BR112015030695B1 - Película de poliolefina para utilização em embalagens - Google Patents

Película de poliolefina para utilização em embalagens Download PDF

Info

Publication number
BR112015030695B1
BR112015030695B1 BR112015030695-0A BR112015030695A BR112015030695B1 BR 112015030695 B1 BR112015030695 B1 BR 112015030695B1 BR 112015030695 A BR112015030695 A BR 112015030695A BR 112015030695 B1 BR112015030695 B1 BR 112015030695B1
Authority
BR
Brazil
Prior art keywords
film
weight
fact
additive
composition
Prior art date
Application number
BR112015030695-0A
Other languages
English (en)
Other versions
BR112015030695A2 (pt
Inventor
Vasily A. Topolkaraev
Ryan J. Mceneany
Mark M. Mleziva
Brent M. Thompson
Original Assignee
Kimberly-Clark Worldwide, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kimberly-Clark Worldwide, Inc. filed Critical Kimberly-Clark Worldwide, Inc.
Publication of BR112015030695A2 publication Critical patent/BR112015030695A2/pt
Publication of BR112015030695B1 publication Critical patent/BR112015030695B1/pt

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/225Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/425Porous materials, e.g. foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/262Polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/20Edge clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • B32B27/205Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents the fillers creating voids or cavities, e.g. by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0023Use of organic additives containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • C08L23/0884Epoxide containing esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • D01D5/247Discontinuous hollow structure or microporous structure
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/08Addition of substances to the spinning solution or to the melt for forming hollow filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/511Topsheet, i.e. the permeable cover or layer facing the skin
    • A61F13/51121Topsheet, i.e. the permeable cover or layer facing the skin characterised by the material
    • A61F2013/51147Topsheet, i.e. the permeable cover or layer facing the skin characterised by the material being polymeric films
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51401Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material
    • A61F2013/51409Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film
    • A61F2013/51411Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film being impervious to fluids but not for air or vapours
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51401Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material
    • A61F2013/51409Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film
    • A61F2013/51411Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film being impervious to fluids but not for air or vapours
    • A61F2013/51413Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film being impervious to fluids but not for air or vapours with macroscopic openings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/51Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers
    • A61F13/514Backsheet, i.e. the impermeable cover or layer furthest from the skin
    • A61F13/51401Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material
    • A61F2013/51409Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film
    • A61F2013/51411Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film being impervious to fluids but not for air or vapours
    • A61F2013/51415Backsheet, i.e. the impermeable cover or layer furthest from the skin characterised by the material being a film being impervious to fluids but not for air or vapours with pores
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530131Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp
    • A61F2013/530226Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp with polymeric fibres
    • A61F2013/530233Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium being made in fibre but being not pulp with polymeric fibres being thermoplastic fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530802Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterized by the foam or sponge other than superabsorbent
    • A61F2013/53081Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium characterized by the foam or sponge other than superabsorbent with special pore dimension or arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/041Microporous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/007Narrow strips, e.g. ribbons, tapes, bands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0228Vinyl resin particles, e.g. polyvinyl acetate, polyvinyl alcohol polymers or ethylene-vinyl acetate copolymers
    • B32B2264/0235Aromatic vinyl resin, e.g. styrenic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2432/00Cleaning articles, e.g. mops, wipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2555/00Personal care
    • B32B2555/02Diapers or napkins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/052Inducing phase separation by thermal treatment, e.g. cooling a solution
    • C08J2201/0522Inducing phase separation by thermal treatment, e.g. cooling a solution the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/042Nanopores, i.e. the average diameter being smaller than 0,1 micrometer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2433/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2467/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2467/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/008Nanoparticles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Wrappers (AREA)

Abstract

película de poliolefina para utilização em embalagens. é fornecida uma película de poliolefina para embalagens. a película de poliolefina é formada por uma composição termoplástica que contém uma fase contínua que inclui um polímero matricial de poliolefina e o aditivo de nanoinclusão é fornecido. o aditivo de nanoinclusão é dispersado dentro da fase contínua como domínios de fase nanoescalar retos. quando da extração, os domínios de fase nanoescalar têm capacidade de interagir com a matriz de maneira única para criar uma rede de nanoporos.

