JP3288113B2 - Mn−Znフェライト磁性材料 - Google Patents

Mn−Znフェライト磁性材料

Info

Publication number
JP3288113B2
JP3288113B2 JP07430293A JP7430293A JP3288113B2 JP 3288113 B2 JP3288113 B2 JP 3288113B2 JP 07430293 A JP07430293 A JP 07430293A JP 7430293 A JP7430293 A JP 7430293A JP 3288113 B2 JP3288113 B2 JP 3288113B2
Authority
JP
Japan
Prior art keywords
mass
magnetic material
density
ferrite
zno
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07430293A
Other languages
English (en)
Other versions
JPH06290926A (ja
Inventor
教真 佐々木
薫 伊藤
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07430293A priority Critical patent/JP3288113B2/ja
Publication of JPH06290926A publication Critical patent/JPH06290926A/ja
Application granted granted Critical
Publication of JP3288113B2 publication Critical patent/JP3288113B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、トランスやインダクタ
などの磁心材料として使用される低損失Mn−Znフェ
ライト磁性材料およびその製法に関するものである。
【0002】
【従来の技術】近年、電子機器の小型化に伴いスイッチ
ング電源の小型軽量化が進んでいる。その背景にはトラ
ンスやインダクタなどの磁心材料として使われている低
損失Mn−Znフェライト磁性材料の開発がある。低損
失Mn−Znフェライト磁性材料としては、特開平3−
163803、特開平3−141621、特開平3−248403、特開平
4−69905 、特開平3−223119、特開平3−254103、特
開平2−30660 、特開平2−54901 、特開平2−54902
、特開平2−122603、特開平2−124724、特開平2−1
83501、特開平2−153501、特開平1−143307、特開平
1−259509、特開昭64−79016 、特開昭63−62206 、特
開昭63−255903、特開昭63−260883、特開昭63−14406
号公報など多くの公報において開示されている。
【0003】特に特開平3−141612号公報では、B−H
ループの飽和磁束密度Bs/残留磁束密度Brが3.0
以上、周波数100kHz 、磁束密度200mT、温度10
0℃での損失が450kW/m3 以下の高周波電源用トラ
ンス材料が酸化ニオブの単独添加によって得られてい
る。一方、最近のスイッチング電源の傾向として、その
スイッチング周波数が100kHz から500kHz という
高周波へ移行している事実を鑑み、従来の100kHz の
損失のみならず500kHz での損失も低減する必要があ
ることは明らかである。すなわち、このような広い周波
数範囲における低損失Mn−Znフェライト磁性材料の
開発が必要である。
【0004】ところで、現行の代表的なMn−Znフェ
ライトの製法では、まず原料である酸化鉄Fe2 3
酸化マンガンMn3 4 、酸化亜鉛ZnOを目的にあっ
た磁気特性が得られるような組成比に秤量し、ボールミ
ルにて湿式混合する。次に、得られたスラリーを乾燥
し、800℃〜1100℃にて仮焼する。再びボールミ
ルにて湿式粉砕した後、ポリビニールアルコールなどの
バインダーを加え造粒し、金型に充填、プレスして必要
な形状の成形体を得る。
【0005】さて、従来の技術ではこの成形体は、雰囲
気の酸素濃度をコントロールしながら1250℃〜13
50℃の高い温度範囲にて焼成されてきた。ところが、
このような高い焼成温度のために耐熱炉材の消耗が激し
く、また、炉の温度を高温に保つためのエネルギー量も
膨大なため、必然的にコストが高くなっているのが現状
である。また、焼成温度が高温であると焼成中にフェラ
イト磁心の表面よりZnが蒸発し表面層の組成が変わ
り、高透磁率が得られないなどの磁気特性の劣化を招
く。
【0006】このような高い焼成コストを下げるため
に、特開昭63−222018号公報などではCaO,Si
2 ,V2 5 ,Ta2 5 ,SnO2 ,CuO,Na
2 O,Ag 2 Oの添加物により焼成温度を1150℃ま
で下げる試みがなされている。また、特開平3−268404
号公報では1100℃以上1250℃未満の温度での焼
成について述べられている。
【0007】また、Znの蒸発による磁気特性の劣化を
防ぐために、焼成体と同一組成のケースを用いたり、酸
化亜鉛の成形体を同時に焼成する方法が特開平3−4170
8 号公報に述べられている。
【0008】
【発明が解決しようとする課題】本発明の課題は、周波
数領域100kHz 〜500kHz において損失の小さい、
飽和磁束密度の大きい、残留磁束密度の小さい低損失M
n−Znフェライト磁性材料を提供することにある。ま
た同時に、1200℃以下の焼成に於いても高い焼結密
度が得られる事を可能にし、低温焼成によりZnの蒸発
の少ない、磁気特性に優れた低損失Mn−Znフェライ
ト磁性材料を得る方法を提供する事にある。
【0009】
【課題を解決するための手段】本発明は上記課題を解決
するもので、その要旨は次のとおりである。 (1)主成分として、量%で、Fe71.5
