CN100379963C - 内燃机燃料喷射控制装置及燃料喷射控制方法 - Google Patents

内燃机燃料喷射控制装置及燃料喷射控制方法 Download PDF

Info

Publication number
CN100379963C
CN100379963C CNB2004101047995A CN200410104799A CN100379963C CN 100379963 C CN100379963 C CN 100379963C CN B2004101047995 A CNB2004101047995 A CN B2004101047995A CN 200410104799 A CN200410104799 A CN 200410104799A CN 100379963 C CN100379963 C CN 100379963C
Authority
CN
China
Prior art keywords
temperature
injection valve
fuel
cylinder
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004101047995A
Other languages
English (en)
Other versions
CN1624318A (zh
Inventor
市濑雅春
柏仓利美
能川真一郎
米泽幸一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003382828A external-priority patent/JP4063198B2/ja
Priority claimed from JP2003410738A external-priority patent/JP4304463B2/ja
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN1624318A publication Critical patent/CN1624318A/zh
Application granted granted Critical
Publication of CN100379963C publication Critical patent/CN100379963C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3094Controlling fuel injection the fuel injection being effected by at least two different injectors, e.g. one in the intake manifold and one in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/046Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into both the combustion chamber and the intake conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D2041/0265Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to decrease temperature of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • F02D2200/0804Estimation of the temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/044Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the intake conduit downstream of an air throttle valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • F02M69/042Positioning of injectors with respect to engine, e.g. in the air intake conduit
    • F02M69/045Positioning of injectors with respect to engine, e.g. in the air intake conduit for injecting into the combustion chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

本发明公开了一种包括一气缸内喷射阀和一进气通道喷射阀的内燃机。该内燃机的一控制装置判定位于排气通道内的部件的温度是否高于或等于一预定温度。当该部件的温度高于或等于该预定温度时,与该部件的温度低于该预定温度的情况相比,该控制装置增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比,但不改变供给该气缸的燃料总量。因此,可以可靠地防止催化剂过热,同时防止燃料燃烧效率降低。

Description

内燃机燃料喷射控制装置及燃料喷射控制方法
技术领域
本发明涉及用于控制内燃机内的燃料喷射的装置和方法,该内燃机包括一用于向气缸内喷射燃料的喷射阀和一用于向进气通道内喷射燃料的喷射阀。特别是,本发明涉及一种用于防止在排气通道内的部件,例如用于净化废气的催化剂过热的技术。
技术背景
日本公开专利出版物No.5-231221,No.7-103050和No.2001-20837均公开了一种具有一用于直接向气缸内喷射燃料的喷射阀(气缸内喷射阀)和一用于向进气通道内喷射燃料的喷射阀(进气通道喷射阀)的内燃机。在这种内燃机中,可使用这两种类型的喷射阀执行多种燃料喷射模式,以便根据内燃机的工作状态使内燃机得到精确的控制。例如,当进气通道喷射阀被用于喷射燃料时,会在气缸内形成均匀的空燃混合物并且该混合物进行燃烧(均匀燃烧)。
另一方面,当气缸内喷射阀被用于喷射燃料时,内燃机在从分层燃烧模式和均匀燃烧模式中选择出的一种燃烧模式下工作。在分层燃烧模式下,燃料在内燃机的压缩冲程期间从气缸内喷射阀喷射,从而在火花塞附近形成较浓的空燃混合物。在这种状态下,该混合物被点燃以进行燃烧。分层燃烧模式使内燃机可以通过燃烧较稀薄的空燃混合物进行工作。因而,燃料燃烧效率提高并且CO2的排放减少。
在均匀燃烧模式下,燃料在内燃机的进气冲程期间从气缸内喷射阀喷射,从而在气缸内形成均匀的空燃混合物。在这种状态下,该混合物被点燃以进行燃烧。被吸入气缸内的空气因喷入的燃料的汽化热效应而被冷却。因而,向气缸充入空气的效率提高。因此,当内燃机在均匀燃烧模式下工作时,该内燃机产生较大的动力。
此外,也可以执行一种其中从气缸内喷射阀和进气通道喷射阀均喷射燃料的燃料喷射模式。
用于净化废气的催化剂设在内燃机的排气系统中。如果催化剂因废气的温度升高而过热,则该催化剂的净化性能会被降低,并且该催化剂的使用寿命会缩短。日本公开专利出版物No.2002-130011公开了一种使供应给气缸的燃料量增加以防止催化剂过热的技术。但是,该出版物中所公开的技术只适用于具有气缸内喷射阀的内燃机,但是不能有利地应用于具有气缸内喷射阀和进气通道喷射阀的内燃机。
日本公开专利出版物No.7-103050公开了一种用于切换喷射阀的技术。具体来说,当检测到气缸内喷射阀的燃料喷射异常时,停止气缸内喷射阀的燃料喷射,同时启动进气通道喷射阀的燃料喷射。燃料喷射的异常使燃烧状态降低并影响废气的温度,换句话说,影响催化剂的温度。但是日本公开专利出版物No.7-103050仅公开了当检测到气缸内喷射阀的燃料喷射异常时将喷射燃料的喷射阀切换到进气通道喷射阀。在该出版物中,完全没有考虑到催化剂的过热。
发明内容
因而,本发明的一个目的是提供一种燃料喷射控制装置和一种燃料喷射控制方法,该装置和方法可容易地防止设在排气通道内的部件在内燃机内过热,该内燃机包括一用于向气缸内喷射燃料的喷射阀和一用于向进气通道内喷射燃料的喷射阀。
为达到上述和其它目的并且根据本发明的目的,提供一种内燃机的燃料喷射控制装置。该内燃机具有一用于向内燃机气缸内喷射燃料的气缸内喷射阀,一用于向与气缸相连的进气通道内喷射燃料的进气通道喷射阀,和一与气缸相连的排气通道。该装置包括一温度判定部和一喷射控制部。该温度判定部判定位于排气通道内的部件的温度是否高于或等于一预定温度,该预定温度是一表示该部件处于过热状态的基准值,或者是一低于该基准值的温度。该喷射控制部控制气缸内喷射阀和进气通道喷射阀。当该部件的温度高于或等于该预定温度时,与该部件的温度低于该预定温度的情况相比,该喷射控制部在不改变供给该气缸的燃料总量的情况下,增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比,从而防止该部件过热。
本发明还提供一种内燃机的燃料喷射控制方法。该内燃机具有一用于向该内燃机气缸内喷射燃料的气缸内喷射阀,一用于向与气缸相连的进气通道内喷射燃料的喷射阀,和一与气缸相连的排气通道。该方法包括:判定位于排气通道内的部件的温度是否高于或等于一预定温度,该预定温度是一表示该部件处于过热状态的基准值,或者是一低于该基准值的温度;并且当该部件的温度高于或等于该预定温度时,与该部件的温度低于该预定温度的情况相比,在不改变供给该气缸的燃料总量的情况下,增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比,从而防止该部件过热。
从下面结合附图的说明,本发明的其它方面和优点将变得显而易见,该说明通过示例阐明了本方面的原理。
附图说明
通过参照下面对当前优选实施例的说明以及附图,可以最好地理解本发明及其目的和优点,其中:
图1是根据本发明第一实施例的内燃机及其控制装置的示意图;
图2是图1所示的控制装置的电路框图;
图3是示出根据该第一实施例的控制燃料喷射的程序的流程图;
图4是示出催化剂温度随时间变化的曲线图;
图5是示出催化剂温度与气缸内喷射阀喷射的燃料量和进气口喷射阀喷射的燃料量之间的关系的曲线图;
图6是示出设定喷射量比的程序的流程图;
图7是示出一燃料喷射比图的一个示例的曲线图,该燃料喷射比图限定相对于内燃机载荷的进气口喷射阀的喷射量比;
图8是示出根据本发明第二实施例的内燃机控制装置的电路框图;
图9是示出根据该第二实施例的控制燃料喷射的程序的流程图;
图10是示出设定燃料喷射量的程序的流程图;
图11是示出根据本发明第三实施例的内燃机及其控制装置的示意图;
图12是示出根据该第三实施例的控制燃料喷射的程序的流程图;
图13是示出根据本发明第四实施例的内燃机及其控制装置的示意图;
图14是示出根据该第四实施例的控制燃料喷射的程序的流程图;
图15(a)和15(b)示出供参考以获得稳定温度的图的示例;
图16是示出根据第五实施例的控制燃料喷射的程序的流程图;以及
图17是示出在图16所示的程序之后的程序的流程图。
具体实施方式
现在参考这些附图对本发明的第一实施例进行说明。
如图1所示,本发明的内燃机1是使用汽油作为燃料的往复式内燃机。该内燃机1尤其可用于车辆如小型客车,公共汽车及卡车。该内燃机1由一控制装置10和一与控制装置10分开的电子控制单元(ECU)30所控制。该控制装置10和该ECU30相关联进行操作以控制内燃机1。内燃机1具有一其中限定一燃烧室11的气缸1S,一连接在燃烧室11上的进气通道4,一连接在燃烧室11上的排气通道7。该排气通道7的一部分由一排气歧管8形成。三元催化剂(three-way catalyst)9位于该排气歧管8内。设在气缸1S内的一活塞5通过一连杆13连接到一曲轴12上,该曲轴是内燃机1的输出轴。该连杆13将活塞5的往复运动转化为曲轴12的转动。
内燃机1还具有一第一喷射阀和一第二喷射阀。在这一实施例中,该第一喷射阀是向气缸1S或向燃烧室11内喷射燃料F的气缸内喷射阀3,第二喷射阀是向进气通道4内喷射燃料F的进气通道喷射阀2。燃烧室11与进气通道4的接合处形成一进气口4a。进气通道喷射阀2向进气口4a喷射燃料F。因而,该进气通道喷射阀2将在下文中被称为进气口喷射阀。该进气口喷射阀2和气缸内喷射阀3通过一燃料供给机构(未示出)接收具有预定压力的燃料。提供给气缸内喷射阀3的燃料的压力高于提供给进气口喷射阀2的燃料的压力。燃料F通过至少该进气口喷射阀2和该气缸内喷射阀3之一提供给气缸1S。
通过进气通道4被导入气缸1S的空气和由进气口喷射阀2或气缸内喷射阀3喷射的燃料形成空燃混合物。该空燃混和物被气缸1S内的火花塞6点燃以进行燃烧,然后成为燃烧气体。用于由火花塞6点燃空燃混和物的正时由设置在该火花塞6上部的一点火器6a进行调整。燃烧气体的燃烧压力传递给活塞5,从而使活塞5往复运动。在驱动活塞5后,燃烧气体通过排气通道7被引导到三元催化剂9。该三元催化剂9减少该燃烧气体中的CO,HC,和Nox成分以净化该燃烧气体。
在本实施例中,使用两种类型的喷射阀,即进气口喷射阀2和气缸内喷射阀3可以执行不同的燃料喷射模式。例如,当仅使用进气口喷射阀2喷射燃料时,在气缸1S中形成均匀的空燃混合物并且该混合物进行燃烧(均匀燃烧)。例如,当内燃机1在较低的载荷下工作时,执行使用进气口喷射阀2的燃料喷射模式。另一方面,当仅使用气缸内喷射阀3喷射燃料时,内燃机1在从分层燃烧模式和均匀燃烧模式中选择出的一种燃烧模式下工作。在分层燃烧模式下,燃料在内燃机1的压缩冲程期间从气缸内喷射阀3喷入,从而在火花塞6附近形成较浓的空燃混合物。在这种状态下,该混合物被点燃以进行燃烧。例如,当内燃机1在较低的载荷下工作时,执行该分层燃烧模式。在均匀燃烧模式下,燃料在内燃机1的进气冲程期间从气缸内喷射阀3喷入,从而在气缸1S内形成均匀的空燃混合物。在这种状态下,该混合物被点燃以进行燃烧。例如,当内燃机1在较高的载荷下工作时,执行均匀燃烧模式。此外,也可以执行从气缸内喷射阀3和进气口喷射阀2两者均喷射燃料的一种燃料喷射模式。可以根据内燃机1的工作状态,例如内燃机载荷KL和内燃机转速NE的需要选择要执行的燃料喷射模式。
用于检测与催化剂温度(催化剂床温度)有关的参数的装置附置在三元催化剂9上。在这一实施例中,检测催化剂床的温度Tc(以下称之为催化剂温度Tc)的一温度传感器40附置在三元催化剂9上。所检测到的催化剂温度Tc用于判定三元催化剂9的过热(OT)和用于对抑制该三元催化剂9过热执行控制。一空燃比传感器(以下称之为A/F传感器)41设在排气歧管8中以检测在气缸1S中形成的空燃混合物的空燃比A/F。所检测到的空燃比A/F例如用于检测内燃机1的燃烧异常。例如,将A/F传感器41的输出结果与一依据内燃机1的工作状态而确定的目标空燃比相比较,以确定内燃机1是否存在燃烧异常。在这一实施例中,该温度传感器40的输出结果和A/F传感器41的输出结果经由ECU30传送给控制装置10。但该输出结果也可以直接传送给控制装置10。
除催化剂床温度之外,与催化剂温度有关的参数例如包括废气的温度。废气温度可以用一传感器直接检测,或由除废气温度之外的参数估算出。或者,可以准备一限定催化剂温度Tc与内燃机工作状态如内燃机载荷KL、内燃机转速NE、空燃比A/F和吸入空气的流速GA之间的关系的图,则通过参考该图就可以获得与当前内燃机工作状态对应的催化剂温度Tc。或者,可以准备一限定吸入空气的流速GA与单位时间内废气温度的变化量之间关系的图,则通过参考该图就可估算出与当前内燃机工作状态相对应的废气温度。在此情况下,根据所估算出的废气温度可估算该催化剂温度Tc。也就是说,即使未直接检测出催化剂温度Tc,也可使用任何可以估算催化剂温度Tc的参数作为与催化剂温度Tc有关的参数。
如图2所示,控制装置10包括一处理部10p和一存储部10m。该处理部10p包括一燃烧判定部21,一催化剂温度判定部22,和一喷射控制部23。该存储部10m、燃烧判定部21、催化剂温度判定部22和喷射控制部23通过一输入输出界面(I/O)29互相连接,并执行双向数据传输。如果需要,也可以执行单向数据传输。
控制装置10和ECU30通过输入输出界面29相互连接并执行双向数据传输。该控制装置10通过ECU30获得各种控制内燃机1所必需的信息,例如,反映内燃机工作状态如内燃机1的载荷KL和内燃机1的转速NE的信息,以及由各种传感器获得的信息。该控制装置10还可以使由它本身执行的内燃机控制来中断由ECU30执行的内燃机控制程序。当控制装置10控制内燃机1时,它可以设计成带有ECU30的某些功能,或者可以结合在ECU30中。
存储部10m存储控制内燃机1所必需的各种程序和各种数据。该存储部10m可以是一易失存储器如随机存取存储器(RAM),可以是一永久性存储器如闪存储器,或者是这些存储器的组合。处理部10p可以由一台包括存储器和一CPU的电脑组成。在这种情况下,处理部10p的燃烧判定部21、催化剂温度判定部22和喷射控制部23对应于该电脑根据存储在存储部10m内的控制程序所执行的功能。
或者,可以不执行这些控制程序,而是由控制部10p使用专用的硬件来执行该燃烧判定部21、催化剂温度判定部22和喷射控制部23的功能。
一节流阀传感器42检测位于进气通道4内的一节流阀的开度。一气流传感器43检测在进气通道4内吸入空气的流速GA。一曲柄传感器44检测曲轴12的旋转相位(曲柄角)和内燃机转速NE。一踏板压下度传感器45检测加速踏板的压下程度。ECU30获得包括这些传感器42、43、44、45的多个传感器的输出结果,由此控制内燃机1的操作。
图3是示出由控制装置10和ECU30所执行的控制燃料喷射的程序的流程图。当执行该程序时,假定内燃机1正使用至少该气缸内喷射阀3进行操作。
在步骤S101中,ECU30获取信息,如内燃机转速NE和吸入空气的流速GA,从而计算内燃机载荷KL和其它值。根据内燃机载荷KL、内燃机转速NE和其它值,ECU30或喷射控制部23计算燃料喷射总量TAU,它是供给气缸1S的燃料总量。
接下来,在步骤S102中,催化剂温度判定部22将催化剂温度Tc和一预定基准值相比较,并判断催化剂温度Tc是否高于或等于该基准温度。该基准值用于判定该三元催化剂9是否处于过热状态或处于一种接近过热状态的状态,并可以是该三元催化剂9的温度上限值T1或修正温度上限值T1c(T1c=T1-δT),该修正温度上限值是从该温度上限值T1减去一安全温度余量δT而得到的值。在这一实施例中,该修正温度上限值T1c被用作基准值。
此外,可以不比较催化剂温度Tc与一基准值,而是可根据催化剂温度Tc的增加速度来估算催化剂温度Tc超过该基准值所需的时间tn,并将该时间tn与一预定的基准时间相比较。图4是示出催化剂温度Tc随时间变化的曲线图。例如,催化剂温度判定部22可以计算催化剂温度Tc的增加率ΔTc/Δt,并可根据当前的催化剂温度Tc和增加率ΔTc/Δt来估算当前催化剂温度Tc超过一预定基准值(在此情形下为温度上限值T1)所需要的时间tn。当催化剂温度判定部22判定该估算出的时间tn小于或等于一预定时间时,该程序进入步骤S103。
在步骤S102中,如果催化剂温度Tc低于该修正温度上限值T1c,则判定催化剂温度Tc正常并且该三元催化剂9不存在异常的温度升高。这样,在步骤S108中执行正常的燃料喷射。也就是说,不改变燃料喷射总量TAU并且不改变进气口喷射阀2的燃料喷射量与气缸内喷射阀3的燃料喷射量之间的比而喷射燃料。
另一方面,如果在步骤S102中催化剂温度Tc高于或等于该修正温度上限值T1c,则判定催化剂温度Tc已经基本达到该三元催化剂9的温度上限值T1。催化剂温度Tc升高的一个原因是内燃机1长时间高载荷工作。气缸内喷射阀3的故障以及积聚在气缸内喷射阀3上的沉积物会导致形成不良的燃料喷雾。这继而增加了空燃比A/F,或形成稀薄的空燃混合物。在这种情况下,催化剂温度Tc可能会升高。如果内燃机1在催化剂温度Tc高于或等于该修正温度上限值T1c的状态下持续工作,则三元催化剂9的过热状态会降低该三元催化剂9的废气净化性能或寿命。
如果步骤S102的结果为肯定,则喷射控制部23执行用于降低催化剂温度Tc的控制。具体地说,在步骤S103中,喷射控制部23增加进气口喷射阀2的燃料喷射量的比但不改变燃料喷射总量TAU,即供给气缸1S的燃料总量,从而减少气缸内喷射阀3的燃料喷射量的比。喷射阀2、3的燃料喷射量之间的比是根据图6中所示的流程图的程序来确定的,这将在下文中进行讨论。在步骤S104中,控制进气口喷射阀2和气缸内喷射阀3以便按照所确定的喷射量的比来喷射燃料。
在步骤S105中,催化剂温度判定部22判定催化剂温度Tc是否高于或等于修正温度上限值T1c。当催化剂温度Tc下降到该修正温度上限值T1c以下时,程序进入执行正常喷射的步骤S108。
图5是示出催化剂温度Tc与气缸内喷射阀3和进气口喷射阀2的燃料喷射量的比之间的关系的曲线图。如图5所示,随着进气口喷射阀2的燃料喷射量的比增加,催化剂温度Tc降低。也就是说,进气口喷射比气缸内喷射更能促进燃料与空气的混和,因而促进燃料汽化。随着促进燃料汽化,废气中的HC和CO的量减少。这样会抑制由于催化剂9与HC和CO反应而产生热量。结果,催化剂温度Tc降低。因而,在燃料喷射总量TAU恒定时,可以通过增加进气口喷射阀2的燃料喷射量的比以降低气缸内喷射阀3的燃料喷射量的比来有效地降低催化剂温度Tc。而且,由于催化剂温度Tc是在不增加燃料喷射总量TAU的前提下降低的,因而燃料燃烧效率没有被降低。
如果空燃比A/F由于气缸内喷射阀3的燃料喷雾形成不充分而增加,并且催化剂温度Tc升高,则相应地增加进气口喷射阀2的燃料喷射量的比以便有效地降低催化剂温度Tc。此外,由于通过增加进气口喷射阀2的燃料喷射量的比可以使增加后的空燃比A/F趋向目标空燃比,因此防止了废气中的HC和CO的浓度增加。
另一方面,当步骤S105的结果为肯定时,也就是说,即使在提高进气口喷射阀2的燃料喷射量的比之后催化剂温度Tc仍停留在等于或高于该修正温度上限值T1c时,喷射控制部23在步骤S106中增加燃料喷射总量TAU。在步骤S107中,控制进气口喷射阀2和气缸内喷射阀3以便喷射的燃料量对应于增加后的燃料喷射总量TAU。随着燃料喷射总量TAU增加,空燃比A/F被降低,并且混合物的浓度增加。这改善了燃烧状态并因而减少了废气中未燃烧的HC的量。结果,废气温度降低,并且催化剂温度Tc降低。
当增加燃料喷射总量TAU时,可以使进气口喷射阀2的燃料喷射量的增加速度大于气缸内喷射阀3的增加速度。或者,燃料喷射总量TAU的增加可以完全通过增加进气口喷射阀2的燃料喷射量而获得。或者,气缸内喷射阀3的燃料喷射量可以减少至零,燃料喷射总量TAU的全部增加量可以仅由进气口喷射阀2喷射。因此,进气口喷射显著地促进了燃料和空气的混合,这继而促进了燃料的汽化。因而,废气中未燃烧的HC的量被有效地降低,并且废气温度和催化剂温度Tc被降低。也可以使进气口喷射阀2的燃料喷射量的增加速度与气缸内喷射阀3的燃料喷射量的增加速度相同。当增加燃料喷射总量TAU时,可以根据内燃机的工作状态(包括内燃机转速NE,内燃机载荷KL,燃料喷射模式,喷射阀2和3之间的燃料喷射的比)设定一种用于控制喷射阀2、3的模式。
如果在增加燃料喷射总量TAU之后,在步骤S102中催化剂温度Tc被判定为低于该修正温度上限值T1c,则程序进入步骤S108的正常喷射。另一方面,如果催化剂温度Tc高于或等于该修正温度上限值T1c,则重复执行从步骤S103至步骤S107的程序,直到催化剂温度Tc下降到该修正温度上限值T1c之下。当催化剂温度Tc的下降速度低于一预定值时,控制装置10可以增加燃料喷射总量TAU,从而使至少该进气口喷射阀2喷射燃料,即,控制装置10可以重复步骤S106和S107的程序。在这种情况下,由于空燃比A/F降低催化剂温度Tc被很快降低。从而,防止了三元催化剂9的寿命因高温而缩短。
接下来,将说明一个用于确定进气口喷射阀2和气缸内喷射阀3之间的燃料喷射量比的程序。喷射控制部23根据图6的流程图所示的程序确定进气口喷射阀2和气缸内喷射阀3之间的燃料喷射量比。首先,在步骤S201中,喷射控制部23从ECU获取燃料喷射总量TAU,该总量TAU是由ECU30根据内燃机的工作状态包括内燃机载荷KL和内燃机转速NE计算出的。喷射控制部23可以从ECU30获得包括内燃机载荷KL和内燃机转速NE的内燃机工作状态,并且根据所获得的信息计算燃料喷射总量TAU。
在随后的步骤S202中,喷射控制部23判定是否需要增加燃料喷射总量TAU。需要增加燃料喷射总量TAU是指通过增加进气口喷射阀2的燃料喷射量的比不足以降低催化剂温度Tc的情形。这与图3的步骤S105的结果为肯定的情形相对应。当判定需要增加燃料喷射总量TAU时,喷射控制部23进入步骤S203。在步骤S203中,喷射控制部23使在步骤S201获得的燃料喷射总量TAU增加一燃料增加量α,并将结果设定为燃料喷射总量TAU的最终值。另一方面,当判定不需要增加燃料喷射总量TAU时,喷射控制部23进入步骤S204。在步骤S204中,喷射控制部23将在步骤S201获得的燃料喷射总量TAU设定为燃料喷射总量TAU的最终值。
在随后的步骤S205中,燃烧判定部21判定内燃机工作状态是否处于进行均匀燃烧的工作范围(均匀燃烧范围)内。如果内燃机工作状态处于均匀燃烧范围内,则喷射控制部23在步骤S206中确定进气口喷射阀2的燃料喷射量与燃料喷射总量TAU的比率K(以下简称为喷射量比K)。
图7是示出燃料喷射(量)比图的一个示例的曲线图,该图设定了相对于内燃机载荷KL的进气口喷射阀2的喷射量比K。如图7中所示,喷射量比K设定为随着内燃机载荷KL的增加而增加。该喷射量比图50预先存储在控制装置10的存储部10m中。喷射控制部23根据由ECU30获得的内燃机载荷KL并参考图7的喷射量比图50获得喷射量比K。当设定该喷射量比图50时,除内燃机载荷KL之外的反映内燃机工作状态的参数(例如,内燃机转速NE)也可以予以考虑。
在随后的步骤S207中,喷射控制部23判定是否需要增加进气口喷射阀2的喷射量比。需要增加进气口喷射阀2的喷射量比的情形是指当内燃机1正使用至少该气缸内喷射阀3工作时催化剂温度Tc变得高于或等于一预定基准值(修正温度上限值T1c)的情形。这与图3中步骤S102的结果为肯定的情形相对应。当判定需要增加进气口喷射阀2的喷射量比时,喷射控制部23进入步骤S208。在步骤S208中,喷射控制部23使在步骤S206中确定的喷射(量)比K增加一比率增加量β,并将该结果设定为喷射量比K的最终值。另一方面,当判定不需要增加进气口喷射阀2的喷射量比时,喷射控制部23进入步骤S209。在步骤S209中,喷射控制部23将在步骤S206中确定的喷射量比K设定为喷射量比K的最终值。
在确定喷射量比K之后,喷射控制部23在步骤S210中利用该喷射量比K根据下面的等式来确定进气口喷射阀2的燃料喷射量Qp和气缸内喷射阀3的燃料喷射量Qd。
Qp=K×TAU
Qd=(1-K)×TAU
因此,当内燃机工作状态处于均匀燃烧范围时,在步骤S104,S107和S108中进气口喷射阀2和气缸内喷射阀3根据在步骤S210确定的燃料喷射量Qp、Qd喷射燃料。
另一方面,当在步骤S205中内燃机的工作状态被判定为处于该均匀燃烧范围之外时,换句话说,当内燃机的工作状态被判定为处于进行分层燃烧的工作范围时(分层燃烧范围),程序进入步骤S211。在步骤S211中,如在步骤S207一样,喷射控制部23判定是否需要增加进气口喷射阀2的喷射量比。当不需要增加进气口喷射阀2的喷射量比时,喷射控制部23进入步骤S212。在步骤S212中,喷射控制部23将进气口喷射阀2的燃料喷射量Qp设定为零,并将气缸内喷射阀3的燃料喷射量Qd设定为燃料喷射总量TAU,因此内燃机1工作在只有气缸内喷射阀3喷射燃料的状态下。
另一方面,当需要增加进气口喷射阀2的喷射量比时,喷射控制部23在步骤S213中增加进气口喷射阀2的喷射量比。在这一实施例中,将进气口喷射阀2的燃料喷射量Qp设定为燃料喷射总量TAU,并将气缸内喷射阀3的燃料喷射量Qd设定为零。也就是说,如果当内燃机的操作状态处于分层燃烧范围时三元催化剂9没有处于过热状态,则在由气缸内喷射阀3喷射该燃料喷射总量TAU的情况下进行分层燃烧。如果三元催化剂9处于过热状态,则在由进气口喷射阀2喷射该燃料喷射总量TAU的情况下进行均匀燃烧。
通过这种方式,即使内燃机工作状态处于分层燃烧范围内,燃料也由进气口喷射阀2喷射,从而促进燃料和空气的混和,这又促进了燃料的汽化。结果,废气中未燃烧的HC的量减少,并且废气的温度和催化剂温度Tc降低。即使内燃机工作状态处于分层燃烧范围内,也可以如在均匀燃烧范围内一样,根据内燃机工作状态如内燃机载荷KL和内燃机转速NE改变进气口喷射阀2的喷射量比。例如,如果当内燃机的工作状态处于分层燃烧范围时催化剂温度变得高于或等于一预定基准值,则可以随内燃机载荷KL的增加而增加进气口喷射阀2的喷射量比。
如上所述,在这一实施例中,根据与催化剂温度Tc有关的参数来判定催化剂温度Tc是否高于或等于一预定基准值(修正温度上限值T1c)。如果催化剂温度Tc变得高于或等于该基准值,则与催化剂温度Tc低于该基准值的情况相比,增加进气口喷射阀2的燃料喷射量。因此,可以可靠和准确地检测到三元催化剂9的过热状态,并且可容易地降低催化剂温度Tc以便可靠地防止三元催化剂9过热。
而且,在本实施例中,当催化剂温度Tc变得高于或等于该基准值时,首先增加进气口喷射阀2的燃料喷射量比但不改变燃料喷射总量TAU。因此,可以可靠地降低催化剂温度Tc,同时防止燃料燃烧效率降低并同时限制了对空燃比A/F的影响。
例如,当催化剂温度Tc因气缸内喷射阀3的燃料喷雾形成不充分而升高时,从进气口喷射阀2喷射燃料以防止空燃比A/F升高(防止空燃混合物变稀薄)。于是,空燃比A/F被保持在目标值,并且催化剂9的过热得到抑制。
本实施例的配置既适用于内燃机工作状态处于均匀燃烧范围的情况,也适用于其处于分层燃烧范围的情况。但是,由于该配置可以有效地降低催化剂温度,所以它特别适合于催化剂温度很可能升高的高载荷和高输出操作(均匀燃烧范围)。而且,本实施例的配置也适用于下面将要说明的其它实施例。
下面将参照图8至10对本发明的第二实施例进行说明。并主要说明其与图1至7的第一实施例的区别。这一实施例与第一实施例主要有以下几点不同。即,在这一实施例中,当进气口喷射阀2和气缸内喷射阀3两者都喷射燃料时,在对催化剂温度Tc进行判定之前先将实际空燃比AF1与一目标空燃比AFa相比较。然后,增加进气口喷射阀2或气缸内喷射阀3的燃料喷射量,以使实际空燃比AF1接近目标空燃比AFa。那些与第一实施例的对应部件相似或相同的部件被标以相似或相同的参考标号并省略其详细说明。必要时请参考图1。
如图8所示,根据本实施例的控制装置10′的处理部10p′包括一空燃比判定部24。
现在将参照图9的流程图对根据本实施例的一燃料喷射控制程序进行说明。首先,在步骤S301中,ECU30获取诸如内燃机转速NE和吸入空气的流速GA的信息,由此计算出内燃机载荷KL和其它值。根据内燃机载荷KL、内燃机转速NE和其它参数而计算出燃料喷射总量TAU。
在步骤S302中,空燃比判定部24将由A/F传感器41的输出获得的空燃比A/F或内燃机1工作期间的实际空燃比AF1与目标空燃比AFa相比较。当实际空燃比AF1大于该目标空燃比AFa时,即,当内燃机1在稀薄的空燃混合物的状态下工作时,可以认为存在故障,例如至少该进气口喷射阀2和气缸内喷射阀3之一的燃料喷雾形成不充分,从而引起异常燃烧或不稳定燃烧。
因此,如果在步骤S302中实际空燃比AF1大于目标空燃比AFa,则假定气缸内喷射阀3存在异常。这是因为,与进气口喷射阀2相比,供给气缸内喷射阀3的燃料压力更高,因此气缸内喷射阀3出现故障的可能性要高于进气口喷射阀2。此外,由于气缸内喷射阀3向其中进行燃烧的气缸1S内喷射燃料,所以杂质比如碳沉积物很可能在气缸内喷射阀3上积聚。由于这些原因,如果在步骤S302中实际空燃比AF1大于目标空燃比AFa,则喷射控制部23在步骤S303中增加进气口喷射阀2的燃料喷射量Qp。具体地说,喷射控制部23使燃料喷射总量TAU中的进气口喷射阀2的燃料喷射量Qp增加一预定燃料增加量γ,并将该结果(Qp+γ)设定为进气口喷射阀2的修正燃料喷射量Qp1。在步骤S304中,进气口喷射阀2喷射对应于该修正燃料喷射量Qp1的燃料量。
在随后的步骤S305中,空燃比判定部24从A/F传感器41再次获取实际空燃比AF1,并将其与目标空燃比AFa相比较。如果步骤S305的结果为否定,即,如果实际空燃比AF1小于或等于目标空燃比AFa,则催化剂温度判定部22进入步骤S308,并将催化剂温度Tc与一预定基准值进行比较。在本实施例中,该基准值是一关于催化剂温度而设定的催化剂映射温度(催化剂图温度,catalyst map temperature)Tcm,以判定三元催化剂9是否处于过热状态。
如果在进气口喷射阀2喷射的燃料量对应于该修正燃料喷射量Qp1,即增加后的燃料喷射量之后,在步骤S305中实际空燃比AF1变得小于或等于目标空燃比AFa,则可以推定气缸内喷射阀3存在异常。该推定结果优选存储在ECU30的存储器中,以便在维护过程中可以容易地确定异常的原因。此外,也可以设置成当进气口喷射阀2的燃料喷射量增加的次数达到一预定次数时,提醒驾驶员进行维护。
如果步骤S305的结果为肯定,即,如果尽管进气口喷射阀2的燃料喷射量增加,但实际空燃比AF1仍大于目标空燃比AFa,则可以推定进气口喷射阀2也存在异常。在这种情况下,喷射控制部23在步骤S306中增加气缸内喷射阀3的燃料喷射量Qd。具体地说,喷射控制部23使燃料喷射总量TAU中的气缸内喷射阀3的燃料喷射量增加一预定燃料增加量δ,并将该结果(Qd+δ)设定为气缸内喷射阀3的修正燃料喷射量Qd1。在步骤S307中,气缸内喷射阀3喷射的燃料量与该修正燃料喷射量Qd1相对应。如气缸内喷射阀3的情况一样,如果认为进气口喷射阀2存在异常,则优选将该推定结果存储在ECU30的存储器中。
图10是示出用于确定燃料喷射量的程序的流程图。喷射控制部23根据图10的流程图中所示的程序确定进气口喷射阀2和气缸内喷射阀3的燃料喷射量。首先,在步骤S401中,喷射控制部23根据内燃机工作状态和其它因素确定进气口喷射阀2的燃料喷射量和气缸内喷射阀3的燃料喷射量之间的比。然后,喷射控制部23根据该比值和由内燃机载荷KL、内燃机转速NE及其它参数而获得的燃料喷射总量TAU,来确定进气口喷射阀2的燃料喷射量Qp和气缸内喷射阀3的燃料喷射量Qd。
在步骤S402中,喷射控制部23使该燃料喷射量Qp增加一预定燃料增加量γ,并将其结果(Qp+γ)设定为进气口喷射阀2的修正燃料喷射量Qp1。该修正燃料喷射量Qp1用于在图9的步骤S303中增加进气口喷射阀2的燃料喷射量Qp。接下来,在步骤S403中,喷射控制部23使燃料喷射量Qd增加一预定燃料增加量δ,并将其结果(Qd+δ)设定为气缸内喷射阀3的修正燃料喷射量Qd1。该修正燃料喷射量Qd1用于在图9的步骤S306中增加气缸内喷射阀3的燃料喷射量Qd。如果喷射阀2、3的燃料喷射量增加,则将使用该增加后的燃料喷射量作为基准值来执行随后的程序。
返回去参照图9,在步骤S307之后的步骤S302中,再次判断实际空燃比AF1是否大于目标空燃比AFa。如果实际空燃比AF1大于目标空燃比AFa,则重复执行步骤S303至S307,直到实际空燃比AF1变得小于或等于目标空燃比AFa,并且喷射量Qp、Qd分别增加该燃料增加量γ、δ。当实际空燃比AF1变为小于或等于目标空燃比AFa时,在步骤S308中,将催化剂温度Tc与作为一预定基准值的催化剂映射温度Tcm相比较。
除用催化剂映射温度Tcm代替修正温度上限值T1c作为预定基准值之外,步骤S308至S314的过程基本与图3中步骤S102至S108的过程相同。
如果在步骤S308中催化剂温度Tc低于催化剂映射温度Tcm,则程序进入步骤S314的正常喷射。当执行步骤S303至S307时,处于正常喷射的喷射阀2、3的燃料喷射量是增加后的燃料喷射量。另一方面,如果在步骤S308中催化剂温度Tc高于或等于催化剂映射温度Tcm,则它意味着尽管实际空燃比AF1正常,但三元催化剂9处于过热状态。在这种状态下运行内燃机1会缩短三元催化剂9的寿命。因此,如果步骤S308的结果为肯定,则喷射控制部23进入步骤S309。在步骤S309中,喷射控制部23增加进气口喷射阀2的燃料喷射量比但不改变燃料喷射总量TAU,从而减少气缸内喷射阀3的燃料喷射量比。在步骤S310中,进气口喷射阀2和气缸内喷射阀3按照该预定喷射量比喷射燃料。增加进气口喷射阀2的喷射量比,是因为如上所述它可以有效地降低催化剂温度Tc。
如果在步骤S311中催化剂温度Tc被判定为低于催化剂映射温度Tcm,则程序进入步骤S314,在该步骤中执行正常喷射。这样,降低了催化剂温度Tc,同时抑制了燃料燃烧效率的降低。而且,由于使实际空燃比AF1趋向目标空燃比AFa,因此防止了废气中的HC和CO增加。
另一方面,当步骤S311的结果为肯定时,即,当催化剂温度判定部22判定即使在提高进气口喷射阀2的燃料喷射量比之后催化剂温度Tc仍等于或高于催化剂映射温度Tcm时,该催化剂温度判定部进入步骤S312。在步骤S312中,喷射控制部23增加燃料喷射总量TAU。在步骤S313中,控制进气口喷射阀2和气缸内喷射阀3喷射对应于增加后的燃料喷射总量TAU的燃料量。结果,废气温度降低,且催化剂温度Tc降低。
如果在增加燃料喷射总量TAU之后,在步骤S308中催化剂温度Tc被判定为低于催化剂映射温度Tcm,则程序进入执行正常喷射的步骤S314。另一方面,如果催化剂温度Tc高于或等于催化剂映射温度Tcm,则重复执行从步骤S309至步骤S313的程序,直到催化剂温度Tc下降到催化剂映射温度Tcm之下。这样,催化剂温度Tc被降低到催化剂映射温度Tcm之下,从而不会缩短三元催化剂9的寿命。
现在将参考图11和12对本发明的第三实施例进行说明。在本实施例中,内燃机1具有两个三元催化剂9A和9B。三元催化剂9A和9B的每一个对应于四个气缸1SA、1SB、1SC和1SD中的两个。当三元催化剂9A、9B中的任何一个处于过热状态时,与该处于过热状态的催化剂相对应的气缸的燃料喷射被控制,以降低该催化剂的温度。
如图11所示,内燃机1是直排四缸式内燃机,并且包括第一三元催化剂9A和第二三元催化剂9B。第一至第四排气通道8A至8D各自由四个气缸1SA到1SD之一延伸而成。由第一和第四气缸1SA和1SD中排出的废气通过相应的排气通道8A、8D被引导到第一三元催化剂9A,并由该第一三元催化剂9A净化。由第二和第三气缸1SB和1SC中排出的废气通过相应的排气通道8B、8C被引导到第二三元催化剂9B,并由该第二三元催化剂9B净化。
第一三元催化剂9A的温度(第一催化剂温度Tc1)由第一温度传感器40A进行检测,而第二三元催化剂9B的温度(第二催化剂温度Tc2)由第二温度传感器40B进行检测。第一进气口喷射阀2A和第一气缸内喷射阀3A对应于第一气缸1SA。第二进气口喷射阀2B和第二气缸内喷射阀3B对应于第二气缸1SB。第三进气口喷射阀2C和第三气缸内喷射阀3C对应于第三气缸1SC。第四进气口喷射阀2D和第四气缸内喷射阀3D对应于第四气缸1SD。虽然在图11的示例中内燃机1具有两个三元催化剂9A和9B,但内燃机1也可以有三个或更多的三元催化剂。内燃机1的气缸数量不限于四个,而是可以为大于一的任何数量。
用于控制内燃机1的控制装置10的基本配置与图2中所示的基本相同。因此,对控制装置10的配置的说明在必要时参考图2。
图12是示出根据这一实施例的燃料喷射控制程序的流程图。当执行该程序时,假设内燃机1在使用至少该第一至第四气缸内喷射阀3A至3D进行工作。
首先,在步骤S501中,ECU30获取诸如内燃机转速NE和吸入空气的流速GA的信息,从而计算出内燃机载荷KL和其它值。ECU30或喷射控制部23根据内燃机载荷KL,内燃机转速NE和其它值计算出燃料喷射总量TAU。
接下来,在步骤S502中,催化剂温度判定部22将从第一温度传感器40A获取的第一催化剂温度Tc1与从第二温度传感器40B获取的第二催化剂温度Tc2相比较。如果步骤S502的结果是肯定的,即,如果第二催化剂温度Tc2高于第一催化剂温度Tc1,该催化剂温度判定部22进入步骤S503。在步骤S503中,催化剂温度判定部22判定第二催化剂温度Tc2是否高于或等于该修正温度上限值T1c。如图3中的流程图一样,在这一实施例中,该修正温度上限值T1c(T1c=T1-δT)用作一判定催化剂温度的基准值。
如果第二催化剂温度Tc2低于该修正温度上限值T1c,则判定第二催化剂温度Tc2正常并且第二三元催化剂9B不存在异常的温度上升。这样,程序进入执行正常燃料喷射的步骤S508。另一方面,如果第二催化剂温度Tc2高于或等于该修正温度上限值T1c,则判定第二催化剂温度Tc2已经基本到达该第二三元催化剂9B的温度上限值T1。因此,如果内燃机1在这种状态下持续工作,则第二三元催化剂9B的过热状态会降低该第二三元催化剂9B的性能和寿命。
当步骤S503的结果为肯定时,喷射控制部23执行用于降低第二催化剂温度Tc2的控制。具体地说,喷射控制部23增加第二和第三进气口喷射阀2B和2C的燃料喷射量比但不改变燃料喷射总量TAU,从而减少第二和第三气缸内喷射阀3B和3C的燃料喷射量比。在步骤S505中,控制第二和第三进气口喷射阀2B、2C以及第二和第三气缸内喷射阀3B、3C以便按照该预定喷射量比来喷射燃料。
在步骤S506中,催化剂温度判定部22判断第二催化剂温度Tc2是否高于或等于该修正温度上限值T1c。当第二催化剂温度Tc2下降到该修正温度上限值T1c以下时,程序进入执行正常喷射的步骤S508。
另一方面,当步骤S506的结果为肯定时,即,当第二催化剂温度Tc2即使在增加第二和第三进气口喷射阀2B、2C的燃料喷射量比之后仍等于或高于该修正温度上限值T1c时,喷射控制部23在步骤S507中增加燃料喷射总量TAU。在步骤S507A中,控制第二、第三进气口喷射阀2B、2C和第二、第三气缸内喷射阀3B、3C以使其喷射的燃料量对应于增加后的燃料喷射总量TAU。这使空燃比A/F降低,并使空燃混合物变浓。因此,废气温度和第二催化剂温度Tc2得以降低。
如果在增加燃料喷射总量TAU之后,在步骤S503中第二催化剂温度Tc2被判定为低于该修正温度上限值T1c,则程序进入执行正常喷射的步骤S508。然后程序进入步骤S509以开始对第一催化剂温度Tc1进行监控。另一方面,如果第二催化剂温度Tc2高于或等于该修正温度上限值T1c,则重复执行从步骤S503至步骤S507A的程序,直到第二催化剂温度Tc2下降到该修正温度上限值T1c之下。当第二催化剂温度Tc2的下降速度低于一预定值时,控制装置10可增加燃料喷射总量TAU,从而使至少该进气口喷射阀2B、2C喷射燃料,即,控制装置10可以重复步骤S507和S507A的程序。在这种情况下,第二催化剂温度Tc2被很快降低。从而防止第二三元催化剂9B的寿命因高温而缩短。
如果在步骤S502中第一催化剂温度Tc1被判定为高于第二催化剂温度Tc2,则可确定第二三元催化剂9B不处于过热状态,而是正常工作。这样,在步骤S508中执行正常的喷射。在随后的步骤S509中,催化剂温度判定部22判断第一催化剂温度Tc1是否高于或等于该修正温度上限值T1c。当第一催化剂温度Tc1被判定为低于该修正温度上限值T1c时,程序进入执行正常喷射的步骤S514。然后,程序返回步骤S501并且继续对第一、第二催化剂温度Tc1、Tc2进行监控。
另一方面,如果第一催化剂温度Tc1被判定为高于或等于该修正温度上限值T1c,则喷射控制部23执行步骤S510至S513A的降低第一催化剂温度Tc1的过程。除控制对象为第一、第四进气口喷射阀2A、2D和第一、第四气缸内喷射阀3A、3D之外,步骤S510至S513A的过程与上述步骤S504至S507A的过程相同。因此,省略对步骤S510至S513A的过程的说明。进气口喷射阀与气缸内喷射阀的燃料喷射量的比可以根据图6所示的流程图的程序来确定。
在本实施例中,用于降低催化剂温度的燃料喷射控制仅针对与三元催化剂9A、9B中过热的催化剂相对应的气缸来执行。因此,过热催化剂的温度被有利地降低。此外,由于与未过热的催化剂相对应的气缸的燃料供给量并未超过其必需量,因而防止了燃料燃烧效率的降低。
下面将参照图13至15(b)说明根据本发明的第四实施例。那些与图1至7的第一实施例的对应部件相似或相同的部件标以相似或相同的参考标号,并省略详细说明。
如图13所示,本实施例的内燃机1具有一用于检测废气温度的废气温度传感器46。参考标号47表示设在进气通道4内的缓冲槽。
一ECU130对应于图2中所示的控制装置10和ECU30,并由一台数字计算机构成。该ECU130包括一CPU136、一ROM137、一RAM138,一输入端口139和一输出端口140,它们通过一条双向总线135互连。
图14是示出根据这一实施例的燃料喷射控制程序的流程图。当执行该程序时,假定内燃机1正在使用至少气缸内喷射阀3进行工作。首先在步骤S601中,ECU130判断该内燃机1是否在高载荷下工作。如果内燃机1正在高载荷下工作,则ECU130设定一种使气缸内喷射阀3喷射燃料而禁止进气口喷射阀2喷射燃料的燃料喷射模式。然后,ECU130进入步骤S603。如果内燃机1没有在高载荷下工作,则ECU130设定一种与在步骤S602中设定的喷射模式不同的喷射模式,并进入图14的步骤S603。
在步骤S603中,ECU130确定燃料喷射模式。具体地说,ECU130确定气缸内喷射阀3的燃料喷射量与进气口喷射阀2的燃料喷射量之比。例如,当内燃机1在高载荷下工作并且执行气缸内喷射时,该燃料喷射量比(气缸内喷射∶进气口喷射)是10∶0。接下来在步骤S604中,ECU130利用与所确定的燃料喷射模式(喷射量比)相对应的稳定的温度图(参照图15(a)和15(b))来估算三元催化剂9的温度(催化剂温度Tc)。下面将说明估算催化剂温度Tc的方法。
随后,在步骤S605中,ECU130根据估算出的催化剂温度Tc判断该三元催化剂9是否处于过热状态。如第一实施例中一样,该判定可以通过将催化剂温度Tc与一预定基准温度相比较进行。当判定催化剂9不处于过热状态时,ECU130进入步骤S606。在步骤S606中,ECU130判定该估算出的温度Tc是否高于或等于一预定温度。该预定温度低于用于判定催化剂9是否处于过热状态的温度(上面提到的基准值)。该预定温度用作判定催化剂9是否可能处于过热状态的一阈值。
如果估算出的催化剂温度Tc高于或等于该预定温度,则ECU130进入步骤S607并改变燃料燃烧模式。具体地说,ECU130改变气缸内喷射阀3与进气口喷射阀2的燃料喷射量比,以便从当前状态增加进气口喷射阀2的燃料喷射量与气缸内喷射阀3的燃料喷射量的比。气缸内喷射阀3和进气口喷射阀2的燃料喷射总量,或供给气缸1S的燃料喷射总量没有改变。进气口喷射量与气缸内喷射量的比可以被解释为进气口喷射量与供给气缸1S的燃料总量的比。
接下来,ECU130返回步骤S603并确定该改变后的燃料喷射模式或改变后的燃料喷射量比。在随后的步骤S604中,ECU130利用与改变后的喷射量比相对应的图估算催化剂9的温度。如果在步骤S605中催化剂9被判定为不过热并且在步骤S606中催化剂温度Tc高于或等于该预定温度的状态持续,则重复执行步骤S603至S607的过程。从而,进气口喷射阀2的燃料喷射量与气缸内喷射阀3的燃料喷射量的比逐渐增加。此外,每次改变该喷射量比时,都对该催化剂温度Tc进行估算。
例如,假定当前喷射量比(气缸内喷射∶进气口喷射)是9∶1。在此情况下,如果步骤S605的结果为否定而步骤S606的结果为肯定,则改变该喷射量比(气缸内喷射∶进气口喷射),例如,在步骤S607中变为5∶5。即使当根据变化后的喷射量比执行燃料喷射时,如果步骤S605的结果为否定并且步骤S606的结果为肯定,则在步骤S607中将该喷射量比(气缸内喷射∶进气口喷射)变为3∶7。
另一方面,如果在步骤S606中,所估算出的催化剂温度Tc低于该预定温度,则暂时中止当前的程序。此外,如果在步骤S605中催化剂9被判定为处于过热状态,则ECU130增加燃料喷射量以防止催化剂9过热并返回步骤S603。如第一实施例中所述,该燃料喷射量的增加可以通过使进气口喷射阀2的燃料喷射的增加速度大于或等于气缸内喷射阀3的燃料喷射的增加速度来实现。或者,该燃料喷射量的增加可以完全通过增加进气口喷射阀2的燃料喷射量来实现。
这样,当催化剂9不处于过热状态时,逐渐增加进气口喷射量与气缸内喷射量的比。然后,当催化剂9进入过热状态时,增加燃料喷射量。在重复执行增加燃料喷射量(的操作)的情况下,每次增加的燃料增加量优选地与前次的燃料增加量相比减少。
接下来,将说明在步骤S604中执行的催化剂温度Tc的估算过程。ECU130根据一曲柄传感器44的输出信号计算内燃机的转速NE。ECU130将由一气流传感器43检测到的吸入空气的流速GA除以内燃机转速NE以获得内燃机载荷KL(g/rev)(GN=GA/NE)。然后ECU130根据内燃机转速NE、内燃机载荷KL和与在图14的步骤S603中确定的喷射量比相对应的稳定的温度图估算出催化剂温度Tc。在本实施例中,催化剂温度Tc是通过一加权平均处理过程,或“渐变”过程而得到的。具体地说,该催化剂温度Tc [℃]是使用下面的等式而获得的。
催化剂温度Tc [℃]=(1-[时间常数])×[前次值]+[时间常数] ×([稳定温度]-[前次值])
催化剂温度Tc[℃]=[前次值]+[时间常数]×[稳定温度]
该前次值是指在前次周期中获得的催化剂温度Tc。
如果内燃机1在一个预定的稳定工作状态(内燃机转速NE,内燃机载荷KL,燃料喷射模式(气缸内喷射量与进气口喷射量的比))下持续工作,即,如果内燃机1持续进行稳定操作,则催化剂温度Tc趋向一定的温度。在内燃机1的稳定操作期间催化剂温度Tc的收敛值就是上面等式中的稳定温度。
时间常数是一反映催化剂温度Tc的变化率的数值,并且取0到1之间的一个值。在催化剂温度Tc快速变化的内燃机工作状态下,该时间常数在1附近取值。在催化剂温度Tc缓慢变化的内燃机工作状态下,该时间常数在0附近取值。该时间常数是根据内燃机工作状态,比如内燃机载荷KL、内燃机转速NE和燃料喷射量比并参考一预定的时间常数图而计算出的。
图15(a)和15(b)给出了供参考以获得稳定温度的图的示例。图15(a)的稳定温度图用于喷射量比(气缸内喷射∶进气口喷射)为10∶0的情况。图15(b)的稳定温度图用于喷射量比(气缸内喷射∶进气口喷射)为0∶10的情况。除这些图之外,还可准备与(各种)喷射量比相对应的许多稳定温度图。该时间常数图和稳定温度图是通过例如实验而获得的,并存储在ECU130的ROM137中。当计算催化剂温度Tc时,ECU130从ROM137中检索到该稳定温度图和时间常数图。该稳定温度和时间常数可以根据预定的函数表达式而不是这些图计算得出。催化剂温度Tc可以基于由废气温度传感器46测量出的值而计算出。或者,也可以从温度传感器40获得催化剂温度Tc,该温度传感器如在第一实施例中一样直接测量催化剂温度。
通常来说,每单位时间内燃烧产生的热量随内燃机1的内燃机载荷和转速的增加而增加。因而,催化剂温度Tc增加。如图15(a)和15(b)所示,在内燃机转速NE和内燃机载荷KL为常数的情况下,当气缸内喷射量的比为100%时的稳定温度高于当气缸内喷射量的比为0%时的稳定温度。换句话说,催化剂温度Tc在执行进气口喷射时比在执行气缸内喷射时低。因此,当需要防止催化剂温度Tc升高时,增加进气口喷射量比是有效的。
在上述的本发明中,当催化剂温度Tc高于或等于一预定温度并且催化剂9不处于过热状态时,增加进气口喷射量与气缸内喷射量的比。因此,如在第一实施例中一样,催化剂温度Tc被有利地降低,同时减少了废气和黑烟中所含的有毒物质,如CO、HC和NOx。此外,由于通过增加进气口喷射量比而防止催化剂温度Tc升高,所以不需要增加燃料喷射量本身。这防止了燃料燃烧效率的降低。
而且,当内燃机1在高载荷下工作时,积极执行该更有利于内燃机1产生动力的气缸内喷射。当需要防止催化剂9的温度升高时,才逐渐增加进气口喷射量比。因此,在防止催化剂温度Tc上升的同时,使内燃机1产生动能的能力最大化。
当催化剂9处于过热状态时,增加燃料喷射量以便可靠地防止催化剂温度Tc过热。
下面将参照图16和17说明本发明的第五实施例。并主要讨论它与图13至15(b)的第四实施例的不同之处。
图16和17示出根据这一实施例的燃料喷射控制程序的流程图。如图16所示,首先在步骤S701中,ECU130判断内燃机1是否在高载荷下工作。如果内燃机1在高载荷下工作,ECU130设定一种使气缸内喷射阀3喷射燃料并禁止进气口喷射阀2喷射燃料的燃料喷射模式。然后,ECU130进入步骤S703。如果内燃机1不是在高载荷下工作,则ECU130设定一种不同于在步骤S702中设定的喷射模式的喷射模式。例如,ECU130设定一种只有进气口喷射阀2喷射燃料的模式。随后,ECU130进入图17中的步骤S706。
在步骤S703中,ECU130检索出与燃料喷射量比(气缸内喷射∶进气口喷射)为10∶0相对应的稳定温度图和时间常数图,并估算催化剂温度Tc。催化剂温度Tc的估算以和第四实施例相同的方式进行,并且图15(a)的图被用作该稳定温度图。在步骤S704中,ECU130判定该估算出的催化剂温度Tc是否高于或等于一预定温度。如第四实施例中所述,该预定温度低于用于判定催化剂9处于过热状态的温度(基准值)。如果催化剂温度Tc低于该预定温度,则暂时中止当前的处理。
另一方面,如果催化剂温度Tc高于或等于该预定温度,则ECU130进入步骤S705并改变燃料燃烧模式。具体地说,ECU130设定一种禁止气缸内喷射阀3喷射燃料并使进气口喷射阀2喷射燃料的燃料喷射模式。因此,燃料喷射量比(气缸内喷射∶进气口喷射)为0∶10。
然后,在步骤S706中,ECU130检索出与燃料喷射量比(气缸内喷射∶气缸内喷射)为0∶10相对应的稳定温度图和时间常数图,并估算催化剂温度Tc。图15(b)的图被用作该稳定温度图。在步骤S707中,ECU130判定催化剂9是否处于过热状态。如果催化剂9不处于过热状态,则ECU130暂时中止当前的处理。当判定催化剂9处于过热状态时,ECU130进入步骤S708。在步骤S708中,ECU130增加气缸内喷射阀3的燃料喷射量,并暂时中止当前的处理。
在这一实施例中,当催化剂9被判定为处于过热状态时,通过气缸内喷射增加燃料(量)(步骤S708)。即,就在通过气缸内喷射增加燃料之前的状态下,用于燃烧的燃料仅通过进气口喷射提供。如果在该状态下增加燃料喷射量,则增加的量很难燃烧。因此,通过气缸内喷射增加燃料不会减缓燃烧,同时空气被直接喷射到气缸1S内的燃料的汽化热所冷却。因此,通过气缸内喷射增加燃料可以有效地降低废气温度和催化剂温度Tc。
这样,在增加燃料量之前依据燃料喷射模式,仅使用气缸内喷射阀3增加燃料量是很有效的。即,在必要时可以根据内燃机的工作状态(包括内燃机转速NE,内燃机载荷KL,燃料喷射模式,喷射阀2、3之间的燃料喷射比)设定一种用于在增加燃料量时控制喷射阀2、3的模式。
在所列举的实施例中,进气通道喷射阀并不限于朝进气口4a喷射燃料的进气口喷射阀2。进气通道喷射阀可以是一位于缓冲槽47(见图13)内的喷射阀。例如,进气通道喷射阀可以是一冷启动喷射阀,该喷射阀在内燃机1冷启动时被致动。除用气流传感器43检测吸入空气的流速GA之外,该吸入的空气流速还可以根据由设在进气通道4内的一压力传感器检测到的吸入空气的压力来计算。内燃机载荷KL可以利用加速踏板的压下度作为参数来计算。
在所列举的实施例中,说明了对催化剂9过热的防止。但是,本发明可以用于防止其它设在排气系统(排气通道7)中的部件过热。即,本发明可以适用于排气系统部件,如A/F传感器41和废气温度传感器46。

Claims (14)

1.一种用于内燃机的燃料喷射控制装置,其中该内燃机具有一用于向该内燃机的气缸内喷射燃料的气缸内喷射阀,一用于向与该气缸相连的进气通道内喷射燃料的进气通道喷射阀,和一与该气缸相连的排气通道,该装置的特征在于:
一判定位于该排气通道内的部件的温度是否高于或等于一预定温度的温度判定部,该预定温度是一表示该部件处于过热状态的基准值,或者是一低于该基准值的温度;以及
一控制该气缸内喷射阀和该进气通道喷射阀的喷射控制部,其中,当该部件的温度高于或等于该预定温度时,与该部件的温度低于该预定温度的情况相比,该喷射控制部在不改变供给该气缸的燃料总量的情况下,增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比,从而防止该部件过热。
2.根据权利要求1的装置,其特征在于:该喷射控制部根据该内燃机的工作状态设定该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比。
3.根据权利要求1的装置,其特征在于:当该内燃机正在一种仅由该气缸内喷射阀喷射燃料的燃料喷射模式下工作,且该部件的温度变为高于或等于该预定温度的情况下,该喷射控制部使该气缸内喷射阀停止喷射燃料并使该进气通道喷射阀喷射燃料。
4.根据权利要求1的装置,其特征在于:该预定温度是所述基准值,其中,当增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比之后,该部件的温度仍高于或等于该基准值时,该喷射控制部增加供给该气缸的燃料总量。
5.根据权利要求1的装置,其特征在于:该预定温度是该低于所述基准值的温度,其中,当该部件的温度高于或等于该基准值时,该喷射控制部增加供给该气缸的燃料总量。
6.根据权利要求1的装置,其特征在于:该预定温度是该低于所述基准值的温度,其中,当该内燃机正在一种仅由该气缸内喷射阀喷射燃料的燃料喷射模式下工作,且该部件的温度变为高于或等于该预定温度的情况下,该喷射控制部使该气缸内喷射阀停止喷射燃料并使该进气通道喷射阀喷射燃料,并且在此之后,当该部件的温度变为高于或等于该基准值时,该喷射控制部也使该气缸内喷射阀喷射燃料,从而增加供给该气缸的燃料总量。
7.根据权利要求1的装置,其特征在于:该装置具有一空燃比判定部,其中,在用该温度判定部判定该部件的温度之前,该空燃比判定部判定空气和燃料混合物的实际空燃比是否大于一目标空燃比,其中,当该实际空燃比大于该目标空燃比时,该喷射控制部增加至少该气缸内喷射阀和该进气通道喷射阀之一的燃料喷射量,以便该实际空燃比趋向该目标空燃比。
8.根据权利要求7的装置,其特征在于:当该实际空燃比大于该目标空燃比时,该喷射控制部首先增加该进气通道喷射阀的燃料喷射量,并且在此之后,当该实际空燃比仍大于该目标空燃比时,该喷射控制部增加该气缸内喷射阀的燃料喷射量。
9.根据权利要求1的装置,其特征在于:该温度判定部根据与该部件的温度有关的参数来判定该部件的温度是否高于或等于该预定温度。
10.根据权利要求9的装置,其特征在于:该温度判定部根据该内燃机的工作状态和该气缸内喷射阀与该进气通道喷射阀之间的燃料喷射量比来判定该部件的温度。
11.根据权利要求1至10中任何一项的装置,其特征在于:该部件包括一净化通过该排气通道的废气的催化剂。
12.根据权利要求11的装置,其特征在于:该装置具有一检测该催化剂温度的温度传感器。
13.根据权利要求11的装置,其特征在于:所述气缸为多个气缸之一,并且所述催化剂为多个催化剂之一,其中每个催化剂对应于至少该气缸之一,并且
其中该温度判定部判定每个该催化剂的温度是否高于或等于该预定温度,并且其中,对于与其温度被判定为高于或等于该预定温度的催化剂相对应的气缸,该喷射控制部增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比。
14.一种用于内燃机的燃料喷射控制方法,其中该内燃机具有一用于向该内燃机的气缸内喷射燃料的气缸内喷射阀,一用于向与该气缸相连的进气通道内喷射燃料的进气通道喷射阀,和一与该气缸相连的排气通道,该方法的特征在于:
判定位于该排气通道内的部件的温度是否高于或等于一预定温度,该预定温度是一表示该部件处于过热状态的基准值,或者是一低于该基准值的温度;以及
当该部件的温度高于或等于该预定温度时,与该部件的温度低于该预定温度的情况相比,在不改变供给该气缸的燃料总量的情况下,增加该进气通道喷射阀的燃料喷射量与该气缸内喷射阀的燃料喷射量的比,从而防止该部件过热。
CNB2004101047995A 2003-11-12 2004-11-12 内燃机燃料喷射控制装置及燃料喷射控制方法 Expired - Fee Related CN100379963C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP382828/2003 2003-11-12
JP2003382828A JP4063198B2 (ja) 2003-11-12 2003-11-12 内燃機関の制御装置及び内燃機関の制御方法
JP410738/2003 2003-12-09
JP2003410738A JP4304463B2 (ja) 2003-12-09 2003-12-09 内燃機関の燃料噴射制御装置

Publications (2)

Publication Number Publication Date
CN1624318A CN1624318A (zh) 2005-06-08
CN100379963C true CN100379963C (zh) 2008-04-09

Family

ID=34436981

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100104134A Expired - Fee Related CN100396910C (zh) 2003-11-12 2004-11-12 内燃机燃料喷射控制装置及燃料喷射控制方法
CNB2004101047995A Expired - Fee Related CN100379963C (zh) 2003-11-12 2004-11-12 内燃机燃料喷射控制装置及燃料喷射控制方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100104134A Expired - Fee Related CN100396910C (zh) 2003-11-12 2004-11-12 内燃机燃料喷射控制装置及燃料喷射控制方法

Country Status (5)

Country Link
US (2) US7269941B2 (zh)
EP (3) EP2014899B8 (zh)
KR (2) KR100745845B1 (zh)
CN (2) CN100396910C (zh)
DE (1) DE602004010991T2 (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10261911A1 (de) * 2002-12-30 2004-07-29 Volkswagen Ag Verfahren zur Steuerung der Temperatur eines Katalysators sowie Mehrzylindermotor mit lambdasplitfähiger Abgasreinigungsanlage
JP2005220887A (ja) * 2004-02-09 2005-08-18 Toyota Motor Corp 内燃機関の制御装置
JP4270085B2 (ja) 2004-09-14 2009-05-27 トヨタ自動車株式会社 内燃機関の制御装置
JP4375201B2 (ja) * 2004-11-02 2009-12-02 トヨタ自動車株式会社 内燃機関の制御装置
JP2006258007A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の制御装置
JP2006258027A (ja) * 2005-03-18 2006-09-28 Toyota Motor Corp 内燃機関の制御装置
JP4241676B2 (ja) * 2005-06-27 2009-03-18 トヨタ自動車株式会社 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
US7426918B2 (en) * 2006-03-20 2008-09-23 Ford Global Technologies, Llc Engine having multiple injector locations
US7762060B2 (en) * 2006-04-28 2010-07-27 Caterpillar Inc. Exhaust treatment system
US7707822B2 (en) * 2006-08-08 2010-05-04 Denso Corporation Cylinder air-fuel ratio controller for internal combustion engine
US20080078170A1 (en) * 2006-09-29 2008-04-03 Gehrke Christopher R Managing temperature in an exhaust treatment system
US7832198B2 (en) * 2006-12-05 2010-11-16 Ford Global Technologies, Llc System and method for controlling an operating temperature of a catalyst of a vehicle exhaust system
US8359837B2 (en) * 2006-12-22 2013-01-29 Cummins Inc. Temperature determination and control of exhaust aftertreatment system adsorbers
JP4706645B2 (ja) * 2007-02-23 2011-06-22 トヨタ自動車株式会社 内燃機関の排気浄化システム
KR101338728B1 (ko) * 2007-09-06 2013-12-06 현대자동차주식회사 차량 엔진의 배기온도 제어방법
CN101328844B (zh) * 2008-08-01 2010-06-16 华夏龙晖(北京)汽车电子科技有限公司 一种汽油发动机催化剂过热保护方法
US9291139B2 (en) 2008-08-27 2016-03-22 Woodward, Inc. Dual action fuel injection nozzle
KR100999638B1 (ko) 2008-12-05 2010-12-08 기아자동차주식회사 차량의 엔진 제어장치 및 방법
KR101010456B1 (ko) * 2009-01-09 2011-01-21 콘티넨탈 오토모티브 시스템 주식회사 촉매과열 방지 방법
US8413643B2 (en) * 2009-06-12 2013-04-09 Ford Global Tehnologies, LLC Multi-fuel engine control system and method
US8275538B2 (en) * 2009-06-12 2012-09-25 Ford Global Technologies, Llc Multi-fuel engine starting control system and method
JP4968387B2 (ja) * 2010-04-20 2012-07-04 トヨタ自動車株式会社 内燃機関の制御装置
WO2011148462A1 (ja) * 2010-05-25 2011-12-01 トヨタ自動車株式会社 内燃機関の燃料噴射装置
JP5609349B2 (ja) * 2010-07-13 2014-10-22 トヨタ自動車株式会社 触媒の過熱防止装置
JP5790466B2 (ja) * 2011-12-08 2015-10-07 トヨタ自動車株式会社 ハイブリッド車両の制御装置
KR101874913B1 (ko) * 2012-10-23 2018-07-05 콘티넨탈 오토모티브 시스템 주식회사 차량의 촉매 과열화 방지 로직 활성화 방법
JP6182965B2 (ja) * 2013-05-09 2017-08-23 トヨタ自動車株式会社 車両
JP2014234806A (ja) * 2013-06-05 2014-12-15 トヨタ自動車株式会社 内燃機関
CN103321768B (zh) * 2013-06-24 2015-11-04 长安大学 一种多比例自适应汽车混合燃料控制器及其控制方法
US9435287B2 (en) 2014-02-25 2016-09-06 Ford Global Technologies, Llc Method for fuel injection control
EP3252288A4 (en) * 2015-01-30 2018-12-26 Yamaha Hatsudoki Kabushiki Kaisha Engine unit
JP6390490B2 (ja) * 2015-03-30 2018-09-19 スズキ株式会社 エンジンの燃料噴射制御装置
JP6554863B2 (ja) 2015-03-30 2019-08-07 三菱自動車工業株式会社 エンジンの制御装置
JP6507824B2 (ja) * 2015-04-27 2019-05-08 三菱自動車工業株式会社 エンジンの制御装置
JP6308166B2 (ja) * 2015-04-28 2018-04-11 トヨタ自動車株式会社 内燃機関の制御装置
US9732695B2 (en) * 2015-05-19 2017-08-15 Ford Global Technologies, Llc Method and system for supplying fuel to an engine
JP6237734B2 (ja) * 2015-09-02 2017-11-29 トヨタ自動車株式会社 内燃機関の制御装置
EP3285078A1 (en) 2016-08-17 2018-02-21 General Electric Technology GmbH Improvements in or relating to locating faults in power transmission conduits
JP7004132B2 (ja) * 2017-04-28 2022-01-21 トヨタ自動車株式会社 内燃機関の制御装置
CN115450777B (zh) * 2022-09-06 2024-06-18 潍柴动力股份有限公司 发动机的喷油量控制方法、装置、电子设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188021A (ja) * 1983-04-08 1984-10-25 Mazda Motor Corp エンジンの排気ガス浄化装置
JPH05231221A (ja) * 1992-02-18 1993-09-07 Toyota Motor Corp 燃料噴射式内燃機関
JPH07103050A (ja) * 1993-10-12 1995-04-18 Toyota Motor Corp 内燃機関の燃料噴射装置
EP0849455A2 (en) * 1996-12-19 1998-06-24 Toyota Jidosha Kabushiki Kaisha Apparatus and method for injecting fuel in cylinder injection type engines
JPH1162686A (ja) * 1997-08-25 1999-03-05 Toyota Motor Corp 燃料噴射弁の故障診断装置
JP2001020837A (ja) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd エンジンの燃料噴射制御装置
US6340014B1 (en) * 1998-03-17 2002-01-22 Nissan Motor Co., Inc. Control for direct fuel injection spark ignition internal combustion engine
JP2002130011A (ja) * 2000-10-23 2002-05-09 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2003065111A (ja) * 2001-08-23 2003-03-05 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS643050A (en) * 1987-03-30 1989-01-06 Sumitomo Electric Ind Ltd Production of superconducting ceramics
JPH0734924A (ja) * 1993-07-16 1995-02-03 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JPH07166918A (ja) * 1993-12-17 1995-06-27 Toyota Motor Corp 内燃機関の燃料噴射制御装置
GB2294334B (en) * 1994-09-29 1997-07-02 Fuji Heavy Ind Ltd Catalyst activation control system
JP3337931B2 (ja) * 1997-01-30 2002-10-28 マツダ株式会社 筒内噴射式エンジン
JPH11182289A (ja) 1997-12-18 1999-07-06 Sanshin Ind Co Ltd 筒内燃料噴射式2サイクルエンジンの制御装置
JPH11351041A (ja) * 1998-06-08 1999-12-21 Fuji Heavy Ind Ltd 燃料噴射式内燃機関
JP2001050081A (ja) 1999-08-05 2001-02-23 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置
DE10115282B4 (de) * 2000-03-29 2006-03-02 Hitachi, Ltd. Einlaßluftsteuervorrichtung und Brennkraftmaschine, in der sie montiert ist
EP1138901A3 (en) * 2000-03-29 2004-04-07 Hitachi, Ltd. Fuel supply system for internal combustion engine
JP4541500B2 (ja) 2000-05-24 2010-09-08 富士重工業株式会社 筒内燃料噴射エンジンの燃料噴射制御装置
JP2003065130A (ja) * 2001-08-30 2003-03-05 Hitachi Ltd 混合気供給装置の診断装置及びその診断方法
JP4270029B2 (ja) * 2004-06-08 2009-05-27 トヨタ自動車株式会社 内燃機関及び内燃機関の運転制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188021A (ja) * 1983-04-08 1984-10-25 Mazda Motor Corp エンジンの排気ガス浄化装置
JPH05231221A (ja) * 1992-02-18 1993-09-07 Toyota Motor Corp 燃料噴射式内燃機関
JPH07103050A (ja) * 1993-10-12 1995-04-18 Toyota Motor Corp 内燃機関の燃料噴射装置
EP0849455A2 (en) * 1996-12-19 1998-06-24 Toyota Jidosha Kabushiki Kaisha Apparatus and method for injecting fuel in cylinder injection type engines
JPH1162686A (ja) * 1997-08-25 1999-03-05 Toyota Motor Corp 燃料噴射弁の故障診断装置
US6340014B1 (en) * 1998-03-17 2002-01-22 Nissan Motor Co., Inc. Control for direct fuel injection spark ignition internal combustion engine
JP2001020837A (ja) * 1999-07-07 2001-01-23 Nissan Motor Co Ltd エンジンの燃料噴射制御装置
JP2002130011A (ja) * 2000-10-23 2002-05-09 Toyota Motor Corp 内燃機関の燃料噴射量制御装置
JP2003065111A (ja) * 2001-08-23 2003-03-05 Fuji Heavy Ind Ltd エンジンの燃料噴射制御装置

Also Published As

Publication number Publication date
KR20050045929A (ko) 2005-05-17
US20050109020A1 (en) 2005-05-26
EP2014899B1 (en) 2012-12-26
DE602004010991D1 (de) 2008-02-14
CN100396910C (zh) 2008-06-25
US7249454B2 (en) 2007-07-31
KR100745846B1 (ko) 2007-08-02
EP1531263B1 (en) 2013-07-31
EP2014899A1 (en) 2009-01-14
EP2014899B8 (en) 2013-02-20
EP1531263A2 (en) 2005-05-18
KR20050045930A (ko) 2005-05-17
CN1624318A (zh) 2005-06-08
US7269941B2 (en) 2007-09-18
US20050120709A1 (en) 2005-06-09
EP1531263A3 (en) 2007-01-17
DE602004010991T2 (de) 2008-12-24
KR100745845B1 (ko) 2007-08-02
CN1624316A (zh) 2005-06-08
EP1531250B1 (en) 2008-01-02
EP1531250A3 (en) 2007-01-24
EP1531250A2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
CN100379963C (zh) 内燃机燃料喷射控制装置及燃料喷射控制方法
EP1815121B1 (en) Control apparatus of internal combustion engine
CN100529370C (zh) 用于内燃机的状态判定设备
CN100570139C (zh) 用于内燃机的控制设备
CN101449044B (zh) 用于内燃发动机的燃料喷射控制设备和燃料喷射控制方法
GB2352651A (en) Emission control system
CN100564824C (zh) 内燃机的排气净化催化剂加热系统及其方法
CN102859160A (zh) 催化剂异常诊断装置
CN101072937A (zh) 驱动装置及其控制方法以及装有驱动装置的车辆
CN103717865A (zh) 内燃机的控制装置
CN110821702B (zh) 内燃机的控制装置
CN112282946A (zh) 用于后处理的热控制的方法和系统
CN1082616C (zh) 发动机预热调整方法和装置
CN104736805A (zh) 内燃机的运转控制装置以及方法
CN1991139A (zh) 用于内燃机的诊断设备和诊断方法
JP4063198B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
CN112963252B (zh) 一种发动机的排放控制方法、装置及设备
GB2390643A (en) Fuel supply system for an internal combustion engine with means for dosing the fuel
CN109026414A (zh) 汽车发动机控制方法及控制装置
JP2004068703A (ja) 筒内噴射式エンジンの制御システム及び制御方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080409

Termination date: 20131112