Description

Pedidos Relacionados
[1] O presente pedido reivindica prioridade para o Pedido Provisório dos EUA N° de Série 61/833.980 (depositado em 12 de junho de 2013) e 61/907.572 (depositado em 22 de novembro de 2013), os quais são incorporados neste documento por referência.
Fundamentos da Invenção
[2] As películas para embalagem são comumente formadas a partir de materiais poliolefínicos, como polietileno linear de baixa densidade ("LLDPE"), polietileno de baixa densidade ("LDPE") ou polietileno de alta densidade ("HDPE"). Contudo, em anos recentes, recursos petrolíferos tornaram-se mais caros e tanto fabricantes quanto consumidores se conscientizaram da necessidade sustentável de películas com menor pegada de carbono, o que significa emissões de carbono reduzidas durante todo o ciclo de vida do produto. Embora tentativas já tenham sido feitas no sentido de acrescentar diversos aditivos para reduzir o conteúdo de polímeros olefínicos derivados de petróleo, isto geralmente resulta em uma diminuição correspondente em certas propriedades mecânicas (por exemplo, ductibilidade) ou resistência à tração, etc.), da película, o que é altamente indesejável. Como tal, fazem-se necessárias atualmente películas de embalagem que possam ter consumo reduzido de polímeros à base de petróleo, mas que possam também exibir boas propriedades.
Resumo da Invenção
[3] De acordo com uma modalidade da presente invenção, uma película que compreende uma composição termoplástica é divulgada. A composição contém uma fase contínua que inclui um polímero matricial e um aditivo de nanoinclusão dispersado dentro da fase contínua na forma de domínios discretos. Uma rede porosa é definida no composto que inclui uma pluralidade de nanoporos tendo uma dimensão transversal média de cerca de 800 nanômetros ou menos.
[4] Outras propriedades e aspectos da presente invenção serão discutidos com mais detalhes abaixo.
Breve Descrição das Figuras
[5] Uma descrição completa e esclarecedora da presente invenção, incluindo o seu melhor modo, direcionada às pessoas versadas na técnica, é estabelecida mais particularmente no restante do relatório descritivo, que faz referência às figuras anexas nas quais:
[6] A Fig 1 é uma ilustração esquemática de uma modalidade de um método para a formação da película da presente invenção;
[7] A Fig. 2 é uma microfotografia SEM de uma superfície da película do Exemplo 4 tomada a uma ampliação de 14.243 X; e
[8] A Fig. 3 é uma microfotografia SEM da película do Exemplo 4 (cortada no plano do sentido da máquina), tomada a uma ampliação de 5.382X.
Descrição Detalhada das Modalidades Representativas
[9] Serão feitas referências detalhadas a diversas modalidades da invenção, com um ou mais exemplos descritos a seguir. Cada exemplo é fornecido à título de explicação da invenção, sem limitação da invenção. Na verdade, estará evidente aos versados na técnica que várias modificações e variações podem ser feitas na presente invenção sem se afastar do escopo ou do espírito da invenção. Por exemplo, características ilustradas ou descritas como parte de uma modalidade, podem ser usadas em outra modalidade para produzir ainda uma outra modalidade. Assim, pretende-se que a presente invenção abranja tais modificações e variações que estejam dentro do escopo das reivindicações anexas e seus equivalentes.
[10] De um modo geral, a presente invenção orienta-se a uma película de embalamento que contém uma composição termoplásticas. A composição termoplástica contém uma fase contínua que inclui um polímero matricial de poliolefina e também contém um aditivo de nanoinclusão que é pelo menos parcialmente incompatível com o polímero matricial de poliolefina de modo que este é dispersado dentro da fase contínua como domínios discretos de fase nanoescalar. Durante o estiramento, quando a composição é submetida a uma tensão de deformação e alongamento, os presentes inventores descobriram que esses domínios discretos de fase nanoescalar são capazes de interagir de forma única para criar uma rede de poros. Nominalmente, acredita-se que a deformação por alongamento pode iniciar zonas de intensivo cisalhamento localizado e/ou zonas de intensidade de tensão (por exemplo, tensões normais) próximo aos domínios de fase discreta como resultado de concentrações de tensão que surgem da incompatibilidade dos materiais. Estas zonas de cisalhamento e/ou de intensidade de tensão causam uma certa descolagem inicial na matriz de poliolefina adjacente aos domínios. Uma vez formados os poros iniciais, a matriz localizada entre domínios pode deformar-se plasticamente de modo a criar áreas internas estiradas que, localmente, estreitam (ou "gargalam") e endurecem por deformação. Este processo possibilita formação de poros através do volume da composição que cresce no sentido do estiramento, conduzindo portanto à formação de uma rede porosa ao passo que a orientação molecular conduz a endurecimento por deformação que aperfeiçoa força mecânica.
[11] Através das técnicas supracitadas, uma rede porosa exclusiva pode ser formada na película poliolefínica, de modo que o volume percentual médio ocupado pelos poros em um dado volume unitário de material pode ser de cerca de 15% a cerca de 80% por cm3, em algumas modalidades de cerca de 20% a cerca de 70%, e em algumas modalidades, de cerca de 30% a cerca de 60% por centímetro cúbico do material. Com tal volume de poro, a composição pode ter densidade relativamente baixa, como, por exemplo, cerca de 0,90 gramas por centímetro cúbico (“g/cm3”) ou menos, em algumas modalidades cerca de 0,85 g/cm3 ou menos, em algumas modalidades 0,80 g/cm3 ou menos, em algumas modalidades de cerca de 0,10 g/cm3 a cerca de 0,75 g/cm3, e em algumas modalidades, de cerca de 0,20 g/cm3 a cerca de 0,70 g/cm3. Uma porção substancial de poros na rede de poros tem igualmente tamanho "nanoescalar" ("nanoporos"), tais como os que têm uma dimensão de corte transversal médio de cerca de 800 nanômetros ou menos, em algumas modalidades de cerca de 5 a cerca de 700 nanômetros, e em algumas modalidades, de cerca de 10 a cerca de 500 nanômetros. O termo "dimensão transversal" refere-se geralmente a uma dimensão características (por exemplo, largura ou diâmetro) de um poro, que é substancialmente ortogonal a seu eixo principal (por exemplo, comprimento) e também normalmente ortogonal ao sentido da tensão aplicada durante a estiragem. Os nanoporos também podem ter uma dimensão axial média dentro do intervalo de cerca de 100 a cerca de 5000 nanômetros, em algumas modalidades de cerca de 50 a cerca de 2000 nanômetros e em algumas modalidades, de cerca de 100 a 1000 nanômetros. A "dimensão axial"é a dimensão no sentido do eixo principal (por exemplo, comprimento), que é normalmente no sentido do estiramento. Estes nanoporos podem, por exemplo, constituir de cerca de 15% de vol. ou mais, em algumas modalidades cerca de 20 % de vol. ou mais, em algumas modalidades de cerca de 30% de vol. a 100% de vol. e em algumas modalidades, de cerca de 40% de vol. a cerca de 90% de vol. do volume de poro total na película de poliolefina.
[12] Além de uma densidade reduzida, a estrutura nanoporosa também pode proporcionar uma variedade de benefícios diferentes adicionais película de poliolefina resultante. Por exemplo, tal estrutura pode ajudar a restringir o fluxo de fluidos através da película e ser, geralmente, impermeável a líquidos (por exemplo, água em estado líquido), permitindo assim que a película isole uma superfície da penetração de água. A este respeito, a película de poliolefina pode ter um valor relativamente alto de carga hidrostática de cerca de 50 centímetros (“cm”) ou mais, em algumas modalidades de cerca de 100 cm ou mais, em algumas modalidades, de cerca de 150 cm ou mais, e em algumas modalidades, de cerca de 200 cm a cerca de 1000 cm, conforme determinado de acordo com ATTCC 127-2008. Outras propriedades benéficas também podem ser alcançadas. Por exemplo, película de poliolefina resultante geralmente pode ser permeável ao vapor de água. A permeabilidade da película ao vapor d'água pode ser caracterizada por sua taxa de transmissão de vapor de água relativamente alta (“WVTR”), que é a taxa em que o vapor d'água penetra em uma película conforme medido em unidades de gramas por metro quadrado por 24 horas (g/m2/24 hrs). Por exemplo, a película de poliolefina pode exibir uma WVTR de cerca de 300 g/m2-24 horas ou mais, em algumas modalidades de cerca de 500 g/m2-24 horas ou mais, em algumas modalidades cerca de 1.000 g/m2-24 horas ou mais, e em outras modalidades, de cerca de 3.000 a cerca de 15.000 g/m2- 24 horas, conforme determinado de acordo com a norma ASTM E96/96M- 12, Procedimento B ou Procedimento para Teste INDA IST-70.4 (01).
[13] Serão descritas agora diversas modalidades da presente invenção com mais detalhes.
I.Composição Termoplástica A.Matriz de Poliolefina
[14] Normalmente, poliolefinas constituem cerca de 60% em peso a cerca de 99% em peso, em algumas modalidades, de cerca de 60% em peso a cerca de 98% em peso e, em outras modalidades, de cerca de 80% em peso a cerca de 95% em peso da composição termoplástica. A poliolefina pode ter temperatura de fusão de cerca de 100°C a cerca de 220°C, em algumas modalidades de cerca de 120°C a cerca de 200°C, e, em algumas modalidades, de cerca de 140°C até cerca de 180°C. A temperatura de fusão pode ser determinada utilizando calorimetria exploratória diferencial ("DSC"), em conformidade com a norma ASTM D-3417. As poliolefinas adequadas podem, por exemplo, incluir polímeros de etileno (por exemplo, polietileno de baixa densidade (“PE-LD”), polietileno de alta densidade (“PEAD”), polietileno linear de baixa densidade (“PELBD”), etc.), homopolímeros de propileno (por exemplo, sindiotáticos, atáticos, isotáticos, etc.), copolímeros de propileno e assim por diante. Em uma determinada modalidades, o polímero é um polímero de propileno, como o homopolipropileno ou um copolímero de propileno. O polímero de propileno pode, por exemplo, ser formado a partir de um homopolímero de polipropileno substancialmente isotático ou um copolímero contendo quantidade igual ou inferior a cerca de 10% de outros monômeros ou seja, ao menos cerca de 90% por peso de propileno. Tais homopolímeros podem ter um ponto de fusão de cerca de 140 °C a cerca de 170 °C.
[15] Naturalmente outras poliolefinas podem ser igualmente empregadas na composição da presente invenção. Em uma modalidade, por exemplo, a poliolefina pode ser um copolímero de etileno ou propileno com outra α- olefina, como por exemplo, C3-C20 α-olefina ou C3-C12 α-olefina. Exemplos específicos de α-olefinas adequadas incluem 1-buteno; 3-metil-1-buteno; 3,3-dimetil-1-buteno; 1-penteno; 1-penteno com um ou mais substituintes de metil, etil ou propil; 1-hexeno com um ou mais substituintes de metil, etil ou propil; 1-hepteno com um ou mais substituintes de metil, etil ou propil; 1- octeno com um ou mais substituintes de metil, etil ou propil; 1-noneno com um ou mais substituintes de metil, etil ou propil; 1-deceno substituído por etil, metil ou dimetil; 1-dodeceno; e estireno. Os comonômeros particularmente desejados de α-olefina são 1-buteno, 1-hexeno e 1-octeno. O teor de etileno ou propileno de tais copolímeros pode variar de cerca de 60% em mol a cerca de 99% em mol, em algumas modalidades, de cerca de 80% em mol a cerca de 98,5% em mol, e em algumas modalidades, de cerca de 87% em mol a cerca de 97,5% em mol. O teor de α-olefina pode variar de cerca de 1% em mol a cerca de 40% em mol, em algumas modalidades, de cerca de 1,5% em mol a cerca de 15% em mol, e em algumas modalidades, de cerca de 2,5% em mol a cerca de 13% em mol.
[16] Exemplos de copolímeros de olefina para uso na presente invenção incluem copolímeros à base de etileno disponíveis sob a designação de EXACT™, da ExxonMobil Chemical Company de Houston, Texas. Outros copolímeros de etileno adequados estão disponíveis sob a designação de ENGAGE™, AFFINITY™, DOWLEX™ (LLDPE) e ATTANE™ (ULDPE) da Dow Chemical Company de Midland, Michigan. Outros polímeros de etileno adequados são descritos nas Patentes U.S. Nos. 4.937.299 para Ewen et al.; 5.218.071 para Tsutsui et al.; 5.272.236 para Lai, et al.; e 5.278.272 para Lai, et al. Copolímeros de propileno adequados também estão comercialmente disponíveis sob as designações de VISTAMAXX™ da ExxonMobil Chemical Co. de Houston, Texas; FINA™ (por exemplo, 8573) da Atofina Chemicals de Feluy, Bélgica; TAFMER™ disponível pela Mitsui Petrochemical Industries; e VERSIFY™, disponível pela Dow Chemical Co. de Midland, Michigan. Homopolímeros de polipropileno adequados podem incluir polipropileno Exxon Mobil 3155, resinasExxon Mobil Achieve™ e resina Total M3661 PP. Outros exemplos de polímeros de propileno adequados são descritos nas Patentes U.S. Nos. 6.500.563 para Datta et al.; 5.539.056 para Yang et al.; e 5.596.052 para Resconi et al.
[17] Uma grande variedade de técnicas conhecidas pode ser empregada, de forma geral, para formar os copolímeros de olefina. Por exemplo, os polímeros de olefina podem ser formados usando um radical livre ou um catalisador de coordenação (por exemplo, Ziegler-Natta). Preferencialmente, o polímero de olefina é formado por um catalisador de coordenação de sítio único, tal como um catalisador metalocênico. Tal sistema de catalisador produz copolímeros de etileno, nos quais o comonômero é distribuído aleatoriamente dentro de uma cadeia molecular e distribuído uniformemente entre as diferentes frações de peso molecular. Poliolefinas catalisadas por metaloceno são descritas, por exemplo, na Patente U.S. 5.571.619 para McAlpin et al.; 5.322.728 para Davis et al.; 5.472.775 para Obijeski et al.; 5.272.236 para Lai et al.; e 6.090.325 para Wheat, et al. Exemplos de catalisadores metalocênicos incluem dicloreto de bis(n- butilciclopentadienil)titânio, dicloreto de bis(n-butilciclopentadienil)zircônio, cloreto de bis(ciclopentadienil)escândio, dicloreto de bis(indenil)zircônio, dicloreto de bis(metilciclopentadienil)titânio, dicloreto de bis(metilciclopentadienil)zircônio, cobaltoceno, tricloreto de ciclopentadieniltitânio, ferroceno, dicloreto de hafnoceno, dicloreto de isopropil(ciclopentadienil,-1-flourenil)zircônio, dicloreto de molibdoceno, niqueloceno, dicloreto de nioboceno, rutenoceno, dicloreto de titanoceno, hidreto de cloreto de zirconoceno, dicloreto de zirconoceno, e assim por diante. Os polímeros produzidos usando catalisadores metalocênicos normalmente têm uma faixa estreita de peso molecular. Por exemplo, polímeros catalisados por metaloceno podem ter números de polidispersividade (Mw/Mn) abaixo de 4, distribuição controlada de ramificação de cadeia curta e isotaticidade controlada.
8. Aditivo de Nanoinclusão
[18] Tal como utilizado neste documento, o termo "aditivo de nanoinclusão" geralmente refere-se a um material que seja capaz de ser dispersado no interior da matriz polimérica na foma de domínios discretos de tamanho nanoescalar. Por exemplo, antes do estiramento, os domínios podem ter uma dimensão transversal média de cerca de 1 a cerca de 1000 nanômetros, em algumas modalidades, de cerca de 5 a cerca de 800 nanômetros e, em algumas modalidades, de cerca de 10 a cerca de 500 nanômetros, e em algumas modalidades, de cerca de 20 a cerca de 200 nanômetros. Os domínios podem ter uma variedade de diferentes formas, tais como elíptica, esférica, cilíndrica, semelhante a placa, tubular, etc. Em uma modalidade, por exemplo, os domínios têm uma forma substancialmente elíptica. O aditivo de nanoinclusão é empregado normalmente em uma quantidade de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades de cerca de 0,1% em peso a cerca de 10% em peso, e em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da matriz de poliolefina de fase contínua. A concentração do aditivo de nanoinclusão em toda a composição termoplástica pode ser de cerca de 0,01% em peso a cerca de 15% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 10% em peso e, em algumas modalidades, de cerca de 0,3% em peso a cerca de 6% em peso da composição termoplástica.
[19] O aditivo de nanoinclusão é parcialmente incompatível com a poliolefina no sentido de que ela pode ser distribuída de maneira substancialmente uniforme dentro dos limites da matriz de poliolefina, mas na forma de domínios discretos. Tal incompatibilidade parcial pode ser realizada de várias maneiras. Em determinadas modalidades, por exemplo, o aditivo de nanoinclusão pode possuir um componente não-polar (por exemplo, olefina) que seja compatível com a matriz de poliolefina e possibilite que a mesma seja uniformemente distribuída na mesma. Não obstante, o aditivo também pode incluir um componente polar que seja incompatível com a matriz de poliolefina, permitindo, portanto, que este coalesça ou segregue- se em domínios discretos. Tal componente pode incluir segmentos moleculares polares de alto ou baixo peso molecular ou blocos, grupos iônicos, domínios polares carregados ou não-carregados e /ou grupos moleculares polares. Alternativamente, o aditivo pode ser inteiramente apolar na natureza, mas possui certas propriedades física que ainda permitem a formação de domínios discretos. Por exemplo, em determinadas modalidades, o aditivo de nanoinclusão pode ser compatível ou miscível com a poliolefina acima de certa temperatura, mas constituir fase separada em temperaturas inferiores à temperatura de solução crítica. Desta forma, o aditivo de nanoinclusão pode formar uma mistura estável com a poliolefina na fase fundida, porém, à media que a temperatura desce, a fase contínua cristaliza-se e segrega-se de modo que o aditivo de nanoinclusão pode constituir fase separada, coalescer e formar domínios nanoescalares separados.
[20] O estado ou forma particular do aditivo de nanoinclusão não é crítico enquanto os domínios desejados puderem ser formados. Por exemplo, em algumas modalidades, o aditivo de nanoinclusão pode encontrar-se na forma de um líquido ou semissólido em temperatura ambiente (por exemplo, 25°C). Tal um líquido pode ser facilmente disperso na matriz a dispersão metaestável e então extinto para preservar o tamanho do domínio, reduzindo a temperatura da mistura. A viscosidade cinemática de tal material líquido ou semissólido é, tipicamente, de cerca de 0,7 a cerca de 200 centistokes (“cs”), em algumas modalidades de cerca de 1 a cerca de 100 cs, e em algumas modalidades de cerca de 1,5 a cerca de 80 cs, determinada a 40 °C. Líquidos ou semissólidos adequados podem incluir, por exemplo, silicones, copolímero de silicone-polieter, poliésters alifáticos, poliéstees aromáticos, alquileno glicóis (por exemplo, etilenoglicol, dietilenoglicol, trietilenoglicol, tetraetilenoglicol, propilenoglicol, polietilenoglicol, polipropilenoglicol, polibutilenoglicol, etc.), dióis de alcano (por exemplo, 1,3-propanodiol, 2,2- dimetil-1,3-propanodiol, 1,3-butanodiol, 1,4-butanodiol, 1,5-pentanodiol, 1,6- hexanodiol, 2,2,4-trimetil-1,6 hexanodiol, 1,3-ciclohexanodimetanol, 1,4- ciclohexanodimetanol, 2,2,4,4-tetrametil-1,3-ciclobutanediol, etc.), óxidos de amina (por exemplo, óxido de octildimetilamina), ésteres de ácidos graxos, amidas de ácidos graxos (por exemplo, oleamida, erucamida, estearamida, etileno bis(estearamida), etc.), óleos mineirais e vegetais e assim em diante. Um líquido ou semissólido especificamente adequado é poliol poliéter, tal como comercialmente disponível sob o nome comercial de Pluriol® WI pela BASF Corp.
[21] Em outras modalidades adicionais, o aditivo de nanoinclusão encontra-se na forma de um sólido, o qual pode ser amorfo, cristalino ou semicristalino. Por exemplo, o aditivo de nanoinclusõa pode ser polimérico na natureza e possuir peso molecular relativamente alto para ajudar a melhorar a força de fusão e estabilidade da composição termoplástica. Tal como indicado acima, o aditivo de nanoinclusão é parcialmente incompatível com a matriz de poliolefina. Um exemplo de um tal aditivo é uma cera de poliolefina microcristalina a qual é tipicamente extraída a partir de etileno e/ou C3-C10-alqu-1-enos, como, por exemplo, de propileno, 1-buteno, 1-penteno, 1-hexeno, 1-hepteno, 1-octeno, 1-noneno e 1-deceno. Ceras microcristalinas têm, tipicamente, temperatura de fusão relativamente baixa, tal como de cerca de 30°C a cerca de 150°C, em algumas modalidades de cerca de 50°C a cerca de 140°C e em algumas modalidades, de cerca de 80°C a cerca de 130°C. Em tais temperaturas reduzidas de fusão, a cera pode formar uma mistura miscível com a poliolefina quando na fase de fusão, porém, conforme diminui a temperatura e o polímero se cristaliza ou solidifica, a cera irá se segregar e coalescer, formando domínios nanoescalares separados.
[22] Outro exemplo de um aditivo de nanoinclusão polimérico é uma poliolefina funcionalizada que contém um componente polar e não-polar. O componente polar pode, por exemplo, ser provido por um ou mais grupos funcionais e o componente não-polar pode ser provido por uma olefina. O composto de olefina do aditivo de nanoinclusão pode geralmente ser formado por qualquer monômero de α-olefina ramificado ou linear, oligômero ou polímero (incluindo copolímeros) derivados de um monômero de olefina, tal como descrito acima. O grupo funcional do aditivo de nanoinclusão pode ser qualquer grupo, segmento molecular e/ou bloco que provenha à molécula um componente polar e não seja compatível com o polímero matricial de poliolefina. Exemplos de segmento e/ou blocos moleculares não compatíveis com a poliolefina podem incluir acrilatos, estirênicos, poliésteres, poliamida, etc. O grupo funcional pode ter uma natureza iônica e compreender íons metálicos carregados. Grupos funcionais particularmente adequados são anidrido maleico, ácido maleico, ácido fumárico, maleimida, hidrazida do ácido maleico, um produto da reação do anidrido maleico e diamina, anidrido metilnádico, anidrido dicloromaleico, amida de ácido maleico, etc. Poliolefinas modificadas por anidrido maleico são particularmente adequados para uso na presente invenção. Essas poliolefinas modificadas são normalmente formadas pelo enxerto de anidrido maleico em um material da estrutura principal polimérica. Essas poliolefinas maleatadas estão disponíveis pela E. I. du Pont de Nemours and Company sob a designação de Fusabond®, tal como a série P (polipropileno modificado quimicamente), série E (polietileno modificado quimicamente), série C (acetato de etileno vinil modificado quimicamente), série A (copolímeros ou terpolímeros de acrilato de etileno modificados quimicamente) ou série N (etileno-propileno, monômero de dieno de etileno-propileno ("EPDM") ou etileno-octeno modificados quimicamente). Como alternativa, as poliolefinas maleatadas também são comercializadas pela Chemtura Corp. sob o nome de Polybond® e pela Eastman Chemical Company sob o nome de Eastman série G, e pela Arkema sob a designação de Orevac®.
[23] Em certas modalidades, o aditivo de nanoinclusão polimérico pode ser também reativo. Um exemplo desse aditivo de nanoinclusão reativo é um poliepóxido que contém, em média, pelo menos dois anéis de axirano por molécula. Sem intenção de nos limitarmos pela teoria, crê-se que tais moléculas de poliepóxi podem sofrer uma reação (por exemplo, extensão de cadeia, ramificação de cadeia lateral, enxertamento, formação de copolímero, etc) com certos componentes da composição para melhorar força de fusão sem reduzir de maneira significativa a temperatura de transição vítrea. O aditivo reativo pode também prover compatibilização entre a poliolefina e outros aditivos mais polares, tais como aditivos de microinclusão, e pode melhorar a uniformidade de dispersão e reduzir o tamanho dos aditivos de microinclusão. Por exemplo, conforme será descrito mais detalhadamente abaixo, determinadas modalidades da presente invenção podem empregar um poliéster como aditivo de microinclusão. Em tais modalidades, o aditivo de nanoinclusão reativo pode permitir uma reação nucleofílica para abertura de anel por meio um grupo terminal de carboxila do poliéster (esterificação) ou por meio de um grupo de hidroxila (eterificação). As reações laterais da oxazolina podem ocorrer para formar frações de ésteramida. Por meio de tais reações, o peso molecular de um aditivo de microinclusão de poliéster pode ser aumentado para contrabalancear a degradação comumente observa durante o processamento de fusão. Os presentes inventores descobriram que reação em demasia pode conduzir à reticulação entre espinhas dorsais de polímeros. Se essa reticulação foi permitida prosseguir até uma extensão significativa, a mistura do polímero resultante poderá se tornar frágil e difícil de processar em um material com as propriedades desejadas de resistência e alongamento.
[24] Nesse sentido, os presentes inventores descobriram que poliepóxis com funcionalidade de epóxi relativamente baixa pode ser particularmente eficaz, a qual pode ser quantificada por seu "peso equivalente de epóxi". O peso equivalente em epóxi reflete a quantidade de resina que contém uma molécula de um grupo epóxi, e pode ser calculado dividindo o peso molecular médio em número do modificador pelo número de grupos epóxi na molécula. O poliepóxido da presente invenção normalmente tem um peso molecular médio em número de cerca de 7.500 a cerca 250.000 gramas por mol, em algumas modalidades, de cerca de 15.000 a cerca de 150.000 gramas por mol e, em algumas modalidades, de cerca de 20.000 a cerca de 100.000 gramas por mol, com um índice de polidispersividade que varia de 2,5 a 7. O poliepóxido pode conter menos de 50, em algumas modalidades, de 5 a 45 e, em algumas modalidades, de 15 a 40 grupos epóxi. Por sua vez, o peso equivalente em epóxi pode ser menor que cerca de 15.000 gramas por mol, em algumas modalidades, de cerca de 200 a cerca de 10.000 gramas por mol e, em algumas modalidades, de cerca de 500 a cerca de 7.000 gramas por mol.
[25] O poliepóxido pode ser um homopolímero ou copolímero linear ou ramificado (por exemplo, aleatório, enxerto, bloco, etc.) contendo grupos epóxi terminais, unidades de oxirano esquelético, e/ou grupos epóxi pendentes. Os monômeros empregados para formar esses poliepóxidos podem variar. Em uma modalidade específica, por exemplo, o poliepóxido contém pelo menos um componente monomérico (met)acrílico epóxi- funcional. Conforme usado neste documento, o termo “(met)acrílico” inclui monômeros acrílicos e metacrílicos, bem como seus sais ou ésteres, tais como monômeros de acrilato e metacrilato. Por exemplo, os monômeros (met)acrílicos epóxi-funcionais adequados podem incluir, mas não estão limitados a, aqueles contendo grupos 1,2-epóxi, tais como acrilato de glicidil e metacrilato de glicidil. Outros monômeros epóxi-funcionais adequados incluem o alil glicidil éter, etacrilato de glicidil e itoconato de glicidil.
[26] O poliepóxido normalmente tem um peso molecular relativamente alto, como indicado acima, para que possa não apenas resultar na extensão de cadeia, mas também a atingir a morfologia desejada da mistura. A taxa de fluxo à fusão resultante do polímero está, assim, normalmente dentro de uma faixa de cerca de 10 a cerca de 200 gramas por 10 minutos, em algumas modalidades, de cerca de 40 a cerca de 150 gramas por 10 minutos e, em algumas modalidades, de cerca de 60 a cerca de 120 gramas por 10 minutos, determinada numa carga de 2160 gramas e a uma temperatura de 190°C.
[27] Tipicamente, o poliepóxido inclui também pelo menos um monômero de α-olefina linear ou ramificado, como aqueles que têm de 2 a 20 átomos de carbono e, de preferência, de 2 a 8 átomos de carbono. Exemplos específicos incluem etileno, propileno, 1-buteno; 3-metil-1-buteno; 3,3- dimetil-1-buteno; 1-penteno; 1-penteno com um ou mais substituintes de metil, etil ou propil; 1-hexeno com um ou mais substituintes de metil, etil ou propil; 1-hepteno com um ou mais substituintes de metil, etil ou propil; 1- octeno com um ou mais substituintes de metil, etil ou propil; 1-noneno com um ou mais substituintes de metil, etil ou propil; 1-deceno substituído por etil, metil ou dimetil; 1-dodeceno; e estireno. Os comonômeros de α-olefina particularmente desejados são etileno e propileno. Outro monômero adequado pode incluir um monômero (meta)acrílico que não seja epóxi- funcional. Exemplos desses monômeros (met)acrílicos podem incluir acrilato de metil, acrilato de etil, acrilato de n-propil, acrilato de i-propil, acrilato de n- butil, acrilato de s-butil, acrilato de i-butil, acrilato de t-butil, acrilato de n-amil, acrilato de i-amil, acrilato de isobornil, acrilato de n-hexil, acrilato de 2-etilbutil, acrilato de 2-etilhexil, acrilato de n-octil, acrilato de n-decil, acrilato de metilciclohexil, acrilato de ciclopentil, acrilato de ciclohexil, metacrilato de metil, metacrilato de etil, metacrilato de 2-hidroxietil, metacrilato de n-propil, metacrilato de n-butil, metacrilato de i-propil, metacrilato de i-butil, metacrilato de n-amil, metacrilato de n-hexil, metacrilato de i-amil, metacrilato de s-butil, metacrilato de t-butil, metacrilato de 2-etilbutil, metacrilato de metilciclohexil, metacrilato de cinamil, metacrilato de crotil, metacrilato de ciclohexil, metacrilato de ciclopentil, metacrilato de 2-etoxietil, metacrilato de isobornil, etc., bom como combinações dos mesmos.
[28] Em uma modalidade particularmente desejável da presente invenção, o poliepóxido é um terpolímero formado por um componente monomérico (met)acrílico epóxi-funcional, um componente monomérico de α-olefina, e um componente monomérico (met)acrílico não epóxi-funcional. Por exemplo, o poliepóxido pode ser metacrilato de poli(etileno-co-metilacrilato-co-glicidil), que tem a seguinte estrutura:
Figure img0001
em que x, y e z são 1 ou maiores.
[29] O monômero epóxi-funcional pode ser transformado em um polímero usando uma variedade de técnicas conhecidas. Por exemplo, um monômero contendo grupos funcionais polares pode ser enxertado na estrutura principal de um polímero para formar um copolímero de enxerto. Tais técnicas de enxerto são bem conhecidas na técnica e descritas, por exemplo, na Patente U.S. No. 5.179.164. Em outras modalidades, um monômero contendo grupos epóxi-funcionais pode ser copolimerizado com um monômero para formar um bloco ou copolímero aleatório usando técnicas conhecidas de polimerização de radical livre, tais como reações de alta pressão, sistemas de reação com catalisador Ziegler-Natta, sistemas de reação com catalisador de sítio único (por exemplo, metaloceno), etc.
[30] A parte relativa do(s) componente(s) monomérico(s) pode ser selecionada para atingir um equilíbrio entre a reatividade de epóxi e a taxa de fluxo à fusão. Mais especificamente, elevados teores de monômeros de epóxi podem resultar em reatividade boa, mas um teor demasiado alto pode reduzir a taxa de fluxo-fusão a um grau tal que o poliepóxido impacta de maneira adversa a força de fusão da mistura de polímero. Assim, na maioria das modalidades, o(s) monômero(s) (met)acrílico(s) epóxi-funcionais constitui(em) cerca de 1% em peso a cerca de 25% em peso, em algumas modalidades, de cerca de 2% em peso a cerca de 20% em peso e, em algumas modalidades, de cerca de 4% em peso a cerca de 15% em peso do copolímero. O(s) monômero(s) de α-olefina também pode(m) constituir de cerca de 55% em peso a cerca de 95% em peso, em algumas modalidades, de cerca de 60% em peso a cerca de 90% em peso e, em algumas modalidades, de cerca de 65% em peso a cerca de 85% em peso do copolímero. Quando empregados outros componentes monoméricos (por exemplo, monômeros (met)acrílicos não epóxi-funcionais) podem constituir de cerca de 5% em peso a cerca de 35% em peso, em algumas modalidades, de cerca de 8% em peso a cerca de 30% em peso e, em algumas modalidades, de cerca de 10% em peso a cerca de 25% em peso do copolímero. Um exemplo específico de um poliepóxido adequado que pode ser usado na presente invenção está comercialmente disponível pela Arkema sob o nome de LOTADER® AX8950 ou AX8900. O LOTADER® AX8950, por exemplo, tem uma taxa de fluxo à fusão de 70 a 100 g/10 min e tem um teor de monômero de metacrilato de glicidil de 7% em peso a 11% em peso, um teor de monômero de acrilato de metil de 13% em peso a 17% em peso, e um teor de monômero de etileno de 72% em peso a 80% em peso. Outro poliepóxido adequado está comercialmente disponível pela DuPont sob o nome de ELVALOY® PTW, que é um terpolímero de etileno, acrilato de butil, e metacrilato de glicidil e tem uma taxa de fluxo à fusão de 12 g/10 min.
[31] Além de controlar o tipo e o teor relativo dos monômeros usados para formar o poliepóxido, a porcentagem em peso geral também pode ser controlada para atingir os benefícios desejados. Por exemplo, se o nível de modificação for muito baixo, o aumento desejado na resistência à fusão e nas propriedades mecânicas pode não ser obtido. Os presentes inventores também descobriram, no entanto, que se o nível de modificação for muito alto, o processamento poderá ficar restrita devido às fortes interações moleculares (por exemplo, reticulação) e formação de rede física pelos grupos epóxi-funcionais. Portanto, o poliepóxido é empregado tipicamente em uma quantidade de cerca de 0,05% em peso a cerca de 10% em peso, em algumas modalidades de cerca de 0,1% em peso a cerca de 8% em peso, em algumas modalidades de cerca de 0,5% em peso a cerca de 5% em peso, e em algumas modalidades, de cerca de 1% em peso a cerca de 3% em peso, com base no peso das poliolefinas empregadas na composição. O poliepóxido também pode constituir cerca de 0,05% em peso a cerca de 10% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 8% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 5% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 3% em peso, com base no peso total da composição.
[32] Outros aditivos de nanoinclusão reativos também podem ser empregados na presente invenção, tais como polímeros de oxazolina funcionalizados, polímeros de cianeto funcionalizados, etc. Quando empregados, tais aditivos de nanoinclusão reativos podem ser empregados dentro das concentrações observadas acima para o poliepóxido. Em uma modalidade específica, uma poliolefina enxertada com oxazolina pode ser empregada, ou seja, uma poliolefina enxertada com um monômero contendo um anel de oxazolina. A oxazolina pode incluir uma 2-oxazolina, tal como 2- vinil-2-oxazolina (por exemplo, 2-isopropenil-2-oxazolina), 2-graxo-alquil-2- oxazolina (por exemplo, obteníveis pela etanolamina de ácido oleico, ácido linoleico, ácido palmitoleico, ácido gadoleico, ácido erúcico e/ou ácido araquidônico) e combinações dos mesmos. Em outra modalidade, a oxazolina pode ser selecionada dentre maleinato de ricinoloxazolina, undecil- 2-oxazolina, soja-2-oxazolina, rícino-2-oxazolina e combinações dos mesmos, por exemplo. Ainda em outra modalidade, a oxazolina é selecionada dentre 2-isopropenil-2-oxazolina, 2-isopropenil-4,4-dimetil-2- oxazolina e combinações dos mesmos.
[33] Em determinadas modalidades da presente invenção, vários aditivos de nanoinclusão podem ser empregados em combinação. Por exemplo, um primeiro aditivo de nanoinclusão (por exemplo, poliepóxido) pode ser disperso na forma de domínios com uma dimensão transversal média de cerca de 50 a cerca de 500 nanômetros, em algumas modalidades, de cerca de 60 a cerca de 400 nanômetros, e em algumas modalidades, de cerca de 80 a cerca de 300 nanômetros. Um segundo aditivo de nanoinclusão pode ser também dispersado na forma de domínios que sejam menores que o primeiro aditivo de nanoinclusão, tais como aqueles que têm dimensão de corte transversal média entre cerca de 1 a cerca de 50 nanômetros, em algumas modalidades entre cerca de 2 a cerca de 45 nanômetros, e em algumas modalidades de cerca de 5 a cerca de 40 nanômetros. Quando empregados, o primeiro e/ou segundo aditivos de nanoinclusão normalmente constituem de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 10% em peso, e em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da fase contínua (polímero(s) da matriz). A concentração do primeiro e/ou segundo aditivos de nanoinclusão na composição termoplástica inteira pode de cerca de 0,01% em peso a cerca de 15% em peso, em algumas modalidades, de cerca de 0,05% em peso a cerca de 10% em peso, e em algumas modalidades, de cerca de 0,1% em peso a cerca de 8% em peso da composição termoplástica.
[34] Nanocargas podem ser empregadas opcionalmente para o segundo aditivo de nanoinclusão, de que podem ser exemplos negro de fumo, nanotubos de carbono, nanofibras de carbono, nanoargilas, nanopartículs de metal, nanosílica, nanoalumina, etc. Nanoargilas são particularmente adequadas. O termo "nanoargila" refere-se geralmente a nanopartículas de um material de argila (um mineral de ocorrência natural, um mineral organicamente modificado ou um nanomaterial sintético), que normalmente têm uma estrutura de plaquetas. Exemplos de nanoargilas incluem, por exemplo, montmorillonita (estrutura de argila de esmectita em camadas de 2:1), bentonita (filossilicato de alumínio formado principalmente por montmorillonita), caulinita (aluminossilicato de 1:1 com uma estrutura achatada e fórmula empírica de Al2Si2O5(OH)4), haloisita (aluminossilicato de 1:1 com uma estrutura tubular e fórmula empírica de Al2Si2O5(OH)4), etc. Um exemplo de nanoargila adequado é Cloisite®, que é uma nanoargila de montmorillonita e está comercialmente disponível pela Southern Clay Products, Inc. Outros exemplos de nanoargilas sintéticas incluem, mas não estão limitadas a, nanoargila de hidróxido de metal misturado, nanoargila de hidróxido duplo em camada (por exemplo, sepiocita), laponita, hectorita, saponita, indonita, etc.
[35] Se desejado, a nanoargila pode conter um tratamento de superfície para ajudar a melhorar a compatibilidade com o polímero da matriz (por exemplo, poliéster). O tratamento de superfície pode ser orgânico ou inorgânico. Em uma modalidade, é empregado um tratamento de superfície orgânico que é obtido pela reação de um cátion orgânico com a argila. Cátions orgânicos adequados podem incluir, por exemplo, compostos de amônio organoquaternário que são capazes de trocar cátions com a argila, tais como cloreto de dimetil bis [sebo hidrogenado] amônio (2M2HT), cloreto de metil benzil bis [sebo hidrogenado] amônio (MB2HT), cloreto de metil tris [alquil de sebo hidrogenado] (M3HT), etc. Exemplos de nanoargilas orgânicas comercialmente disponíveis podem incluir, por exemplo, Dellite® 43B (Laviosa Chimica de Livorno, Itália), que é uma argila de montmorillonita modificada com sal de dimetil sebo benzil-hidrogenado amônio. Outros exemplos incluem Cloisite® 25A e Cloisite® 30B (Southern Clay Products) e Nanofil 919 (Süd Chemie). Se desejado, a nanocarga pode ser misturada com uma resina transportadora para formar um masterbatch que aumenta a compatibilidade do aditivo com os outros polímeros na composição. Resinas transportadoras particularmente adequadas incluem, por exemplo, poliésteres (por exemplo, ácido polilático, tereftalato de polietileno, etc.); poliolefinas (por exemplo, polímeros de etileno, polímeros de propileno, etc.); e assim por diante, conforme descrito em mais detalhes acima.
[36] Independentemente do material empregado, o aditivo de nanoinclusão é selecionado, tipicamente, de modo a ter uma determinada viscosidade (ou taxa de fluxo-fusão), de modo a assegurar que domínios discretos e poros resultante possam ser mantidos adequadamente. Por exemplo, se a viscosidade do aditivo de nanoinclusão for muito baixa (ou muito alta a taxa de fluxo fusão), ele tende a fluir e dispersa-se incontrolavelmente através da fase contínua. Isto resulta em domínios lamelares ou semelhantes a placa ou em estruturas de fase co-contínua que são difíceis de manter e também prováveis de rachar prematuramente. Por outro lado, se a viscosidade for muito alta (ou muito baixa a taxa de fluxo- fusão), ele tende a agrupar-se e formar domínios elípticos muito grandes, que são difíceis de dispersar durante a misturação. Isto pode provocar distribuição desigual do aditivo de nanoinclusão por toda a fase contínua. Por exemplo, a razão da taxa de fluxo-fusão da poliolefina para a taxa de fluxo- fusão de um aditivo de nanoinclusão polimérico, por exemplo, pode ser entre cerca de 0,2 a cerca de 8, em algumas modalidades de cerca de 0,5 a cerca de 6 e em algumas modalidades de cerca de 1 a cerca de 5. O aditivo de nanoinclusão pode, por exemplo, ter uma taxa de fluxo-fusão (em uma base seca) de a partir de cerca de 0,1 a cerca de 100 gramas por 10 minutos, em algumas modalidades de cerca de 0,5 a cerca de 50 gramas por 10 minutos, e em algumas modalidades, de cerca de 5 a cerca de 15 gramas por 10 minutos, determinada a uma carga de 2160 gramas e a uma temperatura pelo menos 40°C superior à temperatura de fusão (por exemplo, a 190°C) em conformidade com a norma ASTM D1238. A poliolefina pode ter também uma taxa de fluxo-fusão (em base seca) de a partir de cerca de 0,5 a cerca de 80 gramas por 10 minutos, em algumas modalidades de cerca de 1 a cerca de 40 gramas por 10 minutos, e em algumas modalidades, de cerca de 5 a cerca de 20 gramas por 10 minutos, determinada a uma carga de 2160 gramas e a uma temperatura pelo menos cerca de 40°C superior à temperatura de fusão (por exemplo, a 230°C) em conformidade com a norma ASTM D1238.
C. Aditivo de Microinclusão
[37] Embora isto não seja necessário, a composição da presente invenção pode empregar igualmente um aditivo de microinclusão. Tal como utilizado neste documento, o termo "aditivo de microinclusão" refere-se, em linhas gerais, a qualquer material que seja capaz de ser dispersado dentro da matriz polimérica na forma de domínios discretos de tamanho microescalar. Por exemplo, antes da extração, os domínios podem ter dimensão de corte transversal média a partir de cerca de 0,1 μm a cerca de 25 μm, em algumas modalidades de cerca de 0,5 μm a cerca de 20 μm, e em algumas modalidades de cerca de 1 μm a cerca de 10 μm. Quando do emprego, os presentes inventores descobriram que domínios de fase nanoescalar e microescalar são capazes de interagir de maneira única quando submetidos á deformação e à tensão de alongamento (por exemplo, extração) de modo a criar uma rede de poros. Ou seja, acredita-se que a força de alongamento possa iniciar as zonas de cisalhamento localizado intensivo e/ou zonas de intensidade de tensão (por exemplo, tensões normais) perto dos domínios de fase discretos em microescala, como resultado de concentrações de tensão que surgem da incompatibilidade dos materiais. Estas zonas de intensidade de tensão e/ou cisalhamento provocam algumas descolagens iniciais na matriz de poliolefina adjacente aos domínios microescalares. Notavelmente, no entanto, as zonas de intensidade de tensão e/ou cisalhamento localizadas, criadas proximamente aos domínios nanoescalares de fase discreta, podem se sobrepôr às zonas microescalares de modo a causar ainda mais descolagens na matriz polimérica, criando, portanto, um número substancial de nanoporos adjacentes aos domínios nanoescalar e/ou domínios microescalares.
[38] A natureza específica do aditivo de microinclusão não é critica, e pode incluir líquidos, semissólidos ou sólidos (por exemplo, amorfos, cristalinos ou semicristalinos). Em certas modalidades, o aditivo de microinclusão é polimérico na natureza e possui peso molecular relativamente alto de modo a aperfeiçoar a força de fusão e estabilidade da composição termoplástica. Normalmente, o polímero de aditivo de microinclusão pode ser, no mais dos casos, incompatível com o polímero matricial. Dessa forma, o aditivo pode ser melhor espalhado como os domínios de fase discretos dentro de uma fase contínua do polímero da matriz. Os domínios discretos são capazes de absorver energia decorrente de uma força externa, o que aumenta a rigidez e a resistência geral do material resultante. Os domínios podem ter uma variedade de diferentes formas, tais como elíptica, esférica, cilíndrica, semelhante a placa, tubular, etc. Em uma modalidade, por exemplo, os domínios têm uma forma substancialmente elíptica. A dimensão física de um domínio individual geralmente é pequena o suficiente para minimizar a propagação das rachaduras no material polimérico mediante a aplicação de uma tensão externa, mas grande o suficiente para iniciar uma deformação plástica microscópica e permitir zonas de cisalhamento nas inclusões de partículas ou ao redor delas.
[39] O aditivo de microinclusão pode ter uma determinada taxa de fluxo- fusão (ou viscosidade) para assegurar que domínios discretos e poros resultantes sejam adequadamente mantidos. Por exemplo, se a taxa de fluxo à fusão do aditivo for muito alta, ele tende a fluir e a se dispersar de forma incontrolável pela fase contínua. Isto resulta em domínios lamelares ou semelhantes a placa ou em estruturas de fase co-contínua que são difíceis de manter e também prováveis de rachar prematuramente. Por outro lado, se a taxa de fluxo à fusão do aditivo for muito baixa, ele tenderá a se aglutinar e formar domínios elípticos muito grandes, que são difíceis de dispersar durante a mistura. Isto poderá provocar uma distribuição irregular do aditivo por toda a fase contínua. Nesse sentido, os presentes inventores descobriram que a razão da taxa de fluxo-fusão do aditivo de microinclusão para a taxa de fluxo-fusão do polímero matricial é, tipicamente, de cerca de 0,5 a cerca de 10, em algumas modalidades de cerca de 1 a cerca de 8, e em algumas modalidades, de cerca de 2 a cerca de 6. O aditivo de microinclusão pode, por exemplo, ter uma taxa de fluxo-fusão de cerca de 5 a cerca de 200 gramas por 10 minutos, em algumas modalidades de cerca de 20 a cerca de 150 gramas por 10 minutos, e em algumas modalidades, de cerca de 40 a cerca de 100 gramas por 10 minutos, determina a uma carga de 2160 gramas e a uma temperatura pelo menos 40°C superior à sua temperatura de fusão (por exemplo, 210°C).
[40] Além das propriedades observadas acima, as características mecânicas do aditivo de microinclusão podem também ser selecionadas para alcançar a rede porosa desejada. Por exemplo, aplicadas com uma força externa, concentrações de tensão (por exemplo, incluindo tensões normais e de cisalhamento) e zonas de rendimento plásticas e/ou de cisalhamento podem ser principiadas nos e à volta dos domínios de fase discreta como resultado de concentrações de tensão que emergem da diferença no módulo elástico do aditivo e do polímero matricial. Concentrações maiores de tensão promovem um fluxo plástico localizado mais intenso nos domínios, permitindo que eles se tornem significativamente alongados quando tensões são aplicadas. Esses domínios alongados permitem que a composição exiba comportamento mais flexível e suave. Para intensificar as concentrações de tensão, o aditivo de microinclusão pode ser selecionado para ter um módulo de Young de elasticidade relativamente alto em comparação à matriz de poliolefina. Por exemplo, a razão do módulo de elasticidade do aditivo para o da matriz de poliolefina é, tipicamente, de cerca de 1 a cerca de 250, em algumas modalidades de cerca de 2 a cerca de 100, e em algumas modalidades, de cerca de 2 a cerca de 50. O módulo de elasticidade do aditivo de microinclusão pode, por exemplo, estar no intervalo entre cerca de 200 a cerca de 3.500 Megapascals (Mpa), em algumas modalidades de cerca de 300 a cerca de 2.000 Mpa, e em algumas modalidades, de cerca de 400 a cerca de 1.500 MPa. Ao contrário, o módulo de elasticidade da poliolefina pode, por exemplo, variar de cerca de 100 a cerca de 1.500 MPa, e em algumas modalidades, de cerca de 200 a cerca de 1000 MPa. Como alternativa, o módulo de elasticidade do aditivo de microinclusão aditivo pode ser menor que o módulo de elasticidade de matriz de poliolefina. O módulo de elasticidade pode, por exemplo, variar de cerca de 10 MPa a cerca de 100 MPa e, opcionalmente, de cerca de 20 MPA a cerca de 80 MPa.
[41] Embora uma grande variedade de aditivos de microinclusão dotados das propriedades identificadas acima possa ser empregada, exemplos particularmente adequados de tais aditivos podem incluir copolímeros estirênico (por exemplo, estireno-butadieno-estireno, estireno-isopreno- estireno, estireno-etileno-propileno-estireno, estireno-etileno-butadieno- estireno, etc.); fluoropolímeros, tais como cloreto de polivinal (PVC), politetrafluoroetileno (PTFE), policlorotrifluoroetileno (PCTFE), etc.; alcoois de polivinila; acetatos de polivinila; poliésteres, tais como poliésters alifáticos, tais como policaprolactono, poliesteramidas, ácido polilático (PLA) e seus copolímeros, ácido poliglicólico, carbonatos de polialquileno (por exemplo, carbonato de polietileno), poli-3-hidroxibutirato (PHB), poli-3-hidroxivalerato (PHV), poli-3-hidroxibutirato-co-4-hidroibutirato, copolímeros de poli-3- hidroxibutirato-co-3-hidroxivalerato (PHBV), poli-3-hidroxibutirato-co-3- hidroxihexanoato, poli-3-hidroxibutirato-co-3-hidroxioctanoato, poli-3- hidroxibutirato-co-3-hidroxidecanoato, poli-3-hidroxibutirato-co-3- hidroxioctadecanoato, epolímeros alifáticos com base em sucinato (por exemplo, sucinato de polibutileno, adipato de sucinato de polibutileno, sucinato de polietileno, etc.), copoliésteres aromático-alifáticos (por exemplo, terenftalato de adipato de polibutileno, terenftalato de adipato de polietileno, isoftalato de adipato de polietileno, isoftalato de adipato de polibutileno, etc.), poliésteres aromáticos (por exemplo, terenftalato de polietileno, terenftalado de polibutileno, etc.); e por aí em diante.
[42] Particularmente adequados são aditivos de microinclusão que são tipicamente rígidos na natureza a ponto de terem temperatura de transição vítrea relativamente alta. Por exemplo, a temperatura de transição vítrea (“Tg”) pode ser cerca de 0°C ou mais, em algumas modalidades de cerca de 5°C a cerca de 100°C, em algumas modalidades de cerca de 30°C a cerca de 80°C, e em algumas modalidades, de cerca de 50°C a cerca de 75°C. A temperatura de transição vítrea pode ser determinada por uma análise mecânica dinâmica em conformidade com a norma ASTM E1640-09.
[43] Um poliéster rígido particularmente adequado é o ácido polilático, que pode ser derivado geralmente de unidades monoméricas de qualquer isômero de ácido lático, tal como ácido lático levógiro (“ácido L-lático”), ácido lático dextrógiro (“ácido D-lático”), ácido meso-lático ou combinações dos mesmos. As unidades monoméricas também podem ser formadas por anidridos de qualquer isômero do ácido lático, incluindo L-lactídeo, D- lactídeo, meso-lactídeo ou combinações dos mesmos. Dímeros cíclicos desses ácidos láticos e/ou lactídeos também podem ser empregados. Qualquer método de polimerização conhecido, tal como a policondensação ou polimerização por abertura de anel, pode ser usado para polimerizar o ácido lático. Uma pequena quantidade de um agente de extensão de cadeia (por exemplo, um composto di-isocianato, um composto epóxi ou anidrido ácido) também pode ser empregada. O ácido polilático pode ser um homopolímero ou um copolímero, tal como um que contenha unidades monoméricas derivadas do ácido L-lático e unidades monoméricas derivadas do ácido D-lático. Embora não seja necessária, a taxa do conteúdo de uma das unidades monoméricas derivadas do ácido L-lático e da unidade monomérica derivada do ácido D-lático é preferencialmente de cerca de 85% em mol ou mais, em algumas modalidades, de cerca de 90% em mol ou mais e, em outras modalidades, de cerca de 95% em mol ou mais. Vários ácidos poliláticos, cada um com uma razão diferente entre a unidade monomérica derivada do ácido L-lático e da unidade monomérica derivada do ácido D- lático, podem ser misturados em qualquer porcentagem aleatória. Claro, o ácido polilático pode ser misturado com outros tipos de polímeros (por exemplo, poliolefinas, poliésteres, etc.).
[44] Em uma modalidade específica, o ácido polilático tem a seguinte estrutura geral:
Figure img0002
[45] Em exemplo específico de um polímero de ácido polilático adequado que pode ser usado na presente invenção está comercialmente disponível pela Biomer, Inc. de Krailling, Alemanha) sob o nome BIOMER™ L9000. Outros polímeros de ácido polilático adequados estão comercialmente disponíveis pela Natureworks LLC de Minnetonka, Minnesota (NATUREWORKS®) ou Mitsui Chemical (LACEA™). Outros ácidos poliláticos adicionais adequados podem ser descritos nas Patentes dos EUA N.° 4.797.468; 5.470.944; 5.770.682; 5.821.327; 5.880.254 e 6.326.458, que estão inclusas na íntegra no presente documento, à guisa de referência, para todos os propósitos.
[46] O ácido polilático normalmente tem um número de peso molecular médio (“Mn”) que varia de cerca de 40.000 a cerca de 180.000 gramas por mol, em algumas modalidades, de cerca de 50.000 a cerca de 160.000 gramas por mol e, em algumas modalidades, de cerca de 80.000 a cerca de 120.000 gramas por mol. Da mesma forma, o polímero normalmente também tem um peso molecular ponderal médio (“Mw”) que varia de cerca de 80.000 a cerca de 250.000 gramas por mol, em algumas modalidades, de cerca de 100.000 a cerca de 200.000 gramas por mol e, em algumas modalidades, de cerca de 110.000 a cerca de 160.000 gramas por mol. A razão entre o peso molecular ponderal médio e o número do peso molecular médio (“Mw/Mn”), isto é, o "índice de polidispersividade", também é relativamente baixa. Por exemplo, o índice de polidispersividade varia normalmente de cerca de 1,0 a cerca de 3,0, em algumas modalidades, de cerca de 1,1 a cerca de 2,0, e, em modalidades, de cerca de 1,2 a cerca de 1,8. Os números dos pesos moleculares médio e ponderal médio podem ser determinados por métodos conhecidos aos versados na técnica.
[47] Alguns tipos de poliéster puro (por exemplo, ácido polilático) podem absorver água do ambiente, tal que tenha um teor de umidade de cerca de 500 a 600 partes por milhão (“ppm”) ou ainda maior, com base no peso seco do ácido polilático inicial. O teor de umidade pode ser determinado de várias maneiras, conforme é conhecido na técnica, tal como de acordo com ASTM D 7191-05, como descrito abaixo. Uma vez que a presença da água durante o processamento por fusão pode degradar hidroliticamente o poliéster e reduzir seu peso molecular, às vezes é desejado secar o poliéster antes de misturá-lo. Na maioria das modalidades, por exemplo, é desejável que o poliéster renovável tenha teor de umidade de cerca de 300 partes por milhão ("ppm") ou menos, em algumas modalidades cerca de 200 ppm ou menos, em algumas modalidades de cerca de 1 a cerca de 100 ppm antes da mistura com aditivos de nanoinclusão. A secagem do poliéster pode ocorrer, por exemplo, numa temperatura de cerca de 50 °C a cerca de 100 °C e, em algumas modalidades, de cerca de 70 °C a cerca de 80 °C.
[48] Independentemente dos materiais empregados, a porcentagem relativa do aditivo de microinclusão na composição termoplástica é selecionada a fim de atingir as propriedades desejadas sem afetar consideravelmente a composição resultante. Por exemplo, o aditivo de microinclusão é normalmente empregado em quantidade de cerca de 1% a cerca de 30% em peso, em algumas modalidades, de cerca de 2% a cerca de 25% em peso e, em outras modalidades, de cerca de 5% a cerca de 20% em peso dos compostos termoplásticos, com base no peso da matriz de poliolefina na composição. A concentração do aditivo de microinclusão em toda a composição termoplástica pode constituir cerca de 0,1% em peso a cerca de 30% em peso, em algumas modalidades, de cerca de 0,5% em peso a cerca de 25% em peso e, em algumas modalidades, de cerca de 1% em peso a cerca de 20% em peso.
D.Outros Componentes
[49] Uma ampla variedade de ingredientes pode ser usada na composição por diversos motivos diferentes. Por exemplo, em uma modalidade específica, um modificador interfásico pode ser utilizado na composição termoplástica de modo a auxiliar na redução do grau de fricção e conectividade entre os aditivos de nanoinclusão e/ou microinclusão e matiz de poliolefina, intensificando, portanto, o grau e uniformidade de descolagem. Desse modo, os poros podem ser distribuídos de uma forma mais homogênea por toda a composição. O modificador pode estar na forma líquida ou semissólida em temperatura ambiente (por exemplo, 25 °C) para que possua uma viscosidade relativamente baixa, permitindo que seja incorporado mais facilmente na composição termoplástica e migre mais facilmente para as superfícies do polímero. Ao reduzir as forças físicas nas interfaces entre a matriz de poliolefina e o aditivo, acredita-se que a natureza hidrofóbica e de baixa viscosidade do modificador possa ajudar a facilitar a descolagem. Conforme usado neste documento, o termo “hidrofóbico” normalmente se refere a um material que tem um ângulo de contato da água e ar de cerca de 40° ou mais e, em alguns casos, de cerca de 60° ou mais. Em contrapartida, o termo “hidrofílico” normalmente se refere a um material que tem um ângulo de contato da água e ar menor que cerca de 40°. Um teste adequado para medir o ângulo de contato é o ASTM D5725-99 (2008).
[50] Embora não seja obrigatório, o modificador interfásico pode ser particularmente adequado em modalidades em que um aditivo de microinclusão é empregado e em que o aditivo de nanoinclusão é um sólido (por exemplo, material polimérico). Modificadores interfásicos hidrofóbicos de baixa viscosidade podem incluir, por exemplo, os líquidos e/ou semissólidos acima aludidos. Um modificador interfásico particularmente adequado é poliol de poliéter, como o que é comercialmente disponível sob o nome comercial PLURIOL ® WI pela BASF Corp. Outro modificador apropriado é um éster parcialmente renovável, como o comercialmente disponível sob o nome comercial HALLGREEN ® IM de Hallstar.
[51] Quando empregado, o modificador interfásico pode constituir de cerca de 0,1% em peso a cerca de 20% em peso, em algumas modalidades, de cerca de 0,5% em peso a cerca de 15% em peso e, em outras modalidades, de cerca de 1% em peso a cerca de 10% em peso dos compostos termoplásticos, com base no peso da matriz de poliolefina de fase contínua. A concentração dos modificadores interfásicos em toda a composição termoplástica pode constituir de cerca de 0,05% em peso a cerca de 20% em peso, em algumas modalidades de cerca de 0,1% em peso a cerca de 15% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 10% em peso. Quando empregadas as quantidades observadas acima, o modificador interfásico terá uma característica que permite que ele migre rapidamente para a superfície interfacial dos polímeros e facilitem o descolamento sem danificar as propriedades de fusão da composição termoplástica. Por exemplo, o índice de fluxo-fusão da composição termoplástica pode também ser similar ao da matriz de poliolefina. Por exemplo, o índice de fluidez da composição (em base seca) pode ser de cerca de 0,1 a cerca de 250 gramas por 10 minutos, em algumas modalidades de cerca de 0,5 a cerca de 200 gramas por 10 minutos e, em outras modalidades, de cerca de 5 a cerca de 150 gramas por 10 minutos, determinado a uma carga de 2160 gramas e a uma temperatura de 190°C em conformidade com a norma ASTM D1238.
[52] Compatibilizantes também podem ser empregados para melhorar a aderência interfacial e reduzir a tensão interfacial entre o domínio e a matriz, permitindo, assim, a formação de domínios menores durante a mistura. Exemplos de compatibilizantes adequados podem incluir, por exemplo, copolímeros funcionalizados com epóxi ou frações químicas de anidrido maleico. Um exemplo de um compatibilizante de anidrido maleico é o anidrido maleico enxertado com polipropileno, que está comercialmente disponível pela Arkema sob os nomes Orevac™ 18750 e Orevac™ CA 100. Quando utilizados, os agentes de compatibilização podem consistir em cerca de 0,05% em peso a cerca de 10% em peso, em algumas modalidades, de cerca de 0,1% em peso a cerca de 8% em peso e, em algumas modalidades, de cerca de 0,5% em peso a cerca de 5% em peso da composição termoplástica, com base no peso da matriz poliolefínica de fase contínua.
[53] Outros materiais adequados podem ser também utilizados na composição termoplástica, tais como catalizadores, antioxidantes, estabilizadores, surfactantes, ceras, solventes sólidos, agentes nucleantes, particulatos, nanopreenchimentos e outros materiais acrescentados para intensificar a processabilidade e propriedades mecânicas da composição termoplásticas. No entanto, um aspecto benéfico da presente invenção é que boas propriedades podem ser fornecidas sem a necessidade de diversos aditivos convencionais, tais como agentes de expansão (por exemplo, clorofluorocarbonos, hidroclorofluorocarbonos, hidrocarbonetos, dióxido de carbono, dióxido de carbono supercrítico, nitrogênio, etc.) e materiais de carga de óxidos inorgânicos (por exemplo, carbonato de cálcio) de iniciação de poro. Na verdade, a composição termoplástica pode ser geralmente livre de agentes de expansão e/ou materiais de carga de óxido inorgânico para iniciação de poro, que são convencionalmente necessários para formar películas microporosas. Isso pode proporcionar vários benefícios, incluindo uma possível redução nos custos e na complexidade da fabricação. Na verdade, a composição termoplástica e/ou uma ou mais camadas da película (por exemplo, camada base) pode ser generalmente livre destes agentes de expansão e/ou os materiais de carga (por exemplo, carbonato de cálcio) podem estar presentes em uma quantidade de não mais do que cerca de 1% em peso, em algumas modalidades, não mais do que cerca de 0,5% em peso, em algumas modalidades, de cerca de 0,001% em peso a cerca de 0,2% em peso da composição termoplástica. No entanto, em algumas modalidades, quantidades mais altas de agentes de expansão e/ou materiais de carga podem ser utilizadas na composição termoplástica, se for desejável. Além disso, devido às propriedades de branqueamento por tensão, conforme descrito com mais detalhes abaixo, a composição resultante pode atingir uma cor opaca (por exemplo, branca) sem a necessidade de pigmentos convencionais, tais como dióxido de titânio. Em certas modalidades, por exemplo, os pigmentos podem estar presentes numa quantidade de não mais que cerca de 1% em peso, em algumas modalidades, não mais que cerca de 0,5% em peso e, em algumas modalidades, de cerca de 0,001% em peso a cerca de 0,2% em peso da composição termoplástica.
II.Misturação
[54] Para formar a composição termoplástica, os componentes são, tipicamente, misturados usando-se uma ou uma variedade de técnicas conhecidas. Em uma modalidade, por exemplo, os componentes podem ser fornecidos separadamente ou em combinação. Por exemplo, os componentes podem ser primeiro misturados a seco para formar uma mistura seca essencialmente homogênea, e podem ser fornecidos simultaneamente ou em sequência a um dispositivo de processamento por fusão que mistura dispersivamente os materiais. Podem ser empregadas técnicas de processamento por fusão em descontínuas e/ou contínuas. Por exemplo, um misturador/amassador, misturador Banbury, misturador contínuo Farrel, extrusora de rosca única, extrusora de rosca dupla, laminadores, etc., podem ser usados para misturar e processar os materiais por fusão. Dispositivos de processamento por fusão particularmente adequados podem ser uma extrusora de rosca dupla de co-rotação (por exemplo, extrusora ZSK-30 disponível pela Werner & Pfleiderer Corporation de Ramsey, Nova Jersey ou uma extrusora USALAB 16 Thermo Prism™, disponível pela Thermo Electron Corp., Stone, Inglaterra). Essas extrusoras podem incluir portas de alimentação e de ventilação e proporcionar uma mistura distributiva e dispersiva de alta intensidade. Por exemplo, os componentes podem ser introduzidos nas mesmas portas de alimentação da extrusora de rosca dupla e misturados por fusão para formar uma mistura fundida substancialmente homogênea. Se desejado outros aditivos também podem ser injetados na fusão do polímero e/ou introduzidos separadamente na extrusora em um ponto diferente ao longo de seu comprimento.
[55] Independentemente da técnica de processamento específica escolhida, o a composição misturada por fusão contém tipicamente domínios nanoescalares do aditivo de nanoinclusão e, opcionalmente, domínios microescalares do aditivo de microinclusão. O grau de cisalhamento/pressão e de calor pode ser controlado para garantir a dispersão suficiente, mas não tão alto a ponto de reduzir negativamente o tamanho dos domínios, de modo que eles fiquem incapazes de atingir as propriedades desejadas. Por exemplo, a mistura ocorre normalmente numa temperatura de cerca de 180 °C a cerca de 300 °C, em algumas modalidades, de cerca de 185 °C a cerca de 250 °C, e em algumas modalidades, de cerca de 190° C a cerca de 240° C. Da mesma forma, a taxa de cisalhamento aparente durante o processamento por fusão varia de cerca de 10 segundos-1 a cerca de 3000 segundos-1, em algumas modalidades, de cerca de 50 segundos-1 a cerca de 2000 segundos-1, e em algumas modalidades, de cerca de 100 segundos-1 a cerca de 1200 segundos-1. A taxa de cisalhamento aparente pode ser igual a 4Q/πR3, onde Qé a taxa de fluxo volumétrica (“m3/s”) da fusão do polímero e Ré o raio (“m”) do capilar (por exemplo, molde da extrusora) através do qual o polímero fundido flui. Obviamente outras variáveis, tais como o tempo de permanência durante o processamento por fusão, que é inversamente proporcional à taxa de produção, também podem ser controladas para atingir o grau desejado de homogeneidade.
[56] Para atingir as condições de cisalhamento desejadas (por exemplo, taxa, tempo de permanência, taxa de cisalhamento, temperatura de processamento por fusão, etc.), a velocidade da(s) rosca(s) da extrusora pode ser selecionada com um determinado intervalo. Geralmente, é observado um aumento na temperatura do produto com o aumento da velocidade da rosca devido à entrada adicional de energia mecânica no sistema. Por exemplo, a velocidade da rosca pode variar de cerca de 50 a cerca de 600 revoluções por minuto (“rpm”), em algumas modalidades, de cerca de 70 a cerca de 500 rpm, e em algumas modalidades, de cerca de 100 a cerca de 300 rpm. Isso pode resultar em uma temperatura suficientemente alta para dispersar o aditivo de nanoinclusão sem afetar negativamente o tamanho dos domínios resultantes. A taxa de cisalhamento por fusão e, por sua vez, o grau em que os aditivos são dispersos, também podem ser aumentados durante o uso de um ou mais elementos de mistura distributiva e/ou dispersiva dentro da seção de mistura da extrusora. Misturadores distributivos adequados para extrusoras de rosca única podem incluir, por exemplo, misturadores Saxon, Dulmage, Cavity Transfer, etc. Da esma forma, misturadores dispersivos adequados podem incluir anel Blister, Leroy/Maddock, misturadores CRD, etc. Como é bem conhecido na técnica, a mistura pode ser melhorada ainda pelo uso de pinos no barril que criam um dobramento e reorientação da fusão do polímero, tais como aqueles usados nas extrusoras Buss Kneader, misturadores Cavity Transfer, e misturadores Vortex Intermeshing Pin (VIP).
III. Construção da película
[57] Qualquer técnica conhecida pode ser utilizada para formar uma película a partir da composição, incluindo expansão, moldagem, extrusão em molde plano, etc. Em uma modalidade particular, a película pode ser formada por um processo de expansão no qual um gás (por exemplo, ar) é usado para expandir uma bolha da mistura de polímero extrusado através de um molde anular. A bolha é então desfeita e coletada em forma de película plana. Os processos para a produção de películas expandidas são descritos, por exemplo, na Patente dos EUA N°s 3.354.506 para Raley; na Patente dos EUA N° 3.650.649 para Schippers; e na Patente dos EUA N° 3.801.429 para Schrenk et al., assim como na Publicação de Pedido de Patente dos EUA N°s 2005/0245162 para McCormack, et al. e 2003/0068951 para Boggs, et al. Ainda em outra modalidade, no entanto, a película é formada usando uma técnica de moldagem.
[58] Em referência à Fig. 1, por exemplo, é mostrada uma modalidade de um método para formação de uma película moldada. Nessa modalidade, as matérias-primas (não mostradas) são fornecidas ao extrusor 80 a partir de um funil 40 e então moldadas em um rolo de moldagem 90 para formar uma película precursora de camada única 10a. Caso deva ser produzida uma película multicamada, as várias camadas são co-extrusadas juntas no rolo de moldagem 90. O rolo de moldagem 90 pode, opcionalmente, ser fornecido com elementos de relevo para transmitir um padrão à película. Normalmente, o rolo de moldagem 90 é mantido a uma temperatura suficiente para solidificar e arrefecer a folha 10a à medida que é formada, como de cerca de 10 a 60°C. Se desejado, uma caixa de vácuo pode ser posicionada de forma adjacente ao rolo de moldagem 90 para ajudar a manter a película precursora 10a próxima à superfície do rolo 90. Além disso, facas de ar ou pinças eletrostáticas podem ajudar a forçar a película precursora 10a contra a superfície do rolo de moldagem 90 à medida que ele se move em torno de um rolo giratório. As facas de ar são dispositivos conhecidos na técnica que direcionam um jato de ar a uma taxa de fluxo muito alta, de maneira a fixar as bordas da película.
[59] Uma vez moldada, a película 10a pode então ser opcionalmente orientada em um ou mais sentidos para melhorar ainda mais a uniformidade da película. A película pode ser imediatamente reaquecida a uma temperatura inferior ao ponto de fusão de um ou mais polímeros da película, mas suficientemente alta para permitir que a composição seja puxada ou estirada. No caso da orientação sequencial, a película “amaciada” é puxada por rolos que giram a diferentes velocidades de rotação de tal forma que a folha é esticada até a taxa de estiramento desejada na direção longitudinal (direção da máquina). Esta película orientada “uniaxialmente” pode ser, então opcionalmente laminada para formar uma trama fibrosa. Além disso, a película orientada uniaxialmente também pode ser orientada no sentido transversal ao da máquina para formar uma película “biaxialmente orientada”. Por exemplo, a película pode ser presa em suas bordas laterais por grampos em cadeia e transportada para um forno tensor. No forno tensor, a película pode ser reaquecida e puxada no sentido transversal da máquina a uma taxa de estiramento desejada, por grampos em cadeia afastados em seu percurso para a frente.
[60] Em referência novamente Fig. 1, por exemplo, é mostrado um método para formar uma película orientada uniaxialmente. Conforme ilustrado, a película precursora 10a é direcionada a uma unidade de orientação de película 100 ou orientador no sentido da máquina (“OSM”), como aqueles comercializados pela Marshall and Willams, Co. de Providence, Rhode Island. O OSM tem uma variedade de cilindros de esticamento (como os de 5 a 8), que esticam e afinam progressivamente a película no sentido da máquina, que é o sentido do percurso da película pelo processo conforme mostrado na Fig. 1. Embora o OSM 100 esteja ilustrado com oito rolos, deve- se entender que o número de rolos pode ser maior ou menor, dependendo do nível de esticamento desejado e do grau de esticamento entre cada rolo. A película pode ser esticada em uma operação única ou operações múltiplas discretas de esticamento. Deve-se observar que alguns dos cilindros em um aparelho MDO podem não estar operando a velocidades progressivamente maiores. Se desejado, alguns dos rolos do MDO 100 podem funcionar como rolos de pré-aquecimento. Se estiver presente, estes primeiros rolos aquecem a película 10a acima da temperatura ambiente (por exemplo, a 125°F). As velocidades progressivas mais rápidas dos cilindros adjacentes no OSM agem de maneira a esticar a película 10a. A taxa em que os cilindros de esticamento giram determina a quantidade de esticamento da película e o peso total dela.
[61] A película 10b resultante pode então ser enrolada e armazenada sobre um rolo de recolhimento 60. Embora não mostrado aqui, vários passos adicionais de possíveis processamentos e/ou acabamentos conhecidos na área, como corte, tratamento, perfuração, impressão de imagens ou laminação das películas com outras camadas (por exemplo, materiais de mantas não tecidas), podem ser executados sem sair do espírito e do escopo da invenção.
[62] A película da presente invenção pode ser mono- ou multicamadas (por exemplo, com a partir de 2 a 20 camadas, e em algumas modalidades, com a partir de 3 a 10 camadas). Por exemplo, uma película com camadas múltiplas pode conter, pelo menos, uma camada de núcleo que é posicionada de forma adjacente a, pelo menos, uma camada externa. As camadas exteriores são frequentemente utilizadas para vedação térmica ou impressão. Em uma modalidade, por exemplo, pode ser desejável aplicar uma primeira e uma segunda camada externa, intercaladas pela camada de núcleo. As camadas de núcleo constituem tipicamente uma parte substancial do peso da película, como de cerca de 50% em peso a cerca de 99% em peso, em algumas modalidades de cerca de 55% em peso a cerca de 90% em peso, e em algumas modalidades, de cerca de 60% em peso a cerca de 85% em peso da película. As camadas externas também podem, de forma semelhante, constituir de cerca de 1% em peso a cerca de 50% em peso; em algumas modalidades de cerca de 10% em peso a cerca de 45% em peso e, em algumas modalidades de cerca de 15% em peso a cerca de 40% em peso da película.
[63] A composição termoplástica da presente invenção pode ser utilizada em qualquer camada da película, incluindo camada de núcleo e/ou camada externa. Em uma modalidade, por exemplo, camada de núcleo é formada a partir da composição da presente invenção e as camadas externas são formadas a partir da composição ou a partir de um material polimérico adicional. De forma semelhante, em outras modalidades possíveis, uma ou mais camadas externas são formadas a partir da composição da presente invenção e camada de núcleo é formada a partir de um material polimérico adicional. Quando utilizado, o material adicional pode incluri qualquer tipo de polímero, como poliolefinas (por exemplo, polietileno, polipropileno, etc.), poliésteres, poliamidas, copolímeros estirênicos, poliuretanos, acetato de polivinil, álcool polivinílico, etc.
[64] Caso seja desejável, a película pode também ser laminada com uma ou mais tramas de não-tecido, para reduzir o coeficiente de fricção e melhorar a sensação tátil semelhante a tecido da superfície do composto. Exemplos de polímeros para uso na formação de revestimentos de mantas de não tecido podem incluir, por exemplo, poliolefinas, por exemplo, polietileno, polipropileno, polibutileno, etc.; politetrafluoretileno; poliésteres, por exemplo, tereftalato de polietileno e assim por diante; acetato de polivinila; cloreto de acetato de polivinila; polivinil butiral; resinas acrílicas, por exemplo, poliacrilato, polimetilacrilato, polimetilmetacrilato, e assim por diante; poliamidas, por exemplo, nylon; cloreto de polivinila; cloreto de polivinilideno; poliestireno; álcool polivinílico; poliuretanos; ácido polilático; seus copolímeros; e assim por diante. Se desejado, os polímeros renováveis, como os descritos acima, podem também ser empregados. Polímeros sintéticos ou naturais podem também ser usados, incluindo, mas não se limitando a, ésteres de celulose; éteres de celulose; nitratos de celulose; acetatos de celulose; acetatos butiratos de celulose; etilcelulose; celuloses regeneradas como viscose, rayon e assim por diante. Deve-se observar que os polímeros podem conter também outros aditivos, como os adjuvantes tecnológicos ou compostos de tratamento para transmitir para as fibras as propriedades desejadas, quantidades residuais de solventes, pigmentos ou corantes, e assim por diante.
[65] Fibras monocomponentes e/ou multicomponentes podem ser usadas para formar o revestimento da manta não tecida. As fibras monocomponentes são, geralmente, formadas por um polímero ou por uma mistura de polímeros extrusados a partir de um único extrusor. Fibras multicomponentes são geralmente formadas por dois ou mais polímeros (por exemplo, fibras bicomponentes) extrusados a partir de extrusores separados. Os polímeros podem ser organizados em zonas distintas posicionadas constantemente ao longo do sentido transversal das fibras. Os componentes podem ser organizados em qualquer configuração desejada, como revestimento-núcleo, lado a lado, torta, ilha no mar, três ilhas, olho de boi ou várias outras formas de organização conhecidas na área. Também podem ser formadas fibras multicomponentes com várias formas irregulares.
[66] Fibras com um comprimento desejado podem ser utilizadas, como fibras cortadas, fibras contínuas, etc. Em uma determinada modalidade, por exemplo, as fibras cortadas podem ser usadas com comprimento de fibra na faixa de cerca de 1 a cerca de 150 milímetros, em algumas modalidades de cerca de 5 a cerca de 50 milímetros, em algumas modalidades de cerca de 10 a cerca de 40 milímetros e, em outras modalidades, de cerca de 10 a cerca de 25 milímetros. Embora não seja necessário, podem ser empregadas técnicas de cardagem para formar camadas fibrosas com fibras cortadas, conforme é bem conhecido na área. Por exemplo, as fibras podem ser transformadas em mantas cardadas colocando fardos de fibras em um apanhador que as separa. Em seguida, as fibras são enviadas por uma unidade de penteamento ou cardamento que decompõe e alinha adicionalmente as fibras no sentido da máquina de modo a formar uma rede não-tecida fibrosa no sentido da máquina. A manta cardada pode então ser unida usando técnicas conhecidas para formar uma manta fixada cardada não tecida.
[67] Se desejado, o revestimento da manta não tecida usada para formar o composto não tecido pode ter uma estrutura multicamada. Materiais multicamada adequados podem ser, por exemplo, laminados termossoldados/meltblown/termossoldados (SMS) e laminados termossoldados/meltblown (SM). Outro exemplo de estrutura multicamada é a manta termossoldada produzida em uma máquina de mesa multi-giratória em que a mesa giratória deposita fibras sobre a camada de fibras depositadas em um giro anterior da mesa. Essa manta individual termossoldada pode também ser entendida como uma estrutura multicamada. Nesse caso, as várias camadas de fibras depositadas na manta não tecida podem ser as mesmas ou podem diferir na gramatura e/ou na composição, tipo, tamanho, nível de frisos e/ou no formato das fibras produzidas. Como outro exemplo, pode ser fornecida uma manta não tecida única, como duas ou mais camadas produzidas individualmente de uma manta termossoldada, uma manta cardada, etc., que foram unidas para formar a manta não tecida. Essas camadas produzidas individualmente podem diferir no que diz respeito ao método de produção, gramatura, composição e fibras, conforme comentado acima. Um revestimento de manta não tecida pode conter também um componente fibroso adicional que seja considerado um composto. Por exemplo, uma manta não tecida pode ser emaranhada com outro componente fibroso usando uma variedade de técnicas de emaranhamento conhecidas na área (por exemplo, hidráulico, ar, mecânico, etc.). Em uma forma de realização, a manta não tecida é emaranhada integralmente com fibras de celulose usando emaranhamento hidráulico. Um processo típico de emaranhamento hidráulico utiliza correntes de jato d'água de alta pressão para emaranhar as fibras e formar uma estrutura fibrosa consolidada altamente emaranhada, por exemplo, uma manta não tecida. O componente fibroso do composto pode conter qualquer quantidade desejada do substrato resultante.
[68] Independentemente da maneira específica como são formadas, a película pode ser extraída de modo a formar a rede porosa desejada. Se desejado, a película pode ser extraída em linha conforme estiver sendo formada. Alternativamente, a película pode ser extraída em seu estado sólido após ter sido formada, antes e/ou depois da laminação em qualquer material de revestimento opcional. Por extração em "estado sólido", geralmente quer- se dizer que a composição é mantida a uma temperatura abaixo da temperatura de fusão do polímero matricial de poliolefina. Dentre outras coisas, isto ajuda a garantir que as cadeias poliméricas não sejam alteradas em tal grau que a rede porosa se torne instável. Por exemplo, a película pode ser extraída a uma temperatura de cerca de -50 °C a cerca de 150 °C, em algumas modalidades de cerca de -40 °C a cerca de 140 °C, em algumas modalidades, de cerca de -20 °C a cerca de 100 °C e em algumas modalidades, de cerca de 0 °C a cerca de 50 °C. Em certos casos, a temperatura de extração pode, opcionalmente, ser de pelo menos cerca de 10 °C, em algumas modalidades pelo menos cerca de 20 °C, e em algumas modalidades, pelo menos cerca de 30 °C inferior à temperatura de transição vítrea do componente com a temperatura de transição vítrea mais elevada (por exemplo, aditivo de microinclusão). Nestas modalidades, a película pode ser extraída a uma temperatura de a partir de cerca de 0 °C a cerca de 50 °C, em algumas modalidades de cerca de 15 °C a cerca de 40 °C, e em algumas modalidades, de cerca de 20 °C a cerca de 30 °C.
[69] A Extração pode ocorrer em uma fase única ou multifásica e usar qualquer uma dentre uma variedade de técnicas diferentes. Em uma modalidade, por exemplo, a película pode ser extraída com um orientador de sentido da máquina (“OSM”), como usando a unidade 100 mostrada na Fig. 1. Para extrair a película da maneira descrita acima, geralmente é preferível que os rolos do OSM não estejam aquecidos. No entanto, se desejado, um ou mais cilindros podem ser ligeiramente aquecidos para facilitar o processo de extração, contanto que a temperatura da composição permaneça abaixo dos intervalos acima determinados. A película é normalmente extraída (por exemplo, no sentido da máquina) até uma razão de estiramento de cerca de 1,1 a cerca de 3,5, em algumas modalidades de cerca de 1,2 a cerca de 3,0 e, em outras modalidades, de cerca de 1,3 a cerca de 2,5. A razão de extração pode ser determinada pela divisão do comprimento da película extraída por seu comprimento antes da extração. A taxa de tração também pode variar para ajudar a atingir as propriedades desejadas, tais como dentro do intervalo de cerca de 5% a cerca de 1500% por minuto de deformação, em algumas modalidades, de cerca de 20% a cerca de 1000% por minuto de deformação, e em algumas modalidades, de cerca de 25% a cerca de 850% por minuto de deformação. Embora a película seja tipicamente extraída sem a aplicação de aquecimento externo (por exemplo, rolos aquecidos), este aquecimento pode ser opcionalmente utilizado para melhorar a processabilidade, reduzir a força de extração, aumentar as taxas de extração e melhorar uniformidade.
[70] O estiramento do método acima descrito pode resultar na formação de uma dimensão transversal em “nanoescala” (“nanoporos”), tal como de cerca de 800 nanômetros ou menos; em algumas formas de realização, de cerca de 5 a cerca de 700 nanômetros e; em outras formas de realização, de cerca de 10 a cerca de 500 nanômetros. Os nanoporos podem ter também dimensão axial média (por exemplo, comprimento) de cerca de 100 a cerca de 5000 nanômetros, em algumas modalidades de cerca de 50 a cerca de 2000 nanômetros e em algumas modalidades de cerca de 100 a cerca de 1000 nanômetros. Microporos podem ser igualmente formados durante a extração que tenham dimensão de corte transversal de cerca de 0,2 micrômetros ou mais, em algumas modalidades cerca de 0,5 micrômetros ou mais e em algumas modalidades de cerca de 0,5 micrômetros a cerca de 5 micrômetros. Em certos casos, a dimensão axial dos microporos e/ou nanoporos pode ser maior que a dimensão de corte transversal de modo a proporção de aspecto (a razão da dimensão axial para a dimensão de corte transversal) é de cerca de 1 a cerca de 30, em algumas modalidades de cerca de 1,1 a cerca de 15 e em algumas modalidades de cerca de 1,2 a cerca de 5. Por exemplo, a dimensão axial dos microporos pode ser de 1 microporo ou superior, em algumas modalidades cerca de 1,5 micrômetros ou mais e em algumas modalidades de cerca de 2 a cerca de 30 micrômetros.
[71] Independentemente do tamanho particular, os presentes inventores também descobriram que os poros (p.ex., nanoporos, microporos, nanoporos ou ambos) podem ser distribuídos de forma bastante homogênea por todo o material. Por exemplo, os poros podem ser distribuídos em colunas que são orientadas em um sentido geralmente perpendicular ao sentido em que a tensão é aplicada. Essas colunas podem ser geralmente paralelas umas às outras por toda a largura do material. Sem a intenção ser limitado pela teoria, acredita-se que a presença dessa rede porosa homogeneamente distribuída pode resultar numa resistência térmica alta, bem como em boas propriedades mecânicas (por exemplo, dissipação de energia sob carga e resistência ao impacto). Há um grande contraste com as técnicas convencionais para criar poros que envolvem o uso de agentes de expansão, que tende a resultar uma distribuição descontrolada de poros e fracas propriedades mecânicas.
[72] Além de formar uma rede porosa, a extração pode também aumentar de maneira significativa a dimensão axial de alguns dos domínios discretos de modo que tenha um formato geralmente linear, alongado. Por exemplo, os domínios em microescala alongados podem ter uma dimensão axial média que seja cerca de 10% ou mais, em algumas modalidades, de cerca de 20% a cerca de 500%, e em algumas modalidades, de cerca de 50% a cerca de 250% maior que a dimensão axial dos domínios antes do estiramento. A dimensão axial (por exemplo, comprimento) após extração pode, por exemplo, varia entre cerca de 1 μm a cerca de 400 μm, em algumas modalidades de cerca de 5 μm a cerca de 200 μm e, em algumas modalidades de cerca de 10 μm a cerca de 150 μm. Os domínios microescalares podem ser relativamente delgados e podem, portanto, tem uma pequena dimensão de corte transversal, como, por exemplo, de cerca de 0,02 a cerca de 20 micrômetros, em algumas modalidades de cerca de 0,1 a cerca de 10 micrômetros e em algumas modalidades, de 0,4 a cerca de 5 micrômetros. Isso pode resultar em uma proporção de aspecto dos domínios (a razão da dimensão axial para a dimensão ortogonal para a dimensão axial) de cerca de 2 a cerca de 150, em algumas modalidades de cerca de 3 a cerca de 100 e, em outras modalidades, de cerca de 4 a cerca de 50. Devido a seu tamanho pequeno, os domínios nanoescalares não são tipicamente alongados da mesma maneira que os domínios microescalares. Portanto, os domínios nanoescalares podem reter uma dimensão axial média (por exemplo, comprimento) de cerca de 1 a cerca de 1000 nanômetros, em algumas modalidades de cerca de 5 a cerca de 800 nanômetros, em algumas modalidades de cerca de 10 a cerca de 500 nanômetros e em algumas modalidades de cerca de 20 a cerca de 200 nanômetros.
[73] Mesmo em densidade muito baixas obtidas pela presente invenção, a película resultante não é quebradiça e pode ser relativamente dúctil. Um parâmetro que é indicativo de boa ductilidade é o alongamento de pico da película no sentido da máquina (“MD“) e/ou sentido de corte transversal da máquina (“CD“). Por exemplo, a película da presente invenção apresenta um alongamento máximo no sentido da máquina de cerca de 50% ou mais, em algumas modalidades, de cerca de 60% ou mais, em algumas modalidades, de cerca de 70% ou mais e, em algumas modalidades, de cerca de 80% a cerca de 200%. De forma semelhante, a película pode apresentar um alongamento máximo no sentido de corte transversal da máquina de cerca de 750% ou mais, em algumas modalidades de cerca de 800% ou mais, em algumas modalidades de cerca de 800% ou mais e, em algumas modalidades, de cerca de 850% a cerca de 2500%. Apesar da ter uma boa ductibilidade, a película da presente invenção é, no entanto, capaz de manter boas propriedades de tensão mecânica. Por exemplo, a película da presente invenção pode apresentar uma resistência à tração final no sentido da máquina e/ou no sentido transversal à máquina de cerca de 20 a cerca de 150 megaPascal (MPa), em algumas modalidades de cerca de 25 a 120 MPa e, em algumas modalidades, de cerca de 30 a cerca de 100 MPa. O módulo Young de elasticidade da película, que é igual a razão da tensão de tração com a tensão de deformação, e é determinado a partir da inclinação de uma curva de tensão-deformação, também pode ser um bom indicativo. Por exemplo, a película apresenta normalmente um módulo de Young na direção da máquina e/ou direção transversal da máquina de cerca de 250 a cerca de 10.00 MPa, em algumas modalidades de cerca de 500 a cerca de 8.000 MPa e em algumas modalidades de cerca de 1.000 a cerca de 5.000 MPa. Surpreendentemente, a boa ductilidade e outras propriedades mecânicas podem ser obtidas mesmo que a película tenha uma espessura muito baixa. Por exemplo, a espessura da película, após ser extraída, pode geralmente variar de cerca de 5 a cerca de 1.000 micrômetros, em algumas modalidades de cerca de 10 a cerca de 800 micrômetros, em algumas modalidades, de cerca de 15 a cerca de 600 micrômetros. Claro, a espessura real pode variar muito dependendo do tipo desejado de embalagem. Por exemplo, películas de embalagem de calibre fino podem ter espessura de cerca de 5 a cerca de 100 micrômetros, em algumas modalidades de cerca de 10 a cerca de 80 micrômetros e em algumas modalidades, de cerca de 15 a cerca de 40 micrômetros. Por outro lado, películas de embalagem de calibre grosso podem ter espessura de cerca de 100 a cerca de 1.000 micrômetros, em algumas modalidades de cerca de 150 a cerca de 800 micrômetros, e em algumas modalidades, de cerca de 200 a cerca de 600 micrômetros.
IV. Aplicações
[74] Devido a suas propriedades únicas, a película da presente invenção é particularmente adequada para uso como película de embalagem, como, por exemplo, invólucros individuais, bolsas de embalagem, películas para sacola ou sacos para uso de uma variedade de artigos, como produtos alimentícios, produtos de papel (por exemplo, tecido, lenços, lenços de papel, etc.), artigos absorventes, etc. Diversas configurações aceitáveis de saco, embalagem ou configurações de sacola para artigos absorventes são divulgados, por exemplo, em Patente EUA N°s 6.716.203 para Sorebo, et al. e 6.380.445 para Moder, et al., bem como Publicação de Pedido de Patente EUA N° 2003/0116462 para Sorebo, et al.
[75] A presente invenção pode ser melhor compreendida com referência aos seguintes exemplos.
Métodos de Teste Taxa de Fluxo à Fusão:
[76] A taxa de fluxo de fusão ("MFR") é o peso de um polímero (em gramas) forçado através de um orifício de reômetro de extrusão (diâmetro de 0,0825 polegadas), quando submetido a uma carga de 2160 gramas em 10 minutos, tipicamente a 190°C, 210°C ou 230°C. Salvo especificação em contrário, a taxa de fluxo de fusão é medida de acordo com o método de teste ASTM D1238 com um plastômero de extrusão Tinius Olsen. Propriedades Térmicas:
[77] A temperatura de transição vítrea (Tg) pode ser determinada por meio de análise dinâmico-mecânica (DMA), de acordo com ASTM E1640-09. Um instrumento Q800 da TA Instruments pode ser usado. As execuções experimentais podem ser executadas em geometria de tensão/tensão, em um modo de varrimento de temperatura na faixa de -120°C a 150°C com uma taxa de aquecimento de 3°C/min. A frequência de amplitude de força pode ser mantida constante (2 Hz) durante o teste. Três (3) amostras independentes podem ser testadas para obter uma temperatura de transição vítrea média, que é definida pelo valor de pico da curva da tangente δ, em que a tangente δ é definida como a razão entre o módulo de perda e o módulo de armazenamento (tangente δ = E”/E’).
[78] A temperatura de fusão pode ser determinada por meio de calorimetria diferencial de varredura (DSC). O calorímetro de varredura diferencial pode ser um calorímetro DSC Q100, que foi equipado com um acessório de arrefecimento de nitrogênio líquido e com um software de análise UNIVERSAL ANALYSIS 2000 (versão 4.6.6), que são disponibilizados pela T.A. Instruments Inc. de New Castle, Delaware. Para evitar o manuseamento das amostras diretamente, pinças ou outros instrumentos são utilizados. As amostras são colocadas em uma panela de alumínio e pesadas com uma precisão de 0,01 miligrama em uma balança analítica. Uma tampa é dobrada sobre o material de amostra sobre a panela. Normalmente, os grãos de resina são colocados diretamente no prato de pesagem.
[79] O equipamento de varredura diferencial de calorimetria é calibrado por meio de um padrão de metal índio, e é feita uma correção de base, conforme descrito no manual de operação do equipamento. A amostra do material é colocada na câmara de testes do equipamento de varredura diferencial de calorimetria para ser testado e é usada um prato vazio como referência. Todos os testes são executados com a aplicação de 55 centímetros cúbicos por minuto de nitrogênio (grau industrial) sobre a câmara de testes. Para as amostras de grãos de resina, o programa de aquecimento e resfriamento é um teste de 2 ciclos, que começou com o equilíbrio da câmara a -30 °C, seguido por um primeiro período de aquecimento até uma taxa de 10 °C por minuto até uma temperatura de 200 °C, seguido por um equilíbrio da amostra a 200 °C por 3 minutos, seguido por um primeiro período de resfriamento de 10 °C por minuto até uma temperatura de -30 °C, seguido pelo equilíbrio da amostra a -30 °C por 3 minutos, e em seguida um segundo período de aquecimento, a uma taxa de 10 °C por minuto até uma temperatura de 200 °C. Todos os testes são realizados com a descarga de 55 centímetros cúbicos de nitrogênio por minuto (escala industrial) na câmara de testes.
[80] Os resultados são avaliados utilizando o software de análise UNIVERSAL ANALYSIS 2000, que identifica e quantifica a temperatura de transição vítrea (Tg ) de inflexão, os picos endotérmicos e exotérmicos e as áreas sob os picos nos gráficos DSC. A temperatura de transição vítrea é identificada como a região na linha narrativa em que uma clara mudança de inclinação ocorreu, e a temperatura de fusão é determinada através de um cálculo automático de inflexão. Propriedades Elásticas da Película:
[81] Foram testadas as propriedades elásticas de películas (tensão máxima, módulo, deformação em ruptura e energia por volume em ruptura) em um quadro de elasticidade MTS Synergie 200. O teste foi executado em conformidade com a norma ASTM D638-10 (a cerca de 23 °C). Amostras de película foram cortadas em formato de osso canino com largura central de 3,0 mm antes da testagem. As amostras de película em forma de osso canino podem ser mantidas em seu lugar usando-se elementos de pega no dispositivo MTS Synergie 200 com comprimento de medida de 18,0 mm. As amostras da película foram esticadas a uma velocidade de tração de 5,0 pol/min até ocorrer a ruptura. Cinco amostras podem ser testadas para cada película tanto no sentido da máquina (MD) quando em sentido transversal (CD). Pode-se usar um programa de computador (por exemplo, TestWorks 4) para coletar dados durante o teste e gerar uma curva de tensão versus deformação, a partir da qual podem ser determinadas várias propriedades, incluindo módulo, tensão máxima, alongamento e energia na ruptura. Densidade e porcentagem de volume vazio:
[82] Para determinar a densidade e a porcentagem de volume vazio, a largura (Wi) e espessura (Ti) do espécime foram inicialmente medidos antes da extração. O comprimento (Li) antes do estiramento também pôde ser determinado pela medição da distância entre duas marcas numa superfície da amostra. Posteriormente, o espécime pode ser extraído de modo a iniciar formação de poro. A largura (Wf), espessura (Tf) e comprimento (Lf) da amostra puderam então ser medidos o mais próximo de 0,01 mm usando um Compasso Digimatic (Mitutoyo Corporation). O volume (Vi) antes do estiramento pôde ser calculado por Wi x Ti x Li = Vi. O volume (Vf) após o estiramento pôde ser calculado por Wf x Tf x Lf = Vf. A densidade (Pf) pode ser calculada por Pf = Pi/Φ, onde Pi é a densidade do material precursor; e a porcentagem do volume vazio (% Vv) foi calculada por: %Vv = (1 - 1/ Φ) x 100. Teste de Pressão Hidrostática ("Carga hidrostática"):
[83] O teste de pressão hidrostática é uma medida da resistência de um material à penetração pela água em estado líquido sob uma pressão estática e é realizada de acordo com o Método de Teste AATCC 127-2008. Os resultados para cada amostra podem ter a média calculada e registrada em centímetros (cm). Um valor mais alto indica maior resistência à penetração da água. Taxa de Transmissão de Vapor da Água (“WVTR”):
[84] O teste usado para determinar a WVTR de um material pode variar com base na natureza do material. Uma técnica para medir o valor de WVTR é ASTM E96/96M-12, Procedimento B. Outro método envolve o uso do Procedimento de Teste INDA IST-70.4 (01). O precedimento de teste INDA é resumido conforme se segue. Uma câmara seca é separada de uma câmara úmida de temperatura e umidade conhecidas por uma película protetora permanente e pelo material da amostra a ser testada. O objetivo da película protetora é definir uma lacuna de ar definitiva e acalmar ou sossegar o ar na lacuna de ar enquanto ele é caracterizado. A câmara seca, a película protetora e a câmara úmida formam uma célula de difusão, em que a película de teste é vedada. O suporte de amostras é conhecido como Permatran-W modelo 100K fabricado pela Mocon/Modem Controls, Inc., Minneapolis, Minnesota. É feito um primeiro teste da WVTR da película protetora e da lacuna de ar entre a montagem do evaporador, gerando 100% de umidade relativa. O vapor d'água se difunde pela lacuna de ar e a película protetora e então se mistura com o fluxo de gás seco, proporcional à concentração de vapor d'água. O sinal elétrico é roteado para um computador para processamento. O computador calcula a taxa de transmissão da lacuna de ar e da película protetora e armazena o valor para uso posterior.
[85] A taxa de transmissão da película protetora e da lacuna de ar é armazenada no computador como CalC. O material da amostra é então vedado na célula de teste. Novamente, o vapor d'água se difunde pela lacuna de ar para a película protetora e o material de teste, e então se mistura com o fluxo de gás seco que varre o material de teste. Também, novamente, a mistura é conduzida para o sensor de vapor. O computador então calcula a taxa de transmissão da combinação da lacuna de ar, da película protetora e do material de teste. Essa informação é então usada para calcular a taxa de transmissão em que a umidade é transmitida pelo material de teste de acordo com a equação:
Figure img0003
[86] A taxa de transmissão de vapor d'água ("WVTR") é então calculada conforme se segue:
Figure img0004
F = o fluxo de vapor d'água em cm3 por minuto; Psat(T) = a densidade da água no ar saturado a uma temperatura T; RH = a umidade relativa em locais específicos na célula; A = a área transversal da célula; e Psat(T) = a pressão do vapor saturado do vapor d'água à temperatura T.
EXEMPLO 1
[87] Uma mistura de materiais foi formada, que continha 91,5% em peso de polipropileno (Total Petrochemicals M-3661), 7,5% em peso de ácido polilático (NatureWorks Ingeo 6251D), e 1,0% em peso de um modificador de poliepóxido (Arkema Lotader AX8900). Esta mistura foi, então, misturada por fusão por meio de uma extrusora de rosca dupla a 220 °C para formar uma mistura homogênea de polímero. A mistura de polímero fundida foi extrudada através de uma matriz de multifilamentos, temperada por água, e cortada em uma pelota do sistema de pelotização subaquática, tais como aqueles disponíveis junto à Gala Industries de Eagle Rock, Virginia. A pelota composta foi então alimentada em uma extrusora de rosca simples (proporção de 24:1 comprimento para diâmetro) com uma matriz de película fundida. Os materiais foram fundidos a uma temperatura de 220 °C e extrudados através de um molde de película em um rolo de moldagem a uma temperatura de 25 °C. Uma força de estiramento de fundido foi aplicada à película fundida para reduzir a espessura de cerca de 177 a 203 micrômetros.
EXEMPLO 2
[88] Uma película foi formada como descrito no Exemplo 1, exceto que a espessura era de 254 a 279 micrômetros.
EXEMPLO 3
[89] A película do Exemplo 1 foi estirada em estado sólido em um quadro de tração (por exemplo, quadro Sintech 1/S disponibilizado pela MTS Systems), a uma velocidade de 50 milímetros por minuto a 300% de deformação. Depois do estiramento, determinou-se que o comprimento da película aumentou 5,2 vezes no sentido da máquina e a largura da película diminuiu em 20%.
EXEMPLO 4
[90] A película do Exemplo 2 foi estirada em estado sólido em um quadro de tração (por exemplo, quadro Sintech 1/S disponibilizado pela MTS Systems), a uma velocidade de 50 milímetros por minuto a 300% de deformação. Depois do estiramento, determinou-se que o comprimento da película aumentou 5,6 vezes no sentido da máquina e a largura da película diminuiu em 20%. Microfotografias SEM da película são mostradas nas Figs. 2-3.
[91] Várias propriedades mecânicas das películas estiradas dos Exemplos 3 e 4 foram testadas, como descrito acima. Os resultados são apresentados na tabela abaixo.
Figure img0005
Figure img0006
EXEMPLO 5
[92] Uma película foi formada como descrito no Exemplo 1, exceto que a espessura era de 48 a 55 micrômetros.
EXEMPLO 6
[93] Uma mistura de materiais foi formada, e continha 78% em peso de polipropileno (Total Petrochemicals M-3661), 15% em peso de ácido polilático (NatureWorks Ingeo 6251D), e 7,0% em peso de um modificador de poliepóxido (Arkema Lotader AX8900). Esta mistura foi, então, misturada por fusão por meio de uma extrusora de rosca dupla a 220 °C para formar uma mistura homogênea de polímero. A mistura de polímero fundida foi extrudada através de uma matriz de multifilamentos, temperada por água, e cortada em uma pelota do sistema de pelotização subaquática, tais como aqueles disponíveis junto à Gala Industries de Eagle Rock, Virginia. A pelota composta foi então alimentada em uma extrusora de rosca simples (proporção de 24:1 comprimento para diâmetro) com uma matriz de película fundida. Os materiais foram fundidos a uma temperatura de 220 °C e extrudados através de um molde de película em um rolo de moldagem a uma temperatura de 25 °C. Uma força de estiramento de fundido foi aplicada à película fundida para reduzir a espessura de cerca de 48 a 55 micrômetros.
EXEMPLO 7
[94] Uma película foi formada como descrito no Exemplo 6, exceto que a espessura era de 70 a 80 micrômetros.
EXEMPLO 8
[95] Uma película foi formada como descrito no Exemplo 6, exceto que a espessura era de 120 a 132 micrômetros.
[96] Embora a invenção tenha sido descrita em detalhes em relação às suas modalidades específicas, será contemplado que os versados na técnica, após obter uma compreensão do exposto anteriormente, poderão facilmente conceber alterações, variações e equivalentes dessas modalidades. Nesse sentido, o escopo da presente invenção seve ser avaliado como aquele das reivindicações anexas e quaisquer equivalentes a estas.

Claims (15)

1. Película que compreende composição termoplástica, caracterizada pelo fato de que a composição contém uma fase contínua que inclui um polímero matricial poliolefínico, um aditivo de nanoinclusão disperso dentro da fase contínua na forma de domínios discretos em escala nanométrica, possuindo uma dimensão axial média de 1 a 800 nanômetros, e um aditivo de microinclusão disperso dentro da fase contínua na forma de domínios discretos em escala micrométrica, possuindo uma dimensão axial média de 1 a 400 micrômetros, em que uma rede porosa é definida na composição que inclui uma pluralidade de nanoporos com dimensão de corte transversal média de cerca de 800 nanômetros ou menos; em que o aditivo de microemulsão é um polímero possuindo uma temperatura de transição vítrea de 0 °C ou mais, conforme determinado por análise mecânica dinâmica de acordo com ASTME1640-09; em que o aditivo de microemulsão constitui de 0,1% a 30% da composição (em peso); e em que o aditivo de nanoinclusão constitui de 0,01% a 15% da composição (em peso).
2. Película, de acordo com a reivindicação 1, caracterizada pelo fato de que os nanoporos têm uma dimensão de corte transversal média de 5 a 700 nanômetros; e/ou em que os nanoporos possuem uma dimensão axial média de 100 a 5000 nanômetros.
3. Película, de acordo com qualquer uma das reivindicações 1 ou 2, caracterizada pelo fato de que o polímero matricial poliolefínico tem taxa de fluxo de fusão de cerca de 0,5 a 80 gramas por 10 minutos, determinada a uma carga de 2160 gramas e a 230°C em conformidade com a norma ASTM D1238; e/ou pelo fato de que o polímero matricial poliolefínico é um homopolímero de propileno, um copolímero de propileno/α-olefina, copolímero de etileno/α-olefina ou uma combinação destes, preferencialmente em que o polímero matricial poliolefínico é um homopolímero de polipropileno isotático ou um copolímero contendo pelo menos 90% por peso de propileno.
4. Película, de acordo com qualquer uma das reivindicações 1 a 3, caracterizada pelo fato de que a fase contínua constitui de 60% a 99% em peso da composição termoplástica; e/ou pelo fato de que o aditivo de nanoinclusão constitui de 0,05% a 20% em peso da composição, com base no peso da fase contínua.
5. Película, de acordo com qualquer uma das reivindicações 1 a 4, caracterizada pelo fato de que o aditivo de nanoinclusão é um polímero com componente não-polar, preferencialmente uma poliolefina funcionalizada, tal como um poliepóxido.
6. Película, de acordo com qualquer uma das reivindicações 1 a 5, caracterizada pelo fato de que o aditivo de nanoinclusão tem taxa de fluxo de fusão de 0,1 a 100 gramas por 10 minutos, determinada a uma carga de 2160 gramas e a uma temperatura de pelo menos 40 °C superior à temperatura de fusão em conformidade com a norma ASTM D1238.
7. Película, de acordo com qualquer uma das reivindicações 1 a 6, caracterizada pelo fato de que a razão da taxa de fluxo de fusão do polímero matricial poliolefínico para a taxa de fluxo de fusão do aditivo de nanoinclusão é de 0,2 a 8.
8. Película, de acordo com qualquer uma das reivindicações 1 a 7, caracterizada pelo fato de que o aditivo de microinclusão é na forma de domínios em escala micrométrica, possuindo uma dimensão axial média de 5 a 200 micrômetros; e/ou pelo fato de que o aditivo de microinclusão constitui de 1% a 30% em peso da composição, com base no peso da fase contínua.
9. Película, de acordo com a reivindicação 1, caracterizada pelo fato de que o aditivo de microinclusão é um copolímero estirênico, fluoropolímero, álcool polivinílico, acetato de polivinil ou poliéster, preferencialmente ácido polilático.
10. Película, de acordo com a reivindicação 1, caracterizada pelo fato de que o aditivo de microinclusão é um polímero que tem taxa de fluxo de fusão de 5 a 200 gramas por 10 minutos, determinada a uma carga de 2160 gramas e a uma temperatura de 210°C; e/ou pelo fato de que a razão da taxa de fluxo de fusão do aditivo de microinclusão para a taxa de fluxo de fusão do polímero matricial poliolefínico é de 0,5 a 10; e/ou pelo fato de que a razão do módulo de elasticidade de Young do polímero matricial poliolefínico para o módulo de elasticidade de Young do aditivo de microinclusão é de 1 a 250, determinada de acordo com ASTM D638-10 (a 23 °C).
11. Película, de acordo com qualquer uma das reivindicações 1 a 10, caracterizada pelo fato de que a composição termoplástica compreende adicionalmente um modificador interfásico.
12. Película, de acordo com qualquer uma das reivindicações 1 a 11, caracterizada pelo fato de que a rede porosa inclui adicionalmente microporos; e/ou pelo fato de que o volume de poros total da composição é de 15% a 80% por centímetro cúbico; e/ou pelo fato de que nanoporos constituem 20% em volume ou mais do volume de poros total da composição; e/ou pelo fato de que o volume total de poros é medido utilizando o método descrito aqui.
13. Película, de acordo com qualquer uma das reivindicações 1 a 12, caracterizada pelo fato de que a composição termoplástica tem densidade de 0,90 g/cm3 ou menos; e/ou pelo fato de que a película tem taxa de transmissão de vapor d'água de 300 g/m2/24 horas ou mais, determinada de acordo com ASTM E96/96M-12, Procedimento B, ou Teste INDA, procedimento IST-70.4 (01).
14. Película, de acordo com qualquer uma das reivindicações 1 a 13, caracterizada pelo fato de que a película é uma película com múltiplas camadas que contém uma camada nuclear e pelo menos uma camada externa, em que a camada nuclear, a camada externa ou ambas contêm a composição termoplástica.
15. Película, de acordo com qualquer uma das reivindicações 1 a 14, caracterizada pelo fato de que a película é uma película expandida ou uma película moldada.
BR112015030695-0A 2013-06-12 2014-06-06 Película de poliolefina para utilização em embalagens BR112015030695B1 (pt)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361833980P 2013-06-12 2013-06-12
US61/833,980 2013-06-12
US201361907572P 2013-11-22 2013-11-22
US61/907,572 2013-11-22
PCT/IB2014/062020 WO2014199271A1 (en) 2013-06-12 2014-06-06 Polyolefin film for use in packaging

Publications (2)

Publication Number Publication Date
BR112015030695A2 BR112015030695A2 (pt) 2017-07-25
BR112015030695B1 true BR112015030695B1 (pt) 2020-12-15

Family

ID=52021714

Family Applications (3)

Application Number Title Priority Date Filing Date
BR112015030556-3A BR112015030556B1 (pt) 2013-06-12 2014-06-06 Artigo absorvente contendo uma película de poliolefina porosa
BR112015030695-0A BR112015030695B1 (pt) 2013-06-12 2014-06-06 Película de poliolefina para utilização em embalagens
BR112015028913-4A BR112015028913B1 (pt) 2013-06-12 2014-06-06 material poliolefínico, artigo absorvente, e, método para formar um material poliolefínico

Family Applications Before (1)

Application Number Title Priority Date Filing Date
BR112015030556-3A BR112015030556B1 (pt) 2013-06-12 2014-06-06 Artigo absorvente contendo uma película de poliolefina porosa

Family Applications After (1)

Application Number Title Priority Date Filing Date
BR112015028913-4A BR112015028913B1 (pt) 2013-06-12 2014-06-06 material poliolefínico, artigo absorvente, e, método para formar um material poliolefínico

Country Status (12)

Country Link
US (3) US11155688B2 (pt)
EP (3) EP3007663B1 (pt)
JP (3) JP2016523293A (pt)
KR (3) KR102353019B1 (pt)
CN (3) CN105263994B (pt)
AU (3) AU2014279792B2 (pt)
BR (3) BR112015030556B1 (pt)
MX (3) MX2015016237A (pt)
RU (3) RU2637911C2 (pt)
SG (2) SG11201510044PA (pt)
WO (3) WO2014199271A1 (pt)
ZA (2) ZA201509318B (pt)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2015016241A (es) 2013-06-12 2016-03-21 Kimberly Clark Co Material polimerico con una distribucion de tamaño de poro multimodal.
AU2014279702B2 (en) 2013-06-12 2017-06-22 Kimberly-Clark Worldwide, Inc. Pore initiation technique
RU2632842C2 (ru) 2013-06-12 2017-10-10 Кимберли-Кларк Ворлдвайд, Инк. Полимерный материал для применения в теплоизоляции
MX2015016237A (es) * 2013-06-12 2016-03-21 Kimberly Clark Co Material de poliolefina que tiene baja densidad.
MX2015016874A (es) 2013-06-12 2016-04-07 Kimberly Clark Co Fibras de poliolefina porosas.
US11965083B2 (en) 2013-06-12 2024-04-23 Kimberly-Clark Worldwide, Inc. Polyolefin material having a low density
WO2015187198A1 (en) 2014-06-06 2015-12-10 Kimberly-Clark Worldwide, Inc. Hollow porous fibers
AU2014304181B2 (en) * 2013-08-09 2017-08-17 Kimberly-Clark Worldwide, Inc. Flexible polymeric material with shape retention properties
US9492332B2 (en) 2014-05-13 2016-11-15 Clopay Plastic Products Company, Inc. Breathable and microporous thin thermoplastic film
JP2017522399A (ja) 2014-06-06 2017-08-10 キンバリー クラーク ワールドワイド インコーポレイテッド 多孔質高分子シートから形成される熱成形物品
WO2016122619A1 (en) 2015-01-30 2016-08-04 Kimberly-Clark Worldwide, Inc. Absorbent article package with reduced noise
BR112017015171B1 (pt) 2015-01-30 2022-09-20 Kimberly-Clark Worldwide, Inc Película, método para formação da película, e, artigo absorvente
CA3189969A1 (en) 2015-07-10 2017-01-19 Berry Global, Inc. Microporous breathable film and method of making the microporous breathable film
WO2017079209A1 (en) 2015-11-05 2017-05-11 Berry Plastics Corporation Polymeric films and methods for making polymeric films
WO2017100511A1 (en) * 2015-12-11 2017-06-15 Kimberly-Clark Worldwide, Inc. Multi-stage drawing technique for forming porous fibers
US11472085B2 (en) 2016-02-17 2022-10-18 Berry Plastics Corporation Gas-permeable barrier film and method of making the gas-permeable barrier film
CN107353485B (zh) * 2016-05-10 2020-11-20 合肥杰事杰新材料股份有限公司 一种抗菌透气膜母粒及其制备方法
CN109070021B (zh) * 2016-05-13 2022-04-01 旭化成医疗株式会社 聚乙烯系树脂多孔中空纤维膜、分离膜及它们的制造方法
RU2761017C2 (ru) * 2016-08-11 2021-12-02 Кимберли-Кларк Ворлдвайд, Инк. Усиленная пленка на основе термопластичного полиолефинового эластомера
EP3541618B1 (en) * 2016-11-18 2023-04-05 Berry Film Products Company, Inc. Breathable films having increased hydrostatic head pressure
KR20190082844A (ko) * 2016-11-30 2019-07-10 킴벌리-클라크 월드와이드, 인크. 3차원 기능성 구조물
EP4234230A3 (en) 2016-12-09 2023-11-01 3M Innovative Properties Company Polymeric multilayer film
WO2018106558A1 (en) 2016-12-09 2018-06-14 3M Innovative Properties Company Polymeric multilayer film
CN110049870B (zh) 2016-12-09 2021-07-16 3M创新有限公司 聚合物多层膜
WO2018106560A1 (en) * 2016-12-09 2018-06-14 3M Innovative Properties Company Article comprising multilayer film
DE112018000359T5 (de) 2017-02-28 2019-10-02 Kimberly-Clark Worldwide, Inc. Technik zum ausbilden poröser fasern
TWI647113B (zh) * 2017-09-01 2019-01-11 財團法人工業技術研究院 吸音材料
JP7004529B2 (ja) * 2017-09-11 2022-01-21 ユニ・チャーム株式会社 伸縮性テープ及びそれに用いられる樹脂組成物
JP6523398B2 (ja) * 2017-09-27 2019-05-29 大王製紙株式会社 吸収性物品
US11433158B2 (en) 2017-12-12 2022-09-06 The Procter & Gamble Company Recycle friendly and sustainable absorbent articles
US11584111B2 (en) 2018-11-05 2023-02-21 Windmoeller & Hoelscher Kg Breathable thermoplastic film with reduced shrinkage
CN109577100B (zh) * 2018-12-18 2021-08-24 广州泽田餐饮用品实业有限公司 一种可光氧降解的聚乙烯淋膜纸及其制备方法与应用
US11987025B2 (en) * 2019-02-10 2024-05-21 Holcim Technology Ltd Thermoplastic roofing membranes for fully-adhered roofing systems
CN110128738B (zh) * 2019-05-17 2023-05-26 浙江太湖远大新材料股份有限公司 一种耐漏电起痕聚乙烯护套料
CN115003406A (zh) * 2019-08-09 2022-09-02 海德奥克赛斯控股有限公司 水可湿性滤膜及其制备
US11384215B2 (en) * 2019-09-24 2022-07-12 Sekisui Voltek, Llc Light-transmissive foam composition and process
JP7467115B2 (ja) * 2019-12-27 2024-04-15 ユニ・チャーム株式会社 吸収性物品
JP7377123B2 (ja) 2020-02-17 2023-11-09 株式会社リブドゥコーポレーション 吸収性物品
TWI733421B (zh) * 2020-04-24 2021-07-11 南亞塑膠工業股份有限公司 透濕防水膜、透濕防水織物及其製法
CN111875864B (zh) * 2020-07-31 2023-03-10 湖北宏裕新型包材股份有限公司 医疗防护服用聚乙烯pe微孔透气膜及其制备方法
EP4288484A1 (en) 2021-02-08 2023-12-13 Void Technologies (USA) Limited Olefin-based polymer composition with voiding agent and article
CN114575041A (zh) * 2022-03-01 2022-06-03 浙江盛纺纳米材料科技有限公司 亲水纺粘非织造布、其制备方法及亲水丝线
KR102459823B1 (ko) * 2022-04-11 2022-10-27 주식회사 한국피부과학연구소 생분해 생리대

Family Cites Families (172)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3354506A (en) 1962-04-30 1967-11-28 Union Carbide Corp Apparatus for melt extrusion of multi-wall plastic tubing
US3423255A (en) 1965-03-31 1969-01-21 Westinghouse Electric Corp Semiconductor integrated circuits and method of making the same
US3801429A (en) 1969-06-06 1974-04-02 Dow Chemical Co Multilayer plastic articles
DE1939528A1 (de) 1969-08-02 1971-02-11 Barmag Barmer Maschf Vorrichtung zum kontinuierlichen Herstellen von Mehrschichtblasfolien
DE2048006B2 (de) 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
CA948388A (en) 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
GB1453447A (en) 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4282735A (en) 1979-04-02 1981-08-11 Van Mark Products Corporation Brake for sheet metal or the like
US4374888A (en) 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US4557132A (en) 1984-02-03 1985-12-10 Tapco Products Company, Inc. Sheet bending brake
CA1341430C (en) 1984-07-02 2003-06-03 Kenneth Maynard Enloe Diapers with elasticized side pockets
US4698372A (en) * 1985-09-09 1987-10-06 E. I. Du Pont De Nemours And Company Microporous polymeric films and process for their manufacture
US4758462A (en) * 1986-08-29 1988-07-19 Mobil Oil Corporation Opaque film composites and method of preparing same
ATE79386T1 (de) 1986-12-19 1992-08-15 Akzo Nv Herstellung von polymilchsaeure und copolymeren daraus.
US4908026A (en) 1986-12-22 1990-03-13 Kimberly-Clark Corporation Flow distribution system for absorbent pads
US4766029A (en) 1987-01-23 1988-08-23 Kimberly-Clark Corporation Semi-permeable nonwoven laminate
US4801494A (en) 1987-04-10 1989-01-31 Kimberly-Clark Corporation Nonwoven pad cover with fluid masking properties
US5186835A (en) * 1987-09-11 1993-02-16 Agency Of Industrial Science And Technology Porous hydrophilic polypropylene membrane, method for production thereof, and blood plasma separation apparatus
US4798603A (en) 1987-10-16 1989-01-17 Kimberly-Clark Corporation Absorbent article having a hydrophobic transport layer
US4902553A (en) 1987-12-04 1990-02-20 Minnesota Mining And Manufacturing Company Disposable products
US5179164A (en) 1988-02-20 1993-01-12 Basf Aktiengesellschaft Thermoplastic polypropylene/polyamide molding composition
JPH01293102A (ja) * 1988-05-23 1989-11-27 Tokuyama Soda Co Ltd 微多孔性中空糸膜及びその製造方法
JPH0214011A (ja) 1988-06-27 1990-01-18 Mitsubishi Rayon Co Ltd 多孔質ポリエチレン繊維
USD315990S (en) 1988-08-04 1991-04-09 Kimberly-Clark Corporation Embossed wipe or similar article
US5218071A (en) 1988-12-26 1993-06-08 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers
US5169706A (en) 1990-01-10 1992-12-08 Kimberly-Clark Corporation Low stress relaxation composite elastic material
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
US5248309A (en) 1990-07-19 1993-09-28 Kimberly-Clark Corporation Thin sanitary napkin having a central absorbent zone and a method of forming the napkin
CA2048905C (en) 1990-12-21 1998-08-11 Cherie H. Everhart High pulp content nonwoven composite fabric
US5192606A (en) 1991-09-11 1993-03-09 Kimberly-Clark Corporation Absorbent article having a liner which exhibits improved softness and dryness, and provides for rapid uptake of liquid
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5743129A (en) 1991-11-26 1998-04-28 Tapco International Corporation Heavy duty sheet bending brake
US6326458B1 (en) 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
US5470944A (en) 1992-02-13 1995-11-28 Arch Development Corporation Production of high molecular weight polylactic acid
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5322728A (en) 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
US5284309A (en) 1992-12-18 1994-02-08 Hughes Aircraft Company Propellant immobilizing system and method
DE69320927T2 (de) * 1992-12-21 1999-02-18 Mitsubishi Chem Corp Poröse(r) Film oder Folie, Batterie-Separator und Lithium-Batterie
IT1256260B (it) 1992-12-30 1995-11-29 Montecatini Tecnologie Srl Polipropilene atattico
US5284109A (en) 1993-01-27 1994-02-08 Jeng Jieh Chin Feeding device having mechanism for releasing feed at pre-arranged intervals
CA2114663A1 (en) * 1993-02-05 1994-08-06 Joshua B. Sweeney Microporous polymer structures
US5472775A (en) 1993-08-17 1995-12-05 The Dow Chemical Company Elastic materials and articles therefrom
JPH09503031A (ja) * 1993-09-21 1997-03-25 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド 膨らまされた絶縁材料及びそのような材料の製造方法
US6093665A (en) 1993-09-30 2000-07-25 Kimberly-Clark Worldwide, Inc. Pattern bonded nonwoven fabrics
CA2116081C (en) 1993-12-17 2005-07-26 Ann Louise Mccormack Breathable, cloth-like film/nonwoven composite
CA2123330C (en) 1993-12-23 2004-08-31 Ruth Lisa Levy Ribbed clothlike nonwoven fabric and process for making same
USD358035S (en) 1994-01-10 1995-05-09 Kimberly-Clark Corporation Embossed wipe
US5486166A (en) 1994-03-04 1996-01-23 Kimberly-Clark Corporation Fibrous nonwoven web surge layer for personal care absorbent articles and the like
EP0672774B1 (en) 1994-03-04 1999-07-14 Kimberly-Clark Worldwide, Inc. Improved surge management fibrous nonwoven web for personal care absorbent articles and the like
US5571619A (en) 1994-05-24 1996-11-05 Exxon Chemical Patents, Inc. Fibers and oriented films of polypropylene higher α-olefin copolymers
US5702377A (en) 1994-09-01 1997-12-30 Kimberly-Clark Worldwide, Inc. Wet liner for child toilet training aid
US5539056A (en) 1995-01-31 1996-07-23 Exxon Chemical Patents Inc. Thermoplastic elastomers
US5770682A (en) 1995-07-25 1998-06-23 Shimadzu Corporation Method for producing polylactic acid
DE69631305T2 (de) 1995-07-25 2004-11-18 Toyota Jidosha K.K., Toyota Verfahren zur Herstellung von Polymilchsäure
EP0863931A2 (de) 1995-12-01 1998-09-16 Ciba SC Holding AG Poly(9,9'-spirobisfluorene), deren herstellung und deren verwendung
US6060638A (en) 1995-12-22 2000-05-09 Kimberly-Clark Worldwide, Inc. Matched permeability liner/absorbent structure system for absorbent articles and the like
USD384819S (en) 1996-03-22 1997-10-14 Kimberly-Clark Corporation Top surface of a wipe
JP3588907B2 (ja) 1996-03-22 2004-11-17 トヨタ自動車株式会社 ポリ乳酸の製造方法
BR9710227A (pt) 1996-07-08 1999-08-10 Oceaneering Int Inc Painel de isolamento e barreira de isolamento termico
US5843057A (en) 1996-07-15 1998-12-01 Kimberly-Clark Worldwide, Inc. Film-nonwoven laminate containing an adhesively-reinforced stretch-thinned film
US5766760A (en) 1996-09-04 1998-06-16 Kimberly-Clark Worldwide, Inc. Microporous fibers with improved properties
USD384508S (en) 1996-08-22 1997-10-07 Kimberly-Clark Worldwide, Inc. Wipe
USD390708S (en) 1996-10-31 1998-02-17 Kimberly-Clark Worldwide, Inc. Pattern for a bonded fabric
US5962112A (en) 1996-12-19 1999-10-05 Kimberly-Clark Worldwide, Inc. Wipers comprising point unbonded webs
TW526066B (en) 1996-12-27 2003-04-01 Kimberly Clark Co Stable and breathable films of improved toughness, their products, and the method of making the same
US6037281A (en) 1996-12-27 2000-03-14 Kimberly-Clark Worldwide, Inc. Cloth-like, liquid-impervious, breathable composite barrier fabric
EP0948556B1 (en) * 1996-12-27 2002-03-27 Kimberly-Clark Worldwide, Inc. Microporous elastomeric film/nonwoven breathable laminate and method for making the same
US6111163A (en) 1996-12-27 2000-08-29 Kimberly-Clark Worldwide, Inc. Elastomeric film and method for making the same
US6015764A (en) 1996-12-27 2000-01-18 Kimberly-Clark Worldwide, Inc. Microporous elastomeric film/nonwoven breathable laminate and method for making the same
US5947944A (en) 1996-12-30 1999-09-07 Kimberly-Clark Worldwide, Inc. Stretched-thinned films comprising low crystallinity polymers and laminates thereof
US5912076A (en) * 1996-12-31 1999-06-15 Kimberly-Clark Worldwide, Inc. Blends of polyethylene and peo having inverse phase morphology and method of making the blends
US5931823A (en) 1997-03-31 1999-08-03 Kimberly-Clark Worldwide, Inc. High permeability liner with improved intake and distribution
US5932497A (en) 1997-09-15 1999-08-03 Kimberly-Clark Worldwide, Inc. Breathable elastic film and laminate
US5997981A (en) 1997-09-15 1999-12-07 Kimberly-Clark Worldwide, Inc. Breathable barrier composite useful as an ideal loop fastener component
US5968643A (en) * 1997-09-16 1999-10-19 Kimberly-Clark Worldwide, Inc. Microporous film with improved properties
US6090325A (en) 1997-09-24 2000-07-18 Fina Technology, Inc. Biaxially-oriented metallocene-based polypropylene films
US6197404B1 (en) 1997-10-31 2001-03-06 Kimberly-Clark Worldwide, Inc. Creped nonwoven materials
US6277479B1 (en) 1997-12-19 2001-08-21 Kimberly-Clark Worldwide, Inc. Microporous films having zoned breathability
US6071451A (en) 1997-12-31 2000-06-06 Kimberly-Clark Worldwide, Inc. Process for making a nonwoven, porous fabric from polymer composite materials
USD418305S (en) 1998-09-24 2000-01-04 Kimberly-Clark Worldwide, Inc. Wipe
AR022137A1 (es) 1998-12-31 2002-09-04 Kimberly Clark Co Una composicion de materia, una pelicula y un articulo que comprenden dicha composicion
US6586073B2 (en) 1999-05-07 2003-07-01 3M Innovative Properties Company Films having a microfibrillated surface and method of making
US6500563B1 (en) 1999-05-13 2002-12-31 Exxonmobil Chemical Patents Inc. Elastic films including crystalline polymer and crystallizable polymers of propylene
US6461457B1 (en) 1999-06-30 2002-10-08 Kimberly-Clark Worldwide, Inc. Dimensionally stable, breathable, stretch-thinned, elastic films
US6642429B1 (en) 1999-06-30 2003-11-04 Kimberly-Clark Worldwide, Inc. Personal care articles with reduced polymer fibers
USD428267S (en) 1999-08-27 2000-07-18 Kimberly-Clark Worldwide, Inc. Repeating pattern for a bonded fabric
US6663611B2 (en) 1999-09-28 2003-12-16 Kimberly-Clark Worldwide, Inc. Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover
JP2001233982A (ja) * 1999-12-14 2001-08-28 Tokuyama Corp 多孔質ポリオレフィンフィルム及びその製造方法
US6234988B1 (en) 1999-12-15 2001-05-22 I-Tek, Inc. Heel locking, energy absorbing, support and cushioning device
AU7016801A (en) * 2000-11-22 2002-06-03 Clopay Plastic Prod Co Air and moisture vapor breathable biodegradable films and method of manufacture
US6582810B2 (en) * 2000-12-22 2003-06-24 Kimberly-Clark Worldwide, Inc. One-step method of producing an elastic, breathable film structure
US6905759B2 (en) 2001-04-23 2005-06-14 Kimberly Clark Worldwide, Inc. Biodegradable films having enhanced ductility and breathability
US6824680B2 (en) * 2001-05-07 2004-11-30 New Jersey Institute Of Technology Preparation of microporous films from immiscible blends via melt processing and stretching
US6824734B2 (en) 2001-10-09 2004-11-30 Kimberly-Clark Worldwide, Inc. Method of producing latent elastic, cross-direction-oriented films
US20030116462A1 (en) 2001-12-20 2003-06-26 Kimberly-Clark Worldwide, Inc. Pouch configuration for wrapped absorbent articles
US6716203B2 (en) 2001-12-18 2004-04-06 Kimberly-Clark Worldwide, Inc. Individual absorbent articles wrapped in a quiet and soft package
US20040002273A1 (en) 2002-07-01 2004-01-01 Kimberly-Clark Worldwide, Inc. Liquid repellent nonwoven protective material
CN1312335C (zh) 2002-08-05 2007-04-25 东丽株式会社 多孔纤维
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
US7341776B1 (en) 2002-10-03 2008-03-11 Milliren Charles M Protective foam with skin
TWI311594B (en) 2002-10-23 2009-07-01 Toray Industries Nanofiber aggregate, liquid dispersion, process for producing hybrid fiber, fiber structure and process for producing the same
US7060867B2 (en) 2002-11-27 2006-06-13 Kimberly-Clark Worldwide, Inc. Absorbent article with a body facing liner having discretely placed lotion deposits
US20050054255A1 (en) 2003-09-08 2005-03-10 Kimberly-Clark Worldwide, Inc. Nonwoven fabric liner and diaper including a nonwoven laminate liner
US20050059941A1 (en) 2003-09-11 2005-03-17 Kimberly-Clark Worldwide, Inc. Absorbent product with improved liner treatment
DE10348876B4 (de) 2003-10-21 2014-04-03 Jnc Corporation Poröse Polyolefinmembran
US20050245162A1 (en) 2004-04-30 2005-11-03 Kimberly-Clark Worldwide, Inc. Multi-capable elastic laminate process
WO2006002440A2 (en) 2004-06-29 2006-01-05 Aspen Aerogels, Inc. Energy efficient and insulated building envelopes
US8603614B2 (en) 2004-07-26 2013-12-10 Borgwarner Inc. Porous friction material with nanoparticles of friction modifying material
JP4569282B2 (ja) 2004-12-08 2010-10-27 東レ株式会社 軽量性に優れた異形断面繊維
US20060148915A1 (en) * 2004-12-30 2006-07-06 Floyd Robert M Microporous materials and methods of making
EP1695995A1 (en) * 2005-02-24 2006-08-30 Dutch Polymer Institute Novel nanocomposite
RU2432372C2 (ru) * 2005-03-29 2011-10-27 Торей Тонен Спешиалти Сепарейтор Годо Кайса Способ получения микропористых полиолефиновых мембран и микропористые мембраны
EP1955845B1 (en) 2005-11-30 2013-04-10 Mitsubishi Plastics, Inc. Thermally shrinkable polyolefin film, molded article using the film, thermally shrinkable label, and container
MX2009002159A (es) * 2006-08-31 2009-03-11 Kimberly Clark Co Peliculas biodegradables con alta capacidad para respirar.
JP5276984B2 (ja) * 2006-08-31 2013-08-28 日清紡ホールディングス株式会社 多孔質フィルム及び印刷用基材
CN101553607A (zh) * 2006-09-01 2009-10-07 加利福尼亚大学董事会 热塑性聚合物微纤维、纳米纤维以及复合材料
JP2008144039A (ja) * 2006-12-11 2008-06-26 Asahi Kasei Chemicals Corp 微細通流体性多孔体及びその製造方法
JP5309628B2 (ja) 2007-03-23 2013-10-09 住友化学株式会社 多孔質フィルム
US7984591B2 (en) 2007-08-10 2011-07-26 Fiberweb, Inc. Impact resistant sheet material
EP2233524B1 (en) 2007-12-17 2012-05-30 Toyota Jidosha Kabushiki Kaisha Molded object and process for producing the same
US20100313507A1 (en) 2008-01-23 2010-12-16 Carlos Castro Building structures containing external vapor permeable foam insulation
WO2009132801A1 (de) * 2008-05-02 2009-11-05 Treofan Germany Gmbh & Co. Kg Membranfolie für batterien mit abschaltfunktion
KR101526636B1 (ko) 2008-05-30 2015-06-05 킴벌리-클라크 월드와이드, 인크. 폴리락트산 섬유
MX2010013783A (es) 2008-06-13 2010-12-21 Procter & Gamble Articulo absorbente con material polimerico absorbente, indicador de humedad y migracion de surfactante reducida.
US20090318884A1 (en) 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
US8759446B2 (en) 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US8268913B2 (en) * 2008-06-30 2012-09-18 Fina Technology, Inc. Polymeric blends and methods of using same
US20100068471A1 (en) 2008-09-15 2010-03-18 Thin Thermal Barriers Limited Thermal resistor material
US20120107592A1 (en) * 2008-12-17 2012-05-03 Vasilev Krasimir A Active polymeric films
US20100305529A1 (en) 2009-06-02 2010-12-02 Gregory Ashton Absorbent Article With Absorbent Polymer Material, Wetness Indicator, And Reduced Migration Of Surfactant
US9067384B2 (en) * 2009-06-10 2015-06-30 Ppg Industries Ohio, Inc. Microporous material having degradation properties and articles prepared therefrom
US9345802B2 (en) * 2009-06-25 2016-05-24 The Procter & Gamble Company Absorbent article with barrier component
CN102482446B (zh) 2009-07-29 2013-09-11 陶氏环球技术有限责任公司 隔热板复合材料
JP2011074214A (ja) * 2009-09-30 2011-04-14 Asahi Kasei E-Materials Corp 微多孔性フィルム、積層微多孔性フィルム、電池用セパレータ、及び微多孔性フィルムの製造方法
US20110091714A1 (en) 2009-10-16 2011-04-21 E. I. Du Pont De Nemours And Company Monolithic films having zoned breathability
DE102009050439A1 (de) * 2009-10-20 2011-05-05 Treofan Germany Gmbh & Co. Kg Nanoskaliges ß-Nukleierungsmittel für Polypropylen
RU2561267C2 (ru) * 2009-11-25 2015-08-27 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи Нанопористая полимерная пена, имеющая высокую пористость
US20120329894A1 (en) 2010-03-02 2012-12-27 Mitsubishi Plastics, Inc. Polypropylene series resin porous film, battery separator and battery
JP2011194650A (ja) * 2010-03-18 2011-10-06 Mitsubishi Plastics Inc ポリオレフィン樹脂多孔性フィルム、および電池用セパレータ
WO2011123725A1 (en) * 2010-03-31 2011-10-06 Xoathletics, Llc Systems and methods for forming a protective pad
US8435631B2 (en) 2010-04-15 2013-05-07 Ppg Industries Ohio, Inc. Microporous material
EP2412426A1 (de) * 2010-07-30 2012-02-01 Schaefer Kalk GmbH & Co. KG Poröse Hohlfaser
US8936740B2 (en) * 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
US10753023B2 (en) * 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
WO2012041931A1 (en) * 2010-09-30 2012-04-05 Sanofi-Aventis Deutschland Gmbh Flexible fastener for drug delivery device
KR101221211B1 (ko) * 2010-12-07 2013-01-11 도레이첨단소재 주식회사 폴리락트산의 블렌드 방사를 통한 생분해성과 낮은 탄소배출 특성을 갖는 부직포 및 그 제조 방법
JP5755016B2 (ja) 2011-04-28 2015-07-29 株式会社林技術研究所 発泡樹脂成形体
WO2012178011A2 (en) * 2011-06-24 2012-12-27 Fiberweb, Inc. Vapor-permeable, substantially water-impermeable multilayer article
JP2013100487A (ja) * 2011-10-14 2013-05-23 Toray Ind Inc 多孔性フィルムおよび蓄電デバイス
US20130228529A1 (en) 2011-11-04 2013-09-05 Ppg Industries Ohio, Inc. Microporous material having filtration and adsorption properties and their use in fluid purification processes
US9127915B1 (en) * 2011-11-08 2015-09-08 Novana, Inc. Self-healing composites
US8689454B2 (en) * 2012-01-06 2014-04-08 Field Logic, Inc. Multi-axis bow sight
US9040598B2 (en) * 2012-02-10 2015-05-26 Kimberly-Clark Worldwide, Inc. Renewable polyester compositions having a low density
JP6117503B2 (ja) * 2012-09-24 2017-04-19 帝人株式会社 透湿防水膜
AU2013365874A1 (en) * 2012-12-19 2015-07-09 Kimberly-Clark Worldwide, Inc. Low density fibers and methods for forming same
AU2014279702B2 (en) 2013-06-12 2017-06-22 Kimberly-Clark Worldwide, Inc. Pore initiation technique
MX2015016237A (es) * 2013-06-12 2016-03-21 Kimberly Clark Co Material de poliolefina que tiene baja densidad.
KR102202850B1 (ko) * 2013-06-12 2021-01-14 킴벌리-클라크 월드와이드, 인크. 건물 단열재
RU2632842C2 (ru) 2013-06-12 2017-10-10 Кимберли-Кларк Ворлдвайд, Инк. Полимерный материал для применения в теплоизоляции
KR101767851B1 (ko) 2013-06-12 2017-08-11 킴벌리-클라크 월드와이드, 인크. 다공성 중합체 물질을 함유하는 의복
EP3008231B1 (en) 2013-06-12 2019-05-08 Kimberly-Clark Worldwide, Inc. Multi-functional fabric
MX2015016874A (es) * 2013-06-12 2016-04-07 Kimberly Clark Co Fibras de poliolefina porosas.
AU2014279704B2 (en) * 2013-06-12 2017-04-27 Kimberly-Clark Worldwide, Inc. Energy absorbing member
MX2015016241A (es) 2013-06-12 2016-03-21 Kimberly Clark Co Material polimerico con una distribucion de tamaño de poro multimodal.
AU2014304179B2 (en) 2013-08-09 2017-08-17 Kimberly-Clark Worldwide, Inc. Anisotropic polymeric material
BR112016002594B1 (pt) 2013-08-09 2021-08-17 Kimberly-Clark Worldwide, Inc. Método para controlar seletivamente o grau de porosidade em um material polimérico, e, material polimérico
JP2017522399A (ja) * 2014-06-06 2017-08-10 キンバリー クラーク ワールドワイド インコーポレイテッド 多孔質高分子シートから形成される熱成形物品
WO2016085712A1 (en) * 2014-11-26 2016-06-02 Kimberly-Clark Worldwide, Inc. Annealed porous polyolefin material

Also Published As

Publication number Publication date
EP3007663A4 (en) 2017-01-25
US20160122484A1 (en) 2016-05-05
EP3008118B1 (en) 2020-01-22
EP3008118A1 (en) 2016-04-20
ZA201509324B (en) 2017-08-30
EP3008118A4 (en) 2016-12-28
BR112015030695A2 (pt) 2017-07-25
CN105518066B (zh) 2019-10-08
AU2014279792A1 (en) 2016-01-21
ZA201509318B (en) 2017-09-27
EP3008116B1 (en) 2020-01-08
EP3007663A1 (en) 2016-04-20
AU2014279792B2 (en) 2017-06-22
SG11201510049XA (en) 2016-01-28
RU2015156304A (ru) 2017-07-04
RU2015155593A (ru) 2017-06-30
JP6436591B2 (ja) 2018-12-12
EP3008116A4 (en) 2017-01-25
BR112015030556B1 (pt) 2021-12-14
EP3007663B1 (en) 2022-04-06
WO2014199268A1 (en) 2014-12-18
RU2622830C1 (ru) 2017-06-20
JP2016526959A (ja) 2016-09-08
SG11201510044PA (en) 2016-01-28
KR20160018590A (ko) 2016-02-17
WO2014199270A1 (en) 2014-12-18
KR20160018797A (ko) 2016-02-17
AU2014279791B2 (en) 2018-11-29
MX2015016237A (es) 2016-03-21
CN105263994B (zh) 2019-04-23
RU2643956C2 (ru) 2018-02-06
BR112015028913A2 (pt) 2017-07-25
RU2637911C2 (ru) 2017-12-07
WO2014199271A1 (en) 2014-12-18
US20160114071A1 (en) 2016-04-28
KR102257717B1 (ko) 2021-05-31
CN105518066A (zh) 2016-04-20
CN105246443B (zh) 2019-12-17
KR102353019B1 (ko) 2022-01-19
AU2014279789A1 (en) 2016-01-21
US11028246B2 (en) 2021-06-08
MX2015016876A (es) 2016-04-07
MX2015017034A (es) 2016-04-25
JP2016523293A (ja) 2016-08-08
KR20160020482A (ko) 2016-02-23
JP2016521784A (ja) 2016-07-25
US10752745B2 (en) 2020-08-25
BR112015028913B1 (pt) 2020-11-10
CN105246443A (zh) 2016-01-13
BR112015030556A2 (pt) 2017-07-25
EP3008116A1 (en) 2016-04-20
KR102281989B1 (ko) 2021-07-28
AU2014279789B2 (en) 2017-06-29
US20160115291A1 (en) 2016-04-28
AU2014279791A1 (en) 2016-01-21
US11155688B2 (en) 2021-10-26
CN105263994A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
BR112015030695B1 (pt) Película de poliolefina para utilização em embalagens
BR112016025073B1 (pt) Artigo termoformado, e, método para termoformagem do mesmo
KR101767851B1 (ko) 다공성 중합체 물질을 함유하는 의복
KR102166745B1 (ko) 에너지 흡수 부재
BR112014019432B1 (pt) filme respirável formado a partir de poliéster renovável
BR112014019496B1 (pt) Película compreendendo uma composição termoplástica, e, artigoabsorvente
BR112015030318B1 (pt) material polimérico, isolamento térmico, artigo e método para formar um material polimérico
BR112014019495B1 (pt) fibras de poliéster renováveis com baixa densidade
BR112015029119B1 (pt) Material polimérico com distribuição de tamanho de poros multimodal
JP2016532579A (ja) 三次元印刷用高分子材料
BR112016002218B1 (pt) Material polimérico anisotrópico
AU2015353884B2 (en) Biaxially stretched porous film
BR112015029157B1 (pt) método para iniciar a formação de poros em um material polimérico
BR112016002594B1 (pt) Método para controlar seletivamente o grau de porosidade em um material polimérico, e, material polimérico
BR112016002589B1 (pt) Material polimérico flexível moldado, membro tubular, e, método de moldagem de um material polimérico
BR112019002051B1 (pt) Película de elastômero de poliolefina termoplástica, e, artigo
BR112018010299B1 (pt) Método para formar fibras porosas
BR112018011237B1 (pt) Material polimérico de mudança de cor, e, método para iniciar uma mudança de cor em um material polimérico
BR112015030934B1 (pt) Isolamento de construção

Legal Events

Date Code Title Description
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B09A Decision: intention to grant [chapter 9.1 patent gazette]
B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 06/06/2014, OBSERVADAS AS CONDICOES LEGAIS.