±2%、MnO:22.5±2%、ZnO:6.0±2
、の組成を持ち、微量元素として、SiO:0.0
05〜0.100%、CaO:0.010〜0.500
%、TiO:0.010〜0.500%、V
0.005〜0.100%、Nb:0.005〜
0.100%、を同時に含んだ、密度4.8g/cm
上、表面と内部でのZnOの組成差が0.5量%以下
であることを特徴とするMn−Znフェライト磁性材
料。 (2)主成分として、量%で、Fe23 :71.5
±2%、MnO:22.5±2%、ZnO:6.0±2
%、の組成を持ち、微量元素として、SiO2 :0.0
05〜0.100%、CaO:0.010〜0.500
%、TiO2 :0.010〜0.500%、V25
0.005〜0.100%、Nb25 :0.005〜
0.100%、を同時に含んだ、密度4.8g/cm3
上、表面と内部でのZnOの組成差が0.5質量%以下
のMn−Znフェライト磁性材料において、飽和磁束密
度520mT以上、残留磁束密度170mT以下、磁束密度
200mT、周波数100kHzでの損失値が300kW/m
以下で、かつ、磁束密度50mT、周波数500kHzで
の損失値が70kW/m以下のMn−Znフェライト磁
性材料。 (3)量%で、Fe71.5±2%、Mn
O:22.5±2%、ZnO:6.0±2%からなる
Mn−Znフェライト原料粉に、SiO:0.005
〜0.100%、CaO:0.010〜0.500%、
TiO:0.010〜0.500%、V:0.
005〜0.100%、Nb:0.005〜0.
100%、を添加物として同時に加え、焼成温度800
〜1200℃で焼成し、密度4.8g/cm 以上、表面
と内部でのZnOの組成差が0.5質量%以下のMn−
Feフェライト磁性材料を製造することを特徴とするM
n−Znフェライト磁性材料の製造方法。
【0010】上記成分の範囲は次の理由により決定され
た。即ち、主成分組成の範囲は、これを外れるとMn−
Znフェライト本来の低損失な磁気特性が失われるため
に限定した。従って、本発明の効果を、密度が4.8g
/cm3 以上と高いこと、ZnOの表面と内部での組成差
が0.5量%以下であること、800〜1200℃で
焼成可能なことだけに限れば、主成分組成の範囲は、
量%で、Fe :71.5±2%、MnO:22.
5±2%、ZnO:6.0±2%、となる。
【0011】SiO2 ,CaOの範囲は、上記下限値以
下では500kHz での損失が悪化し、300kW/m3
上となり、上記上限値以上では異常粒成長の発生により
同じく損失値が高くなるために限定した。また、TiO
2 が上記範囲を外れると、下限値以下では500kHz で
の損失が悪化、300kW/m3 以上となり、上記上限値
以上では異常粒成長が生じ、同じく損失値が悪化し、ま
れには内部応力のため亀裂が入る。
【0012】V25 ,Nb25 の範囲は、上記下限
値以下の組成において、800〜1200℃の焼成を行
うと、いずれも焼結密度4.8g/cm3 以下となり、飽
和磁束密度も520mT以上が得られず、上記上限値以上
では結晶粒内に空孔が残り、100kHz 、500kHz ど
ちらの損失も高くなるためこのように定めた。これらS
iO2 ,CaO,TiO2 ,V25 ,Nb25 の添
加物が一種類でも上記範囲から外れたり、欠けたりする
と焼結密度を4.8g/cm3 以上とするためには120
0℃以上での焼成が必要となり、必然的にZnの蒸発が
多くなるためZnOの表面と内部での組成差が0.5
量%以上となってしまう。
【0013】また、本発明の低損失Mn−Znフェライ
ト磁性材料は、800〜1200℃で5時間から15時
間焼成することによって得られ、焼成の際には焼成温度
に合わせて雰囲気の酸素濃度を変えるものである。
【0014】
【作用】本発明により、100kHz 、200mTでの損失
値が300kW/m3 以下、また同時に500kHz 、50
mTでの損失値も70kW/m3 以下が得られた。ちなみ
に、現在市販されている最高レベルの低損失材の100
kHz 、200mTの公表値は410kW/m3 (100℃)
で、高周波低損失材として最高レベルの材料の500kH
z 、50mTの公表値は80kW/m3 (100℃)であ
る。
【0015】また、本発明により、従来材では4.8g
/cm3 以下である焼結密度が、4.8g/cm3 以上とな
り、そのため通常510mT以下である飽和磁束密度が5
20mT以上となった。さらに、残留磁束密度も170mT
以下となり、実際に電源に搭載されてトランスとして使
用される際、その動作範囲となる飽和磁束密度と残留磁
束密度との差を大きくすることができる。
【0016】本発明のMn−Znフェライト磁性材料
は、従来材Mn−Znフェライト磁性材料が1250〜
1350℃の温度範囲で焼結されているところ、800
〜1200℃の温度範囲での焼成が可能であり、耐熱炉
材の消耗を削減でき、炉の温度を維持するために必要な
エネルギー量を大幅に削減できる。また、本発明は低温
焼成であるため、通常焼成法ではMn−Znフェライト
磁性材料の表面と内部のZnOの組成差が0.5量%
以上あるところ、0.5量%以下に抑えられ、磁気特
性の劣化の原因となるZnの蒸発が少なく、高透磁率材
料などにも応用できる。
【0017】
【実施例】以下、本発明による低損失Mn−Znフェラ
イト磁性材料の特性および製法の詳細について説明す
る。 実施例1: Fe23 が71.0量%、MnOが23.0
%、ZnOが6.0量%の組成となるように、Fe2
3 ,Mn34 ,ZnOを合計500g秤量し、純水
500gと同時にボールミルにて混合した。この粉を乾
燥し、800℃、2時間で仮焼し、SiO2 を0.05
量%、CaCO3 をCaO換算で0.200
%、TiO2 を0.400量%、V25 を0.04
量%、Nb25 を0.050量%を加え、再び
ボールミルにて混合粉砕した。
【0018】得られた粉にPVA(ポリビニールアルコ
ール)を1量%加え、水分が3.0±0.5%になる
ように調製した造粒粉を作り、外径25mm、内径16m
m、高さ6mmのリング状に圧力2.5 ton/cm3 でプレ
ス成形した。この成形体を500℃まで5℃/hrで昇温
し、1100℃まで100℃/hrで昇温した。途中80
0℃で空気に窒素ガスを混入し、酸素濃度0.74%の
雰囲気に切り換えた。1100℃に達した後5時間保持
し、酸素濃度を制御しながら500℃まで150℃/hr
で降温し、それ以後は炉冷した。
【0019】このようにして得たリング状コアに導線2
本を4ターンずつ巻き、B−Hアナライザー(岩崎通信
株式会社製)により損失値を測定したところ、100kH
z 、200mTで280kW/m3 (80℃)、500kHz
、50mTで50kW/m3 (80℃)であった。また、
室温25℃で印加磁界800A/mにおける飽和磁束密
度、残留磁束密度を測定したところ、それぞれ529m
T、149mTであった。100℃では、それぞれ410m
T、60mTであった。アルキメデス法による密度測定の
結果は4.93g/cm3 であった。 実施例2:実施例1と同様にして作製した成形体を50
0℃まで5℃/hrで昇温し、800℃まで100℃/hr
で昇温した。800℃で雰囲気を切り換え、15時間保
持し、酸素濃度を制御しながら500℃まで150℃/
hrで降温し、それ以後は炉冷した。
【0020】このようにして得たリング状コアの損失値
を測定したところ、100kHz 、200mTで295kW/
3 (80℃)、500kHz 、50mTで39kW/m
3 (80℃)であった。また、室温25℃で印加磁界8
00A/mにおける飽和磁束密度、残留磁束密度を測定
したところ、それぞれ522mT、168mTであった。1
00℃では、それぞれ400mT、65mTであった。さら
に、アルキメデス法による密度測定の結果は4.87g
/cm3 であった。 実施例3:焼成したMn−Znフェライト磁性材料の表
面と内部でのZnの組成差を調べるため、実施例1、実
施例2のリング状コアの断面を研磨し、XPSにより表
面付近と中心部の組成を調べたところ、表1の結果を得
た。
【0021】
【表1】
【0022】比較例1は、Fe23 が、71.0
%、MnOが23.0量%、ZnOが6.0量%を
主成分として持ち、微量添加物としてSiO2 を0.0
15量%、CaOを0.065量%を含む実施例1
と同様にして得た成形体を1300℃で焼成した従来の
方法によるMn−Znフェライト磁性材料である。ま
た、実施例3は、主成分組成が実施例1とは異なり、微
量元素が実施例1と同じ場合である。
【0023】本発明による実施例1、実施例2では、Z
nOの表面付近と中心部の組成差は0.5量%以下で
あるのに対し、比較例1では0.8量%以上の差があ
る。また、磁気特性については比較例15で述べるが、
実施例1とは異なる主成分組成の実施例3でも本発明の
微量元素を添加し、低温で焼成すれば、Znの蒸発が少
ないことがわかる。 実施例4〜実施例8: 焼成温度を変えたときの実施例4〜実施例8について表
2に示した。
【0024】
【表2】
【0025】焼成した成形体は実施例1と同様のものを
用いた。本発明による実施例では焼成温度が低くても充
分な磁気特性と密度が得られている。また、比較例1の
成形体について、焼成温度を変えた場合の比較例2〜比
較例6を同じく表2に示したが、1200℃以下では充
分な密度と必要な磁気特性が得られなかった。 実施例9〜実施例20:微量元素の量を変えた場合の実
施例9〜実施例20の結果を表3に示す。
【0026】
【表3】
【0027】主成分組成は実施例1と同様である。ま
た、表3中の磁気特性の欄と密度の欄に2つ数値がある
のは、下段が実施例1と同じように1100℃で焼成し
た場合であり、上段が実施例2と同様に800℃で焼成
した場合である。実施例10〜実施例20のいずれも本
発明の磁気特性と密度を有している。これに対して、表
4に示す微量元素が欠けた比較例7〜比較例13の場合
には、本発明の磁気特性と密度が得られていない。
【0028】
【表4】
【0029】実施例21〜実施例32:実施例1と同量
の微量元素を添加し、主成分組成を変えた場合の実施例
21〜実施例32についての結果を表5に示す。
【0030】
【表5】
【0031】主成分組成が本発明の範囲内に有る場合に
は、磁束密度が高く、残留磁束密度の小さい、損失の小
さい、密度の高いMn−Znフェライト磁性材料が得ら
れている。これに対して主成分組成が本発明の範囲から
外れた比較例14では、焼結密度は得られているが、磁
気特性が悪化している。 実施例33〜実施例37:主成分組成を第3の発明の範
囲で変えた実施例33〜実施例37を行った。微量元素
はすべて実施例1と同じ量だけ添加した。得られた焼成
体の密度ならびにZnの表面と内部での組成差を調べた
結果を表6に示す。
【0032】
【表6】
【0033】この表6に2つ数値があるのは、下段が実
施例1と同じように1100℃で焼成した場合であり、
上段が実施例2と同様に800℃で焼成した場合であ
る。この結果から第3の発明の主成分組成の範囲内で、
密度4.8g/cm3 以上、ZnOの表面と内部での組成
差が0.5量%以下のMn−Znフェライト磁性材料
が得られることがわかる。
【0034】
【発明の効果】本発明により、周波数領域100kHz 〜
500kHz においての損失を従来より低減することがで
き、飽和磁束密度の大きい、残留磁束密度の小さい低損
失Mn−Znフェライト磁性材料を提供することが出来
た。また、1200℃以下の焼成に於いても高い焼結密
度が得られる事を可能にし、低温焼成によりZnの蒸発
の少ない、磁気特性に優れたMn−Znフェライト磁性
材料を提供する事が可能となった。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−116406(JP,A) 特開 昭63−222018(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01F 1/12 - 1/375

Claims (3)

    (57)【特許請求の範囲】
  1. 【請求項1】 主成分として、量%で、 Fe71.5±2%、 MnO:22.5±2%、 ZnO:6.0±2%、 の組成を持ち、微量元素として、 SiO:0.005〜0.100%、 CaO:0.010〜0.500%、 TiO:0.010〜0.500%、 V:0.005〜0.100%、 Nb:0.005〜0.100%、 を同時に含んだ、密度4.8g/cm以上、表面と内部
    でのZnOの組成差が0.5量%以下であることを特
    徴とするMn−Znフェライト磁性材料。
  2. 【請求項2】 前記Mn−Znフェライト磁性材料にお
    いて、飽和磁束密度520mT以上、残留磁束密度170
    mT以下、磁束密度200mT、周波数100kHzでの損失
    値が300kW/m以下で、かつ、磁束密度50mT、周
    波数500kHzでの損失値が70kW/m以下である請
    求項1記載のMn−Znフェライト磁性材料。
  3. 【請求項3】 量%で、 Fe71.5±2%、 MnO:22.5±2%、 ZnO:6.0±2%、 からなるMn−Znフェライト原料粉に、 SiO:0.005〜0.100%、 CaO:0.010〜0.500%、 TiO:0.010〜0.500%、 V:0.005〜0.100%、 Nb:0.005〜0.100%、 を添加物として同時に加え、焼成温度800〜1200
    ℃で焼成し、密度4.8g/cm以上、表面と内部での
    ZnOの組成差が0.5量%以下のMn−Feフェラ
    イト磁性材料を製造することを特徴とするMn−Znフ
    ェライト磁性材料の製造方法。
JP07430293A 1993-03-31 1993-03-31 Mn−Znフェライト磁性材料 Expired - Fee Related JP3288113B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07430293A JP3288113B2 (ja) 1993-03-31 1993-03-31 Mn−Znフェライト磁性材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07430293A JP3288113B2 (ja) 1993-03-31 1993-03-31 Mn−Znフェライト磁性材料

Publications (2)

Publication Number Publication Date
JPH06290926A JPH06290926A (ja) 1994-10-18
JP3288113B2 true JP3288113B2 (ja) 2002-06-04

Family

ID=13543204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07430293A Expired - Fee Related JP3288113B2 (ja) 1993-03-31 1993-03-31 Mn−Znフェライト磁性材料

Country Status (1)

Country Link
JP (1) JP3288113B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6498687B1 (en) 1999-10-06 2002-12-24 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6545819B1 (en) 1999-08-31 2003-04-08 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6813091B2 (en) 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773619B2 (en) * 2001-07-17 2004-08-10 Tdk Corporation Magnetic core for transformer, Mn-Zn based ferrite composition and methods of producing the same
JP4930816B2 (ja) * 2003-12-24 2012-05-16 日立金属株式会社 フェライト焼結体及びこれを用いた電子部品
JP5196704B2 (ja) * 2004-03-12 2013-05-15 京セラ株式会社 フェライト焼結体の製造方法
JP5093790B2 (ja) * 2004-08-03 2012-12-12 Jfeフェライト株式会社 Mn−Zn系フェライトおよびその製造方法
JP5817118B2 (ja) * 2011-01-04 2015-11-18 Tdk株式会社 フェライト組成物および電子部品
CN115894006A (zh) * 2022-12-30 2023-04-04 北京七星飞行电子有限公司 一种高频、高Bs、低损耗功率铁氧体材料的制备方法
WO2024204618A1 (ja) * 2023-03-31 2024-10-03 パウダーテック株式会社 フェライト粉末

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545819B1 (en) 1999-08-31 2003-04-08 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6822808B2 (en) 1999-08-31 2004-11-23 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6498687B1 (en) 1999-10-06 2002-12-24 Canon Kabushiki Kaisha Zoom lens and optical apparatus having the same
US6813091B2 (en) 2002-05-21 2004-11-02 Canon Kabushiki Kaisha Zoom lens system and photographing apparatus having the same

Also Published As

Publication number Publication date
JPH06290926A (ja) 1994-10-18

Similar Documents

Publication Publication Date Title
US7294284B2 (en) Method for producing Mn-Zn ferrite
JP3108803B2 (ja) Mn−Znフェライト
CN1700370B (zh) 铁氧体材料
JP4523430B2 (ja) 高飽和磁束密度Mn−Zn−Ni系フェライト
JP3584438B2 (ja) Mn−Znフェライトおよびその製造方法
CN106915956A (zh) MnZnLi系铁氧体、磁芯及变压器
JP3288113B2 (ja) Mn−Znフェライト磁性材料
JP3917216B2 (ja) 低損失フェライト磁心材料
JP3108804B2 (ja) Mn−Znフェライト
JP3597673B2 (ja) フェライト材料
JP3490504B2 (ja) 低損失酸化物磁性材料
JP2003068516A (ja) Mn−Zn−Ni系フェライトおよびその製造方法
JP2004247370A (ja) MnZnフェライト
JP2008169072A (ja) Mn−Zn系フェライト
JP3597665B2 (ja) Mn−Niフェライト材料
JP2000044249A (ja) MnMgCuZnフェライト材料
JP3597666B2 (ja) Mn−Niフェライト材料
US20240006103A1 (en) MnZn-BASED FERRITE AND METHOD FOR PRODUCING SAME
JP3790606B2 (ja) Mn−Coフェライト材料
US6461531B2 (en) Mn-Zn ferrite and production process thereof
JP3584437B2 (ja) Mn−Znフェライトの製造方法
JP7117447B1 (ja) ジルコニア質セッタおよびMnZn系フェライトの製造方法
JPH10326706A (ja) Mn−Ni系フェライト材料
WO2023182133A1 (ja) MnZn系フェライト
JP3617070B2 (ja) 低損失フェライトの製造方法

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020205

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees