JP2016532579A - 三次元印刷用高分子材料 - Google Patents

三次元印刷用高分子材料 Download PDF

Info

Publication number
JP2016532579A
JP2016532579A JP2016532763A JP2016532763A JP2016532579A JP 2016532579 A JP2016532579 A JP 2016532579A JP 2016532763 A JP2016532763 A JP 2016532763A JP 2016532763 A JP2016532763 A JP 2016532763A JP 2016532579 A JP2016532579 A JP 2016532579A
Authority
JP
Japan
Prior art keywords
printer cartridge
additive
micro
weight
printer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016532763A
Other languages
English (en)
Inventor
バジリー・エイ・トポロカラエフ
ライアン・ジェイ・マケネーニー
ネイル・ティー・ショール
Original Assignee
キンバリー クラーク ワールドワイド インコーポレイテッド
キンバリー クラーク ワールドワイド インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キンバリー クラーク ワールドワイド インコーポレイテッド, キンバリー クラーク ワールドワイド インコーポレイテッド filed Critical キンバリー クラーク ワールドワイド インコーポレイテッド
Publication of JP2016532579A publication Critical patent/JP2016532579A/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/329Feeding using hoppers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/343Metering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2025/00Use of polymers of vinyl-aromatic compounds or derivatives thereof as moulding material
    • B29K2025/04Polymers of styrene
    • B29K2025/08Copolymers of styrene, e.g. AS or SAN, i.e. acrylonitrile styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/04Polyesters derived from hydroxycarboxylic acids
    • B29K2067/046PLA, i.e. polylactic acid or polylactide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

三次元プリンターシステムの構築材料および/または支持材料として用いることのできる高分子材料が提供されている。高分子材料は、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される。マイクロ包含添加剤およびナノ包含添加剤が、個別領域の形態で連続相内に分散されている。【選択図】図1

Description

(優先権の主張)
本出願は米国仮出願番号第61/863,944号(2013年8月9日出願)に対する優先権を主張し、その全体を参照することにより、本書に組み込む。
押出ベースの層状堆積システムは、流動性構構築材料を押し出すことによって、一層ごとの方法で、コンピュータ支援設計(「CAD」)モデルから三次元物体を作るために使用される。このようなシステムでは、構築材料は一般的に、押出先端を通して押し出され、基材上の一連の層としてx−y平面に堆積される。押し出された構築材料は、以前に堆積された構築材料に融合し、温度が降下すると凝固する。次に押出ヘッドの基材に対する位置が、z−軸に沿って(x−y平面に垂直に)増加され、プロセスが繰り返されてCADモデルに似た三次元物体が形成される。支持構造は、張り出し部分の下、または建築中の物体の空洞内に作られることがよくあり、これは構築材料自体によっては支持されていない。支持構造は、構築材料が堆積されるのと同じ堆積技術を使用して構築されうる。ホストコンピュータは、張り出しのための支持構造として、または形成される三次元物体の自由空間セグメントとしての役割を果たす追加的形状を作る。次に、構築材料として同じノズルから、または構築プロセス中に作られる形状に従った第二のノズルから、支持材料が堆積される。支持材料は製作中に構築材料に接着し、構築プロセスが完了した時、完成した三次元物体から取り外し可能である。さらに、支持構造は、より安定な基部を物体に提供するために、三次元物体を印刷する前にも作成されうる。
用いられる特定のシステムに関わらず、構築材料および支持材料として使用される最も一般的なポリマーの二つは、アクリロニトリル・ブタジエン・スチレン(「ABS」)およびポリ乳酸(「PLA」)である。ABSは比較的柔軟で機械加工できるポリマーであるが、再生可能ではなく、印刷面と接触する時、丸まったり曲がったりする傾向もある。一方、PLAは再生可能で曲がりの影響を受けにくいが、比較的脆く柔軟性に欠ける。このような特性は、材料の硬さと衝撃強度の間の良好なバランスが必要となる複雑な形状でのPLAの使用を大幅に限定しうる。よって、三次元プリンターシステムの構築材料および/または支持材料として用いることのできる改善された高分子材料に対するニーズが存在する。
本発明の一つの実施形態によると、三次元プリンターシステムに使用するためのプリンターカートリッジが開示されている。プリンターカートリッジは、高分子材料を保持するスプールを含む。高分子材料は、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成され、マイクロ包含添加剤およびナノ包含添加剤が連続相内に個別領域の形態で分散されている。
本発明の別の実施形態によると、三次元物体を形成するための方法が開示されている。方法は、構築材料の一式の連続相として三次元構造を印刷する工程、および随意に支持材料から支持構造を印刷する工程を含む。構築材料、支持材料、または両方は、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される高分子材料を含む。マイクロ包含添加剤およびナノ包含添加剤が、個別領域の形態で連続相内に分散されている。
本発明のその他の特徴および態様は、以下でより詳細に検討される。
当業者を対象とした、本発明の完全かつ実施可能な開示は、その最良の様式を含めて、本明細書の残りの部分でさらに具体的に記載されており、これは以下の添付図を参照する。
本発明に用いられうる押出ベースの三次元プリンターシステムの一つの実施形態の正面図である。 本発明の高分子材料を使用して形成されうる三次元前駆物体の一つの実施形態の斜視図である。 三次元物体の構築プロセスを示す、線3A−3Aに沿って切り取った図2の断面図である。 三次元物体の構築プロセスを示す、線3A−3Aに沿って切り取った図2の断面図である。 三次元物体の構築プロセスを示す、線3A−3Aに沿って切り取った図2の断面図である。 本発明に用いられうるプリンターカートリッジの一つの実施形態の分解斜視図である。 実施例1の無延伸材料のSEM顕微鏡写真であり、ここで材料は流れ方向に対して垂直に切断された。 実施例1の無延伸材料のSEM顕微鏡写真であり、ここで材料は流れ方向に対して平行に切断された。 実施例1の延伸材料のSEM顕微鏡写真である(材料は流れ方向配向に対して平行に切断された)。 実施例1の延伸材料のSEM顕微鏡写真である(材料は流れ方向配向に対して平行に切断された)。 実施例2の無延伸材料のSEM顕微鏡写真であり、ここで材料は流れ方向に対して垂直に切断された。 実施例2の無延伸材料のSEM顕微鏡写真であり、ここで材料は流れ方向に対して平行に切断された。 実施例2の延伸材料のSEM顕微鏡写真である(材料は流れ方向配向に対して平行に切断された)。 実施例2の延伸材料のSEM顕微鏡写真である(材料は流れ方向配向に対して平行に切断された)。
本明細書および図面での参照文字の反復使用は、本発明の同一または類似の特徴を示すことを意図している。
ここで、本発明のさまざまな実施形態を詳細に参照するが、その一つ以上の例を以下で説明する。各例は、本発明の説明方法として提供されており、本発明を限定するものではない。実際に、本発明の範囲または精神から逸脱することなく、本発明に様々な改造および変形をしうることは、当業者にとって明らかであろう。例えば、一つの実施形態の一部として図示または記述された特徴は、別の実施形態で使用して、なおさらなる実施形態を生じうる。従って、本発明が、添付した請求項の範囲およびそれらの均等物の範囲内に収まるような改造や変形を網羅することが意図される。
一般的に、本発明は、三次元プリンターシステムの構築材料および/または支持材料として用いることができる高分子材料を対象とする。材料は柔軟であるが、その形状を保つこともでき、これにより材料を複雑な形状へとより簡単に印刷することができる。柔軟性および形状保持特性のこのユニークな組み合わせは、材料が形成される方法に対する選択的制御を通して、単一のモノリシック高分子材料に対して達成されうる。より具体的には、高分子材料は、マトリクスポリマー、マイクロ包含添加剤、およびナノ包含添加剤を含む連続相を含有する熱可塑性組成物から形成される。添加剤は、マトリクスポリマーとは異なる弾性係数を持つように選択されうる。このようにすると、マイクロ包含添加剤およびナノ包含添加剤は、それぞれ個別のマイクロスケールおよびナノスケールの相領域として、連続相内に分散されうる。三次元印刷前、最中および/または後に、変形歪みを受けた時、材料の不適合性から生じる応力集中の結果として、マイクロスケールの個別相領域の近くに強い局所的せん断領域および/または応力強度領域(例えば、垂直応力)が形成されうる。これらのせん断および/または応力強度領域は、マイクロスケール領域に隣接するポリマーマトリクスにいくらかの初期剥離を生じうる。しかし、特に、局所的せん断および/または応力強度領域は、マイクロスケール領域と重複するナノスケールの個別相領域の近くにも作られうる。このような重複したせん断および/または応力強度領域は、ポリマーマトリクスにさらなる剥離を起こし、それによって、ナノスケール領域および/またはマイクロスケール領域に隣接してかなりの数の細孔を生成する。
こうして多孔質ネットワークを高分子材料内に形成しうる。このネットワーク内の細孔のかなりの部分は、約800ナノメートル以下、一部の実施形態では約5〜約250ナノメートル、および一部の実施形態では約10〜約100ナノメートルの平均断面寸法を持つものなど、「ナノスケール」サイズ(「ナノ細孔」)でありうる。「断面寸法」という用語は、細孔の特性寸法(例えば、幅または直径)を一般的に指し、これはその主軸(例えば、長さ)に実質的に直交し、また変形させている間に加えられる応力の方向に一般的には実質的に直交する。例えば、このようなナノ細孔は、高分子材料の合計細孔容量の約15容量%以上、一部の実施形態では約20容量%以上、一部の実施形態では約30容量%〜100容量%、一部の実施形態では、約40容量%〜約90容量%を構成しうる。個別領域(例えば、マイクロスケールおよび/またはナノスケール)に隣接するその位置のため、内部構造の「ヒンジ」としての役割を果たして多孔質ネットワークの安定化を助ける多孔質ネットワーク内のナノ細孔の境界の間に橋が形成されうる。特に、これは材料の柔軟性を強化しながら、それでも印刷後に望ましい形状を保てるように、十分な程度の強度を保つことを可能にする。
約0.5〜約30マイクロメートル、一部の実施形態では約1〜約20マイクロメートル、および一部の実施形態では約2〜約15マイクロメートルの平均断面寸法を持つマイクロスケール領域で、および/またはその周りに、複数のマイクロ細孔も延伸中に形成されうる。マイクロ細孔および/またはナノ細孔は、球状、細長い形など、任意の規則的または不規則な形状を持ちうる。特定の場合、アスペクト比(断面寸法に対する軸寸法の比)が約1〜約30、一部の実施形態では約1.1〜約15、および一部の実施形態では約1.2〜約5であるように、マイクロ細孔および/またはナノ細孔の軸方向寸法は断面寸法よりも大きい場合がある。「軸方向寸法」とは、主軸(例えば、長さ)の方向の寸法である。本発明者は、細孔(例えば、マイクロ細孔、ナノ細孔、または両方)は材料全体にわたって実質的に均一な様式で分布されうることも発見した。例えば、細孔は、応力が加えられる方向に対して概して垂直方向に方向付けられたカラム中に分布されうる。これらのカラムは、材料の幅を横切って互いに概して平行でありうる。理論に束縛されることを意図するものではないが、このような均一に分布された多孔質ネットワークは、良好な機械的特性をもたらすことができると考えられている。
本発明のさまざまな実施形態をこれから詳細に説明する。
I.熱可塑性組成物
A.マトリクスポリマー
上述のように、熱可塑性組成物は、その中にマイクロ包含添加剤およびナノ包含添加剤が分散されている連続相を含む。連続相は一つ以上のマトリクスポリマーを含み、これは典型的には、熱可塑性組成物の約60重量%〜約99重量%、一部の実施形態では約75重量%〜約98重量%、および一部の実施形態では約80重量%〜約95重量%を占める。連続相を形成するために使用されるマトリクスポリマーの性質は重要ではなく、ポリエステル、ポリオレフィン、スチレンポリマー、ポリアミドなど、任意の適切なポリマーが一般的に用いられうる。特定の実施形態では、例えば、ポリエステルを組成物中に用いてポリマーマトリクスを形成しうる。脂肪族ポリエステルなど、ポリカプロラクトン、ポリエステルアミド、ポリ乳酸(PLA)およびその共重合体、ポリグリコール酸、炭酸ポリアルキレン(例えば、炭酸ポリエチレン)、ポリ−3−ヒドロキシ酪酸(PHB)、ポリ−3−ヒドロキシ吉草酸(PHV)、ポリ−3−ヒドロキシ酪酸−コ−4−ヒドロキシ酪酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシ吉草酸共重合体(PHBV)、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシヘキサン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシオクタン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシデカン酸、ポリ−3−ヒドロキシ酪酸−コ−3−ヒドロキシオクタデカン酸、およびコハク酸ベース脂肪族ポリマー(例えば、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリエチレンサクシネートなど)、脂肪族方向族コポリエステル(例えば、ポリブチレンアジペートテレフタレート、ポリエチレンアジペートテレフタレート、ポリエチレンアジペートイソフタレート、ポリブチレンアジペートイソフタレートなど)、芳香族ポリエステル(例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレートなど)など、さまざまなポリエステルの任意のものを一般的に用いうる。
特定の場合、熱可塑性組成物は、硬い性質のために比較的高いガラス転移温度を持つ少なくとも一つのポリエステルを含みうる。例えば、ガラス転移温度(「T」)は、約0℃以上、一部の実施形態では約5℃〜約100℃、一部の実施形態では約30℃〜約80℃、および一部の実施形態では約50℃〜約75℃でありうる。ポリエステルは、約140℃〜約300℃、一部の実施形態では約150℃〜約250℃、および一部の実施形態では約160℃〜約220℃の溶融温度も持ちうる。溶融温度は、ASTM D−3417に従い、示差走査熱量測定(「DSC」)を使用して決定されうる。ガラス転移温度は、ASTM E1640−09に従って、動的機械分析で決定されうる。
一つの特に適切な硬質ポリエステルはポリ乳酸であり、これは、左旋性乳酸(「L−乳酸」)、右旋性乳酸(「D−乳酸」)、メソ乳酸、またはその混合物など、乳酸の任意のアイソマーのモノマー単位から一般的に由来しうる。モノマー単位も、L−ラクチド、D−ラクチド、メソ−ラクチド、またはその混合物を含む、乳酸の任意のアイソマーの無水物から形成されうる。このような乳酸の環状二量体および/またはラクチドも使用しうる。重縮合または開環重合など、既知の任意の重合方法を、乳酸の重合のために使用しうる。少量の鎖延長剤(例えば、ジイソシアン酸化合物、エポキシ化合物または酸無水物)も使用しうる。ポリ乳酸は、L−乳酸から由来するモノマー単位およびD−乳酸から由来するモノマー単位を含むものなど、ホモポリマーまたは共重合体でありうる。必須ではないが、L−乳酸から由来するモノマー単位およびD−乳酸から由来するモノマー単位のうち一つの含有率は、約85モル%以上、一部の実施形態では約90モル%以上、および一部の実施形態では約95モル%以上であることが好ましい。それぞれがL−乳酸から由来するモノマー単位とD−乳酸から由来するモノマー単位の間の異なる比率を持つ複数のポリ乳酸を、任意のパーセントで混合しうる。当然、ポリ乳酸は、その他のタイプのポリマー(例えば、ポリオレフィン、ポリエステルなど)と混合することもできる。
一つの特定の実施形態では、ポリ乳酸は以下の一般的構造を持つ:
本発明に使用されうる適切なポリ乳酸ポリマーの一つの具体例は、BIOMER(商標) L9000という名前でBiomer, Inc.(ドイツ、クレイリング)から市販されている。その他の適切なポリ乳酸ポリマーは、ミネソタ州ミネトンカのNatureworks LLC(NATUREWORKS(登録商標))または三井化学株式会社(LACEA(商標))から市販されている。さらにその他の適切なポリ乳酸が、米国特許第4,797,468号、第5,470,944号、第5,770,682号、第5,821,327号、第5,880,254号、および第6,326,458号に記述されている場合がある。
ポリ乳酸は、一般的に、約40,000〜約180,000グラム/モル、一部の実施形態では約50,000〜約160,000グラム/モル、および一部の実施形態では約80,000〜約120,000グラム/モルの範囲の数平均分子量(「M」)を持つ。同様に、ポリマーも、一般的に、約80,000〜約250,000グラム/モル、一部の実施形態では約100,000〜約200,000グラム/モル、および一部の実施形態では約110,000〜約160,000グラム/モルの範囲の重量平均分子量(「M」)を持つ。数平均分子量に対する重量平均分子量の比(「M/M」)、すなわち「多分散指数」も比較的低い。例えば、多分散指数は、一般的に約1.0〜約3.0の範囲で、一部の実施形態では約1.1〜約2.0、および一部の実施形態では約1.2〜約1.8である。重量および数平均分子量は、当業者に知られている方法で決定されうる。
ポリ乳酸はまた、190℃の温度および1000秒−1のせん断速度で測定した時、約50〜約600パスカル秒(Pa・s)、一部の実施形態では約100〜約500Pa・s、および一部の実施形態では約200〜約400Pa・sの見かけ粘度を持ちうる。ポリ乳酸のメルトフローレート(ドライベース)もまた、2160グラムの負荷および190℃で測定された場合、約0.1〜約40グラム/10分、一部の実施形態では約0.5〜約20グラム/10分、および一部の実施形態では約5〜約15グラム/10分でありうる。
一部のタイプの純のポリエステル(例えば、ポリ乳酸)は、開始ポリ乳酸の乾燥重量に基づいて約500〜600百万分率(「ppm」)またはそれ以上の水分含量を持つように、周囲環境から水を吸収することができる。水分含量は、下記のように、ASTM D 7191−05に従ってなど、当技術分野で知られているさまざまな方法で決定されうる。溶融処理中の水の存在は、ポリエステルを加水分解しその分子量を減少させる可能性があるので、混合前にポリエステルを乾燥させることが望ましいことがある。ほとんどの実施形態では、例えば、マイクロ包含添加剤およびナノ包含添加剤を混合する前に、ポリエステルが、約300百万分率(「ppm」)以下、一部の実施形態では約200ppm以下、一部の実施形態では約1〜約100ppmの水分含量を持つことが望ましい。ポリエステルの乾燥は、例えば、約50℃〜約100℃、一部の実施形態では約70℃〜約80℃の温度で起こりうる。
B.マイクロ包含添加剤
本明細書で使用される場合、「マイクロ包含添加剤」という用語は、ポリマーマトリクス内にマイクロスケールサイズの個別領域の形態で分散されることのできる任意の非晶質、結晶または半結晶材料を一般的に指す。例えば、変形前に、領域は、約0.05μm〜約30μm、一部の実施形態では約0.1μm〜約25μm、一部の実施形態では約0.5μm〜約20μm、および一部の実施形態では約1μm〜約10μmの平均断面寸法を持ちうる。「断面寸法」という用語は、領域の特性寸法(例えば、幅または直径)を一般的に指し、これはその主軸(例えば、長さ)に実質的に直交し、また変形させている間に加えられる応力の方向に一般的には実質的に直交する。一般的にはマイクロ包含添加剤から形成されるが、当然のことながら、マイクロスケール領域はマイクロ包含添加剤およびナノ包含添加剤および/または組成物のその他の成分の組み合わせからも形成されうる。
特定の実施形態では、マイクロ包含添加剤は一般的に高分子の性質であり、比較的高い分子量を持ち、熱可塑性組成物の溶融強度および安定性の改善に役立つ。典型的には、マイクロ包含ポリマーは、一般的にマトリクスポリマーと非混和性でありうる。このように、添加剤は、マトリクスポリマーの連続相内に個別相領域として、より良く分散しうる。個別領域は、外部力から生じるエネルギーを吸収することができ、結果として生じる材料の全体的靱性および強度を増加させる。領域は、楕円形、球形、円筒形、プレート状、管状などのさまざまな異なる形状を持ちうる。例えば、一つの実施形態では、領域は実質的に楕円の形状を持つ。個々の領域の物理的寸法は、一般的に、外部応力が加わった時、高分子材料を通した割れ目の伝播を最小化するために十分小さいが、プラスチックの微小な変形を開始させ、粒子含有物の所およびその周りのせん断および/または応力強度ゾーンを可能にするために十分大きい。
ポリマーは非混和性でありうるが、それでもなおマイクロ包含添加剤は、マトリクスポリマーと比較的類似した溶解パラメータを持つように選択されうる。これは、個別相と連続相の境界の界面適合性および物理的相互作用を向上させ、従って組成物が砕ける可能性を減少させる。この点で、添加剤に対するマトリクスポリマーの溶解パラメータの比は、典型的に約0.5〜約1.5であり、一部の実施形態では約0.8〜約1.2である。例えば、マイクロ包含添加剤は、約15〜約30Mジュール1/2/m3/2、一部の実施形態では約18〜約22Mジュール1/2/m3/2の溶解パラメータを持つことがある一方、ポリ乳酸は、約20.5Mジュール1/2/m3/2の溶解パラメータを持ちうる。「溶解パラメータ」という用語は本書で使用される時、「ヒルデンブランド溶解パラメータ」を指すが、これは凝集エネルギー密度の平方根で、以下の等式に従って計算される:
ここで、
ΔHv = 蒸発熱
R = 理想気体定数
T = 温度
Vm = モル体積
多くのポリマーのヒルデンブランド溶解パラメータは、Wyeychのプラスチックの溶解性ハンドブック(2004年)からも利用可能で、これは参照により本書に組み込まれる。
マイクロ包含添加剤はまた、個別領域および結果生じる細孔が適切に維持されることを確実にするために一定のメルトフローレート(または粘度)を持ちうる。例えば、添加剤のメルトフローレートが高すぎると、流れて、連続相を通して制御されないで分散する傾向がある。これは、維持が難しく、また時期尚早に砕ける可能性の高い層状のプレート様領域または共連続相構造を生じる。反対に、添加剤のメルトフローレートが低すぎると、凝集して非常に大きな楕円形領域を形成する傾向があり、これは混合中に分散させることが困難である。これは、連続相の全体を通して、添加剤の不均一な分布を生じうる。この点で、本発明者は、マトリクスポリマーのフローレートに対するマイクロ包含添加剤のメルトフローレートの比は、一般的に約0.2〜約8、一部の実施形態では約0.5〜約6、および一部の実施形態では約1〜約5であることを発見した。例えば、マイクロ包含添加剤のメルトフローレートは、2160グラムの負荷および190℃で測定された場合、約0.1〜約250グラム/10分、一部の実施形態では約0.5〜約200グラム/10分、および一部の実施形態では約5〜約150グラム/10分でありうる。
上述の特性に加えて、マイクロ包含化添加剤の機械的特性も、望ましい多孔質ネットワークを達成するために選択されうる。例えば、マトリクスポリマーおよびマイクロ包含添加剤の混合物に外部力が加えられる時、添加剤とマトリクスポリマーの弾性係数の差から生じる応力集中の結果として、応力集中(例えば、垂直またはせん断応力を含む)およびせん断および/またはプラスチック降伏域が、個別相領域およびその周りで開始されることがありうる。応力集中が大きいほど、領域でのより強い局所的プラスチックの流れを促進し、これによって、応力が伝えられた時、領域が大きく伸長することが可能になる。これらの伸長領域は、組成物が硬質ポリエステル樹脂などである時、マトリクスポリマーよりもよりしなやかで柔軟な挙動を示すことを可能にする。応力集中を高めるために、マイクロ包含添加剤は、マトリクスポリマーと比べて比較的低いヤング弾性係数を持つように選択されうる。例えば、添加剤の弾性係数に対するマトリクスポリマーの弾性係数の比は、一般的に約1〜約250、一部の実施形態では約2〜約100、および一部の実施形態では約2〜約50である。マイクロ包含添加剤の弾性係数は、例えば、約2〜約1000メガパスカル(MPa)、一部の実施形態では約5〜約500 MPa、および一部の実施形態では約10〜約200 MPaの範囲でありうる。それとは反対に、ポリ乳酸の弾性係数は、例えば、一般的に約800 MPa〜約3000 MPaである。
上記で特定された特性を持つ多種多様のマイクロ包含添加剤を使用しうるが、このような添加剤の特に適切な例には、ポリオレフィン(例えば、ポリエチレン、ポリプロピレン、ポリブチレンなど)、スチレン共重合体(例えば、スチレン−ブタジエン−スチレン、スチレン−イソプレン−スチレン、スチレン−エチレン−プロピレン−スチレン、スチレン−エチレン−ブタジエン−スチレンなど)、ポリテトラフルオロエチレン、ポリエステル(例えば、再生ポリエステル、ポリエチレンテレフタレートなど)、ポリ酢酸ビニル(例えば、ポリ(エチレン酢酸ビニル)、ポリ塩化ビニル−酢酸ビニルなど)、ポリビニルアルコール(例えば、ポリビニルアルコール、ポリ(エチレンビニルアルコール)など)、ポリビニルブチラール、アクリル樹脂(例えば、ポリアクリル酸塩、ポリアクリル酸メチル、ポリメタクリル酸メチルなど)、ポリアミド(例えば、ナイロン)、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリスチレン、ポリウレタンなどの合成ポリマーを含みうる。適切なポリオレフィンには、例えば、エチレンポリマー(例えば、低密度ポリエチレン(「LDPE」)、高密度ポリエチレン(「HDPE」)、直鎖低密度ポリエチレン(「LLDPE」など)、プロピレンホモポリマー(例えば、シンジオタクチック、アタクチック、イソタクチックなど)、プロピレン共重合体などを含みうる。
一つの特定の実施形態では、ポリマーは、ホモポリプロピレンまたはプロピレンの共重合体など、プロピレンポリマーである。プロピレンポリマーは、例えば、実質的にイソタクチックポリプロピレン・ホモポリマーまたはその他のモノマーを約10重量%以下(すなわち、プロピレンの少なくとも約90重量%)を含む共重合体から形成されうる。このようなホモポリマーは、約160℃〜約170℃の融点を持ちうる。
また別の実施形態では、ポリオレフィンは、エチレンまたはプロピレンと別のα−オレフィン(C−C20 α−オレフィンまたはC−C12 α−オレフィンなど)の共重合体でありうる。適切なα−オレフィンの具体例には、1−ブテン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘキセン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘプテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−オクテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ノネン、エチル、メチルまたはジメチル置換1−デセン、1−ドデセン、およびスチレンを含む。特に望ましいα−オレフィンコモノマーは、1−ブテン、1−ヘキセンおよび1−オクテンである。このような共重合体のエチレンまたはプロピレン含量は、約60モル%〜約99モル%、一部の実施形態では約80モル%〜約98.5%、および一部の実施形態では約87モル%〜約97.5モル%でありうる。α−オレフィン含量は、同様に約1モル%〜約40モル%、一部の実施形態では約1.5モル%〜約15モル%、および一部の実施形態では約2.5モル%〜約13モル%の範囲でありうる。
本発明で使用するための模範的オレフィン共重合体には、テキサス州ヒューストンのExxonMobil Chemical CompanyからEXACT(商標)という名称で市販されているエチレンベースの共重合体を含む。その他の適切なエチレン共重合体は、ミシガン州ミッドランドのDow Chemical CompanyからENGAGE(商標)、AFFINITY(商標)、DOWLEX(商標)(LLDPE)およびATTANE(商標)(ULDPE)という名称で市販されている。その他の適切なエチレンポリマーは、Ewenらの米国特許第4,937,299号、Tsutsuiらの第5,218,071号、Laiらの第5,272,236号、およびLaiらの第5,278,272号に記述されている。適切なプロピレン共重合体も、ExxonMobil Chemical Co.(テキサス州ヒューストン)のVISTAMAXX(商標)、Atofina Chemicals(ベルギー、フェルイ)のFINA(商標)(例えば、8573)、三井石油化学工業のTAFMER(商標)、およびDow Chemical Co.(ミシガン州ミッドランド)のVERSIFY(商標)という名称で市販されている。適切なポリプロピレンホモポリマーには同様に、Exxon Mobil 3155ポリプロピレン、Exxon Mobil Achieve(商標)樹脂およびTotal M3661 PP樹脂を含みうる。プロピレンポリマーのその他の例は、Dattaらの米国特許第6,500,563号、Yangらの第5,539,056号、およびResconiらの第5,596,052号に記述されている。
さまざまな既知の技術のいずれでも、オレフィン共重合体を形成するために一般的に使用されうる。例えば、オレフィンポリマーは、フリーラジカルまたは配位触媒(例えば、チーグラー・ナッタ)を使用して形成されうる。好ましくは、オレフィンポリマーは、メタロセン触媒などの、単一部位配位触媒から形成される。このような触媒系は、コモノマーが、分子鎖内に無作為に分布され、異なる分子量分画にわたって均一に分布されたエチレン共重合体を生成する。メタロセン触媒によるポリオレフィンは、例えば、McAlpinらの米国特許第5,571,619号、Davisらの第5,322,728号、Obijeskiらの第5,472,775号、Laiらの第5,272,236号、およびWheatらの第6,090,325号に記述されている。メタロセン触媒の例には、ビス(n−ブチルシクロペンタジエニル)チタニウム・ジクロリド、ビス(n−ブチルシクロペンタジエニル)ジルコニウム・ジクロリド、ビス(シクロペンタジエニル)スカンジウム・クロリド、ビス(インデニル)ジルコニウム・ジクロリド、ビス(メチルシクロペンタジエニル)チタニウム・ジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウム・ジクロリド、コバルトセン、シクロペンタジエニルチタニウム・トリクロリド、フェロセン、ハフノセン・ジクロリド、イソプロピル(シクロペンタジエニル,−1−フルオレニル)ジルコニウム・ジクロリド、二塩化モリブドセン、ニッケロセン、二塩化ニオボセン、ルテノセン、二塩化チタノセン、ジルコノセンクロリドヒドリド、二塩化ジルコノセンなどを含む。メタロセン触媒を使用して作ったポリマーは、一般的に狭い分子量範囲を持つ。例えば、メタロセン触媒によるポリマーは、4より小さい多分散数(M/M)、制御された短鎖分岐分布、および制御されたイソタクシチシーを持ちうる。
使用する材料に関わらず、熱可塑性組成物中のマイクロ包含添加剤の相対的パーセントは、組成物の基本特性に大きく影響することなく、望ましい特性を達成するように選択される。例えば、強化添加剤は、マイクロ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約1重量%〜約30重量%、一部の実施形態では、約2重量%〜約25重量%、および一部の実施形態では約5重量%〜約20重量%の量で使用される。熱可塑性組成物全体のマイクロ包含添加剤の濃度は、同様に、約0.1重量%〜約30重量%、一部の実施形態では約0.5重量%〜約25重量%、および一部の実施形態では約1重量%〜約20重量%を占めうる。
C.ナノ包含添加剤
本明細書で使用される場合、「ナノ包含添加剤」という用語は、ポリマーマトリクス内にナノスケールサイズの個別領域の形態で分散されることのできる任意の非晶質、結晶または半結晶材料を一般的に指す。例えば、変形する前に、領域は、約1〜約1000ナノメートル、一部の実施形態では約5〜約800ナノメートル、一部の実施形態では約10〜約500ナノメートル、および一部の実施形態では約20〜約200ナノメートルの平均断面寸法を持ちうる。これも当然のことながら、ナノスケール領域はマイクロ包含添加剤およびナノ包含添加剤および/または組成物のその他の成分の組み合わせからも形成されうる。ナノ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.05重量%〜約20重量%、一部の実施形態では、約0.1重量%〜約10重量%、および一部の実施形態では約0.5重量%〜約5重量%の量で使用される。熱可塑性組成物全体のナノ包含添加剤の濃度は、同様に、約0.01重量%〜約15重量%、一部の実施形態では約0.05重量%〜約10重量%、および一部の実施形態では約0.3重量%〜約6重量%でありうる。
ナノ包含添加剤は高分子の性質であり、比較的高い分子量を持ち、熱可塑性組成物の溶融強度および安定性の改善に役立つ。ナノスケール領域中に分散するその能力を強化するために、ナノ包含添加剤は、マトリクスポリマーおよびマイクロ包含添加剤と一般的に適合する材料からも選択されうる。これは、マトリクスポリマーまたはマイクロ包含添加剤が、ポリエステルなどの極性部分を有する時、特に有用でありうる。一例では、このようなナノ包含添加剤は官能性ポリオレフィンである。例えば、極性成分は一つ以上の官能基によって提供され、非極性成分はオレフィンによって提供されうる。ナノ包含添加剤のオレフィン成分は、概して、上述のようなオレフィンモノマーから由来する任意の直鎖または分岐α−オレフィンモノマー、オリゴマー、またはポリマー(共重合体を含む)から形成されうる。
ナノ包含添加剤の官能基は、分子に極性成分を提供し、マトリクスポリマーと適合しない任意の基、分子セグメントおよび/またはブロックでありうる。ポリオレフィンと適合しない分子セグメントおよび/またはブロックの例には、アクリレート、スチレン、ポリエステル、ポリアミドなどが含まれうる。官能基は、イオン性質を持ち、荷電金属イオンを含みうる。特に適切な官能基は、無水マレイン酸、マレイン酸、フマル酸、マレイミド、マレイン酸ヒドラジド、無水マレイン酸とジアミンの反応生成物、メチルナド酸無水物、ジクロロマレイン酸無水物、マレイン酸アミドなどである。無水マレイン酸修飾ポリオレフィンは、本発明の使用に特に適している。このような修飾ポリオレフィンは、ポリマー骨格材料に無水マレイン酸をグラフトすることによって一般的に形成される。このようなマレイン酸化ポリオレフィンは、E. I. du Pont de Nemours and CompanyからFusabond(登録商標)という名前で市販されており、Pシリーズ(化学修飾ポリプロピレン)、Eシリーズ(化学修飾ポリエチレン)、Cシリーズ(化学修飾エチレン酢酸ビニル)、Aシリーズ(化学修飾エチレンアクリレート共重合体またはターポリマー)、またはNシリーズ(化学修飾エチレン−プロピレン、エチレン−プロピレンジエンモノマー(「EPDM」)またはエチレン−オクタン)などがある。別の方法として、マレイン酸化ポリオレフィンは、Polybond(登録商標)という名称でChemtura Corp.から、Eastman Gシリーズという名称でEastman Chemical Companyからも市販されている。
特定の実施形態では、ナノ包含添加剤も反応性でありうる。このような反応性のナノ包含添加剤の一例は、分子あたり平均して少なくとも二つのオキシレン環を含むポリエポキシドである。理論に制限されるものではないが、このようなポリエポキシド分子は、特定条件下でマトリクスポリマー(例えば、ポリエステル)の反応を誘発し、それによってガラス転移温度を大きく低下させることなく溶融強度を改善することができると考えられる。反応には、鎖延長、側差分岐、グラフト、共重合体形成などが伴いうる。例えば、鎖延長は、さまざまな異なる反応経路を通して起こりうる。例えば、修飾剤は、ポリエステルのカルボニル末端基を通して(エステル化)またはヒドロキシル基を通して(エーテル化)、求核的開環反応を可能にしうる。オキサゾリン副反応が同様に起こって、エステルアミド部分を形成しうる。このような反応を通して、マトリクスポリマーの分子量を増加させて、溶融処理中によく見られる分解に対抗しうる。上述のようにマトリクスポリマーの反応を誘発することが望ましい場合があるが、本発明者らは、反応が進みすぎると、ポリマー骨格間の架橋を生じうることを発見した。このような架橋がかなりの程度まで進むと、結果生じるポリマー混合物が脆くなって、望ましい強度および伸長特性を持つ材料へと処理することが困難になりうる。
この点で、本発明者は、比較的低いエポキシ官能性を持つポリエポキシドが特に効果的であり、これはその「エポキシ当量」によって定量化しうることを発見した。エポキシ当量は、エポキシ基の1分子を含む樹脂の量を反映し、これは、修飾剤の数平均分子量を分子中のエポキシ基の数で割ることによって計算されうる。本発明のポリエポキシドは、一般的に、約7,500〜約250,000グラム/モル、一部の実施形態では約15,000〜約150,000グラム/モル、および一部の実施形態では約20,000〜約100,000グラム/モルの範囲の数平均分子量を持ち、多分散指数は一般的に2.5〜7の範囲である。ポリエポキシドは、50個未満、一部の実施形態では5〜45個、および一部の実施形態では15〜40個のエポキシ基を含みうる。同じく、エポキシ当量は、約15,000/モル未満、一部の実施形態では約200〜約10,000グラム/モル、および一部の実施形態では約500〜約7,000グラム/モルでありうる。
ポリエポキシドは、末端エポキシ基、骨格オキシレン単位、および/または張り出したエポキシ基を含む、直鎖または分岐の、ホモポリマーまたは共重合体(例えば、ランダム、グラフト、ブロックなど)でありうる。このようなポリエポキシドを形成するために使用されるモノマーは異なりうる。一つの特定の実施形態では、例えば、ポリエポキシドは、少なくとも一つのエポキシ官能性(メタ)アクリルモノマー成分を含む。本書で使用される時、「(メタ)アクリル」という用語は、アクリルおよびメタクリルモノマー、並びにアクリレートおよびメタクリレートモノマーなど、その塩またはエステルを含む。例えば、適切なエポキシ官能性(メタ)アクリルモノマーには、アクリル酸グリシジルおよびメタクリル酸グリシジルなどの、1,2−エポキシ基を含むものが含まれうるがこれに限定されない。その他の適切なエポキシ官能性モノマーには、アリルグリシジルエーテル、エタクリル酸グリシジル、およびイタコン酸グリシジルが含まれる。
ポリエポキシドは、鎖延長をもたらすだけでなく、望ましい混合形態を達成するのに役立つように、上述のように比較的高い分子量を一般的に持つ。こうして、ポリマーの結果生じるメルトフローレートは、2160グラムの負荷および190℃で測定された場合、約10〜約200グラム/10分、一部の実施形態では約40〜約150グラム/10分、および一部の実施形態では約60〜約120グラム/10分でありうる。
必要に応じて、望ましい分子量を達成するのを助けるためにポリエポキシド中に追加的モノマーも使用しうる。このようなモノマーは異なることがあり、例えば、エステルモノマー、(メタ)アクリルモノマー、オレフィンモノマー、アミドモノマーなどを含みうる。一つの特定の実施形態では、例えば、ポリエポキシドは、2〜20個の炭素原子、好ましくは2〜8個の炭素原子を持つものなどの、少なくとも一つの直鎖または分岐α−オレフィンモノマーを含む。具体例には、エチレン、プロピレン、1−ブテン、3−メチル−1−ブテン、3,3−ジメチル−1−ブテン、1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ペンテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘキセン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ヘプテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−オクテン、一つ以上のメチル、エチルまたはプロピル置換基を持つ1−ノネン、エチル、メチルまたはジメチル置換1−デセン、1−ドデセン、およびスチレンを含む。特に望ましいα−オレフィンコモノマーは、エチレンおよびプロピレンである。
別の適切なモノマーには、エポキシ官能性でない(メタ)アクリルモノマーを含みうる。このような、(メタ)アクリルモノマーの例には、アクリル酸メチル、アクリル酸エチル、アクリル酸n−プロピル、アクリル酸i−プロピル、アクリル酸n−ブチル、アクリル酸s−ブチル、アクリル酸i−ブチル、アクリル酸t−ブチル、アクリル酸n−アミル、アクリル酸i−アミル、アクリル酸イソボルニル、アクリル酸n−ヘキシル、アクリル酸2−エチルブチル、アクリル酸2−エチルヘキシル、アクリル酸n−オクチル、アクリル酸n−デシル、アクリル酸メチルシクロヘキシル、アクリル酸シクロペンチル、アクリル酸シクロヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸2−ヒドロキシエチル、メタクリル酸n−プロピル、メタクリル酸n−ブチル、メタクリル酸i−プロピル、メタクリル酸i−ブチル、メタクリル酸n−アミル、メタクリル酸n−ヘキシル、メタクリル酸i−アミル、メタクリル酸s−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルブチル、メタクリル酸メチルシクロヘキシル、メタクリル酸シンナミル、メタクリル酸クロチル、メタクリル酸シクロヘキシル、メタクリル酸シクロペンチル、メタクリル酸2−エトキシエチル、メタクリル酸イソボルニルなど、並びにその組み合わせを含みうる。
本発明の特に望ましい一つの実施形態では、ポリエポキシドは、エポキシ官能性の(メタ)アクリル単量体成分、α−オレフィン単量体成分、および非エポキシ官能性の(メタ)アクリル単量体成分である。例えば、ポリエポキシドは、ポリ(エチレン−コ−メチルアクリレート−コ−グリシジルメタクリレート)であることがあり、これは以下の構造を持つ:
ここで、x、y、およびzは1以上である。
さまざまな既知の技術を使用して、エポキシ官能性モノマーをポリマーにしうる。例えば、極性官能基を含むモノマーは、ポリマー骨格にグラフトされてグラフト共重合体を形成しうる。このようなグラフト技術は、当技術分野でよく知られており、例えば、米国特許第5,179,164号に記述されている。その他の実施形態では、エポキシ官能基を含むモノマーは、高圧反応、チーグラー・ナッタ触媒反応系、単一部位触媒(例えば、メタロセン)反応系などの、既知のフリーラジカル重合技術を使用して、モノマーと共重合されてブロックまたはランダム共重合体を形成しうる。
単量体成分の相対的部分は、エポキシ反応性とメルトフローレートの間のバランスを達成するように選択されうる。より具体的には、高いエポキシモノマー含量は、マトリクスポリマーとの良好な反応性をもたらしうるが、含量が高すぎると、ポリエポキシドがポリマー混合物の溶融強度に悪影響を与えるほど、メルトフローレートを減少させうる。従って、ほとんどの実施形態では、エポキシ官能性(メタ)アクリルモノマーは、共重合体の約1重量%〜約25重量%、一部の実施形態では約2重量%〜約20重量%、および一部の実施形態では約4重量%〜約15重量%を占める。同様にα−オレフィンモノマーは、共重合体の約55重量%〜約95重量%、一部の実施形態では約60重量%〜約90重量%、および一部の実施形態では約65重量%〜約85重量%を占めうる。使用される場合、その他の単量体成分(例えば、非エポキシ官能性(メタ)アクリルモノマー)は、共重合体の約5重量%〜約35重量%、一部の実施形態では約8重量%〜約30重量%、および一部の実施形態では約10重量%〜約25重量%を占めうる。本発明で使用されうる、適切なポリエポキシドの一つの具体例は、LOTADER(登録商標) AX8950または AX8900という名前でArkemaから市販されている。例えば、LOTADER(登録商標) AX8950は、70〜100g/10分のメルトフローレートを持ち、7重量%〜11重量%のメタクリル酸グリシジルモノマー含量、13重量%〜17重量%のアクリル酸メチルモノマー含量、および72重量%〜80重量%のエチレンモノマー含量を持つ。別の適切なポリエポキシドは、ELVALOY(登録商標) PTWという名称でDuPontから市販されており、これはエチレン、ブチルアクリレート、およびグリシジルメタクリレートのターポリマーであり、12g/10分のメルトフローレートを持つ。
ポリエポキシドを形成するために使用するモノマーのタイプおよび相対的含量を制御することに加えて、望ましい利益を達成するために全体的重量パーセントも制御されうる。例えば、修飾レベルが低すぎると、溶融強度および機械的特性の望ましい増加が達成されないことがある。しかし本発明者は、修飾レベルが高すぎると、エポキシ官能基による強い分子間相互作用(例えば、架橋)および物理的ネットワーク形成のために、プロセスが制限されうることも発見した。従って、ポリエポキシドは、一般的に、組成物に使用されるマトリクスポリマーの重量に基づいて、約0.05重量%〜約10重量%、一部の実施形態では、約0.1重量%〜約8重量%、一部の実施形態では約0.5重量%〜約5重量%、および一部の実施形態では約1重量%〜約3重量%の量で使用される。またポリエポキシドは、組成物の総重量に基づいて、約0.05重量%〜約10重量%、一部の実施形態では約0.05重量%〜約8重量%、一部の実施形態では約0.1重量%〜約5重量%、および一部の実施形態では約0.5重量%〜約3重量%を占めうる。
オキサゾリン官能性化ポリマー、シアニド官能性化ポリマーなど、その他の反応性のナノ包含添加剤も本発明で使用しうる。使用された場合、このような反応性のナノ包含添加剤は、ポリエポキシドに対して上述の濃度内で使用されうる。一つの特定の実施形態では、オキサゾリン環を含むモノマーでグラフトされたポリオレフィンである、オキサゾリングラフト化ポリオレフィンが使用されうる。オキサゾリンには、2−ビニル−2−オキサゾリン(例えば、2−イソプロペニル−2−オキサゾリン)、2−脂肪−アルキル−2−オキサゾリン(例えば、オレイン酸、リノレン酸、パルミトオレイン酸、ガドレイン酸、エルカ酸および/またはアラキドン酸のエタノールアミドから取得可能)およびその組み合わせなどの、2−オキザロリンを含みうる。別の実施形態では、オキサゾリンは、例えば、マレイン酸リシノールオキサゾリン、ウンデシル−2−オキサゾリン、ソヤ−2−オキサゾリン、リシヌス−2−オキサゾリンおよびその組み合わせから選択されうる。また別の実施形態では、オキサゾリンは、2−イソプロペニル−2−オキサゾリン、2−イソプロペニル−4,4−ジメチル−2−オキサゾリンおよびその組み合わせから選択される。
カーボンブラック、カーボンナノチューブ、カーボンナノ繊維、ナノクレイ、金属ナノ粒子、ナノシリカ、ナノアルミナなどの、ナノフィラーも使用しうる。ナノクレイは特に適している。「ナノクレイ」という用語は、クレイ材料(天然鉱物、有機修飾された鉱物、または合成名の材料)のナノ粒子を一般的に指し、これは典型的には板状構造を持つ。ナノクレイの例には、例えば、モンモリロナイト(2:1層状スメクタイト粘土構造)、ベントナイト(モンモリロナイトで主に形成されたフィロケイ酸アルミニウム)、カオリナイト(1:1板状構造およびAlSi(OH))の経験式を持つ)アルミノケイ酸塩)、ハロイサイト(1:1管状構造およびAlSi(OH))を持つアルミノケイ酸塩などが含まれる。適切なナノクレイの一例はCloisite(登録商標)で、これは、モンモリロナイトナノクレイであり、Southern Clay Products, Inc.から市販されている。合成ナノクレイのその他の例には、混合金属水酸化物ナノクレイ、層状二重水酸化物ナノクレイ(例えば、セピオサイト)、ラポナイト、ヘクトライト、サポナイト、インドナイトなどが含まれるがこれらに限定されない。
望ましい場合、ナノクレイは、マトリクスポリマー(例えば、ポリエステル)との適合性を改善するのを助ける表面処理剤を含みうる。表面処理剤は有機または無機でありうる。一つの実施形態では、有機カチオンとクレイの反応によって得られる有機表面処理剤が用いられる。適切な有機カチオンには、例えば、ジメチルビス[水素化獣脂]塩化アンモニウム(2M2HT)、メチルベンジルビス[水素化獣脂]塩化アンモニウム(MB2HT)、メチルトリス[水素化獣脂アルキル]クロリド(M3HT)など、クレイとカチオンを交換することのできる有機第四級アンモニウム化合物を含みうる。市販されている有機ナノクレイの例には、例えば、ジメチルベンジル水素化獣脂アンモニウム塩で修飾されたモンモリロナイトクレイであるDellite(登録商標) 43B(イタリア、リボルノのLaviosa Chimica)が含まれうる。その他の例には、Cloisite(登録商標)25AおよびCloisite(登録商標)30B(Southern Clay Products)およびNanofil 919(Svd Chemie)が含まれる。望ましい場合、ナノフィラーを担体樹脂と混合して、添加剤と組成物のその他のポリマーとの適合性を向上させるマスターバッチを形成できる。特に適切な担体樹脂には、上記にさらに記述されるように、例えば、ポリエステル(例えば、ポリ乳酸、ポリエチレンテレフタル酸など)、ポリオレフィン(例えば、エチレンポリマー、プロピレンポリマーなど)などが含まれる。
本発明の特定の実施形態では、複数のナノ包含添加剤を組み合わせて使用しうる。例えば、第一のナノ包含添加剤(例:ポリエポキシド)は、約50〜約500ナノメートル、一部の実施形態では約60〜約400ナノメートル、および一部の実施形態では約80〜約300ナノメートルの平均断面寸法を持つ領域の形態で分散されうる。第二のナノ包含添加剤(例えば、ナノフィラー)は、約1〜約50ナノメートル、一部の実施形態では約2〜約45ナノメートル、および一部の実施形態では約5〜約40ナノメートルの平均断面寸法を持つものなど、第一のナノ包含添加剤より小さい領域の形態でも分散されうる。用いられる時、第一および/または第二のナノ包含添加剤は一般的に、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.05重量%〜約20重量%、一部の実施形態では、約0.1重量%〜約10重量%、および一部の実施形態では約0.5重量%〜約5重量%の量を占める。熱可塑性組成物全体の第一および/または第二のナノ包含添加剤の濃度は、同様に、熱可塑性組成物の約0.01重量%〜約15重量%、一部の実施形態では約0.05重量%〜約10重量%、および一部の実施形態では約0.1重量%〜約8重量%でありうる。
D.その他の成分
さまざまな異なる理由で、組成物には多種多様な原料を使用しうる。例えば、一つの特定の実施形態では、熱可塑性組成物に相間修飾剤を使用して、マイクロ包含添加剤とマトリクスポリマーの間の摩擦および結合性の程度を減らすのを助け、そのため剥離の程度および均一性を向上させうる。このように、細孔は、組成物全体に渡って実質的に均一な様式で分布されうる。修飾剤は、比較的低い粘度を持ち、熱可塑性組成物により容易に組み込むことができ、ポリマー表面に簡単に移動できるよう、室温(例えば、25℃)で液体または半固体の形態でありうる。この点で、相間修飾剤の動粘度は、40℃で測定された時、一般的に約0.7〜約200センチストーク(「cs」)、一部の実施形態では、約1〜約100cs、および一部の実施形態では約1.5〜約80csである。さらに、相間修飾剤は、マイクロ包含添加剤に対する親和性を持ち、例えばマトリクスポリマーと添加剤との間の界面張力の変化を生じるように、一般的に疎水性でもある。マトリクスポリマーとマイクロ包含添加剤との間の界面での物理的力を減らすことによって、修飾剤の低粘度、疎水性の性質が剥離の促進を助けることができると考えられる。本書で使用されるとき、「疎水性」という用語は、一般的に、空気中の水の接触角が約40度以上、一部の場合は約60度以上の材料を指す。対照的に、「親水性」という用語は、一般的に、空気中の水の接触角が約40度未満の材料を指す。接触角の測定のための一つの適切な試験はASTM D5725−99(2008年)である。
適切な疎水性、低粘度の相間修飾剤には、例えば、シリコン、シリコン−ポリエステル共重合体、脂肪族ポリエステル、芳香族ポリエステル、アルキレングリコール(例えば、エチエングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコールなど)、アルカンジオール(例えば、1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、2,2,4−トリメチル−1,6ヘキサンジオール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、2,2,4,4,−テトラメチル−1,3−シクロブタンジオールなど)、アミンオキシド(例えば、オクチルジメチルアミン・オキシド)、脂肪酸エステル、脂肪酸アミド(例えば、オレアミド、エルカミド、ステアラミド、エチレンビス(ステアラミド)など)、鉱物、および植物油などを含みうる。一つの特に適切な液体および半固体はポリエーテルポリオールであり、BASF Corp.からPluriol(登録商標)WIという商標名で市販されているものなどがある。別の適切な修飾剤は、部分的に再生可能なエステルであり、HallstarからHALLGREEN(登録商標)IMという名称で市販されているものなどがある。
用いられる時、相間修飾剤は、連続相(マトリクスポリマー)の重量に基づいて、熱可塑性組成物の約0.1重量%〜約20重量%、一部の実施形態では、約0.5重量%〜約15重量%、および一部の実施形態では約1重量%〜約10重量%の量を占めうる。熱可塑性組成物全体の相間修飾剤の濃度も、同様に、約0.05重量%〜約20重量%、一部の実施形態では約0.1重量%〜約15重量%、および一部の実施形態では約0.5重量%〜約10重量%を占めうる。
上述の量で使用された時、相間修飾剤は、熱可塑性組成物の全体的溶解特性を妨げることなく、ポリマーの界面に容易に移動し、剥離を促進することを可能にする特徴を持つ。例えば、相間修飾剤は、ガラス転移温度を低下させることによる、ポリマーに対する可塑化効果は一般的に持たない。これとは対照的に、本発明者らは、熱可塑性組成物のガラス転移温度は、初めのマトリクスポリマーと実質的に同じでありうることを発見した。この点で、マトリクスポリマーのガラス転移温度に対する組成物のガラス転移温度の比は、一般的に約0.7〜約1.3、一部の実施形態では約0.8〜約1.2、および一部の実施形態では約0.9〜約1.1である。熱可塑性組成物は、例えば、約35℃〜約80℃、一部の実施形態では約40℃〜約80℃、および一部の実施形態では約50℃〜約65℃のガラス転移温度を持ちうる。熱可塑性組成物のメルトフローレートも、マトリクスポリマーのメルトフローレートと同様でありうる。例えば、組成物のメルトフローレート(ドライベース)もまた、2160グラムの負荷および190℃で測定された場合、約0.1〜約70グラム/10分、一部の実施形態では約0.5〜約50グラム/10分、および一部の実施形態では約5〜約25グラム/10分でありうる。
界面接着を改善し、領域とマトリクスの間の界面張力を減らして、それによって混合中のより小さな領域の形成を可能にする相溶化剤も用いうる。適切な相溶化剤の例には、例えば、エポキシまたは無水マレイン酸化学部分で官能化された共重合体が含まれる。無水マレイン酸相溶化剤の例は、ポリプロピレン−グラフト化−無水マレイン酸で、これはOrevac(商標)18750およびOrevac(商標)CA 100の商標でArkemaから市販されている。用いられる時、相溶化剤は、連続相マトリクスの重量に基づいて、熱可塑性組成物の約0.05重量%〜約10重量%、一部の実施形態では、約0.1重量%〜約8重量%、および一部の実施形態では約0.5重量%〜約5重量%の量を占めうる。
熱可塑性組成物に使用されうるその他の適切な材料には、触媒、抗酸化剤、安定剤、界面活性剤、ワックス、固体溶剤、充填剤、核形成剤(例えば、炭酸カルシウムなど)、微粒子、ならびに熱可塑性組成物の処理可能性および機械的特性を高めるために追加されるその他の材料が含まれうる。いずれにしても、本発明の一つの有益な側面は、発泡剤(例えば、クロロフルオロカーボン、ヒドロクロロフルオロカーボン、炭化水素、二酸化炭素、超臨界二酸化炭素、窒素など)および可塑剤(例えば、固体または半固体のポリエチレングリコール)など、さまざまな従来的添加剤を必要とすることなく、良好な特性が提供されうることである。実際、熱可塑性組成物は、一般的に発泡剤および/または可塑剤を含まない場合がある。例えば、発泡剤および/または可塑剤は、熱可塑性組成物の約1重量%以下、一部の実施形態では約0.5重量%以下、および一部の実施形態では約0.001重量%〜約0.2重量%の量で存在しうる。さらに、以下で詳述されるその応力白化特性のために、結果として生じる組成物は、二酸化チタンなどの従来的色素を必要とすることなく、不透明色(例えば、白色)を達成しうる。特定の実施形態では、例えば、色素は、熱可塑性組成物の約1重量%以下、一部の実施形態では約0.5重量%以下、および一部の実施形態では約0.001重量%〜約0.2重量%の量で存在しうる。
II.高分子材料
高分子材料の最初の熱可塑性組成物を形成するために、成分は典型的には、さまざまな既知の技術のいずれかを使用して混合される。一つの実施形態では、例えば、組成物は別々に、または組み合わせて供給されうる。例えば、組成物は、まず乾燥混合されて基本的に均一な乾燥混合物を形成し、同様に、分散的に材料を混合する溶融処理装置に同時または順番に供給されうる。バッチおよび/または連続溶融処理技術を用いうる。例えば、ミキサー/混練機、バンバリーミキサー、ファレル連続ミキサー、単軸スクリュー押出機、二軸スクリュー押出機、ロールミルなどを使用して、材料を混合し溶融処理しうる。特に適切な溶融処理装置は、共回転、二軸スクリュー押出機(例えば、Werner & Pfleiderer Corporation(ニュージャージー州ラムジー)から入手可能なZSK−30押出機またはThermo Electron Corp.(イギリス、ストーン)から入手可能なThermo Prism(商標) USALAB 16押出機でありうる。このような押出機は、供給ポートおよび換気ポートを含み、強力な分配・分散混合をもたらす。例えば、成分は二軸スクリュー押出機の同じまたは異なる供給ポートに供給され溶融混合されて、実質的に均一な溶融混合物を形成しうる。必要に応じて、その他の添加剤も、ポリマー溶解物に注入および/または押出機の長さに沿った異なる点で押出機に別々に供給されうる。
結果得られる溶融混合された組成物は、上述のようなマイクロ包含添加剤のマイクロスケール領域およびナノ包含添加剤のナノスケール領域を含みうる。せん断/圧力および熱の程度は、十分な分散を確実にするが、望ましい特性を達成できないほど領域のサイズを不利に減少させないように制御されうる。例えば、混合は一般的に、約180℃〜約300℃、一部の実施形態では約185℃〜約250℃、および一部の実施形態では約190℃〜約240℃の温度で起こる。同様に、溶融処理中の見かけのせん断速度は、約10秒−1〜約3000秒−1、一部の実施形態では約50秒−1〜約2000秒−1、および一部の実施形態では約100秒−1〜約1200秒−1の範囲でありうる。見かけのせん断速度は、4Q/πRと等しい場合があり、ここでQはポリマー溶融物の体積流量(「m/秒」)であり、Rは溶融ポリマーの流れが通るキャピラリー(例えは、押出機金型)の半径(「m」)である。もちろん、押出し量に反比例する溶融処理中の滞留時間など、その他の変数も、均一の望ましい程度を達成するために制御されうる。
望ましいせん断条件(例えば、速度、滞留時間、せん断速度、溶融処理温度など)を達成するために、押出機スクリュー速度を、特定の範囲に選択しうる。一般的に、システムへの追加的な機械エネルギーの投入のために、スクリュー速度の増加と共に、製品温度の上昇が見られる。例えば、スクリュー速度は、約50〜約600回転/分(「rpm」)、一部の実施形態では約70〜500rpm、および一部の実施形態では約100〜約300rpmの範囲でありうる。これは、結果として生じる領域のサイズに悪影響を与えることなく、マイクロ包含添加剤を分散するために十分高い温度をもたらしうる。溶融せん断速度、および同様に添加剤が分散される程度も、押出機の混合セクション内での一つ以上の分配および/または分散混合成分の使用を通して増加させうる。単軸スクリュー押出機のための適切な分配ミキサーには、例えば、Saxon、Dulmage、Cavity Transferミキサーなどが含まれうる。同様に、適切な分散ミキサーには、Blisterリング、Leroy/Maddock、CRDミキサーなどが含まれうる。当技術分野でよく知られているように、Buss Kneader押出機、Cavity Transferミキサー、およびVortex Intermeshing Pin(VIP)ミキサーで使用されるものなど、混合は、ポリマー溶融物の折り畳みおよび再配列を生成するバレルのピンの使用によって、さらに改善されうる。
結果得られる高分子材料は、フィラメント、フィルム、繊維状材料など、並びに複合材およびそれらの積層板など、さまざまに異なる形状を持ちうる。いずれにしても、多孔質ネットワークは、長さ方向(例えば、流れ方向または「x」方向)、幅方向(例えば、幅方向または「y」方向)、高さ方向(例えば、「z」方向)、およびそれらの組み合わせなどの変形歪みに材料をさらすことにより、三次元印刷の前、最中および/または後に、高分子材料中に導入されうる。一つの実施形態では、例えば、高分子材料は望ましい形状(例えば、フィラメント)に形成されて、望ましい変形を受け、その後三次元プリンターシステムに供給されうる。また別の実施形態では、材料は印刷され、その後に使用者などによって、望ましい変形を受けうる。当然、材料は望ましい形状に成形される際に、その場でも変形されうる。さまざまな技術のいずれでも、高分子材料を変形させるために一般的に使用されうる。例えば、特定の場合、高分子材料は使用者によって単に曲げられるかまたは折り畳まれうる。またその他の実施形態では、吸引(例えば、繊維延伸ユニット)、引張フレーム延伸、二軸延伸、多軸延伸、プロファイル延伸、真空延伸などの、さまざまな延伸技術を使用しうる。
選択される技術に関わらず、変形の程度は、延伸されている材料の性質に一部依存するが、一般的には望ましい多孔質ネットワークが達成されるのを確実にするように選択される。この点で、組成物は、約1.1〜約3.5、一部の実施形態では約1.2〜約3.0、および一部の実施形態では約1.3〜約2.5の延伸比に(例えば、流れ方向に)変形される。「延伸比」は、延伸材料の長さを延伸前のその長さで割ることによって決定されうる。延伸率も、望ましい特性の達成を助けるために、例えば約5%〜約1500%/変形分、一部の実施形態では約20%〜約1000%/変形分、および一部の実施形態では約25%〜約850%/変形分の範囲内で変化しうる。材料は、変形中、マトリクスポリマーおよびマイクロ包含添加剤のガラス転移温度より下の温度に一般的に保たれる。とりわけ、これは、多孔質ネットワークが不安定になる程度までポリマー鎖が変えられないことを確実にするのに役に立つ。例えば、材料は、マトリクスポリマーのガラス転移温度より少なくとも約10℃、一部の実施形態では約20℃、および一部の実施形態では約30℃下の温度で変形されうる。例えば、材料は、約−50℃〜約50℃、一部の実施形態では約−25℃〜約40℃、および一部の実施形態では約−20℃〜約35℃の温度で変形されうる。材料は典型的には外部熱(例えば、加熱ロール)を適用することなく変形されるが、このような熱を随意に利用して、処理可能性を改善し、延伸力を低減し、延伸速度を増加させ、材料の均一性を改善しうる。
多孔質ネットワークの形成に加えて、変形は、マイクロスケール領域の軸方向寸法も大幅に増加させて、一般的に直線的で細長い形状を持つようにしうる。例えば、細長いマイクロスケール領域は、延伸前の領域の軸方向寸法よりも約10%以上、一部の実施形態では約20%〜約500%、および一部の実施形態では約50%〜約250%大きな平均軸方向寸法を持ちうる。変形後の軸方向寸法は、例えば、約0.5〜約250マイクロメートル、一部の実施形態では約1〜約100マイクロメートル、一部の実施形態では約2〜約50マイクロメートル、および一部の実施形態では約5〜約25マイクロメートルの範囲でありうる。マイクロスケール領域は比較的薄いこともあり、従って、約0.05〜約50マイクロメートル、一部の実施形態では約0.2〜約10マイクロメートル、および一部の実施形態では0.5〜約5マイクロメートルなど、小さな断面寸法を持ちうる。これは、約2〜約150、一部の実施形態では約3〜約100、および一部の実施形態では約4〜約50の第一の領域のアスペクト比(断面寸法に対する軸方向寸法の比)をもたらしうる。
変形後、結果得られる高分子材料は一般的に多孔質であり、例えば、約15%〜約80%/cm、一部の実施形態では約20%〜約70%、および一部の実施形態では材料の立方センチメートルあたり約30%〜約60%である多孔質ネットワークを定義する。上述のように、このような高い細孔容量の存在は高分子材料の柔軟性を強化することができる。一つの実施形態では、例えば、高分子材料は、ASTM D638−10に従って23℃で測定された場合、約2500メガパスカル(「MPa」)以下、一部の実施形態では約2200MPa以下、一部の実施形態では約50MPa〜約2000MPa、および一部の実施形態では約100MPa〜約1000MPaの弾性係数を示しうる。高い細孔容量の存在はその他の利益も提供できる。例えば、材料の比較的高い細孔容量は、材料の密度を大幅に低下させることもでき、これはより軽く、より柔軟で、それでもなお良好な特性を達成する材料の使用を可能にしうる。例えば材料は、約1.2グラム/立方センチメートル(「g/cm」)以下、一部の実施形態では約1.0g/cm以下、一部の実施形態では約0.2g/cm〜約0.8g/cm、および一部の実施形態では約0.1g/cm〜約0.5g/cmなど、比較的低い密度を持ちうる。
III.三次元印刷
上述のように、本発明の高分子材料のユニークな構造は、印刷中にそれが物理的変形を受け、複雑な三次元構造を作り出すのをより簡単にする。高分子材料は、三次元構造を形成する構築材料および/または形成後に三次元構造から除去される支持材料として用いられうる。用いられる方法に関わらず、高分子材料は、シート、フィルム、繊維、フィラメントなど、さまざまに異なる形状で三次元プリンターに供給されうる。一つの特定の実施形態では、高分子材料は、米国特許第6,923,634号(Swansonら)および第7,122,246号(Combら)に記述されるように、フィラメントの形態で供給される。例えば、このようなフィラメントは、約0.1〜約20ミリメートル、一部の実施形態では約0.5〜約10ミリメートル、および一部の実施形態では約1〜約5ミリメートルの平均直径を持つ。
本発明の高分子材料は、プリンターシステムに組み込むために容易に適合されるプリンターカートリッジ内に、一般的に含まれる。例えば、プリンターカートリッジは、高分子材料を保持するスプールまたはその他の類似の装置を含む。例えば、フィラメントの形態で供給される時、スプールは、その周りにフィラメントが巻かれる概して円筒形の縁を持ちうる。スプールは同様に、使用中にそれをプリンターに容易に取り付けられるようにする、孔またはスピンドルを画定しうる。例えば、図4を参照すると、その周りにフィラメント188が巻かれる外縁を含むスプール186の一つの実施形態が示されている。概して円筒形の孔190も、その周りに複数のスポーク225が軸方向に位置付けられるスプール186の中央領域内に画定される。
必要ではないが、プリンターカートリッジは、スプールを囲み従って使用前に外部環境からフィラメントを保護するハウジング構造も含みうる。例えば、図4では、キャニスター本体216および、一緒に結合してスプール186を囲むための内部チャンバーを画定する蓋218を含む、このようなカートリッジ184の一つの実施形態が示されている。この実施形態では、蓋218は第一の不品ドル227を含み、キャニスター本体216は第二のスピンドル(非表示)を含む。スプール186は、キャニスター本体および/または蓋が孔190の中に位置付けられるように位置付けられうる。とりわけ、これは使用中にスプール186が回転することを可能にしうる。バネ板222もスパイク付きフィンガを持つ蓋218の内側に取り付けられうるが、フィンガは曲げられて、フィラメントをカートリッジ184の外へ進ませる方向にのみスプール186の回転をさらに増強する。示されていないが、ガイドブロックが出口224でキャニスター本体216に取り付けられて、プリンターシステムへのフィラメント188の出口経路を提供しうる。ガイドブロックは、穴232を通って延長できる一式のねじ(非表示)によってキャニスター本体216に固定されうる。
高分子材料が、ポリ乳酸などの湿度に敏感な材料を含む時、使用前にカートリッジ184を密閉することが一般的に望ましい。例えば、非透湿性材料223(例えば、テープ)を用いて、蓋218をキャニスター本体216に密閉するのを助けうる。湿度は、穴226を通してキャニスター本体216の内部チャンバーから取り出すことができ、穴はその後プラグ228で密閉できる。非透湿性材料230は、プラグ228の上にも位置付けて、穴226をさらに密閉しうる。カートリッジ184を密閉する前に、それを乾燥して望ましい水分含量を達成しうる。例えば、カートリッジ184は、真空条件下、オーブンで乾燥されうる。同様に、乾燥材料も、スプール186のスポーク225によって画定された区画内など、カートリッジ184内に配置されうる。完全に組み立てられたら、カートリッジ184は随意に、非透湿性パッケージ内に密閉されうる。
一般的に、さまざまな三次元プリンターのどれでも、本発明に用いられうる。特に適したプリンターシステムは押出ベースシステムで、これはしばしば「熱溶解積層法」システムと呼ばれる。例えば図1を参照すると、三次元構築構造24および対応する指示構造26を含む前駆物体を印刷するために用いられうる押出ベースの三次元プリンターシステム10の一つの実施形態が示されている。図示された特定の実施形態では、システムは構築チャンバー12ならびに供給源20および22を含む。上述のように、本発明の高分子材料を使用して、構築構造24および/または支持構造26を形成しうる。このように、例えば、高分子材料を含むプリンターカートリッジが供給源20および/または22として提供されうる。本発明の高分子材料が構築構造または支持構造にのみ用いられる実施形態では、当然のことながらその他の任意の従来的材料がもう一方の構造のために用いられうる。例えば、特定の実施形態では、本発明の高分子材料を使用して構築構造24を形成しうる。このような実施形態では、支持構造26に適した材料には、構築構造24を損傷することなく便利な方法で支持構造26を除去するのに適している、水および/またはアルカリ水溶液に可溶性または少なくとも部分的に可溶性の従来的材料を含みうる。このような材料の例には、「SR10」、「SR20」、および「SR30」Soluble Support(Stratasys, Inc.)の商標で市販されているもの、および米国特許第6,070,107号(Lombardiら)、第6,228,923号(Lombardiら)、第6,790,403号(Priedemanら)および第7,754,807号(Priedemanら)に記述されたものが含まれうる。
構築構造24のための材料は、供給源20から供給ライン28を通って印刷ヘッド18に供給され、支持構造26のための支持材料は供給源30から供給ライン30を通って印刷ヘッド18に供給される。同様に構築チャンバー12はプラテン14およびガントリー16を含む。プラテン14は構築構造24および支持構造26がその上に構築されるプラットフォームである。プラテン14は、コンピュータ操作コントローラ28から提供される信号に基づいて垂直z−軸に沿って移動することが望ましい。ガントリー16は、コントローラ28から提供される信号に基づいて、望ましくは構築チャンバー12内の水平x−y平面で印刷ヘッド18を移動するように構成されたガイドレールシステムである。水平x−y平面は、x−軸およびy−軸(非表示)によって定義される平面であり、x−軸、y−軸、およびz−軸は互いに直交する。代替的実施形態では、プラテン14は、構築チャンバー12内の水平x−y平面を移動するように構成されうる一方、印刷ヘッド18はz−軸に沿って移動するように構成されうる。プラテン14の一つまたは両方および印刷ヘッド18が互いに対して移動可能であるように、その他の類似の配置も用いられうる。
印刷ヘッド18はガントリー16によって支持され、コントローラ28から提供される信号に基づいて、一層ごとの方法でプラテン14上の構築構造24および支持構造26を印刷するように構成される。例えば、図1に示される実施形態では、印刷ヘッド18は、それぞれ供給源20および供給源22からの構築および支持材料を堆積するように構成された二重先端押出ヘッドである。このような押出ヘッドの例は、米国特許第5,503,785号(Crumpら)、第6,004,124号(Swansonら)、第7,604,470号(LaBossiereら)および第7,625,200号(Leavitt)に詳細に記述されている。システム10は、一つ以上の先端からの構築材料および/または支持材料を堆積するためのその他の印刷ヘッドも含みうる。示されるように、印刷ヘッド18は、駆動機構32および34ならびに液化装置組立品36および38を含む。印刷操作中、ガントリー16は印刷ヘッド18を構築チャンバー12内の水平x−y平面で移動させ、駆動機構32および34は、供給源20および32からの構築材料および支持材料を液化装置組立品36および38を通して断続的に供給するように方向付けられている。別の実施形態では、印刷ヘッド18は、米国特許第5,764,521号(Batchelderら)および第7,891,964号(Skubicら)に記述されるように、多段スクリューポンプとして機能しうる。
図2に示されるように、構築構造24は、構築材料の一連の連続相としてプラテン14上に印刷され、支持構造26は同様に、構築構造24の印刷と協調して一連の連続相として印刷される。例示実施形態では、構築構造24は、上面40、四つの外側面44(図3A)、および底面46(図3A)を持つ単純なブロック型の物体として示されている。決して必要ではないが、この実施形態の支持構造26は、構築構造24の層を少なくとも部分的に封入するように堆積される。例えば、支持構造26は、構築構造24の外側面および底面を封入するように印刷されうる。当然、別の実施形態では、システム10はさまざまに異なる形状を持つ三次元物体を印刷しうる。このような実施形態では、システム10は、対応する支持構造も印刷する場合があり、これは随意に三次元物体を少なくとも部分的に封入する。
図3A〜3Cは、上述の方法で、三次元構築構造24および支持構造26を印刷するプロセスを図示している。図3Aに示されるように、構築構造24の各層は一連の層42に印刷されて、構築構造24の形状を定義する。この実施形態では、支持構造26の各層は、三次元構築構造24の層42の印刷と協調して一連の層48に印刷され、支持構造26の印刷層48は、構築構造24の外側面44および底面46を封入する。例示実施形態では、上面40は支持構造26の層48によって封入されていない。印刷操作の完了後、支持構造26が構築構造24から除去されて三次元物体27を作りだす。例えば、支持材料が水またはアルカリ水溶液に少なくとも部分的に可溶性である実施形態では、結果得られる物体は、水および/またはアルカリ水溶液浴に浸漬されて支持構造26を溶解させうる。
本発明は、以下の例を参照してより良く理解されうる。
試験方法
引張特性:
材料は、引張特性(ピーク応力、係数、破壊歪み、および破断時の容積あたりのエネルギー)に対してMTS Synergie200引張フレームで試験しうる。試験はASTM D638−10(約23℃)に従って実施されうる。サンプルは、試験前に、中央の幅が3.0mmの犬用の骨の形にカットされうる。犬用の骨の形のサンプルは、MTS Synergie 200装置のグリップを使用して、18.0mmのゲージ長さで定位置に保持されうる。サンプルは、破断が起こるまで5.0インチ/分のクロスヘッド速度で延伸されうる。5つのサンプルを、流れ方向(MD)および幅方向(CD)の両方で試験しうる。コンピュータプログラム(例えば、TestWorks 4)を使用して、試験中のデータを収集し、応力対歪み曲線を生成し、それから係数、ピーク応力、伸長、および破断までのエネルギーを含む多くの特性を決定しうる。
メルトフローレート:
メルトフローレート(「MFR」)は、一般的に190℃、210℃、または230℃で、2160グラム/10分の負荷をかけた時、押出レオメーター口(直径0.0825インチ)を通して押し出されるポリマーの重量(グラム)である。別段の指示がない限り、メルトフローレートは、Tinius Olsen Extrusion PlastometerでASTM試験方法D1239に従って測定される。
熱特性:
ガラス転移温度(T)は、ASTM E1640−09に従って、動的機械分析(DMA)で決定されうる。TA Instruments社のA Q800機器を使用しうる。実験は、張力/張力形状で、−120℃〜150℃の温度掃引モード、3℃/分の加熱率で実行されうる。歪振動振幅周波数は、試験中、一定(2Hz)に保ちうる。3つの独立サンプルを試験して、平均ガラス転移温度を得るが、これはtan δ曲線の最大値によって定義され、ここでδは、貯蔵弾性率に対する損失弾性率の比(tan δ=E”/E’)として定義される。
溶融温度は、示差走査熱量測定(DSC)によって決定されうる。示差走査熱量測定計は、DSC Q100示差走査熱量計とすることができ、これには液体窒素冷却付属品およびUNIVERSAL ANALYSIS 2000(バージョン4.6.6)分析ソフトウェアプログラムを取り付けることができ、これらは両方ともT.A. Instruments Inc.(デラウェア州ニューキャッスル)から入手可能である。サンプルを直接取り扱うことを避けるために、ピンセットまたはその他のツールを使用しうる。サンプルはアルミニウム皿に入れて、化学てんびんで0.01ミリグラムの精度まで秤量する。材料サンプルの皿の上にふたを圧着させうる。一般的に、樹脂ペレットは秤量皿に直接置いてよい。
示差走査熱量計は、示差走査熱量計の操作マニュアルに記述されるように、インジウム金属標準を使用して較正することができ、基準線補正を実施しうる。材料サンプルは、試験のために示差走査熱量計の試験チャンバーに配置することができ、空の皿を対照として使用しうる。すべての試験は、試験チャンバーへの55立方センチメートル/分の窒素(産業グレード)パージで実行しうる。樹脂ペレットサンプルについては、加熱および冷却プログラムは2サイクル試験であり、−30℃へのチャンバーの平衡化で始まり、次に10℃/分の加熱速度での温度200℃への第一の加熱期間、続いて200℃で3分間のサンプルの平衡化、その後10℃/分の冷却速度での温度−30℃への第一の冷却期間、次に−30℃への3分間のサンプルの平衡化、そして温度200℃への10℃/分の加熱速度での第二の加熱期間が続く。繊維サンプルについては、加熱および冷却プログラムは1サイクル試験であり、−25℃へのチャンバーの平衡化で始まり、次に10℃/分の加熱速度での温度200℃への加熱期間、続いて200℃で3分間のサンプルの平衡化、その後10℃/分の冷却速度での温度−30℃への冷却期間が続く。すべての試験は、試験チャンバーへの55立方センチメートル/分の窒素(産業グレード)パージで実行しうる。
結果は、変曲点のガラス転移温度(T)、吸熱ピークと発熱ピーク、およびDSCプロットのピーク下面積を特定・定量するUNIVERSAL ANALYSIS 2000分析ソフトウェアプログラムを使用して評価しうる。ガラス転移温度は、傾きの明らかな変化が起こるプロットライン上の領域として特定でき、溶融温度は、自動変曲点計算を使用して決定しうる。
密度および細孔容量パーセント:
密度および細孔容量パーセントを決定するために、延伸の前に、標本の幅(W)および厚さ(T)が最初に測定されうる。延伸前の長さ(L)も、標本の表面上の二つのマークの間の距離を測定することによって決定された。その後、標本を延伸して空隙化を開始しうる。次に、Digimatic Caliper(株式会社ミツトヨ)を使用して、標本の幅(W)、厚さ(T)、および長さ(L)が直近の0.01mmまで測定された。延伸前の体積(V)は、W×T×L=Vで計算されうる。延伸後の体積(V)も、W×T×L=Vで計算されうる。密度(P)は、P=P/Φで計算され、ここでPは、前駆材料の密度であり、細孔容量パーセント(%V)は、%V=(1-1/Φ)×100で計算されうる。
水分含量:
水分含量は、Arizona Instruments Computrac Vapor Pro水分分析器(モデル番号3100)を使用して、ASTM D 7191−05に実質的に従って決定することができ、これは参照によりすべての目的に対してその全体が本明細書に組み込まれる。試験温度(§X2.1.2)は130℃、サンプルサイズ(§X2.1.1)は2〜4グラム、およびバイアルパージ時間(§X2.1.4)は30秒としうる。さらに、終了基準(§X2.1.3)は、「予測」モードとして定義でき、これはプログラムされた内蔵基準(これは数学的に終了点水分含量を計算する)が満足された時に試験が終了することを意味する。
高分子材料内にユニークな多孔質ネットワークを作る能力が実証された。最初に、熱可塑性組成物が、85.3重量%のポリ乳酸(PLA 6201D、Natureworks(登録商標))、9.5重量%のマイクロ包含添加剤、1.4重量%のナノ包含添加剤、および3.8重量%の内部界面修飾剤から形成された。マイクロ包含添加剤はVistamaxx(商標) 2120(ExxonMobil)で、これは、メルトフローレート29g/10分(190℃、2160g)および密度0.866g/cmのポリプロピレン−ポリエチレン共重合体エラストマーである。ナノ包含添加剤は、5〜6g/10分(190℃/2160g)のメルトフローレート、7〜11重量%のメタクリル酸グリシジル含量、13〜17重量%のアクリル酸メチル含量、および72〜80重量%のエチレン含量を持つ、ポリ(エチレン−コ−アクリル酸メチル−コ−メタクリル酸グリシジル)(Lotader(登録商標) AX8900、Arkema)であった。内部界面修飾剤はBASF社のPLURIOL(登録商標) WI 285潤滑油で、これはポリアルキレングリコール機能液であった。
ポリマーは混合のために、Werner and Pfleiderer Corporation(ニュージャージー州ラムジー)製の共回転、2軸スクリュー押出機(ZSK−30、直径30mm、長さ1328ミリメートル)に供給された。押出機は14個のゾーンを持ち、これらは供給ホッパーから金型へと1から14まで連続的に番号付けされている。第一のバレルゾーン番号1が、重量測定供給器を通して15ポンド/時間の合計押出量で樹脂を受け取った。PLURIOL(登録商標) WI285が、注入ポンプでバレルゾーン番号2に加えられた。樹脂を押し出すために使用された金型は、4ミリメートル離れた3つの金型開口部(直径6ミリメートル)を持っていた。形成されると、押出された樹脂は、ファン冷却コンベヤー上で冷却され、Conairペレタイザーでペレットに成形された。押出機スクリュー速度は200回転/分(「rpm」)であった。次にペレットは、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、36μm〜54μmの範囲の厚さに延伸された。キャビテーションおよび空隙形成を開始するために、材料は流れ方向に約100%延伸された。
形態が、延伸の前後に走査電子顕微鏡法(SEM)で分析された。結果が図5〜8に示されている。図5〜6に示されるように、マイクロ包含添加剤は、約2〜約30マイクロメートルの軸方向サイズ(流れ方向)および約1〜約3マイクロメートルの横寸法(幅方向)を持つ領域に初めに分散されたのに対して、ナノ包含添加剤は、約100〜約300ナノメートルの軸方向サイズを持つ半球または回転楕円状の領域として最初に分散された。図7〜8は延伸後の材料を示す。図に示されるように、細孔が包含添加剤の周りに形成された。マイクロ包含添加剤の周りに形成されたマイクロ細孔は、軸方向に約2〜約20マイクロメートルの範囲の広いサイズ分布の細長いまたはスリット様の形状を一般的に持っていた。ナノ包含添加剤に関連するナノ細孔は一般的に、約50〜約500ナノメートルのサイズであった。
実施例1の複合ペレットは、第三の包含添加剤と乾燥混合されたが、これは22重量%のスチレン共重合体修飾ナノクレイおよび78重量%のポリプロピレン(Exxon Mobil 3155)を含むハロイサイトクレイマスターバッチ(MacroComp MNH−731−36、MacroM)であった。混合比率はペレット90重量%およびクレイマスターバッチ10重量%で、これは2.2%の合計クレイ含量をもたらした。次に乾燥混合物は、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、51〜58μmの範囲の厚さに延伸された。キャビテーションおよび空隙形成を開始するために、材料は流れ方向に約100%延伸された。
材料の形態は、延伸の前後に走査電子顕微鏡法(SEM)で分析された。結果が図9〜12に示されている。図9〜10に示されるように、(明るい領域として見える)ナノクレイ粒子の一部は非常に小さな領域(すなわち、約50〜約300ナノメートルの範囲の軸方向寸法)の形態で分散された。マスターバッチ自体も、マイクロスケールサイズ(約1〜約5マイクロメートルの軸方向寸法)領域を形成した。また、マイクロ包含添加剤(Vistamaxx(商標))は細長い領域を形成した一方、ナノ包含添加剤(非常に小さな暗い点として見えるLotader(登録商標))およびナノクレイマスターバッチは回転楕円状の領域を形成した。延伸材料が図11〜12に示されている。示されるように、空隙構造がさらに開いており、細孔径の幅広さを示している。第一の包含物(Vistamaxx(商標))によって形成される非常に細長いマイクロ細孔に加えて、ナノクレイマスターバッチ包含物は、約10ミクロン以下の軸方向サイズおよび約2ミクロンの横サイズを持つより開いた回転楕円状のマイクロ細孔を形成した。球状ナノ細孔も、第二の包含添加剤(Lotader(登録商標))および第三の包含添加剤(ナノクレイ粒子)によって形成される。
ユニークな特性を持つ高分子材料を作る能力が実証された。最初に、85.3重量%のPLA 6201D、9.5重量%のVistamaxx(商標)2120、1.4重量%のLotader(登録商標)AX8900、および3.8重量%のPLURIOL(登録商標) WI285の混合物が形成された。ポリマーは混合のために、Werner and Pfleiderer Corporation(ニュージャージー州ラムジー)製の共回転、2軸スクリュー押出機(ZSK−30、直径30mm、長さ1328ミリメートル)に供給された。押出機は14個のゾーンを持ち、これらは供給ホッパーから金型へと1から14まで連続的に番号付けされている。第一のバレルゾーン番号1が、重量測定供給器を通して15ポンド/時間の合計押出量で樹脂を受け取った。PLURIOL(登録商標) WI285が、注入ポンプでバレルゾーン番号2に加えられた。樹脂を押し出すために使用された金型は、4ミリメートル離れた3つの金型開口部(直径6ミリメートル)を持っていた。形成されると、押出された樹脂は、ファン冷却コンベヤー上で冷却され、Conairペレタイザーでペレットに成形された。押出機スクリュー速度は200回転/分(「rpm」)であった。次にペレットは、212℃に加熱された単軸スクリュー押出機に供給され、ここで溶融混合物は4.5インチ幅のスリットを通して排出され、0.54〜0.58mmの範囲の厚さに延伸された。
実施例3に記述されたようにペレットが形成されて、25:1のL/D比でRheomix 252単軸スクリュー押出機に供給され、212℃温度まで加熱されたが、ここで溶融混合物はHaake 6インチ幅のsキャストフィルムダイスを通って排出されて、Haake巻き取りロールによって39.4μm〜50.8μmの範囲の厚さに延伸された。材料は、ゲージ長さ75mmの握りのMTS Synergie 200引張フレームを使用して、50mm/分の引張速度で160%の縦変形まで(67%/分の変形率)、流れ方向に延伸された。
材料が、50mmのゲージ長さの握り、50mm/分の引張速度(100%/分の変形率)で、100%の変形まで幅方向にも延伸されたこと以外、材料は実施例4に記述されたように形成された。実施例7〜8の材料のさまざまな特性が、上述のように試験された。結果が以下の表に記載されている。
材料特性
引張特性
実施例1の複合ペレットは、200℃の温度、2ポンド/時間で2軸スクリュー押出機(PRISM USALAB−16、Thermo−Scientific社製)に供給された。化合物は、直径3mmの円形金型口を通して押し出され、次に溶融延伸で狭めて、1.75mmの呼び径を持つフィラメントを形成した。フィラメントはスプールに集められ、次に熱溶解積層法三次元プリンター(CubeX Trio、3−D systems社製)に取り付けられた。印刷前、三次元システムから得られた従来的なポリ乳酸材料を使用して、サポート(「ラフト」としても知られる)が作られた。次に、スプールされたフィラメントを使用して、さまざまな三次元形状が印刷されたが、これには2mmの高さおよび20mmの直径を持つ円、2mmの高さおよび20mmの長さを持つ正方形、および2mmの高さ、16mmの内径、および20mmの外径を持つチューブが含まれた。印刷温度はプリンターにより制御され、印刷される形状の部分に応じて、190℃〜250℃の範囲であった。印刷後、形状は、手でストレスを加えられ、曲げられて、物体の細孔形成を開始した。
プリンターに装填される前に、フィラメントを二つの駆動ニップロールの間で延伸して細孔形成を開始したことを除いて、形状は実施例6に記述されたように印刷された。延伸中、フィラメントの直径は1.75mmに維持されたが、長さは25%増加した。
ガラガラヘビの牙(横方向に沿って半分に切断)が、実施例6に記述されたのと同じ方法で印刷された。この実施例では、追加的支持構造も、実施例6のフィラメントを使用して印刷された。
本発明は、その特定の実施形態に関して詳細に記述されているが、当然のことながら、当業者であれば、上記の理解を得ることで、これらの実施形態に対する改造、その変形、およびそれとの等価物をすぐに思いつくことができる。従って、本発明の範囲は、添付した請求項およびその任意の等価物の範囲として評価されるべきである。
特許請求の範囲に記載の数値限定に「約」が記載されているか否かにかかわらず、本発明の技術思想に鑑みて、実質的に同一の範囲を含むものである。

Claims (20)

  1. 三次元プリンターシステムに使用するためのプリンターカートリッジであって、前記プリンターカートリッジが高分子材料を保持するスプールを含み、前記高分子材料が、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成され、さらにマイクロ包含添加剤およびナノ包含添加剤が前記連続相内に個別領域の形態で分散されているプリンターカートリッジ。
  2. 前記高分子材料がフィラメントの形態である、請求項1に記載のプリンターカートリッジ。
  3. 前記フィラメントが前記スプールの縁の周りに巻かれる、請求項2に記載のプリンターカートリッジ。
  4. 前記高分子材料の密度が、約1.2g/cm以下、好ましくは約1.0g/cm以下、より好ましくは約0.2g/cm〜約0.8g/cm、さらにより好ましくは約0.1g/cm〜約0.5g/cmである、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  5. 前記高分子材料の弾性係数が約2500MPa以下、好ましくは約2200MPa以下、より好ましくは約50MPa〜約2000MPa、およびさらにより好ましくは約100MPa〜約1000MPaである、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  6. 約15%〜約80%/cm、好ましくは約20%〜約70%、より好ましくは約30%〜約60%/立方センチメートルの平均細孔容量を持つ材料など、前記高分子材料に多孔質ネットワークが定義される、前述の請求項のいずれかに記載のプリンターカートリッジ。
  7. 前記多孔質ネットワークが、約800ナノメートル以下、および好ましくは約10〜約100ナノメートルの平均断面寸法を持つ複数のナノ細孔を含む、請求項6に記載のプリンターカートリッジ。
  8. ナノ細孔が前記材料の合計細孔容量の約20容量%以上を構成する、請求項7に記載のプリンターカートリッジ。
  9. 前記多孔質ネットワークが、約1〜約30のアスペクト比を持つマイクロ細孔などのマイクロ細孔をさらに含む、請求項7または8に記載のプリンターカートリッジ。
  10. 前記連続相が、前記熱可塑性組成物の約60重量%〜約99重量%を構成する、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  11. 前記マトリクスポリマーがポリ乳酸などのポリエステルを含む、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  12. 前記マイクロ包含添加剤がポリオレフィンなどの高分子である、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  13. 前記マイクロ包含添加剤の溶解パラメータに対する前記マトリクスポリマーの溶解パラメータの比率が約0.5〜約1.5、前記マイクロ包含添加剤のメルトフローレートに対する前記マトリクスポリマーのメルトフローレートの比率が約0.2〜約8、および/または前記マイクロ包含添加剤のヤング弾性係数の前記マトリクスポリマーのヤング弾性係数に対する比率が約1〜約250である、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  14. 前記ナノ包含添加剤がポリエポキシドなどの高分子である、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  15. 前記マイクロ包含添加剤が前記連続相の重量に基づいて前記組成物の約1重量%〜約30重量%を構成する、および/または、前記ナノ包含添加剤が前記連続相の重量に基づいて前記組成物の約0.05重量%〜約20重量%を構成する、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  16. 前記熱可塑性組成物が界面修飾剤をさらに含む、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  17. 概して円筒形の孔が前記スプールの中央領域内に定義される、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  18. 前記スプールを囲むハウジング構造をさらに含む、前述の請求項のいずれか一項に記載のプリンターカートリッジ。
  19. 三次元プリンターおよび前述の請求項のいずれか一項に記載のプリンターカートリッジを含むシステム。
  20. 三次元物体を形成するための方法であって、前記方法が、構築材料の一式の連続層として三次元構造を印刷する工程、および随意に支持材料から支持構造を印刷する工程を含み、ここで前記構築材料、支持材料、または両方が、マトリクスポリマーを含む連続相を含有する熱可塑性組成物から形成される高分子材料を含み、さらにマイクロ包含添加剤およびナノ包含添加剤が個別領域の形態で前記連続相内に分散されている方法。

JP2016532763A 2013-08-09 2014-07-09 三次元印刷用高分子材料 Withdrawn JP2016532579A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361863944P 2013-08-09 2013-08-09
US61/863,944 2013-08-09
PCT/IB2014/062976 WO2015019212A1 (en) 2013-08-09 2014-07-09 Polymeric material for three-dimensional printing

Publications (1)

Publication Number Publication Date
JP2016532579A true JP2016532579A (ja) 2016-10-20

Family

ID=52460727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016532763A Withdrawn JP2016532579A (ja) 2013-08-09 2014-07-09 三次元印刷用高分子材料

Country Status (11)

Country Link
US (1) US10919229B2 (ja)
EP (1) EP3030402B1 (ja)
JP (1) JP2016532579A (ja)
KR (1) KR102208200B1 (ja)
CN (1) CN105408093B (ja)
AU (1) AU2014304190B2 (ja)
BR (1) BR112016002263B1 (ja)
MX (1) MX2016001597A (ja)
RU (1) RU2016107779A (ja)
SG (1) SG11201601712QA (ja)
WO (1) WO2015019212A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204642A (ja) * 2015-04-24 2016-12-08 ゼロックス コーポレイションXerox Corporation 3d印刷のためのコポリマー
JP2017197627A (ja) * 2016-04-26 2017-11-02 日本ポリプロ株式会社 熱溶融積層方式造形用ポリプロピレン系樹脂組成物およびストランド
WO2018110685A1 (ja) * 2016-12-15 2018-06-21 日本合成化学工業株式会社 造形材料、造形物および造形物の製造方法
WO2019225318A1 (ja) * 2018-05-23 2019-11-28 コニカミノルタ株式会社 立体造形用重合性組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JP2021126772A (ja) * 2020-02-10 2021-09-02 富士フイルムビジネスイノベーション株式会社 三次元造形用フィラメント、三次元造形物、三次元造形方法、及び三次元造形装置
JP2021130250A (ja) * 2020-02-20 2021-09-09 東ソー株式会社 3dプリンター用樹脂組成物およびフィラメント状成形体
JP2022000348A (ja) * 2015-12-11 2022-01-04 コベストロ (ネザーランズ) ビー.ブイ. 3dプリンティング方法
JP2023514966A (ja) * 2020-02-26 2023-04-12 ジャビル インク 付加製造物品の層内と層間の接着を改善する方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968517B2 (en) 2012-08-03 2015-03-03 First Quality Tissue, Llc Soft through air dried tissue
CN106715100B (zh) * 2014-05-09 2019-11-15 苏州聚复高分子材料有限公司 用于材料挤出式增材制造的高结晶聚乳酸线材
US11391000B2 (en) 2014-05-16 2022-07-19 First Quality Tissue, Llc Flushable wipe and method of forming the same
JP6860774B2 (ja) * 2014-07-14 2021-04-21 学校法人同志社 熱溶解積層型3次元プリンタ用フィラメントの製造方法
WO2016035889A1 (ja) * 2014-09-05 2016-03-10 Mcppイノベーション合同会社 3次元プリンター成形用フィラメント及び結晶性軟質樹脂成形体の製造方法
WO2016037563A1 (en) * 2014-09-09 2016-03-17 Jf Polymers (Suzhou) Co., Ltd. Polymeric composition for use as a temporary support material in extrusion based additive manufacturing
US9771487B2 (en) * 2014-11-10 2017-09-26 Xerox Corporation Method of three-dimensional printing
WO2016077594A1 (en) 2014-11-12 2016-05-19 First Quality Tissue, Llc Cannabis fiber, absorbent cellulosic structures containing cannabis fiber and methods of making the same
US10786948B2 (en) 2014-11-18 2020-09-29 Sigma Labs, Inc. Multi-sensor quality inference and control for additive manufacturing processes
WO2016086019A1 (en) 2014-11-24 2016-06-02 First Quality Tissue, Llc Soft tissue produced using a structured fabric and energy efficient pressing
EP3221134A4 (en) 2014-12-05 2018-08-22 Structured I, LLC Manufacturing process for papermaking belts using 3d printing technology
WO2016090286A1 (en) 2014-12-05 2016-06-09 University Of Florida Research Foundation, Inc. 3d printing using phase changing materials as support
US11007705B2 (en) 2015-02-13 2021-05-18 University Of Florida Research Foundation, Inc. High speed 3D printing system for wound and tissue replacement
JP6430853B2 (ja) * 2015-02-18 2018-11-28 株式会社ミューチュアル 溶融積層造形型3dプリンタ用の水溶性サポート材
JP6446707B2 (ja) * 2015-03-13 2019-01-09 三菱ケミカル株式会社 3次元プリンター成形用フィラメント、及び樹脂成形体の製造方法
US9962922B2 (en) 2015-04-24 2018-05-08 Xerox Corporation Polyesteramide for 3D printing
US9938666B2 (en) 2015-05-01 2018-04-10 The Procter & Gamble Company Unitary deflection member for making fibrous structures having increased surface area and process for making same
US9976261B2 (en) 2015-05-01 2018-05-22 The Procter & Gamble Company Unitary deflection member for making fibrous structures having increased surface area and process for making same
US10933577B2 (en) 2015-05-01 2021-03-02 The Procter & Gamble Company Unitary deflection member for making fibrous structures having increased surface area and process for making same
WO2016182969A1 (en) 2015-05-08 2016-11-17 University Of Florida Research Foundation, Inc. Growth media for three-dimensional cell culture
JP6481496B2 (ja) * 2015-05-13 2019-03-13 三菱ケミカル株式会社 材料押出式3次元プリンター用フィラメント用樹脂
EP3310961A1 (en) 2015-06-19 2018-04-25 The Procter and Gamble Company Seamless unitary deflection member for making fibrous structures having increased surface area
US11027483B2 (en) 2015-09-03 2021-06-08 University Of Florida Research Foundation, Inc. Valve incorporating temporary phase change material
US10207489B2 (en) 2015-09-30 2019-02-19 Sigma Labs, Inc. Systems and methods for additive manufacturing operations
US10538882B2 (en) 2015-10-13 2020-01-21 Structured I, Llc Disposable towel produced with large volume surface depressions
US10544547B2 (en) 2015-10-13 2020-01-28 First Quality Tissue, Llc Disposable towel produced with large volume surface depressions
MX2018004622A (es) 2015-10-14 2019-05-06 First Quality Tissue Llc Producto empaquetado y sistema y metodo para formar el mismo.
US10229769B2 (en) 2015-11-20 2019-03-12 Xerox Corporation Three phase immiscible polymer-metal blends for high conductivty composites
WO2017096263A1 (en) * 2015-12-04 2017-06-08 University Of Florida Research Foundation, Incorporated Crosslinkable or functionalizable polymers for 3d printing of soft materials
US20170197371A1 (en) * 2016-01-11 2017-07-13 University Of Massachusetts Method and apparatus for making a composite
CN109154143A (zh) 2016-02-11 2019-01-04 结构 I 有限责任公司 用于造纸机的包括聚合物层的带或织物
US11168227B2 (en) 2016-03-11 2021-11-09 Covestro (Netherlands) B.V. Fused filament printing
CA3016186C (en) 2016-03-24 2020-04-14 The Procter & Gamble Company Unitary deflection member for making fibrous structures
CA3016066C (en) 2016-03-24 2021-04-06 The Procter & Gamble Company Unitary deflection member for making fibrous structures
US11248071B2 (en) 2016-04-01 2022-02-15 Arkema Inc. 3-D printed fluoropolymer structures
WO2017173258A1 (en) 2016-04-01 2017-10-05 Arkema Inc. 3-d printed fluoropolymer structures
US20170314206A1 (en) 2016-04-27 2017-11-02 First Quality Tissue, Llc Soft, low lint, through air dried tissue and method of forming the same
KR20190004748A (ko) * 2016-05-03 2019-01-14 토탈 리서치 앤드 테크놀로지 펠루이 3d 인쇄된 pla 물품
EP3463880B1 (en) * 2016-06-01 2022-12-14 Arkema, Inc. Dimensionally stable acrylic alloy for 3-d printing
WO2018005459A1 (en) * 2016-06-29 2018-01-04 Sabic Global Technologies B.V. Additive manufacturing spool including moisture absorbing material
WO2018025703A1 (ja) * 2016-08-05 2018-02-08 花王株式会社 三次元造形用可溶性材料の製造方法
JP2018024849A (ja) * 2016-08-05 2018-02-15 花王株式会社 三次元造形用可溶性材料の製造方法
EP4050155A1 (en) 2016-08-26 2022-08-31 Structured I, LLC Absorbent structures with high wet strength, absorbency, and softness
WO2018044300A1 (en) * 2016-08-31 2018-03-08 Hewlett-Packard Development Company, L.P. Additive manufacturing powder distribution
US11124644B2 (en) 2016-09-01 2021-09-21 University Of Florida Research Foundation, Inc. Organic microgel system for 3D printing of silicone structures
EP3510196A4 (en) 2016-09-12 2020-02-19 Structured I, LLC SHAPER OF WATER-DEPOSIT BRAID USING A STRUCTURED FABRIC AS THE OUTER WIRE
US10676865B2 (en) 2016-10-27 2020-06-09 The Procter & Gamble Company Deflecting member for making fibrous structures
WO2018081498A1 (en) 2016-10-27 2018-05-03 The Procter & Gamble Company Deflection member for making fibrous structures
US10683614B2 (en) 2016-10-27 2020-06-16 The Procter & Gamble Company Deflecting member for making fibrous structures
US10865521B2 (en) 2016-10-27 2020-12-15 The Procter & Gamble Company Deflecting member for making fibrous structures
US11583489B2 (en) 2016-11-18 2023-02-21 First Quality Tissue, Llc Flushable wipe and method of forming the same
US10343304B1 (en) * 2017-01-25 2019-07-09 Lockheed Martin Corporation Polymer composites containing carbon nanotubes and methods related thereto
WO2018203768A1 (ru) * 2017-05-03 2018-11-08 Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" Способ аддитивного производства изделий из композитных материалов, армированных непрерывными волокнами
KR101939155B1 (ko) * 2017-05-17 2019-01-16 신안산대학교 산학협력단 변형 방지 노즐 구조를 구비한 3d 프린터
KR102217758B1 (ko) 2017-05-29 2021-02-22 스트라타시스 엘티디. 박리가능한 희생 구조물의 적층 가공을 위한 방법 및 시스템
KR101957893B1 (ko) * 2017-06-23 2019-06-27 주식회사 팡세 3d 프린팅용 조성물 및 이를 이용한 3d 프린터
JP6507203B2 (ja) 2017-07-13 2019-04-24 フドー株式会社 成形品の製造方法および製造装置
US10619309B2 (en) 2017-08-23 2020-04-14 Structured I, Llc Tissue product made using laser engraved structuring belt
US11396725B2 (en) 2017-10-27 2022-07-26 The Procter & Gamble Company Deflecting member for making fibrous structures
RU179144U1 (ru) * 2017-11-29 2018-04-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Башкирский государственный университет" Устройство для изготовления трехмерных прототипов с использованием высоконаполненных армированных полимерных материалов
RU2676989C1 (ru) * 2017-12-01 2019-01-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ формирования изделий путем трехмерной послойной печати с воздействием СВЧ электромагнитного поля и ультразвука
WO2019130292A1 (en) * 2017-12-28 2019-07-04 Stratasys Ltd. Method and system for additive manufacturing of peelable sacrificial structure
DE102018200010A1 (de) 2018-01-02 2019-07-04 Ford Global Technologies, Llc Additives Fertigungsverfahren
US20190330766A1 (en) * 2018-04-28 2019-10-31 Dennis Joseph Steibel, JR. Apparatus for removing moisture from a section of polymer filament
WO2019221733A1 (en) 2018-05-17 2019-11-21 Hewlett-Packard Development Company, L.P. Three-dimensional printing
DE102018114748A1 (de) 2018-06-20 2019-12-24 Voith Patent Gmbh Laminierte Papiermaschinenbespannung
US11738927B2 (en) 2018-06-21 2023-08-29 First Quality Tissue, Llc Bundled product and system and method for forming the same
US11697538B2 (en) 2018-06-21 2023-07-11 First Quality Tissue, Llc Bundled product and system and method for forming the same
US10828838B2 (en) * 2018-09-06 2020-11-10 Xerox Corporation 3D printing support structures incorporating sacrificial materials
CN112714689B (zh) 2018-09-27 2022-11-15 斯特拉塔西斯公司 用于具有供简易移除的牺牲结构的增材制造的方法及系统
EP3738747A1 (en) * 2019-05-13 2020-11-18 Henkel AG & Co. KGaA Contactless 3d printing method
EP4013600A1 (en) 2019-08-16 2022-06-22 Covestro (Netherlands) B.V. Spool for supporting a filament and filament spool
WO2021231966A1 (en) * 2020-05-15 2021-11-18 Braskem America, Inc. Polyolefins having improved dimensional stability in three-dimensional printing, articles formed therefrom, and methods thereof
WO2021248057A1 (en) * 2020-06-05 2021-12-09 Dc Precision Ceramics, Llc Manufacturing systems and methods for three-dimensional printing
WO2022081913A1 (en) * 2020-10-15 2022-04-21 Applied Cavitation, Inc. Systems and methods for production of materials useful in additive manufacturing
WO2022204128A1 (en) * 2021-03-22 2022-09-29 Braskem America, Inc. Fiber-blended heterophasic copolymer for additive-manufacture feedstock
US12071539B2 (en) 2021-04-19 2024-08-27 Jabil Inc. Elastomeric additive manufacturing composition

Family Cites Families (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423255A (en) 1965-03-31 1969-01-21 Westinghouse Electric Corp Semiconductor integrated circuits and method of making the same
DE2048006B2 (de) 1969-10-01 1980-10-30 Asahi Kasei Kogyo K.K., Osaka (Japan) Verfahren und Vorrichtung zur Herstellung einer breiten Vliesbahn
CA948388A (en) 1970-02-27 1974-06-04 Paul B. Hansen Pattern bonded continuous filament web
GB1453447A (en) 1972-09-06 1976-10-20 Kimberly Clark Co Nonwoven thermoplastic fabric
US4100324A (en) 1974-03-26 1978-07-11 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
US4282735A (en) 1979-04-02 1981-08-11 Van Mark Products Corporation Brake for sheet metal or the like
US4731266A (en) 1981-06-03 1988-03-15 Rhone-Poulenc, S.A. Water-resistant polyvinyl alcohol film and its application to the preparation of gas-impermeable composite articles
US4374888A (en) 1981-09-25 1983-02-22 Kimberly-Clark Corporation Nonwoven laminate for recreation fabric
US4937299A (en) 1983-06-06 1990-06-26 Exxon Research & Engineering Company Process and catalyst for producing reactor blend polyolefins
US4557132A (en) 1984-02-03 1985-12-10 Tapco Products Company, Inc. Sheet bending brake
US4698372A (en) 1985-09-09 1987-10-06 E. I. Du Pont De Nemours And Company Microporous polymeric films and process for their manufacture
US4741944A (en) 1986-07-30 1988-05-03 Kimberly-Clark Corporation Wet wipe and wipe dispensing arrangement
ATE79386T1 (de) 1986-12-19 1992-08-15 Akzo Nv Herstellung von polymilchsaeure und copolymeren daraus.
US4766029A (en) 1987-01-23 1988-08-23 Kimberly-Clark Corporation Semi-permeable nonwoven laminate
US5179164A (en) 1988-02-20 1993-01-12 Basf Aktiengesellschaft Thermoplastic polypropylene/polyamide molding composition
USD315990S (en) 1988-08-04 1991-04-09 Kimberly-Clark Corporation Embossed wipe or similar article
US5218071A (en) 1988-12-26 1993-06-08 Mitsui Petrochemical Industries, Ltd. Ethylene random copolymers
US5169706A (en) 1990-01-10 1992-12-08 Kimberly-Clark Corporation Low stress relaxation composite elastic material
US5213881A (en) 1990-06-18 1993-05-25 Kimberly-Clark Corporation Nonwoven web with improved barrier properties
US5464688A (en) 1990-06-18 1995-11-07 Kimberly-Clark Corporation Nonwoven web laminates with improved barrier properties
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
CA2048905C (en) 1990-12-21 1998-08-11 Cherie H. Everhart High pulp content nonwoven composite fabric
US5278272A (en) 1991-10-15 1994-01-11 The Dow Chemical Company Elastic substantialy linear olefin polymers
US5743129A (en) 1991-11-26 1998-04-28 Tapco International Corporation Heavy duty sheet bending brake
US6326458B1 (en) 1992-01-24 2001-12-04 Cargill, Inc. Continuous process for the manufacture of lactide and lactide polymers
US5470944A (en) 1992-02-13 1995-11-28 Arch Development Corporation Production of high molecular weight polylactic acid
US5350624A (en) 1992-10-05 1994-09-27 Kimberly-Clark Corporation Abrasion resistant fibrous nonwoven composite structure
US5322728A (en) 1992-11-24 1994-06-21 Exxon Chemical Patents, Inc. Fibers of polyolefin polymers
IT1256260B (it) 1992-12-30 1995-11-29 Montecatini Tecnologie Srl Polipropilene atattico
US5472775A (en) 1993-08-17 1995-12-05 The Dow Chemical Company Elastic materials and articles therefrom
US6093665A (en) 1993-09-30 2000-07-25 Kimberly-Clark Worldwide, Inc. Pattern bonded nonwoven fabrics
WO1995015819A1 (en) 1993-12-07 1995-06-15 Northwestern University Reconstituted polymeric materials
CA2123330C (en) 1993-12-23 2004-08-31 Ruth Lisa Levy Ribbed clothlike nonwoven fabric and process for making same
USD358035S (en) 1994-01-10 1995-05-09 Kimberly-Clark Corporation Embossed wipe
US5571619A (en) 1994-05-24 1996-11-05 Exxon Chemical Patents, Inc. Fibers and oriented films of polypropylene higher α-olefin copolymers
US5503785A (en) 1994-06-02 1996-04-02 Stratasys, Inc. Process of support removal for fused deposition modeling
US6065476A (en) * 1994-12-21 2000-05-23 Board Of Regents, University Of Texas System Method of enhancing surface porosity of biodegradable implants
US5539056A (en) 1995-01-31 1996-07-23 Exxon Chemical Patents Inc. Thermoplastic elastomers
US5540332A (en) 1995-04-07 1996-07-30 Kimberly-Clark Corporation Wet wipes having improved dispensability
US5770682A (en) 1995-07-25 1998-06-23 Shimadzu Corporation Method for producing polylactic acid
DE69631305T2 (de) 1995-07-25 2004-11-18 Toyota Jidosha K.K., Toyota Verfahren zur Herstellung von Polymilchsäure
DE69618227T2 (de) 1995-11-01 2002-08-14 Kimberly-Clark Worldwide, Inc. Mit antimikrobiellen zusammensetzungen getränkte tücher
US5764521A (en) 1995-11-13 1998-06-09 Stratasys Inc. Method and apparatus for solid prototyping
JP3588907B2 (ja) 1996-03-22 2004-11-17 トヨタ自動車株式会社 ポリ乳酸の製造方法
USD384819S (en) 1996-03-22 1997-10-14 Kimberly-Clark Corporation Top surface of a wipe
US5667635A (en) 1996-09-18 1997-09-16 Kimberly-Clark Worldwide, Inc. Flushable premoistened personal wipe
US6028018A (en) 1996-07-24 2000-02-22 Kimberly-Clark Worldwide, Inc. Wet wipes with improved softness
USD384508S (en) 1996-08-22 1997-10-07 Kimberly-Clark Worldwide, Inc. Wipe
USD390708S (en) 1996-10-31 1998-02-17 Kimberly-Clark Worldwide, Inc. Pattern for a bonded fabric
US5962112A (en) 1996-12-19 1999-10-05 Kimberly-Clark Worldwide, Inc. Wipers comprising point unbonded webs
US5912076A (en) 1996-12-31 1999-06-15 Kimberly-Clark Worldwide, Inc. Blends of polyethylene and peo having inverse phase morphology and method of making the blends
US6228923B1 (en) 1997-04-02 2001-05-08 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6070107A (en) 1997-04-02 2000-05-30 Stratasys, Inc. Water soluble rapid prototyping support and mold material
US6090325A (en) 1997-09-24 2000-07-18 Fina Technology, Inc. Biaxially-oriented metallocene-based polypropylene films
US6004124A (en) 1998-01-26 1999-12-21 Stratasys, Inc. Thin-wall tube liquifier
USD418305S (en) 1998-09-24 2000-01-04 Kimberly-Clark Worldwide, Inc. Wipe
CA2286960C (en) 1998-10-20 2004-11-23 Pallmann Maschinenfabrik Gmbh & Co. Kg. Gas flow-type chipping machine
US6479003B1 (en) 1998-11-18 2002-11-12 Northwestern University Processes of mixing, compatibilizing, and/or recylcing blends of polymer materials through solid state shear pulverization, and products by such processes
US6103255A (en) 1999-04-16 2000-08-15 Rutgers, The State University Porous polymer scaffolds for tissue engineering
US6776602B2 (en) * 1999-04-20 2004-08-17 Stratasys, Inc. Filament cassette and loading system
WO2000062994A1 (en) 1999-04-20 2000-10-26 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US7754807B2 (en) 1999-04-20 2010-07-13 Stratasys, Inc. Soluble material and process for three-dimensional modeling
US6440437B1 (en) 2000-01-24 2002-08-27 Kimberly-Clark Worldwide, Inc. Wet wipes having skin health benefits
US6500563B1 (en) 1999-05-13 2002-12-31 Exxonmobil Chemical Patents Inc. Elastic films including crystalline polymer and crystallizable polymers of propylene
USD428267S (en) 1999-08-27 2000-07-18 Kimberly-Clark Worldwide, Inc. Repeating pattern for a bonded fabric
US20030113528A1 (en) 1999-09-17 2003-06-19 Wilson Moya Patterned porous structures
US6784230B1 (en) 1999-09-23 2004-08-31 Rohm And Haas Company Chlorinated vinyl resin/cellulosic blends: compositions, processes, composites, and articles therefrom
US7223359B2 (en) 2002-11-05 2007-05-29 Northwestern University Method of producing an exfoliated polymer-clay nanocomposite through solid-state shear pulverization
US6494390B1 (en) 2000-05-24 2002-12-17 Northwestern University Solid state shear pulverization of multicomponent polymeric waste
AU2001274511A1 (en) * 2000-06-19 2002-01-02 Bridgestone Corporation Adsorbent, process for producing the same, and applications thereof
TW539705B (en) 2000-06-30 2003-07-01 Tonen Sekiyukagaku Kk Process for preparing heat curable resin micro-porous film
US6818173B1 (en) 2000-08-10 2004-11-16 Northwestern University Polymeric blends formed by solid state shear pulverization and having improved melt flow properties
US6582810B2 (en) 2000-12-22 2003-06-24 Kimberly-Clark Worldwide, Inc. One-step method of producing an elastic, breathable film structure
US20020122828A1 (en) 2001-03-02 2002-09-05 Jun Liu Hybrid porous materials for controlled release
US6866807B2 (en) * 2001-09-21 2005-03-15 Stratasys, Inc. High-precision modeling filament
US20040258731A1 (en) * 2001-11-21 2004-12-23 Tsuyoshi Shimoboji Preparation approriate for cartilage tissue formation
US8684739B2 (en) 2002-03-14 2014-04-01 Mycone Dental Supply Co., Inc. Durable film coating compositions having sustained slow-release capability, and methods of use therefor
US20040002273A1 (en) 2002-07-01 2004-01-01 Kimberly-Clark Worldwide, Inc. Liquid repellent nonwoven protective material
EP1550746A4 (en) 2002-08-05 2010-08-04 Toray Industries POROUS FIBER
US7846466B2 (en) * 2004-06-10 2010-12-07 Northwestern University Biodegradable scaffolds and uses thereof
DE102004050003B4 (de) 2004-10-14 2009-10-01 Pallmann Maschinenfabrik Gmbh & Co Kg Vorrichtung zum Zerkleinern von Aufgabegut mit Kühlluftkanal
US7862835B2 (en) * 2004-10-27 2011-01-04 Boston Scientific Scimed, Inc. Method of manufacturing a medical device having a porous coating thereon
US7445735B2 (en) 2004-12-07 2008-11-04 Daramic Llc Method of making microporous material
US20140336514A1 (en) * 2005-08-05 2014-11-13 Gholam A. Peyman Methods to regulate polarization and enhance function of cells
US8936805B2 (en) * 2005-09-09 2015-01-20 Board Of Trustees Of The University Of Arkansas Bone regeneration using biodegradable polymeric nanocomposite materials and applications of the same
US7914891B2 (en) 2005-12-28 2011-03-29 Kimberly-Clark Worldwide, Inc. Wipes including microencapsulated delivery vehicles and phase change materials
US7604470B2 (en) 2006-04-03 2009-10-20 Stratasys, Inc. Single-motor extrusion head having multiple extrusion lines
KR101249120B1 (ko) 2006-08-31 2013-03-29 킴벌리-클라크 월드와이드, 인크. 고도 통기성 생분해성 필름
US7910041B1 (en) 2006-11-27 2011-03-22 Stratasys, Inc. Build materials containing nanofibers for use with extrusion-based layered depositions systems
US7891964B2 (en) 2007-02-12 2011-02-22 Stratasys, Inc. Viscosity pump for extrusion-based deposition systems
US7625200B2 (en) 2007-07-31 2009-12-01 Stratasys, Inc. Extrusion head for use in extrusion-based layered deposition modeling
EP2195131B1 (en) * 2007-08-29 2011-10-26 Vito NV Method for producing a three-dimensional macroporous filament construct based on phase inversion and construct thereby obtained
EP2698173A1 (en) * 2008-02-29 2014-02-19 Coloplast A/S Compositions and methods for augmentation and regeneration of living tissue in a subject
US8530577B2 (en) 2008-06-30 2013-09-10 Fina Technology, Inc. Compatibilized polypropylene heterophasic copolymer and polylactic acid blends for injection molding applications
US8759446B2 (en) * 2008-06-30 2014-06-24 Fina Technology, Inc. Compatibilized polypropylene and polylactic acid blends and methods of making and using same
US7938356B2 (en) * 2008-10-22 2011-05-10 Stratasys, Inc. Filament spool
US7938351B2 (en) * 2008-10-22 2011-05-10 Stratasys, Inc. Filament guide mechanism for filament spool container
JP2012507562A (ja) 2008-10-30 2012-03-29 ダビド リウ 微小球性多孔質生体適合性足場並びにその製造方法及び装置
US8969430B2 (en) * 2008-12-16 2015-03-03 Showa-Ika Kogyo Co. Ltd. Biocompatible ceramic-polymer hybrids
US8871167B2 (en) * 2008-12-16 2014-10-28 Meiji University Biocompatible ceramic-polymer hybrids and calcium phosphate porous body
US8470231B1 (en) * 2009-06-01 2013-06-25 Stratasys Ltd. Three-dimensional printing process for producing a self-destructible temporary structure
US8404171B2 (en) * 2009-09-04 2013-03-26 Bolson Materials Intl. Use and provision of an amorphous vinyl alcohol polymer for forming a structure
US8221669B2 (en) 2009-09-30 2012-07-17 Stratasys, Inc. Method for building three-dimensional models in extrusion-based digital manufacturing systems using ribbon filaments
US8435631B2 (en) 2010-04-15 2013-05-07 Ppg Industries Ohio, Inc. Microporous material
US8697117B2 (en) * 2010-08-02 2014-04-15 Ramot At Tel-Aviv University Ltd. Drug-eluting films
US10753023B2 (en) * 2010-08-13 2020-08-25 Kimberly-Clark Worldwide, Inc. Toughened polylactic acid fibers
US20120164905A1 (en) * 2010-08-13 2012-06-28 Kimberly-Clark Worldwide, Inc. Modified Polylactic Acid Fibers
US8936740B2 (en) * 2010-08-13 2015-01-20 Kimberly-Clark Worldwide, Inc. Modified polylactic acid fibers
US20130137788A1 (en) * 2010-08-18 2013-05-30 Gouhei Yamamura Porous film
US8920697B2 (en) 2010-09-17 2014-12-30 Stratasys, Inc. Method for building three-dimensional objects in extrusion-based additive manufacturing systems using core-shell consumable filaments
US8512024B2 (en) * 2011-01-20 2013-08-20 Makerbot Industries, Llc Multi-extruder
BR112013030838A2 (pt) 2011-06-02 2016-11-29 Raymond A & Cie conectores fabricados por impressão tridimensional
WO2012177535A2 (en) * 2011-06-18 2012-12-27 The Uab Research Foundation Biodegradable photocatalytic nanocomposite microsponges of polylactic acid
KR101852924B1 (ko) 2011-11-04 2018-04-30 삼성전자주식회사 혼성 다공성 구조체, 이를 포함하는 분리막 및 혼성 다공성 구조체의 제조 방법
US9040598B2 (en) * 2012-02-10 2015-05-26 Kimberly-Clark Worldwide, Inc. Renewable polyester compositions having a low density
US20150126670A1 (en) * 2012-05-18 2015-05-07 3D Systems, Inc. Adhesive for 3d printing
US10842749B2 (en) * 2012-06-12 2020-11-24 The Methodist Hospital Research Institute Compositions and methods of treating therapy resistant cancer and uses thereof
US20140046473A1 (en) * 2012-08-08 2014-02-13 Makerbot Industries, Llc Automated model customization
US9233504B2 (en) * 2012-10-29 2016-01-12 Makerbot Industries, Llc Tagged build material for three-dimensional printing
US9744722B2 (en) * 2012-11-21 2017-08-29 Stratasys, Inc. Additive manufacturing with polyamide consumable materials
US20140186441A1 (en) * 2012-12-28 2014-07-03 DePuy Synthes Products, LLC Composites for Osteosynthesis
US8944802B2 (en) * 2013-01-25 2015-02-03 Radiant Fabrication, Inc. Fixed printhead fused filament fabrication printer and method
CN103146164B (zh) * 2013-04-07 2016-03-30 苏州聚复高分子材料有限公司 用于快速成型的纳米增韧聚乳酸材料及其制备方法
EP2815773B1 (en) * 2013-06-17 2017-08-30 Hans U. Baer Matrix and implant for tissue engineering
US10183329B2 (en) * 2013-07-19 2019-01-22 The Boeing Company Quality control of additive manufactured parts
JP6563953B2 (ja) * 2013-12-26 2019-08-28 テキサス・テック・ユニバーシティー・システム 熱溶解フィラメント製法による造形品の内面ビード拡散接合を強化するためのマイクロ波誘導によるcnt充填ポリマーコンポジットの局所加熱
US20160038632A1 (en) * 2014-08-07 2016-02-11 Massachusetts Instutite Of Technology Adaptive Drug Delivery from an Artificial Polymer Skin with Tunable Properties for Tissue Engineering
US10597545B2 (en) * 2015-05-18 2020-03-24 President And Fellows Of Harvard College Foam ink composition and 3D printed hierarchical porous structure
WO2016210288A1 (en) * 2015-06-24 2016-12-29 The Johns Hopkins University Bone extracellular matrix (ecm) mixture and ecm scaffolds made with same
US10526467B2 (en) * 2016-03-10 2020-01-07 The University Of Massachusetts Porous material and methods of making and of using the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204642A (ja) * 2015-04-24 2016-12-08 ゼロックス コーポレイションXerox Corporation 3d印刷のためのコポリマー
JP2022000348A (ja) * 2015-12-11 2022-01-04 コベストロ (ネザーランズ) ビー.ブイ. 3dプリンティング方法
JP7172012B2 (ja) 2015-12-11 2022-11-16 コベストロ (ネザーランズ) ビー.ブイ. 3dプリンティング方法
JP2017197627A (ja) * 2016-04-26 2017-11-02 日本ポリプロ株式会社 熱溶融積層方式造形用ポリプロピレン系樹脂組成物およびストランド
WO2018110685A1 (ja) * 2016-12-15 2018-06-21 日本合成化学工業株式会社 造形材料、造形物および造形物の製造方法
JPWO2018110685A1 (ja) * 2016-12-15 2019-10-24 三菱ケミカル株式会社 造形材料、造形物および造形物の製造方法
US12030239B2 (en) 2016-12-15 2024-07-09 Mitsubishi Chemical Corporation Molding material, molded product, and method for producing molded product
WO2019225318A1 (ja) * 2018-05-23 2019-11-28 コニカミノルタ株式会社 立体造形用重合性組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JP7173137B2 (ja) 2018-05-23 2022-11-16 コニカミノルタ株式会社 立体造形用重合性組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JPWO2019225318A1 (ja) * 2018-05-23 2021-07-08 コニカミノルタ株式会社 立体造形用重合性組成物、およびこれを用いた立体造形物の製造方法、ならびに立体造形物
JP2021126772A (ja) * 2020-02-10 2021-09-02 富士フイルムビジネスイノベーション株式会社 三次元造形用フィラメント、三次元造形物、三次元造形方法、及び三次元造形装置
JP7547736B2 (ja) 2020-02-10 2024-09-10 富士フイルムビジネスイノベーション株式会社 三次元造形用フィラメント、三次元造形物、三次元造形方法、及び三次元造形装置
JP2021130250A (ja) * 2020-02-20 2021-09-09 東ソー株式会社 3dプリンター用樹脂組成物およびフィラメント状成形体
JP7556198B2 (ja) 2020-02-20 2024-09-26 東ソー株式会社 3dプリンター用樹脂組成物およびフィラメント状成形体
JP2023514966A (ja) * 2020-02-26 2023-04-12 ジャビル インク 付加製造物品の層内と層間の接着を改善する方法
JP7509892B2 (ja) 2020-02-26 2024-07-02 ジャビル インク 付加製造物品の層内と層間の接着を改善する方法

Also Published As

Publication number Publication date
BR112016002263B1 (pt) 2022-01-25
WO2015019212A1 (en) 2015-02-12
KR102208200B1 (ko) 2021-01-27
CN105408093A (zh) 2016-03-16
KR20160042073A (ko) 2016-04-18
AU2014304190B2 (en) 2018-02-15
CN105408093B (zh) 2018-09-25
BR112016002263A2 (pt) 2017-08-01
MX2016001597A (es) 2016-05-02
WO2015019212A4 (en) 2015-04-09
SG11201601712QA (en) 2016-04-28
RU2016107779A (ru) 2017-09-12
US10919229B2 (en) 2021-02-16
AU2014304190A1 (en) 2016-03-03
EP3030402A4 (en) 2017-05-17
EP3030402B1 (en) 2020-09-30
EP3030402A1 (en) 2016-06-15
US20160185050A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP2016532579A (ja) 三次元印刷用高分子材料
JP6436591B2 (ja) 包装用ポリオレフィンフィルム
US10286593B2 (en) Thermoformed article formed from a porous polymeric sheet
JP2016523294A (ja) 断熱材に使用するための高分子材料
RU2618062C1 (ru) Очки, содержащие пористый полимерный материал
US10954367B2 (en) Reinforced thermoplastic polyolefin elastomer film
KR102622189B1 (ko) 변색 중합체 물질

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20171115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180205