术领域
本发明涉及在例如电源变压器等磁心中使用、且适合于在1MHz以上、特别是2MHz以上的高频率区域中使用的Mn-Zn系铁氧体材料。
背景技术
近年来,电气设备小型化的进展显著。与之相伴随,安装在各种电气设备中的电源也要求进一步的小型化。通常来说,在用正弦波驱动变压器时,磁通密度B表示为B=(Ep/4.44NpAf)×107。上述式中EP是施加电压[V],Np是一次侧绕线数,A是磁心截面积[cm2],f是驱动频率[Hz]。正如从上述式明显看出的那样,驱动频率的高频率化对变压器的小型化是有效的,因此,近年来要求能够在数MHz的高频率下耐用的高性能的磁心。
目前,作为在电源变压器等中使用最多的磁心材料,可列举出Mn-Zn系铁氧体材料。该材料在约100kHz的低频率区域中导磁率确实高,而且损耗(磁心损耗)低,满足了作为磁心材料的重要特性。但是该铁氧体材料在驱动频率高达数MHz的情况下损耗明显增大,驱动频率发生高频率化,并且近来难以供于使用。针对该问题,在特开平6-310320号公报(专利文献1)、特开平7-130527号公报(专利文献2)等中公开了一种磁性材料,其通过相对于Mn-Zn系铁氧体材料,含有各种氧化物作为添加成分,从而在300kHz~数MHz下表现出低损耗。与此相对,在特开平10-340807号公报(专利文献3)中以在高频率下的低损耗特性不足为由,提出了一种Mn-Co系铁氧体材料,其特征在于,含有Fe2O3:52~55mol%、CoO:0.4~1mol%,剩余部分实质上由MnO组成。
可是,对于这样的Mn-Zn系铁氧体材料,通常要求其损耗低,但根据具体的用途,有时比要求降低损耗,更要求磁场劣化少。
所谓磁场劣化是指,在1MHz以上的高频率区域中显著存在的现象,即若在烧结后施加磁场,则电力损耗增大,与此同时电感增大。据认为,该现象是由于通过施加的磁场而使得磁畴结构改变,从而感应磁场各向异性下降。
在开关电源的主变压器和扼流圈、或者电源用变压器等中,由于特别要求稳定性,所以希望尽可能抑制如上所述的磁场劣化。
[专利文献1]
特开平6-310320号公报
[专利文献2]
特开平7-130527号公报
[专利文献3]
特开平10-340807号公报
发明内容
本发明是基于如上所述的技术课题而提出的,其目的在于提供在1MHz以上的高频率区域中磁场劣化小的Mn-Zn系铁氧体材料。
本发明人等进行了专心研究,结果发现,要想抑制磁场劣化,调整Mn-Zn系铁氧体材料的阳离子缺陷量(δ,用下述组成式(1)定义)是有效的。
(Zna 2+,Tib 4+,Mnc 2+,Mnd 3+,Fee 2+,Fef 3+,Cog 2+,Coh 3+)3O4+δ组成式(1)
其中,a+b+c+d+e+f+g+h=3,
δ=a+2b+c+(3/2)d+e+(3/2)f+g+(3/2)h-4,[g:h=1:2]
根据本发明人等的研究发现,要想在1MHz以上、特别是2MHz以上的高频率区域中降低磁场劣化,将阳离子缺陷量δ设定在规定的范围内是有利的。本发明是基于该发现,提供了一种Mn-Zn系铁氧体材料,其特征在于,作为主成分含有Fe2O3:53~56mol%,ZnO:7mol%以下(包括0mol%),剩余部分:MnO;作为副成分含有以Co3O4换算计为0.15~0.65wt%的Co,以SiO2换算计为0.01~0.045wt%的Si,以CaCO3换算计为0.05~0.40wt%的Ca,其中上述铁氧体组成式(1)中的δ值(阳离子缺陷量)为3×10-3≤δ≤7×10-3
另外,本发明人等还发现,在控制阳离子缺陷量δ的同时,将Mn-Zn系铁氧体材料的平均结晶粒径限制在某一范围内是重要的。即,本发明中的Mn-Zn系铁氧体材料的平均结晶粒径为大于8μm且不超过15μm。
本发明的Mn-Zn系铁氧体材料中,优选δ值为3×10-3≤δ<5×10-3
此外,本发明的Mn-Zn系铁氧体材料优选的是,在从室温至125℃的温度范围内,在励磁磁通密度为50mT、测量频率为2MHz的条件下的电力损耗为3200[kW/m3]以下,而且磁场劣化率为100%以下。其中所谓的磁场劣化率是在励磁刚刚到达饱和磁通密度程度之后的电力损耗相对于励磁前的电力损耗的增加率,在将刚刚励磁后(磁场劣化后)的电力损耗设定为Pcvr,将励磁前的初期的电力损耗设定为Pcv时,用[Pcvr-Pcv]/[Pcv]×100[%]表示。
根据本发明,可以提供在1MHz以上的高频率区域,磁场劣化少的Mn-Zn系铁氧体材料,从而可以实现稳定性优异的变压器等。
附图说明
图1是表示阳离子缺陷量δ和磁场劣化率的关系的曲线图。
图2是表示平均结晶粒径和磁场劣化率的关系的曲线图。
图3是表示Fe2O3量和磁场劣化率的关系的曲线图。
图4是表示ZnO量和磁场劣化率的关系的曲线图。
图5是表示Co3O4量和磁场劣化率的关系的曲线图。
图6是表示SiO2量和磁场劣化率的关系的曲线图。
图7是表示CaCO3量和磁场劣化率的关系的曲线图。
具体实施方式
本发明的Mn-Zn系铁氧体材料如上所述,用组成式(1)表示的阳离子缺陷量δ满足3×10-3≤δ≤7×10-3的条件。在1MHz以上的高频率区域中,阳离子缺陷量δ低于3×10-3时,高温下的损耗Pcv变大。另外,阳离子缺陷量δ超过7×10-3时,磁场劣化率变大,从而损害了施加磁场时的稳定性。本发明中优选的阳离子缺陷量δ为3×10-3≤δ<5×10-3,更优选的阳离子缺陷量δ为3×10-3≤δ≤4.5×10-3
阳离子缺陷量δ可以根据煅烧时氧分压PO2的不同而变化,提高氧分压PO2时,就会增加阳离子缺陷量δ。
另外,本发明的Mn-Zn系铁氧体材料的粒径(平均结晶粒径)D满足大于8μm且不超过15μm的条件。在1MHz以上的高频率区域中,结晶粒径D为8μm以下时,磁场劣化率变大,从而损害了施加磁场时的稳定性。此外,结晶粒径D大于15μm时,在高温下的损耗Pcv变大。本发明中优选的结晶粒径D为12μm≤D≤15μm,更优选的结晶粒径D为13μm≤D≤15μm。
下面,对本发明的Mn-Zn系铁氧体材料的组成限定理由进行详述。
Fe2O3:53~56mol%
Fe2O3是作为本发明的Mn-Zn系铁氧体材料的主成分的必需构成,其量无论是过少,还是过多,均会导致高温下的损耗Pcv变大。因此,本发明中将Fe2O3量规定为53~56mol%。优选的Fe2O3量为53~55mol%,更优选的Fe2O3量为53~54mol%。
ZnO:7mol%以下(包括0mol%)
ZnO也是作为本发明的Mn-Zn系铁氧体材料的主成分。可以根据ZnO的量控制Mn-Zn系铁氧体材料的频率特性。即,ZnO量越少,在高频率区域的损耗Pcv越小。ZnO超过7mol%时,由于在2MHz以上的高频率区域的损耗Pcv劣化,所以将ZnO的上限规定为7mol%。另外,ZnO量低于2mol%时,磁场劣化率变大,从而损害了施加磁场时的稳定性。因此,优选的ZnO量为2~7mol%,更优选的ZnO量为5~7mol%。
本发明的Mn-Zn系铁氧体材料中,作为主成分,除了Fe2O3和ZnO之外,还含有Mn氧化物作为剩余部分。作为Mn氧化物,可以使用MnO、Mn3O4
本发明的Mn-Zn系铁氧体材料除了上述主成分之外,还含有以下的副成分。通过将这些副成分进行最优化,可控制高频率区域中的损耗的降低和损耗的温度特性。
Co:以Co3O4换算计为0.15~0.65wt%(1500~6500ppm)
Co量过少时,由于不能充分获得损耗Pcv的降低效果,所以将下限规定为以Co3O4换算计为0.15wt%。另外,增大Co量时,磁场劣化率增大。因此,将Co规定为以Co3O4换算计为0.65wt%以下。优选的Co量以Co3O4换算计为0.15~0.50wt%,更优选的Co量以Co3O4换算计为0.15~0.30wt%。
Si:以SiO2换算计为0.01~0.045wt%
Si具有在结晶晶界偏析而使晶界电阻增大并使电流损耗降低的效果。根据该效果,可获得使高频率区域中的损耗降低的效果。为了获得该效果,添加以SiO2换算计为0.01wt%以上的Si。但是,添加过量的Si会诱发异常晶粒长大。因此,将Si规定为以SiO2换算计为0.045wt%以下。优选的Si量以SiO2换算计为0.01~0.03wt%,更优选的Si量以SiO2换算计为0.01~0.02wt%。
Ca:以CaCO3换算计为0.05~0.40wt%
Ca具有在结晶晶界偏析而使晶界电阻增大并使电流损耗降低的效果、以及抑制异常晶粒长大的效果。为了获得该效果,添加以CaCO3换算计为0.05wt%以上的Ca。但是,添加过量的Ca会增大高频率区域中的损耗,所以将Ca规定为以CaCO3换算计为0.40wt%以下。优选的Ca量以CaCO3换算计为0.10~0.30wt%,更优选的Ca量以CaCO3换算计为0.10~0.20wt%。
下面,对制备本发明Mn-Zn系铁氧体材料的优选方法进行说明。
使用氧化物或者通过加热变为氧化物的化合物粉末作为主成分的原料。具体地讲,可以使用Fe2O3粉末、Mn3O4粉末、ZnO粉末等。制备的各原料粉末的平均粒径可以在0.1~3μm范围内适当选择。
将主成分的原料粉末进行湿式混合后,进行煅烧。煅烧的温度为800~1000℃,另外在气氛气体为N2~大气间进行即可。煅烧的稳定时间可以在0.5~5小时的范围内适当选择。煅烧后,将煅烧体粉碎成例如平均粒径为约0.5~2μm。此外,并不限于上述主成分的原料,也可以将含有二种以上金属的复合氧化物粉末作为主成分的原料。例如,将含有氯化铁、氯化锰的水溶液进行氧化焙烧,获得含有Fe、Mn的复合氧化物粉末。也可以将该粉末和ZnO粉末混合作为主成分原料。这种情况下,不需要煅烧。
本发明的Mn-Zn系铁氧体材料中,除了主成分之外,还添加上述的副成分。将这些副成分的原料粉末与煅烧后被粉碎的主成分的粉末混合。但是,也可以与主成分的原料粉末混合后,与主成分一起进行煅烧。
为了顺利地进行以后的成形工序,可以将由主成分和副成分组成的混合粉末造粒为颗粒。造粒可以使用例如喷雾式干燥机进行。在混合粉末中少量添加适当的粘合剂,例如聚乙烯醇(PVA),将其用喷雾式干燥机进行喷雾、干燥。得到的颗粒粒径优选为约80~200μm。
将得到的颗粒使用具有规定形状的模具的模压机成形为所希望的形状,并将该成形体供给烧成工序。烧成是在1050~1350℃的温度范围内保持约2~10小时。通过调整该烧成气氛气体、特别是稳定温度下的氧分压PO2,可以使阳离子缺陷量δ或者Fe2+/Fe变动。也可根据主成分的组成、烧成温度而进行变化,为了将阳离子缺陷量δ规定为3×10-3≤δ≤7×10-3,将稳定温度下的氧分压PO2规定为约0.1~3%即可。
另外,可以通过调整稳定温度,使Mn-Zn系铁氧体材料的平均结晶粒径变动。若提高稳定温度,则晶粒长大,从而可以增大平均结晶粒径。另外,即使是相同的稳定温度,也可以通过减少SiO2、CaCO3量,促进晶粒长大,由此也可以进行平均结晶粒径的调整。
根据满足如上所述条件的Mn-Zn系铁氧体材料,可以实现在从室温至125℃的温度范围内,在励磁磁通密度为50mT、测量频率为2MHz的条件下的电力损耗为3200[kW/m3]以下、进一步为3000[kW/m3]以下,而且磁场劣化率为100%以下的磁场劣化少的材料。
[实施例1]
制备Fe2O3粉末、ZnO粉末和MnO粉末作为主成分的原料,并制备Co3O4粉末、SiO2粉末、CaCO3粉末作为副成分的原料,按照表1中所示的组成进行称量。下面按照下述的制备条件和表1中所示的烧成条件(保持时间为6小时)制作圆环形状的Mn-Zn系铁氧体烧结体(磁心)。
混合和粉碎用罐:使用不锈钢球磨罐
混合和粉碎用介质:使用钢球
混合时间:16小时
煅烧温度和时间:850℃、3小时
粉碎时间:16小时
成形:成形体密度为3g/cm3
试样尺寸:T10形状(外径为20mm、内径为10mm、高为5mm的圆环形状)
[阳离子缺陷量δ]
对由以上得到的烧结体用以下方法根据上述组成式(1)求出阳离子缺陷量δ。
即,δ值的计算是根据组成分析、和Fe2+和Mn2+的定量进行的。对于组成分析来说,将上述烧结体粉碎,形成粉末状后,用使用荧光X射线分析装置(リガク(株)制,サイマルティック3530)的玻璃珠粒法进行测量。Fe2+和Mn2+的定量为将上述烧结体粉碎、形成粉末状,溶解于酸后,用K2Cr2O7溶液进行电位差滴定而加以定量的。此外,对于Zn2+、Ti4+、Co2+、3+来说,假设由组成分析得到的Zn都是二价的离子,Ti都是四价的离子,Co是二价和三价以1比2的比例存在的离子。另外,Fe3+、Mn2+量为由通过组成分析得到的Fe、Mn量分别扣除由上述电位差滴定求出的Fe2+、Mn3+量的值。
[初期损耗(Pcv)]
在由以上得到的圆环形状的烧结体上在一次侧和二次侧一共卷绕3匝铜线导线,使用B-H分析器(岩崎通信机器(株)制SY-8217)测量初期损耗(Pcv)。另外,将励磁磁通密度(Bm)规定为25~125mT,将测量频率(f)规定为2MHz。此外,使用恒温槽进行测量。
[磁场劣化后损耗(Pcvr)]
接着,使卷绕在上述烧结体上的铜线导线流过500A/m的直流电流,并对烧结体施加直流磁场。
在这样地产生磁场劣化后,与上述相同地测量磁场劣化后的损耗(以下称为磁场劣化后损耗)(Pcvr)。
然后,用[磁场劣化后损耗(Pcvr)—初期损耗(Pcv)]/[初期损耗
(Pcv)]这样的公式计算磁场劣化率。
表1、图1中示出了阳离子缺陷量δ、初期损耗(Pcv)、磁场劣化后损耗(Pcvr)的结果。另外,图1表示将励磁磁通密度(Bm)规定为50mT时,125℃下的磁场劣化率。
表1
如表1和图1中所示,存在阳离子缺陷量δ越大,损耗Pcv变得越小的趋势。与此相对,阳离子缺陷量δ越大,磁场劣化率变得越大。于是,通过规定本发明的阳离子缺陷量δ,可以较低地抑制磁场劣化率。由这些结果可知,优选的阳离子缺陷量δ为3×10-3≤δ<7×10-3,更优选的阳离子缺陷量δ为3×10-3≤δ<5×10-3,进一步优选的阳离子缺陷量δ为3×10-3≤δ≤4.5×10-3
[实施例2]
除了将烧结体的平均结晶粒径规定为表2中所示的粒径以外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表2和图2所示。
另外,图2表示平均结晶粒径和125℃下的磁场劣化率的关系。由表2和图2可知,平均结晶粒径为8μm以下时,磁场劣化率变大。另外,平均结晶粒径大于15μm时,高温下的损耗Pcv变大。由这些结果可知,优选的平均结晶粒径为大于8μm,且不超过15μm,更优选的平均结晶粒径为12~15μm,进一步优选的平均结晶粒径为13~15μm。
表2
Figure C200710084901D00121
[实施例3]
除了将主成分、副成分的组成设定为表3中所示的组成外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表3所示。另外,图3中示出了Fe2O3量和125℃下的磁场劣化率的关系。由表3和图3可知,Fe2O3量低于53mol%或超过56mol%时,损耗Pcv增大。优选的Fe2O3量为53~56mol%,更优选的Fe2O3量为53~55mol%,进一步优选的Fe2O3量为53~54mol%。
表3
Figure C200710084901D00131
[实施例4]
除了将主成分、副成分的组成设定为表4中所示的组成外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表4所示。另外,图4中示出了ZnO量和125℃下的磁场劣化率的关系。由表4和图4可知,ZnO量增多时,高温下的损耗Pcv增大。为了使损耗Pcv(125℃、2MHz、50mT)为3000kW/m3以下,需要将ZnO规定为7mol%以下。此外,ZnO量减少时,磁场劣化率增大。为了降低磁场劣化率,优选使ZnO为2~7mol%,更优选为5~7mol%。
表4
[实施例5]
除了将主成分、副成分的组成设定为表5中所示的组成外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表5所示。另外,图5中示出了Co3O4量和125℃下的磁场劣化率的关系。由表5和图5所示的结果可知,通过添加Co3O4,可以降低损耗Pcv,但是增大Co量时,磁场劣化率增大。因此,将Co规定为以Co3O4换算计为0.65wt%以下。优选的Co量以Co3O4换算计为0.15~0.50wt%,更优选的Co量以Co3O4换算计为0.15~0.30wt%。
表5
Figure C200710084901D00142
[实施例6]
除了将主成分、副成分的组成设定为表6中所示的组成外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表6所示。另外,图6中示出了SiO2量和125℃下的磁场劣化率的关系。由表6和图6所示的结果可知,通过添加SiO2,可以降低损耗Pcv,但是过度增大Si量时,产生异常晶粒长大。因此,将Si规定为以SiO2换算计为0.045wt%以下。优选的Si量以SiO2换算计为0.01~0.03wt%,更优选的Si量以SiO2换算计为0.01~0.02wt%。
表6
Figure C200710084901D00151
[实施例7]
除了将主成分、副成分的组成设定为表7中所示的组成外,按照与实施例1相同的步骤制作烧结体。对该烧结体按照与实施例1相同的步骤进行测量。其结果如表7所示。另外,图7中示出了CaCO3量和磁场劣化率的关系。由表7和图7所示的结果可知,通过添加CaCO3,可以降低125℃下的磁场劣化率。通过将CaCO3量规定为0.05~0.40wt%,可以使125℃、2MHz下的损耗Pvc为3200kW/m3以下。
另外,过量地降低CaCO3时,产生异常晶粒长大,因此优选的Ca量以CaCO3换算计为0.10~0.30wt%,更优选的Ca量以CaCO3换算计为0.10~0.20wt%。
表7
Figure C200710084901D00161

Claims (9)

1.一种Mn-Zn系铁氧体材料,其特征在于,作为主成分含有Fe2O3:53~56mol%,ZnO:2~7mol%,剩余部分:MnO;作为副成分含有以Co3O4换算计为0.15~0.65wt%的Co,以SiO2换算计为0.01~0.045wt%的Si,以CaCO3换算计为0.05~0.40wt%的Ca,其中下述铁氧体组成式(1)中的表示阳离子缺陷量的δ值为3×10-3≤δ≤7×10-3,而且平均结晶粒径为大于8μm且不超过15μm,
(Zna 2+,Tib 4+,Mnc 2+,Mnd 3+,Fee 2+,Fef 3+,Cog 2+,Coh 3+)3O4+δ组成式(1)
其中,a+b+c+d+e+f+g+h=3,
δ=a+2b+c+(3/2)d+e+(3/2)f+g+(3/2)h-4,其中,g:h=1:2。
2.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,所述δ值为3×10-3≤δ<5×10-3
3.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,所述δ值为3×10-3≤δ≤4.5×10-3
4.根据权利要求1或2记载的Mn-Zn系铁氧体材料,其特征在于,在从室温至125℃的温度范围内,在励磁磁通密度为50mT、测量频率为2MHz的条件下的电力损耗为3200kW/m3以下,而且在励磁刚刚达到饱和磁通密度程度之后的电力损耗相对于励磁前的电力损耗的增加率即磁场劣化率为100%以下。
5.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,含有以Co3O4换算计为0.15~0.50wt%的Co。
6.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,含有以SiO2换算计为0.01~0.03wt%的Si。
7.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,含有以CaCO3换算计为0.10~0.30wt%的Ca。
8.根据权利要求1记载的Mn-Zn系铁氧体材料,其特征在于,含有以Co3O4换算计为0.15~0.30wt%的Co,以SiO2换算计为0.01~0.02wt%的Si,以CaCO3换算计为0.1~0.2wt%的Ca。
9.根据权利要求8记载的Mn-Zn系铁氧体材料,其特征在于,所述δ值为3×10-3≤δ<5×10-3
CNB2007100849013A 2006-03-30 2007-02-16 Mn-Zn系铁氧体材料 Active CN100520995C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006093716A JP5019023B2 (ja) 2006-03-30 2006-03-30 Mn−Zn系フェライト材料
JP093716/2006 2006-03-30

Publications (2)

Publication Number Publication Date
CN101051545A CN101051545A (zh) 2007-10-10
CN100520995C true CN100520995C (zh) 2009-07-29

Family

ID=38557460

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2007100849013A Active CN100520995C (zh) 2006-03-30 2007-02-16 Mn-Zn系铁氧体材料

Country Status (3)

Country Link
US (1) US7540972B2 (zh)
JP (1) JP5019023B2 (zh)
CN (1) CN100520995C (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427971B2 (ja) * 2014-06-10 2018-11-28 Tdk株式会社 Mnフェライト組成物、フェライトプレート、アンテナ素子用部材、およびアンテナ素子
CN104051115B (zh) * 2014-06-24 2016-08-24 铜陵三佳变压器有限责任公司 一种用于变压器的铌基铁氧体磁芯材料
WO2016104593A1 (ja) * 2014-12-25 2016-06-30 日立金属株式会社 MnZn系フェライトの製造方法及びMnZn系フェライト
CN107522482A (zh) * 2017-08-15 2017-12-29 南京新康达磁业股份有限公司 一种高磁通、高频低功耗MnZn铁氧体材料及其制造方法
CN107973598A (zh) * 2017-12-01 2018-05-01 常熟市三佳磁业有限公司 一种锰锌铁氧体磁芯的制造方法
CN114591075B (zh) * 2022-03-29 2023-03-24 重庆科技学院 一种锰锌铁氧体软磁合金吸波材料及其制备工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06310320A (ja) 1993-04-22 1994-11-04 Matsushita Electric Ind Co Ltd 酸化物磁性体材料
JPH07130527A (ja) 1993-11-08 1995-05-19 Matsushita Electric Ind Co Ltd 酸化物磁性材料
JP4448500B2 (ja) * 1994-11-07 2010-04-07 Jfeケミカル株式会社 Mn−Zn−Co系フェライト磁心材料
JPH08148322A (ja) * 1994-11-17 1996-06-07 Matsushita Electric Ind Co Ltd 酸化物磁性体材料およびそれを使用するスイッチング電源
JP3790606B2 (ja) 1997-06-05 2006-06-28 Jfeケミカル株式会社 Mn−Coフェライト材料
JP4299390B2 (ja) * 1998-12-16 2009-07-22 Tdk株式会社 マンガン系フェライト及びそれを使用したトランス並びにチョークコイル
TWI228729B (en) * 2002-09-02 2005-03-01 Tdk Corp Mn-Zn ferrite, transformer magnetic core and transformer
JP3924272B2 (ja) * 2002-09-02 2007-06-06 Tdk株式会社 Mn−Zn系フェライト、トランス用磁心およびトランス
JP2005108977A (ja) * 2003-09-29 2005-04-21 Tdk Corp Mn−Zn系フェライト、トランス用磁心およびトランス

Also Published As

Publication number Publication date
JP2007269502A (ja) 2007-10-18
US20070228319A1 (en) 2007-10-04
JP5019023B2 (ja) 2012-09-05
CN101051545A (zh) 2007-10-10
US7540972B2 (en) 2009-06-02

Similar Documents

Publication Publication Date Title
JP5332254B2 (ja) フェライト焼結体
CN100520995C (zh) Mn-Zn系铁氧体材料
JP2010180101A (ja) 高抵抗高飽和磁束密度MnZnCoフェライトおよびその製造方法
CN106915956A (zh) MnZnLi系铁氧体、磁芯及变压器
JP5089970B2 (ja) MnCoZnフェライトおよびトランス用磁心
US20070205390A1 (en) Mn-Zn BASED FERRITE MATERIAL
JP2004217452A (ja) フェライト材料およびその製造方法
WO2004028997A1 (ja) フェライト材料
JP2008127230A (ja) MnZnNiフェライト
JP3418827B2 (ja) Mn−Znフェライトおよびその製造方法
JP3288113B2 (ja) Mn−Znフェライト磁性材料
JP6314758B2 (ja) MnZn系フェライト、及びMnZn系フェライト大型コア
JP5828308B2 (ja) フェライトコア及びトランス
JP4750563B2 (ja) MnCoZnフェライトおよびトランス用磁心
JP4031886B2 (ja) Ni−Zn系フェライトの製造方法
JP3446082B2 (ja) Mn−Znフェライトおよびその製造方法
JP5845137B2 (ja) Mn−Zn系フェライトの製造方法
JP3790606B2 (ja) Mn−Coフェライト材料
JP2022059859A (ja) MnZn系フェライト、及びその製造方法
JP3654303B2 (ja) 低損失磁性材料
JP2005108977A (ja) Mn−Zn系フェライト、トランス用磁心およびトランス
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JP3499283B2 (ja) 高透磁率酸化物磁性材料
JP2011088774A (ja) 高抵抗高飽和磁束密度MnZnCrCoフェライト
JP5735353B2 (ja) MnZnAlCo系フェライト

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant