BR112014003726B1 - Pó de metal compactado de liga de alumínio - Google Patents
Pó de metal compactado de liga de alumínio Download PDFInfo
- Publication number
- BR112014003726B1 BR112014003726B1 BR112014003726-4A BR112014003726A BR112014003726B1 BR 112014003726 B1 BR112014003726 B1 BR 112014003726B1 BR 112014003726 A BR112014003726 A BR 112014003726A BR 112014003726 B1 BR112014003726 B1 BR 112014003726B1
- Authority
- BR
- Brazil
- Prior art keywords
- metal powder
- nanomatrix
- powder according
- fact
- compacted metal
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C18/00—Alloys based on zinc
- C22C18/04—Alloys based on zinc with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/07—Alloys based on nickel or cobalt based on cobalt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/06—Alloys based on aluminium with magnesium as the next major constituent
- C22C21/08—Alloys based on aluminium with magnesium as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/14—Alloys based on aluminium with copper as the next major constituent with silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/16—Alloys based on aluminium with copper as the next major constituent with magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/12—Alloys based on aluminium with copper as the next major constituent
- C22C21/18—Alloys based on aluminium with copper as the next major constituent with zinc
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C22/00—Alloys based on manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/18—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on silicides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/01—Alloys based on copper with aluminium as the next major constituent
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/17—Metallic particles coated with metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/002—Tools other than cutting tools
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/04—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
- B22F2009/041—Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/05—Light metals
- B22F2301/052—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
- C22C1/0416—Aluminium-based alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
- C22C32/0036—Matrix based on Al, Mg, Be or alloys thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C49/00—Alloys containing metallic or non-metallic fibres or filaments
- C22C49/02—Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
- C22C49/04—Light metals
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
resumo patente de invenção: "compacto de metal de liga de alumínio em pó". a presente invenção refere-se a um compacto de pó de metal. o compacto de pó de metal inclui uma nanomatriz celular que compreende um material de nanomatriz. o compacto de pó de metal também inclui uma pluralidade de partículas dispersas, que compreendem um material de núcleo de partícula que compreende uma liga de al-cu-mg, al-mn, al-si, al-mg, al-mg-si, al-zn, al-zn -cu, zn-al-mg, al-zn-cr, al-zn-zr ou al-sn-li , ou uma combinação das mesmas, dispersas na nanomatriz celular.
Description
Relatório Descritivo da Patente de Invenção para PÓ DE METAL COMPACTADO DE LIGA DE ALUMÍNIO.
REFERÊNCIA CRUZADA A PEDIDOS DE PATENTE REACIONADOS [001] Este Pedido de Patente reivindica o benefício do Pedido de Patente U. S. No. 13/220822, depositado em 30 de agosto de 2011, que é incorporado aqui, neste pedido de patente por referência em sua totalidade.
ANTECEDENTES [002] Os poços de petróleo e gás natural, muitas vezes utilizam componentes de furo de poço ou ferramentas que, devido à sua função, são somente obrigados a ter vida útil limitada, que é consideravelmente menor do que a vida de serviço do poço. Depois de uma função de serviço do componente ou ferramenta é completada, ela deve ser removida ou eliminada, a fim de recuperar o tamanho original do trajeto de fluidos para ser usado, incluindo a produção de hidrocarbonetos, o sequestro de CO2, etc. O descarte dos componentes ou ferramentas tem sido feito de forma conveniente através de trituração ou perfuração do componente ou ferramenta a partir do poço, o que em geral é uma operação consumidora de tempo e dispendiosa.
[003] Com a finalidade de eliminar a necessitada com relação às operações de trituração ou de perfuração, a remoção dos componentes ou das ferramentas a partir do furo do poço através de dissolução ou de corrosão com a utilização de diversos materiais de dissolução ou corrosivos tem sido proposta. Embora esses materiais sejam úteis, também é muito desejável que esses materiais sejam de peso leve e que tenham uma elevada resistência, incluindo uma resistência que pode ser comparada aquela dos materiais de engenharia convencionais usados para a formação dos componentes ou ferramentas do furo do poço, tais como os diferentes graus de aço. Dessa forma, o aperfeiçoamento de materiais absorvíveis ou inalteráveis para aumentar
Petição 870180132562, de 20/09/2018, pág. 5/38
2/25 a resistência dos mesmos, a capacidade de corrosão e de fabricação é muito desejável.
SUMÁRIO [004] Em uma modalidade, a título de exemplo é descrito um pó de metal compactado. O pó de metal compactado inclui uma nanomatriz celular que compreende um material de nanomatriz. O pó de metal compactado também inclui uma pluralidade de partículas dispersas que compreendem um material de partícula de núcleo que compreende uma liga de Al-Cu-Mg, Al-Mn, Al-Si, Al-Mg, Al-Mg-Si, Al-Zn, Al-Zn-Cu, Al-ZnMg, Al-Zn-Cr, Al-Zn-Zr, ou Al-Sn-Li, ou uma combinação das mesmas, dispersas na nanomatriz celular.
BREVE DESCRIÇÃO DOS DESENHOS [005] Com referência a seguir aos desenhos nos quais os elementos iguais têm números iguais nas várias Figuras:
A Fig. 1 é uma ilustração esquemática de uma modalidade de exemplo de uma partícula de pó 10 e partícula de pó 12;
A Fig. 2 é uma ilustração esquemática de uma modalidade de exemplo do pó compactado que tem uma configuração equiaxial de partículas dispersas, como descrito aqui neste pedido de patente;
A Fig. 3 é uma ilustração esquemática de uma modalidade de exemplo do pó compactado que tem uma configuração substancialmente alongada de partículas dispersas como descrito aqui, neste pedido de patente;
A Fig. 4 é uma ilustração esquemática de uma modalidade de exemplo do pó compactado que tem uma configuração substancialmente alongada da nanomatriz celular e partículas dispersas, em que a nanomatriz celular e as partículas dispersas são substancialmente contínuas, e
A Fig. 5 é uma ilustração esquemática de uma modalidade de exemplo do pó compactado que tem uma configuração
Petição 870180132562, de 20/09/2018, pág. 6/38
3/25 substancialmente alongada da nanomatriz celular e partículas dispersas, em que a nanomatriz celular e as partículas dispersas são substancialmente descontinuadas.
DESCRIÇÃO DETALHADA [006] São descritos os materiais da nanomatriz de liga de alumínio e peso leve e alta resistência. A liga de alumínio usada para formação desses materiais da nanomatriz são ligas de alumínio de alta resistência. A resistência pode ser através da incorporação de nanoestrutura dentro das ligas. A resistência dessas ligas também pode ser melhorada através da incorporação de diversas subpartículas de formação de resistência e segundas partículas. Os materiais da nanomatriz da liga de alumínio descritos também podem incorporar diversas características de microestruturas para o controle das propriedades mecânicas da liga, tais como a incorporação de microestruturas de partículas substancialmente alongadas para aumentar a resistência da liga, ou um tamanho de partícula multimodal na microestrutura da liga para melhorar a tenacidade com relação às fraturas ou uma combinação das mesmas para o controle de ambas a resistência, a tenacidade à fratura e outras propriedades da liga.
[007] Os materiais da nanomatriz da liga de alumínio descritos aqui, neste pedido de patente podem ser usados em todas as maneiras de aplicação, incluindo em vários ambientes de poço de perfuração, para a fabricação de diversos artigo de peso leve e de alta resistência incluindo artigos que incluam o uso em vários ambientes do poço, para fazer vários artigos leves, de alta resistência, incluindo artigos de fundo de poço, especificamente ferramentas ou outros componentes em poços. Além das suas características de peso leve, de elevada resistência, estes materiais da nanomatriz podem ser descritos como materiais eletrolíticos controlados, que podem ser seletivamente e controladamente descartáveis, degradáveis, solúveis, corrosíveis ou de
Petição 870180132562, de 20/09/2018, pág. 7/38
4/25 outro modo removíveis a partir do poço. Muitas outras aplicações para serem usadas em ambos os artigos duráveis e descartáveis ou degradáveis são possíveis. Em uma modalidade esses materiais de peso leve, de alta resistência, seletivamente e controladamente descartáveis, incluem compactos de pó sinterizados totalmente densos, formados a partir de materiais em pó revestido, que incluem vários núcleos de partículas leves e vários materiais de núcleo com camada única e revestimentos em nano escala multicamadas. Em uma outra modalidade, estes materiais que incluem os materiais seletivamente e controladamente degradáveis podem incluir compactos de pó que não são completamente densos ou não sinterizados, ou uma combinação dos mesmos, formados a partir destes materiais em pó revestidos.
[008] Os materiais e métodos de nanomatriz para a fabricação de tais materiais estão descritos, em geral, por exemplo, no Pedido de Patente U.S. 12/ 633.683, depositado em 8 de dezembro de 2009 e no Pedido de Patente U. S. 243/ 194.361 depositado em 29 de julho de 2011, que são incorporados aqui, neste pedido de patente por referencia em suas totalidades. Esses materiais peso leve, de alta resistência, seletivamente e controladamente descartáveis podem variar a partir de totalmente densos, pós compactados sinterizados para compactos precursores ou em estado verde (menos do que totalmente densos) que podem ser sinterizados ou não sinterizados. Eles são formados a partir de materiais em pó revestidos que incluem vários núcleos de partículas de peso leve que tenham várias camadas únicas e revestimentos de camadas múltiplas em nanoescala. Esses compactos de pó podem ser feitos a partir de pós metálicos revestidos que incluem diversos núcleos de partículas de peso leve, alta resistência e eletricamente ativas (como por exemplo, tendo potenciais de oxidação padrão relativamente mais altos) e materiais de núcleo, tais como metais eletricamente ativos, que estão dispersos dentro de uma nanomatriz celular formada a partir da
Petição 870180132562, de 20/09/2018, pág. 8/38
5/25 consolidação das diversas camadas de revestimento metálicos em nano escala de materiais de revestimento metálico, e são especificamente úteis em aplicações de perfurações de poços. Os compactos de pó podem ser feitos através de qualquer método adequado de compactação de pó, incluindo a prensagem isostática a frio (CIP), prensagem isostática a quente (HIP), forjamento dinâmico e extrusão, e suas combinações. Esses compactos de pó proporcionam uma combinação única e vantajosa de propriedades de resistência mecânica, como compressão e resistência ao cisalhamento, de baixa densidade e propriedades selecionáveis e controláveis de corrosão, dissolução especificamente rápida e controlada em vários fluidos do poço. Os fluidos podem incluir qualquer número de fluidos ou líquidos iônicos fluidos altamente polares, tais como aqueles que contêm vários cloretos. Os exemplos incluem os fluidos que compreendem cloreto de potássio (KCl), ácido clorídrico (HCl), cloreto de cálcio (CaCL), brometo de cálcio (CaBr2) ou brometo de zinco (ZnBr2).
[009] As descrições dos Pedidos de Patente ‘682 e ‘361 com relação à natureza dos pós revestidos e aos métodos para a fabricação e compactação dos pos revestidos podem ser aplicados de modo geral para a provisão dos materiais as nanomatriz de peso leve e de alta resistência de liga de alumínio descritos aqui, neste pedido de patente, e que, por questões de brevidade não serão repetidos aqui, neste pedido de patente.
[0010] Como ilustrado nas Figuras 1 e 2, um pó 10 que compreende partículas de pó 12, incluindo uma partícula de núcleo 14 e material de núcleo 18 e camada de revestimento metálico 16 e material de revestimento 20 podem ser selecionados, que sejam configurados para a compactação e sinterização para prover um metal compactado 200 que seja de peso leve (isto é, que tenha uma densidade relativamente baixa) alta resistência e que seja removível de forma seletiva e
Petição 870180132562, de 20/09/2018, pág. 9/38
6/25 controlada a partir de uma perfuração de poço em resposta a uma mudança na propriedade da perfuração de poço, incluindo podendo ser dissolvível de forma seletiva e controlada em um fluido de perfuração e poço apropriado, que inclui vários fluidos de perfuração de poço como os descritos aqui, neste pedido de patente. O pó de metal compactado 200 inclui uma nanomatriz celular 216 que compreende um material de nanomatriz 220 e uma pluralidade de partículas dispersas 214 que compreendem uma partícula de material de núcleo 218 que compreende uma liga de Al-Cu-Mg, Al-Mn, Al-Si, Al-Mg, Al-Mg-Si, AlZn, Al-Zn-Cu, Al-Zn-Mg, Al-Zn-Cr, Al-Zn-Zr, ou Al-Sn-Li, ou uma combinação das mesmas, dispersas na nanomatriz celular 216.
[0011] As partículas dispersas 214 podem compreender qualquer um dos materiais descritos aqui, neste pedido de patente com relação aos núcleos de partículas 12, mesmo que a composição química das partículas dispersas 214 possam ser diferentes devido aos efeitos de difusão, como descrito aqui, neste pedido de patente. Em uma modalidade a título de exemplo, as partículas dispersas 214 são formadas a partir de núcleos de partículas 14 que compreendem uma liga de Al-Cu-Mg, Al-Mn, Al-Si, Al-Mg, Al-Mg-Si, Al-Zn, Al-Zn-Cu, Al-ZnMg, Al-Zn-Cr, Al-Zn-Zr, ou Al-Sn-Li ou uma combinação das mesmas. Em uma modalidade a título de exemplo, as partículas dispersas 214 incluem um material de núcleo de partículas 218 que compreende uma liga de alumínio da série 2000, e, mais especificamente, podem incluir, em percentagem em peso da liga, de cerca de 0,05% a cerca de 2,0% de Mg, cerca de 0,1% a cerca de 0,8 % de Si, cerca de 0,7% a cerca de 6,0% de Cu, cerca de 0,1% a cerca de 1,2% de Mn; cerca de 0,1% a acerca de 0,8% de Zn, cerca de 0,05% a cerca de 0,25% de Ti, e cerca de 0,1% -1,2% de Fe; e restante de Al e de impurezas incidentais. Em outra modalidade a título de exemplo, as partículas dispersas 214 incluem um material de núcleo de partículas 218 que compreende uma
Petição 870180132562, de 20/09/2018, pág. 10/38
7/25 liga de alumínio da série 5000, e mais especificamente podem incluir em percentagem em peso da liga, de cerca de 0,5% a cerca de 6,0% de Mg, cerca de 0,05% a cerca de 0,30% de Zn, cerca de 0,10% a cerca de 1,0% de Mn; cerca de 0,08% a cerca de 0,75% de Si e o restante de Al e de impurezas incidentais. As partículas dispersas 214 e o material de núcleo de partícula 218 também podem incluir um elemento de terra rara, ou uma combinação de elementos de terras raras. Na forma usada aqui, neste pedido de patente, os elementos de terras raras incluem Sc, Y, La, Ce, Pr, Nd ou Er, ou uma combinação de elementos de terras raras. Quando presente, um elemento de terra rara ou uma combinação de elementos de terras ratas pode estar presente, em peso, em uma quantidade de cerca de 5 por cento ou menos.
[0012] As partículas dispersas 214 e o material de núcleo de partícula 218 também podem compreender os materiais nano estruturados 215. Em uma modalidade a titulo de exemplo, um material nano estruturado 215 é um material que tem um tamanho de grão, ou um tamanho de subgrão ou cristalino, de menos do que cerca de 200 nm, e mais especificamente um tamanho de grão de cerca de 10 nm até cerca de 200 nm, e ainda de modo mais especifico um tamanho médio de grão de menos do que cerca de 100 nm. A nanoestrutura pode incluir limites de ângulo elevado 227, que são normalmente utilizados para a definição do tamanho de grão ou os limites de ângulo baixo 229 que podem ocorrer como subestrutura dentro de um grão específico, que são algumas vezes utilizados para definir um tamanho de cristalito, ou uma combinação dos mesmos. A nanoestrutura pode ser formada na partícula de núcleo 14 usada para formar as partículas dispersas 214 através de qualquer método adequado, incluindo nano estrutura induzida por deformação tal como pode ser fornecida pelar moagem por bola de um pó para proporcionar núcleos de partícula 14, e mais especificamente por criomoagem (por exemplo, moagem de bolas em
Petição 870180132562, de 20/09/2018, pág. 11/38
8/25 meios de moagem de bola a uma temperatura criogênica ou de um fluido criogênico, tal como nitrogênio líquido) de um pó para prover os núcleos de partículas 14 utilizados para a formação das partículas dispersas 214. Os núcleos das partículas 14 podem ser formadas como um material nano estruturado 215 através de qualquer método adequado, tal como, por exemplo, por moagem ou crio moagem de partículas de pó pré-ligadas das ligas de alumínio descritas aqui, neste pedido de patente. As partículas de núcleo 14 também podem ser formadas através de ligação mecânica de pós de metal puros das quantidades desejadas dos diversos constituintes da liga. A formação mecânica de ligas envolve a moagem por bolas, incluindo a criomoagem desses constituintes em pó para envolver mecanicamente e misturar os componentes e formar os núcleos das partículas 14. Alem da criação da nano estrutura como descrito acima, a moagem com bolas e a criomoagem podem contribuir para o fortalecimento em solução sólida dos núcleos de partícula 14 e do material de núcleo 18, o que, por sua vez, contribui para o fortalecimento da solução sólida das partículas dispersas 214 e do material de núcleo de partícula 218. O fortalecimento da solução sólida pode resultar a partir da capacidade de intermisturas de forma mecânica uma concentração mais alta de átomos de soluto intersticiais ou de substituição, na solução sólida do que for possível de acordo com o equilíbrio de fases da liga específica, constituinte, provendo por meio disso um obstáculo para, ou servindo para restringir o movimento de deslocamentos no interior da partícula, que por sua vez proporciona um mecanismo de fortalecimento no núcleo de partícula 14 e na partícula dispersa 214. O núcleo de partícula 14 também pode ser formado como um material nanoestruturado 215 através de métodos que incluam condensação de gás inerte, condensação de vapor químico, deposição através de pulso de elétron, síntese de plasma, cristalização de sólidos amorfos, eletro deposição e deformação plástica
Petição 870180132562, de 20/09/2018, pág. 12/38
9/25 grave, por exemplo. A nanoestrutura também pode incluir uma alta densidade de deslocamento, tal como, por exemplo, uma densidade entre cerca de deslocamento 1017 m-2 e 1018 m-2, que pode ser de duas a três ordens de grandeza mais elevadas do que os materiais de liga semelhantes deformadas por métodos tradicionais, tais como a cilindragem a frio.
[0013] A partícula dispersa 214 e o material do núcleo da partícula 218 também podem compreender uma subpartícula 222, e podem de preferência compreender uma pluralidade de subpartículas. A subpartícula 222 proporciona um mecanismo de fortalecimento da dispersão no interior da partícula dispersa 214 e provê um obstáculo ao, ou serve para restringir o movimento das deslocações no interior da partícula. A subpartícula 222 pode ter qualquer tamanho adequado, e, em uma modalidade a titulo de exemplo pode ter um tamanho de partícula médio de cerca de 10 nm até cerca de 1 mícron, e de modo mais especifico pode ter um tamanho médio de partícula de cerca de 150 nm até cerca de 200 nm. A subpartícula 222 pode compreender qualquer forma adequada de subpartícula, incluindo uma subpartícula embebida 224, um precipitado 226 ou um dispersoide 228. A partícula embutida 224 pode incluir quaisquer subpartículas incorporadas adequadas, incluindo diversas subpartículas rígidas. A subpartícula incorporada ou a pluralidade de subpartículas incorporadas podem incluir vários metais, carbono, óxido de metal, nitrido de metal, carboneto de metal, composto intermetálico ou partículas de metal cerâmico (cermet), ou uma combinação dos mesmos. Em uma modalidade a titulo de exemplo as partículas rígidas podem incluir Ni, Fe, Cu, Co, W, Al, Zn, Mn ou Si, ou um óxido, nitrido, carboneto, composto intermetálico ou metal cerâmico que compreenda, pelo menos, um dos precedentes, ou uma combinação dos mesmos. A subpartícula embebida 224 pode ser embebida através de qualquer
Petição 870180132562, de 20/09/2018, pág. 13/38
10/25 método adequado, incluindo, por exemplo, através da trituração com bolas, ou crio trituração das partículas rígidas junto com o material de núcleo de partícula 18. Uma subpartícula precipitada 226 pode incluir uma subpartícula que pode ser precipitada no interior da partícula dispersa 214, incluindo as subpartículas precipitadas 226, consistentes com o equilíbrio de fases dos constituintes da liga de alumínio de interesse e as quantidades relativas dos mesmos (como por exemplo, uma liga que pode ser endurecida por precipitação), e incluindo aquelas que podem ser precipitadas devido a condições de não equilíbrio, tal como pode ocorrer quando um constituinte da liga que tenha sido forçado para dentro de uma solução sólida da liga em uma quantidade acima li limite da fase de equilíbrio da mesma, como é conhecido ocorrer durante a formação mecânica de liga é aquecida suficientemente para ativar mecanismos de difusão que permitam a precipitação. As subpartículas dispersóides 228 podem incluir partículas de nanoescala ou ajuntamentos de elementos que resultam a partir da fabricação dos núcleos das partículas 14, tais como aqueles associados com a trituração com bolas, incluindo os constituintes de meio de trituração (como por exemplo, as bolas) do fluido de trituração (como por exemplo, o nitrogênio liquido) ou as próprias superfícies dos núcleos da partícula 14 (como por exemplo, óxidos ou nitridos metálicos). As subpartículas dispersóides 228 podem incluir, por exemplo, Fe, Ni, Cr, Mn, N, P, C e
H. As subpartículas 222 podem estar localizadas em qualquer lugar em conjunção com os núcleos de partículas de 14 e as partículas dispersas214. Em uma modalidade a titulo de exemplo, as subpartículas 222 podem estar dispostas no interior ou sobre a superfície das partículas dispersas 214, ou uma combinação dos mesmos, como ilustrado na Fig. 1. Em outra modalidade a titulo de exemplo, uma pluralidade de subpartículas 222 estão dispostas sobre a superfície do núcleo de partícula 14 e as partículas dispersas 214 e também podem
Petição 870180132562, de 20/09/2018, pág. 14/38
11/25 compreender o material da nanomatriz 216, como ilustrado na Fig. 1. [0014] O pó compactado 200 inclui uma nanomatriz celular 216 de um material de nanomatriz 220 que tem uma pluralidade de partículas dispersas 214 dispersos por toda a nanomatriz celular 216. As partículas dispersas 214 podem ser equiaxial em uma nanomatriz celular substancialmente contínua 216, ou pode ser substancialmente alongada, tal como descrito aqui, neste pedido de patente, e ilustrado na FIG. 3. No caso em que as partículas dispersas 214 sejam substancialmente alongadas, as partículas dispersas 214 e a nanomatriz celular 216 podem ser continuas ou descontínuas como ilustrado nas Figuras 4 e 5 respectivamente. A nanomatriz celular substancialmente contínua 216 e o material da nanomatriz 220 formado por camadas de revestimento de metal sinterizados 16 é formada através da compactação e sinterização da pluralidade das camadas de revestimento metálico 16, da pluralidade das partículas de pó 12 tais como por CIP, HIP ou forjamento dinâmico. A composição química do material da nanomatriz 220 pode ser diferente do que aquela do material de revestimento 20 devido aos efeitos de difusão associados com a sinterização. O pó de metal compactado 200 também inclui uma pluralidade de partículas dispersas 214 que compreendem o material de núcleo de partícula 218. Os núcleos de partículas dispersas 214 e o material de núcleo 218 correspondem a e são formados a partir de uma pluralidade de núcleos de partícula 14 e de material de núcleo 18 da pluralidade de partículas de pó 12 como as camadas de revestimento metálico 16 são sinterizadas em conjunto para a formação da nanomatriz 216. A composição química do material de núcleo 218 também pode ser diferente do que aquela do material de núcleo 18 devido aos efeitos de difusão associados com a sinterização.
[0015] Na forma usada aqui, neste pedido de patente, o uso da expressão nanomatriz celular 216 não indica o constituinte principal do
Petição 870180132562, de 20/09/2018, pág. 15/38
12/25 pó compactado, porem se refere ao constituinte ou constituintes minoritários, quer seja em peso ou em volume. Isso se distingue da maioria dos materiais compósitos de matriz em que a matriz compreende o componente de maioria em peso ou volume. O uso da expressão nanomatriz celular substancialmente contínua é destinado a descrever a natureza extensa, regular, continua e interconectada da distribuição do material da nanomatriz 220 dentro do pó compactado 200. Na forma usada aqui, neste pedido de patente, substancialmente contínua descreve a extensão do material da nanomatriz através de todo o pó compactado 200 de tal modo que se estende entre os envelopes e substancialmente todas as partículas dispersas 214. Substancialmente contínua é utilizado para indicar que a continuidade completa e ordem regular da nanomatriz em torno de cada partícula dispersa 214 não é necessária. Por exemplo, os defeitos na camada de revestimento 16 sobre o núcleo 14 de partículas de pó sobre algumas partículas 12 pode ocasionar uma ligação dos núcleos de partículas de 14, durante a sinterização do pó compactado 200, fazendo com que por esse motivo descontinuidades localizadas para resultar na nanomatriz celular 216, apesar de em outras partes do pó compactado a nanomatriz seja substancialmente contínua e apresente a estrutura descrita aqui, neste pedido de patente. Em contraste, no caso de partículas substancialmente dispersas alongadas 214, tais como aqueles que são formadas através de extrusão, substancialmente descontínua é usado para indicar que a continuidade e ruptura incompleta (por exemplo, fissuras, ou separação) da nanomatriz em torno de cada partícula dispersa 214, tal como pode ocorrer em uma direção predeterminada de extrusão 622, ou em uma direção transversal a essa direção. Na forma usada aqui, neste pedido de patente, celular é usado para indicar que a nanomatriz define uma rede de repetição, de compartimentos geralmente interligados, ou células de material de
Petição 870180132562, de 20/09/2018, pág. 16/38
13/25 nanomatriz 220 e que englobam e também interligam as partículas dispersas 214. Na forma usada aqui neste pedido de patente, nanomatriz é usada para descrever o tamanho ou dimensão da matriz, especificamente a espessura da matriz entre as partículas dispersas adjacentes 214. As camadas de revestimento metálico que são sinterizadas em conjunto para a formação da nanomatriz, tem elas próprias camadas de revestimento de uma espessura em nanoescala. Uma vez que a nanomatriz na maioria dos locais, com exceção da intersecção de mais de duas partículas dispersas 214, compreende, geralmente, a interdifusão e a ligação de duas camadas de revestimento 16, a partir de partículas de pó 12 adjacentes com espessuras em nanoescala a matriz formada também tem uma espessura em nanoescala (por exemplo, cerca de duas vezes a espessura da camada de revestimento, tal como descrito aqui, neste pedido de patente) e é, portanto, descrita como uma nanomatriz. Além disso, o uso da expressão partículas dispersas 214 não indica o constituinte menor do pó compactado 200, porém se refere ao componente ou constituinte majoritário, seja em peso ou em volume. O uso da expressão partícula dispersa se destina a transmitir a distribuição descontínua e separada do material do núcleo de partícula 218 no pó compactado 200.
[0016] O pó compactado 200 pode ter qualquer forma ou tamanho desejado, incluindo o de um bilet cilíndrico, barra, folha ou outra forma que possa ser usinada, formada ou de outra forma utilizada para a formação de artigos úteis de fabricação, incluindo várias ferramentas e componentes do poço de perfuração. A prensagem usada para a formação de precursores do pó compactado 100 e a sinterização e os processos de prensagem utilizados para a formação do pó compactado 200 e para deformar as partículas de pó 12, incluindo os núcleos de partículas 14 e as camadas de revestimento 16, para proporcionar a densidade total e a forma macroscópica e tamanho desejados do pó
Petição 870180132562, de 20/09/2018, pág. 17/38
14/25 compactado 200, bem como a sua microestrutura. A morfologia (como por exemplo, equiaxial ou substancialmente alongada) das partículas dispersas 214 e rede celular 216 de camadas de partículas resultam a partir da sinterização e da deformação das partículas de pó 12 na forma em que elas são compactadas e interdifundidas e deformadas para encher os espaços interpartículas 15 (fig. 1). As temperaturas e pressões da sinterização podem ser selecionadas com o propósito de assegurar que a densidade do pó compactado 200 alcance a densidade teórica substancialmente total.
[0017] Em uma modalidade a titulo de exemplo, as partículas dispersas 214 são formadas a partir dos núcleos de partícula 14 dispersos na nanomatriz celular 216 das camadas de revestimento metálico sinterizadas 16, e a nanomatriz 216 inclui uma ligação metalúrgica em estado sólido ou uma camada de ligação que se prolonga entre as partículas dispersadas 214 através de toda a nanomatriz celular 216 que é formada em uma temperatura de sinterização (Ts), em que Ts é menor do que a temperatura de fusão do revestimento (TC) e a temperatura de fusão da partícula (TP). Na forma como indicada, a ligação metalúrgica de estado sólido é formada em estado sólido através da interdifusão entre as camadas de revestimento 16 das partículas de pó adjacentes 12 que são comprimidas em contacto de toque durante os processos de compactação e de sinterização usados para a formação do pó compactado 200, como descrito aqui, neste pedido de patente. Como tal, as camadas de revestimento, sinterizadas 16 da nanomatriz celular 216 incluem uma camada de ligação de estado sólido que possui uma espessura definida pela extensão da interdifusão dos materiais de revestimento 20 das camadas de revestimento 16, que irá por sua vez ser definida através da natureza das camadas de revestimento 16, inclusive se forem de camadas simples ou de camadas múltiplas de revestimento, se elas
Petição 870180132562, de 20/09/2018, pág. 18/38
15/25 tiverem sido selecionadas para promover ou limitar a inter difusão, e outros fatores, como descritos aqui, neste pedido de patente, bem como as condições da sinterização e da compactação, incluindo o tempo de sinterização, temperatura e a pressão utilizados para a formação do pó compactado 200.
[0018] À medida que a nanomatriz 216 é formada, incluindo a ligação metalúrgica e a camada de ligação, a composição química ou a distribuição de fases, ou ambos, das camadas de revestimento metálico 16 podem mudar. A nanomatriz 216 também tem uma temperatura de fusão TM. Na forma usada aqui, neste pedido de patente, a TM inclui a temperatura mais baixa na qual a fusão incipiente ou liquefação ou outras formas de fusão parcial irão ocorrer dentro da nanomatriz 216, independentemente do fato de que o material da nanomatriz 220 compreenda um metal puro, uma liga com múltiplas fases, cada uma tendo diferentes temperaturas de fusão ou de um compósito, incluindo um compósito que compreenda uma pluralidade de camadas de vários materiais de revestimento com diferentes temperaturas de fusão, ou uma combinação dos mesmos, ou de outra forma. À medida que são formadas as partículas dispersas 214 e as partículas dos materiais de núcleo 218 em conjunto com a nanomatriz 216, a difusão dos constituintes das camadas de revestimento metálico 16 no interior dos núcleos de partícula 14 também é possível, o que pode resultar em mudanças na composição química ou na distribuição de fases ou ambas, dos núcleos de partícula 14. Como resultado, as partículas dispersas 214 e os materiais de núcleo de partícula 218 podem ter uma temperatura de fusão (TDP) que seja diferente do que a TP. Na forma usada aqui, neste pedido de patente a TDP inclui a temperatura mais baixa na qual a fusão incipiente ou a liquidificação ou outras formas de fusão parcial irão ocorrer no interior das partículas dispersas 214, independentemente do fato de que o material da de partícula do núcleo
Petição 870180132562, de 20/09/2018, pág. 19/38
16/25
218 compreenda um metal puro, uma liga com múltiplas fases, cada uma tendo diferentes temperaturas de fusão ou de um compósito, ou de outra forma. Em uma modalidade, o pó compactado 200 é formado em uma temperatura de sinterização (Ts) em que a Ts é menos do que as Tc,Tp, Tm e Tdp, e a sinterização é executada inteiramente no estado sólido resultando em uma camada de ligação em estado sólido. Em outra modalidade a título de exemplo, o pó compactado 200 é formado em uma temperatura de sinterização (Ts) em que a Ts é maior do que ou é igual a uma ou mais de Tc,Tp, Tm ou Tdp, e a sinterização inclui a fusão limitada ou parcial no interior do pó compactado 200 como descrito aqui, neste pedido de patente, e ainda pode incluir a sinterização em estado líquido ou em fase liquida resultando em uma camada de ligação que seja pelo menos parcialmente fundida e ressolidificada. Nessa modalidade, a combinação de uma Ts predeterminada e um tempo de sinterização predeterminado (ts) serão selecionados para a preservação da microestrutura desejada que inclua a nanomatriz celular 216 e as partículas dispersas 214. Por exemplo, a liquefação ou a fusão localizada podem ser permitidas que ocorram, por exemplo, na totalidade ou em parte da nanomatriz 216, contanto que a morfologia da nanomatriz celular 216/ partícula dispersa 214 seja preservada, tal como através da seleção de núcleos de partículas 14, e ts que não proporcionem a fusão completa dos núcleos de partículas. De modo similar, pode ser permitida que ocorra a liquefação localizada, por exemplo, em toda ou em uma parte das partículas dispersas 214 contanto que a morfologia da nanomatriz celular 216/ partícula dispersa 214 seja preservada, tal como através da seleção das camadas de revestimento metálico 15, Ts e ts que não proporcionem a fusão completa da camada ou das camadas de revestimento 16. A fusão das camadas de revestimento metálico 16 pode ocorrer, por exemplo, durante a sinterização ao longo da interface da camada metálica 16/
Petição 870180132562, de 20/09/2018, pág. 20/38
17/25 núcleo de partícula 14, ou ao longo da interface entre camadas adjacentes de camadas de revestimento de camadas múltiplas 16. Será observado que as combinações de Ts e ts que não excedam aos valores predeterminados podem resultar em outras microestruturas, tais como um equilíbrio de microestrutura de fusão/ liquefação, se, por exemplo, ambas a nanomatriz 216 (isto é, a combinação das camadas de revestimento metálico 16) e as partículas dispersas 214 (isto é, os núcleos de partícula 14) sejam fundidos, permitindo por esse motivo uma interdifusão rápida desses materiais.
[0019] Aos núcleos de partícula 14 e as partículas dispersas 214 do pó compactado 200 podem ter qualquer tamanho de partícula adequado. Em uma modalidade a título de exemplo, os núcleos de partícula 14 podem ter uma distribuição unimodal e um diâmetro de partícula médio ou tamanho de cerca de 5 pm até cerca de 300 pm, mais especificamente de cerca de 80 pm até cerca de 120 pm, e ainda de modo mais específico de cerca de 100 pm. Em outra modalidade a título de exemplo, que pode incluir distribuição de tamanhos de partícula multimodais, os núcleos de partícula 14 podem ter um diâmetro ou tamanho médio de partícula de cerca de 50 nm até cerca de 500 pm, mais especificamente de cerca de 500 nm até cerca de 300 pm e ainda de forma mais especifica de cerca de 5 pm até 300 pm. Em uma modalidade, a título de exemplo, os núcleos de partícula 14 ou as partículas dispersas podem ter um tamanho médio de partícula de cerca de 50 nm até cerca de 500 pm.
[0020] As partículas dispersas 214 podem ter qualquer formato adequado dependendo do formato selecionado para os núcleos de partícula 14 e das partículas de pó 12, bem como do método usado para sinterizar o compacto de pó 10. Em uma modalidade de exemplo, as partículas de pó 12 podem ser esferóides ou substancialmente esferoides das partículas dispersas 214 podem incluir uma configuração
Petição 870180132562, de 20/09/2018, pág. 21/38
18/25 de partícula equiaxial como descrito aqui, neste pedido de patente. Em outra modalidade a titulo de exemplo, as partículas dispersas podem ter um formato não esferóide. Em ainda outra modalidade, as partículas dispersas podem ser substancialmente alongadas em uma direção de extrusão 622, tal como pode ocorrer quando é utilizada a extrusão para a formação do compacto 200. Como ilustrado nas Figuras 3 a 5, por exemplo, uma nanomatriz celular 616 substancialmente alongada que compreende uma rede de células alongadas interconectadas de material de nanomatriz 620 que tem uma pluralidade de núcleos de partículas dispersas substancialmente alongadas 614 de material de núcleo 618 dispostas no interior da célula. Dependendo da quantidade de deformação conferida para a formação de partículas alongadas, as camadas de revestimento e a nanomatriz alongadas 616 podem ser substancialmente contínuas na direção predeterminada 622 como mostrado na FIG. 4, ou substancialmente descontínua, como mostrado na FIG. 5.
[0021] A natureza da dispersão das partículas dispersas 214 pode ser afetada pela seleção do pó 10 ou dos pós 10 usados para a fabricação do compacto de partículas 200. Em uma modalidade, a título de exemplo, um pó 10 que tem uma distribuição unimodal de tamanhos de partículas de pó 12 pode ser selecionado para a formação do pó compactado 200 e irá produzir uma dispersão unimodal substancialmente homogênea de tamanhos de partículas das partículas dispersas 214 no interior da nanomatriz celular 216. Em outra modalidade de exemplo, uma pluralidade de pós 10 que tenha uma pluralidade de partículas de pó com núcleos de partícula 14 que tenham os mesmos materiais de nucleo18 e tamanhos diferentes de núcleos e o mesmo material de revestimento 20 podem ser selecionados e misturados de modo uniforme como descrito aqui, neste pedido de patente para prover um pó 10 que tenha uma distribuição homogênea
Petição 870180132562, de 20/09/2018, pág. 22/38
19/25 multimodal dos tamanhos das partículas de pó 12, e que pode ser usado para a formação do pó compactado 200 que tenha uma dispersão multimodal homogênea de tamanhos de partículas das partículas dispersas 214 no interior da nanomatriz celular 216. De modo similar, em ainda outra modalidade a titulo de exemplo, uma pluralidade de pós 10 que tenha uma pluralidade de núcleos de partículas 14 que podem ter os mesmos materiais 18 e tamanhos de núcleo diferentes e o mesmo material de revestimento 20 pode ser selecionada e distribuída em uma maneira não uniforme para prover uma distribuição de tamanhos de partículas de pó multimodal e não homogênea, e pode ser usada para a formação do pó compactado 200 que tenha uma dispersão multimodal não homogênea de tamanhos de partículas das partículas dispersas 214 no interior da nanomatriz celular 216. A seleção da distribuição de tamanho de partículas do núcleo pode ser usada para a determinação de, por exemplo, o tamanho de partícula e o espaçamento inter partículas das partículas dispersas 214 no interior da nanomatriz celular 216 do pó compactado 200 feita a partir do pó 10.
[0022] Como ilustrado de um modo geral nas Figuras 1 e 2 o pó de metal compactado 1200 também pode ser formado com a utilização de um pó metálico revestido 10 e um adicional ou segundo pó 30 como descrito aqui neste pedido de patente. O uso de um pó adicional 30 proporciona um pó compactado 200 que também inclua uma pluralidade de segundas partículas dispersas 234, como descrito aqui, neste pedido de patente que estão dispersas no interior da nanomatriz 216 e também estão dispersas com relação às partículas dispersas 214. As segundas partículas dispersas 234 podem ser formadas a partir de segundas partículas de pó 32 revestidas ou não revestidas como descrito aqui, neste pedido de patente. Em uma modalidade, a título de exemplo, as segundas partículas de pó revestidas 32 podem ser revestidas com uma camada de revestimento 36 que é a mesma como a camada de
Petição 870180132562, de 20/09/2018, pág. 23/38
20/25 revestimento 16 das partículas de pó 12, de tal forma que as camadas de revestimento 36 também contribuem para a nanomatriz 216. Em outra modalidade, a título de exemplo, as segundas partículas de pó 232 podem ser não revestidas de tal forma que as segundas partículas dispersas 234 são embebidas no interior da nanomatriz 216. Como descrito aqui, neste pedido de patente, o pó 10 e o pó adicional 30 podem ser misturados para a formação de uma dispersão homogênea de partículas dispersas 214 e se segundas partículas dispersas 234 ou para a formação de uma dispersão não homogênea dessas partículas. As segundas partículas dispersas 234 podem ser formadas a partir de qualquer pó adicional adequando 30 que seja diferente a partir do pó 10, tanto devido à diferença de composição no núcleo de partícula 34 ou na camada de revestimento 36, ou ambas as mesmas, e podem incluir qualquer um dos materiais descritos aqui, neste pedido de patente para ser usado como um segundo pó 30 que sejam diferentes do pó 10 que é selecionado para a formação do pó compactado 200. Em uma modalidade a titulo de exemplo, as segundas partículas dispersas 234 podem incluir Ni, Fe, Cu, Co, W, Al, Zn, Mn, ou Si, ou um óxido, nitrito, carboneto, composto intermetálico ou metal cerâmico que compreenda, pelo menos, um dos anteriores, ou uma combinação dos mesmos.
[0023] A nanomatriz 216 é uma rede celular substancialmente contínua de camadas de revestimento metálico 16 que são sinterizadas umas com as outras. A espessura da nanomatriz 216 irá depender da natureza do pó 10 ou dos pós 10 usados para a formação do pó compactado 200, bem como da incorporação de qualquer segundo pó 30, especificamente a espessura das camadas de revestimento associadas com essas partículas. E, uma modalidade a título de exemplo, a espessura da nanomatriz 216 é substancialmente uniforme através de toda a microestrutura do pó compactado 200, e compreende
Petição 870180132562, de 20/09/2018, pág. 24/38
21/25 cerca de duas vezes a espessura das camadas de revestimento 16 das partículas de pó 12. Em outra modalidade a título de exemplo, a rede células 216 em uma espessura media substancialmente uniforme entre as partículas dispersas 214 de cerca de 50 nm até cerca de 5000 nm. Os pó compactado 200 formados através de extrusão podem ter espessuras muito mais pequenas, e podem se tornar não uniformes e substancialmente descontínuas como descrito aqui, neste pedido de patente.
[0024] A nanomatriz 216 é formada através da sinterização de camadas de revestimento metálico 16 de partículas adjacentes uma com a outra através da inter difusão e a criação de uma camada de ligação como descrito aqui, neste pedido de patente. As camadas de revestimento metálico 16 podem ser uma estruturas de uma única camada ou de camadas múltiplas, e elas podem ser selecionadas para a promoção ou a inibição da difusão ou ambas, dentro da camada ou entre as camadas da camada de revestimento metálico 16 ou entre a camada de revestimento metálico 16 e o núcleo de partícula 14, ou entre a camada de revestimento metálico 16 e a camada de revestimento metálico 16 e uma partícula de pó adjacente, o grau de interdifusão das camadas de revestimento metálico 16 durante a sinterização pode ser limitado ou extensivo dependendo da espessura do revestimento do material ou materiais de revestimento selecionados, as condições de sinterização e outros fatores. Dada a complexidade potencial da interdifusão e da interação dos componentes, a descrição da composição química resultante da nanomatriz 216 e do material da nanomatriz 220 pode ser entendida de forma simples como uma combinação dos constituintes das camadas de revestimento 16, que também podem incluir um ou mais constituintes das partículas dispersas 214, dependendo do grau de inter difusão, se for o caso, que ocorre entre as partículas dispersas e 214 e a nanomatriz 216. De forma
Petição 870180132562, de 20/09/2018, pág. 25/38
22/25 similar, a composição química das partículas dispersas 214 e do material de núcleo 218 pode ser entendido de forma simples como sendo uma combinação de constituintes de núcleo de partícula 14 que também podem incluir um ou mais constituintes da nanomatriz 216 e do material de nanomatriz 220, dependendo do grau de interdifusão, se algum, que ocorra entre as partículas dispersas 214 e a nanomatriz 216. [0025] Em uma modalidade, a título de exemplo, o material da nanomatriz 200 tem uma composição química e o material do núcleo de partícula 218 tem uma composição química que é diferente a partir daquela do material da nanomatriz 220, e as diferenças nas composições químicas podem ser configuradas para prover uma taxa de dissolução selecionável e controlável, que inclui uma forma de transição selecionável a partir de uma taxa de dissolução muito baixa até uma taxa de dissolução muito rápida, em resposta em resposta a uma alteração controlada em uma propriedade ou condição da perfuração do poço, na proximidade do compacto 200, incluindo uma mudança de propriedade de um fluido de poço que se encontra em contacto com o pó compactado 200, como descrito aqui, neste pedido de patente. A nanomatriz 216 pode ser formada a partir de partículas de pó 12 que tenham uma única camada ou camadas múltiplas de revestimento 16. Essa flexibilidade de design proporciona um grande número de combinações de materiais, em especial no caso de camadas de revestimento de múltiplas camadas 16, que pode ser utilizado para adaptar a nanomatriz celular 216 e da composição dos materiais de nanomatriz 220 através do controle da interação dos constituintes da camada de revestimento, tanto no interior de uma determinada camada, bem como entre a camada de revestimento 16 e o núcleo das partículas 14 com o qual está associada, ou uma camada de revestimento 16, de partículas de pó adjacentes 12.
[0026] Em uma modalidade, a título de exemplo, a nanomatriz 216
Petição 870180132562, de 20/09/2018, pág. 26/38
23/25 pode compreender um material de nanomatriz 220 que compreende Ni, Fe, Cu, Co, W, Al, Zn, Mn, Mg ou Si, ou uma liga dos mesmos, ou um óxido, nitrito, carboneto, composto intermetálico ou metal cerâmico que compreenda, pelo menos, um dos precedentes, ou uma combinação dos mesmos.
[0027] Os pó de metal compacto 200 descritos aqui, neste pedido de patente podem ser configurados para prover de forma seletiva e controladamente descartável, degradável, solúvel, por corrosão ou de outro modo removível a partir de um poço com um fluido de poço predeterminado, que inclui aqueles descritos aqui, neste pedido de patente. Esses materiais podem ser configurados para prover uma taxa de corrosão de até cerca de 400 mg/cm2/ hora, e de forma mais especifica uma taxa de corrosão de cera de 0,2 até cerca de 50 mg/cm2/ hora. Esses pós compactados 200 também podem ser configurados para prover uma alta resistência, incluindo uma ultima resistência de compressão de até 150 ksi, e de modo mais específico a partir de 60 ksi até cerca de 150 ksi, e ainda de modo mais especifico a partir de mais do que cerca de 60 ksi até cerca de 120 ksi.
[0028] Os termos um e uma aqui, neste pedido de patente, não indicam um limite de quantidade, mas em vez disso indicam a presença de pelo menos um dos itens mencionados. O modificador cerca de utilizado em ligação com uma quantidade é inclusivo de todos os valores declarados, e tem o significado ditado através do contexto (como, por exemplo, inclui o grau de erro associado com a medição da quantidade determinada). Além disso, a não ser que limitadas de outra forma todas as faixas descritas aqui, neste pedido de patente são inclusivas e podem ser combinadas (como por exemplo, faixas de até cerca de 25 por cento em peso (p%) mais especificamente cerca de 5 % em peso até cerca de 20% em peso e ainda de modo mais específico cerca de 10% em peso até cerca de 15% em peso são inclusivas dos pontos finais e de
Petição 870180132562, de 20/09/2018, pág. 27/38
24/25 todos os valores intermediários das faixas, como por exemplo, cerca de 5% em peso até cerca de 25% em peso, cerca de 5% em peso até cerca de 15% em peso, etc.). O uso de cerca em conjunto com uma relação de constituintes de uma composição de liga é aplicado a todos os constituintes relacionados, e em conjunto com uma faixa a ambos os pontos finais da faixa. Finalmente, a não ser que definido de outra forma, os termos técnicos e científicos usados aqui, neste pedido de patente tem o mesmo significado como são comumente entendidos por u ma pessoa versada na técnica a qual a invenção pertence. Q sufixo (s) na forma usada aqui, neste pedido de patente é destinado a incluir ambos o singular e o plural do termo que ele modifica, incluindo por esse motivo um ou mais daquele termo (como por exemplo, o(s) metal(is) incluem um ou mais metais). A referência através de toda a especificação a uma modalidade outra modalidade , uma modalidade e assim por diante, significa que o elemento especifico (como por exemplo, característica, estrutura e/ou outras características) descritas em conexão com a modalidade estão incluídas em pelo menos uma modalidade descrita aqui, neste pedido de patente, e podem ou não podem estar presentes em outras modalidades.
[0029] Deve ser entendido que o uso de compreendendo em conjunto com as composições de ligas descritas aqui, neste pedido de patente, descrevem de forma específica e inclui as modalidades nas quais a composição de liga consiste essencialmente de dos componentes indicados (isto é, contém os componentes indicados e nenhum outro componente que afete de forma adversa as características básicas e novas descritas), e modalidades nas quais as composições de liga consistem em os componentes indicados (isto é, contém somente os componentes indicados exceto com relação aos contaminantes que estão naturalmente e inevitavelmente presentes em cada um dos componentes indicados). Embora uma ou mais
Petição 870180132562, de 20/09/2018, pág. 28/38
25/25 modalidades tenham sido mostradas e descritas, modificações e substituições podem ser feitas a mesma sem que se afastem a partir do espírito e do âmbito da invenção. Por consequência, deve ser entendido que a presente invenção foi descrita a título de ilustração e não de limitação.
Claims (28)
- REIVINDICAÇÕES1. Pó de metal compactado caracterizado pelo fato de que compreende:uma nanomatriz celular que compreende um material de nanomatriz em que o material de nanomatriz compreende Mg, ou um óxido, nitreto, carboneto, composto intermetálico ou metal cerâmico desde, ou uma combinação de Mg e pelo menos um dentre Ni, Fe, Cu, Co, W, Al, Zn, Mn ou Si; e;uma pluralidade de partículas dispersas que compreendem um material de núcleo de partícula que compreende uma liga de Al-CuMg, Al-Mn, Al-Si, Al-Mg, Al-Mg-Si, Al-Zn, Al-Zn-Cu, Al-Zn-Mg, Al-Zn-Cr, Al-Zn-Zr, ou Al-Sn-Li, ou uma combinação das mesmas, dispersas na nanomatriz celular.
- 2. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material do núcleo de partícula compreende, em percentagem em peso da liga, de 0,05% até 2,0% Mg; de 0,1% até 0,8% Si; de 0,7% até 6,0% Cu; de 0,1% até 1,2% Mn; de 0,1% até 0,8% Zn; de 0,05% até 0,25% Ti; e de 0,1% - 1,2% Fe; e o restante de Al e de impurezas incidentais.
- 3. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material do núcleo de partícula compreende, em percentagem em peso da liga de 0,5% até 6,0% de Mg; de 0,05% até 0,30% de Zn; de 0,10% até 1,0% de Mn, de 0,08% até 0,75% de Si e o restante de Al e de impurezas incidentais.
- 4. Pó de metal compactado de acordo com a reivindicação1, caracterizado pelo fato de que o material do núcleo de partícula ou o material da nanomatriz, ou uma combinação dos mesmos compreende um material nano estruturado.
- 5. Pó de metal compactado de acordo com a reivindicação4, caracterizado pelo fato de que o material nano estruturado tem umPetição 870180132562, de 20/09/2018, pág. 30/382/4 tamanho de grão menor do que de 200 nm.
- 6. Pó de metal compactado de acordo com a reivindicação 5, caracterizado pelo fato de que o material nano estruturado tem um tamanho de grão de 10 nm até 200 nm.
- 7. Pó de metal compactado de acordo com a reivindicação 4, caracterizado pelo fato de que o material nanoestruturado tem um tamanho de grão médio menor do que cerca de 100 nm.
- 8. Pó de metal compactado de acordo com a reivindicaçãoI, caracterizado pelo fato de que a partícula dispersa compreende ainda uma subpartícula.
- 9. Pó de metal compactado de acordo com a reivindicação 8, caracterizado pelo fato de que a subpartícula tem um tamanho de partícula médio de 10 nm até 1 mícron.
- 10. Pó de metal compactado de acordo com a reivindicação 8, caracterizado pelo fato de que a subpartícula compreende uma sub partícula pré formada, um precipitado ou um dispersóide.
- 11. Pó de metal compactado de acordo com a reivindicação 8, caracterizado pelo fato de que a subpartícula está disposta no interior ou sobre a superfície da partícula dispersa, ou uma combinação das mesmas.
- 12. Pó de metal compactado de acordo com a reivindicaçãoII, caracterizado pelo fato de que a subpartícula está disposta sobre a superfície da partícula dispersa e também compreende o material da nanomatriz.
- 13. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que as partículas dispersas têm um tamanho médio de partícula de 50 nm até 500 pm.
- 14. Pó de metal compactado de acordo com a reivindicação1, caracterizado pelo fato de que as partículas dispersas compreendem uma distribuição multimodal dos tamanhos de partículasPetição 870180132562, de 20/09/2018, pág. 31/383/4 no interior da nanomatriz celular.
- 15. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material de núcleo das partículas compreende ainda um raro elemento de terra.
- 16. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que as partículas dispersas têm um formato de partícula equiaxial e a nanomatriz é contínua.
- 17. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que a nanomatriz e as partículas dispersas são alongadas em uma direção predeterminada.
- 18. Pó de metal compactado de acordo com a reivindicação 17, caracterizado pelo fato de que a nanomatriz é contínua.
- 19. Pó de metal compactado de acordo com a reivindicação 17, caracterizado pelo fato de que a nanomatriz é descontínua.
- 20. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que compreende ainda uma pluralidade de segundas partículas dispersas, em que as segundas partículas dispersas também estão dispersas no interior da nanomatriz celular e com relação ás partículas dispersas.
- 21. Pó de metal compactado de acordo com a reivindicação20, caracterizado pelo fato de que as segundas partículas dispersas compreendem um metal, carbono, óxido de metal, nitreto de metal, carboneto de metal um composto intermetálico ou metal cerâmico, ou uma combinação dos mesmos.
- 22. Pó de metal compactado de acordo com a reivindicação21, caracterizado pelo fato de que as segundas partículas dispersas compreendem Ni, Fe, Cu, Co, W, Al, Zn, Mn, Mg ou Si, ou um óxido, nitreto, carboneto, composto intermetálico ou metal cerâmico que compreenda pelo menos um dos precedentes ou uma combinação dos mesmos.Petição 870180132562, de 20/09/2018, pág. 32/384/4
- 23. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material da nanomatriz compreende um constituinte de um meio de trituração ou de um fluido de trituração.
- 24. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material da nanomatriz compreende um material de camadas múltiplas.
- 25. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que o material da nanomatriz tem uma composição química e o material do núcleo de partícula tem uma composição química que seja diferente do que a composição química do material da nanomatriz.
- 26. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que a nanomatriz celular tem uma espessura média de 50 nm até 5000 nm.
- 27. Pó de metal compactado de acordo com a reivindicação 1, caracterizado pelo fato de que compreende ainda uma camada de ligação que se prolonga através da nanomatriz celular entre as partículas dispersas.
- 28. Pó de metal compactado de acordo com a reivindicação 27, caracterizado pelo fato de que a camada de ligação compreende uma camada de ligação em estado sólido.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/220,822 US9090956B2 (en) | 2011-08-30 | 2011-08-30 | Aluminum alloy powder metal compact |
US13/220,822 | 2011-08-30 | ||
PCT/US2012/049442 WO2013032629A1 (en) | 2011-08-30 | 2012-08-03 | Aluminum alloy powder metal compact |
Publications (2)
Publication Number | Publication Date |
---|---|
BR112014003726A2 BR112014003726A2 (pt) | 2017-03-14 |
BR112014003726B1 true BR112014003726B1 (pt) | 2019-03-12 |
Family
ID=47741722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BR112014003726-4A BR112014003726B1 (pt) | 2011-08-30 | 2012-08-03 | Pó de metal compactado de liga de alumínio |
Country Status (9)
Country | Link |
---|---|
US (3) | US9090956B2 (pt) |
EP (1) | EP2751298A4 (pt) |
CN (1) | CN103764858B (pt) |
AP (1) | AP2014007460A0 (pt) |
AU (1) | AU2012301491B2 (pt) |
BR (1) | BR112014003726B1 (pt) |
CA (1) | CA2842962C (pt) |
MY (1) | MY171181A (pt) |
WO (1) | WO2013032629A1 (pt) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9016384B2 (en) | 2012-06-18 | 2015-04-28 | Baker Hughes Incorporated | Disintegrable centralizer |
US9803439B2 (en) | 2013-03-12 | 2017-10-31 | Baker Hughes | Ferrous disintegrable powder compact, method of making and article of same |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US10689740B2 (en) | 2014-04-18 | 2020-06-23 | Terves, LLCq | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10865465B2 (en) | 2017-07-27 | 2020-12-15 | Terves, Llc | Degradable metal matrix composite |
US11167343B2 (en) | 2014-02-21 | 2021-11-09 | Terves, Llc | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US10150713B2 (en) | 2014-02-21 | 2018-12-11 | Terves, Inc. | Fluid activated disintegrating metal system |
WO2015153397A1 (en) * | 2014-03-31 | 2015-10-08 | Schlumberger Canada Limited | Degradable components |
WO2015184043A1 (en) * | 2014-05-30 | 2015-12-03 | Schlumberger Canada Limited | Degradable heat treatable components |
CN104290933A (zh) * | 2014-08-20 | 2015-01-21 | 无锡柯马机械有限公司 | 渣粉熔料自熔性包装方法 |
JP5753304B1 (ja) * | 2014-08-29 | 2015-07-22 | 株式会社ジーエル・マテリアルズホールディングス | セラミックスナノ粒子が担持されたアルミニウム又はアルミニウム合金粉体及びそれを用いたセラミックス−アルミニウム系複合材料、並びに、その粉体の製造方法 |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10947612B2 (en) | 2015-03-09 | 2021-03-16 | Baker Hughes, A Ge Company, Llc | High strength, flowable, selectively degradable composite material and articles made thereby |
US10786051B2 (en) * | 2015-03-27 | 2020-09-29 | Ykk Corporation | Element for slide fastener |
EP3181711B1 (de) * | 2015-12-14 | 2020-02-26 | Apworks GmbH | Scandiumhaltige aluminiumlegierung für pulvermetallurgische technologien |
US11109976B2 (en) | 2016-03-18 | 2021-09-07 | Dean Baker | Material compositions, apparatus and method of manufacturing composites for medical implants or manufacturing of implant product, and products of the same |
US10851611B2 (en) | 2016-04-08 | 2020-12-01 | Baker Hughes, A Ge Company, Llc | Hybrid disintegrable articles |
US11597984B2 (en) | 2017-04-05 | 2023-03-07 | Amag Casting Gmbh | Starting material, use thereof, and additive manufacturing process using said starting material |
CN107686918A (zh) * | 2017-07-03 | 2018-02-13 | 安徽大地工程管道有限公司 | 一种复合型铝合金管材及其制备方法 |
US12059511B2 (en) | 2018-04-16 | 2024-08-13 | Martha Elizabeth Hightower Baker | Dissolvable compositions that include an integral source of electrolytes |
US11602788B2 (en) | 2018-05-04 | 2023-03-14 | Dean Baker | Dissolvable compositions and tools including particles having a reactive shell and a non-reactive core |
CN108517431A (zh) * | 2018-05-17 | 2018-09-11 | 天长市正牧铝业科技有限公司 | 一种高韧高强铝合金棒球棒材料的生产工艺 |
CN108655391A (zh) * | 2018-06-07 | 2018-10-16 | 北京新创椿树整流器件有限公司 | 一种铜铝纳米复合材料 |
WO2020081621A1 (en) * | 2018-10-18 | 2020-04-23 | Terves Llc | Degradable deformable diverters and seals |
CN115380127A (zh) * | 2020-01-31 | 2022-11-22 | Hrl实验室有限责任公司 | 铝-铬-锆合金 |
CN112030027B (zh) * | 2020-09-02 | 2022-09-27 | 宁波乌卡科技有限公司 | 一种多功能感应铝合金机械手材料的制备方法 |
US11761296B2 (en) | 2021-02-25 | 2023-09-19 | Wenhui Jiang | Downhole tools comprising degradable components |
CN113481401B (zh) * | 2021-06-10 | 2022-04-05 | 北京科技大学 | 一种制备Al/CNT复合材料的方法 |
CN113462934B (zh) * | 2021-06-15 | 2023-01-31 | 郑州大学 | 适用于连铸连轧工艺的5xxx系铝合金及其制备方法 |
CN115927932B (zh) * | 2022-12-20 | 2024-03-15 | 苏州凯宥电子科技有限公司 | 一种高强度压铸铝合金及其制备方法 |
Family Cites Families (894)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1468905A (en) | 1923-07-12 | 1923-09-25 | Joseph L Herman | Metal-coated iron or steel article |
US2094578A (en) | 1932-09-13 | 1937-10-05 | Blumenthal Bernhard | Material for surgical ligatures and sutures |
US2011613A (en) | 1934-10-06 | 1935-08-20 | Magnesium Dev Corp | Magnesium duplex metal |
US2189697A (en) | 1939-03-20 | 1940-02-06 | Baker Oil Tools Inc | Cement retainer |
US2222233A (en) | 1939-03-24 | 1940-11-19 | Mize Loyd | Cement retainer |
US2238895A (en) | 1939-04-12 | 1941-04-22 | Acme Fishing Tool Company | Cleansing attachment for rotary well drills |
US2225143A (en) | 1939-06-13 | 1940-12-17 | Baker Oil Tools Inc | Well packer mechanism |
US2261292A (en) | 1939-07-25 | 1941-11-04 | Standard Oil Dev Co | Method for completing oil wells |
US2352993A (en) | 1940-04-20 | 1944-07-04 | Shell Dev | Radiological method of logging wells |
US2294648A (en) | 1940-08-01 | 1942-09-01 | Dow Chemical Co | Method of rolling magnesium-base alloys |
US2301624A (en) | 1940-08-19 | 1942-11-10 | Charles K Holt | Tool for use in wells |
US2394843A (en) | 1942-02-04 | 1946-02-12 | Crown Cork & Seal Co | Coating material and composition |
US2672199A (en) | 1948-03-12 | 1954-03-16 | Patrick A Mckenna | Cement retainer and bridge plug |
US2753941A (en) | 1953-03-06 | 1956-07-10 | Phillips Petroleum Co | Well packer and tubing hanger therefor |
US2754910A (en) | 1955-04-27 | 1956-07-17 | Chemical Process Company | Method of temporarily closing perforations in the casing |
US3066391A (en) | 1957-01-15 | 1962-12-04 | Crucible Steel Co America | Powder metallurgy processes and products |
US2933136A (en) | 1957-04-04 | 1960-04-19 | Dow Chemical Co | Well treating method |
US2983634A (en) | 1958-05-13 | 1961-05-09 | Gen Am Transport | Chemical nickel plating of magnesium and its alloys |
US3295935A (en) | 1958-07-22 | 1967-01-03 | Texas Instruments Inc | Composite stock comprising a plurality of layers of alloying constituents, each layerbeing less than 0.001 inch in thickness |
US3057405A (en) | 1959-09-03 | 1962-10-09 | Pan American Petroleum Corp | Method for setting well conduit with passages through conduit wall |
CH376658A (de) | 1959-12-14 | 1964-04-15 | Lonza Ag | Verfahren und Einrichtung zur Herstellung von Verbundplatten |
US3106959A (en) | 1960-04-15 | 1963-10-15 | Gulf Research Development Co | Method of fracturing a subsurface formation |
US3180728A (en) | 1960-10-03 | 1965-04-27 | Olin Mathieson | Aluminum-tin composition |
US3142338A (en) | 1960-11-14 | 1964-07-28 | Cicero C Brown | Well tools |
US3316748A (en) | 1960-12-01 | 1967-05-02 | Reynolds Metals Co | Method of producing propping agent |
GB912956A (en) | 1960-12-06 | 1962-12-12 | Gen Am Transport | Improvements in and relating to chemical nickel plating of magnesium and its alloys |
US3196949A (en) | 1962-05-08 | 1965-07-27 | John R Hatch | Apparatus for completing wells |
US3152009A (en) | 1962-05-17 | 1964-10-06 | Dow Chemical Co | Electroless nickel plating |
US3226314A (en) | 1962-08-09 | 1965-12-28 | Cons Mining & Smelting Co | Sacrificial zinc anode |
US3406101A (en) | 1963-12-23 | 1968-10-15 | Petrolite Corp | Method and apparatus for determining corrosion rate |
US3347714A (en) | 1963-12-27 | 1967-10-17 | Olin Mathieson | Method of producing aluminum-magnesium sheet |
US3208848A (en) | 1964-02-25 | 1965-09-28 | Jr Ralph P Levey | Alumina-cobalt-gold composition |
GB1033358A (en) | 1964-05-13 | 1966-06-22 | Int Nickel Ltd | Treatment of molten iron and agents therefor |
US3242988A (en) | 1964-05-18 | 1966-03-29 | Atlantic Refining Co | Increasing permeability of deep subsurface formations |
US3395758A (en) | 1964-05-27 | 1968-08-06 | Otis Eng Co | Lateral flow duct and flow control device for wells |
US3326291A (en) | 1964-11-12 | 1967-06-20 | Zandmer Solis Myron | Duct-forming devices |
US3347317A (en) | 1965-04-05 | 1967-10-17 | Zandmer Solis Myron | Sand screen for oil wells |
GB1122823A (en) | 1965-05-19 | 1968-08-07 | Ass Elect Ind | Improvements relating to dispersion strengthened lead |
US3343537A (en) | 1965-06-04 | 1967-09-26 | James F Graham | Burn dressing |
US3298440A (en) | 1965-10-11 | 1967-01-17 | Schlumberger Well Surv Corp | Non-retrievable bridge plug |
US3637446A (en) | 1966-01-24 | 1972-01-25 | Uniroyal Inc | Manufacture of radial-filament spheres |
US3390724A (en) | 1966-02-01 | 1968-07-02 | Zanal Corp Of Alberta Ltd | Duct forming device with a filter |
US3465181A (en) | 1966-06-08 | 1969-09-02 | Fasco Industries | Rotor for fractional horsepower torque motor |
US3489218A (en) | 1966-08-22 | 1970-01-13 | Dow Chemical Co | Method of killing organisms by use of radioactive materials |
US3434539A (en) | 1967-03-06 | 1969-03-25 | Byron Jackson Inc | Plugs for use in treating wells with liquids |
US3513230A (en) | 1967-04-04 | 1970-05-19 | American Potash & Chem Corp | Compaction of potassium sulfate |
US3445148A (en) | 1967-06-08 | 1969-05-20 | Rotron Inc | Method of making porous bearings and products thereof |
US3434537A (en) | 1967-10-11 | 1969-03-25 | Solis Myron Zandmer | Well completion apparatus |
FR95986E (fr) | 1968-03-25 | 1972-05-19 | Int Nickel Ltd | Alliages graphitiques et leurs procédés de production. |
GB1280833A (en) | 1968-08-26 | 1972-07-05 | Sherritt Gordon Mines Ltd | Preparation of powder composition for making dispersion-strengthened binary and higher nickel base alloys |
US3660049A (en) | 1969-08-27 | 1972-05-02 | Int Nickel Co | Dispersion strengthened electrical heating alloys by powder metallurgy |
US3602305A (en) | 1969-12-31 | 1971-08-31 | Schlumberger Technology Corp | Retrievable well packer |
US3645331A (en) | 1970-08-03 | 1972-02-29 | Exxon Production Research Co | Method for sealing nozzles in a drill bit |
DK125207B (da) | 1970-08-21 | 1973-01-15 | Atomenergikommissionen | Fremgangsmåde til fremstilling af dispersionsforstærkede zirconiumprodukter. |
US3823045A (en) | 1971-04-01 | 1974-07-09 | Hielema Emmons Pipe Coating Lt | Pipe coating method |
US3957483A (en) | 1971-04-16 | 1976-05-18 | Masahiro Suzuki | Magnesium composites and mixtures for hydrogen generation and method for manufacture thereof |
DE2223312A1 (de) | 1971-05-26 | 1972-12-07 | Continental Oil Co | Rohr,insbesondere Bohrgestaengerohr,sowie Einrichtung und Verfahren zum Verhindern von Korrosion und Korrosionsbruch in einem Rohr |
US3816080A (en) | 1971-07-06 | 1974-06-11 | Int Nickel Co | Mechanically-alloyed aluminum-aluminum oxide |
US3768563A (en) | 1972-03-03 | 1973-10-30 | Mobil Oil Corp | Well treating process using sacrificial plug |
US3765484A (en) | 1972-06-02 | 1973-10-16 | Shell Oil Co | Method and apparatus for treating selected reservoir portions |
US3878889A (en) | 1973-02-05 | 1975-04-22 | Phillips Petroleum Co | Method and apparatus for well bore work |
US3894850A (en) | 1973-10-19 | 1975-07-15 | Jury Matveevich Kovalchuk | Superhard composition material based on cubic boron nitride and a method for preparing same |
US4039717A (en) | 1973-11-16 | 1977-08-02 | Shell Oil Company | Method for reducing the adherence of crude oil to sucker rods |
US4010583A (en) | 1974-05-28 | 1977-03-08 | Engelhard Minerals & Chemicals Corporation | Fixed-super-abrasive tool and method of manufacture thereof |
US3924677A (en) | 1974-08-29 | 1975-12-09 | Harry Koplin | Device for use in the completion of an oil or gas well |
US4050529A (en) | 1976-03-25 | 1977-09-27 | Kurban Magomedovich Tagirov | Apparatus for treating rock surrounding a wellbore |
US4157732A (en) | 1977-10-25 | 1979-06-12 | Ppg Industries, Inc. | Method and apparatus for well completion |
US4407368A (en) | 1978-07-03 | 1983-10-04 | Exxon Production Research Company | Polyurethane ball sealers for well treatment fluid diversion |
US4373584A (en) | 1979-05-07 | 1983-02-15 | Baker International Corporation | Single trip tubing hanger assembly |
US4248307A (en) | 1979-05-07 | 1981-02-03 | Baker International Corporation | Latch assembly and method |
US4284137A (en) | 1980-01-07 | 1981-08-18 | Taylor William T | Anti-kick, anti-fall running tool and instrument hanger and tubing packoff tool |
US4292377A (en) | 1980-01-25 | 1981-09-29 | The International Nickel Co., Inc. | Gold colored laminated composite material having magnetic properties |
US4374543A (en) | 1980-08-19 | 1983-02-22 | Tri-State Oil Tool Industries, Inc. | Apparatus for well treating |
US4368788A (en) | 1980-09-10 | 1983-01-18 | Reed Rock Bit Company | Metal cutting tools utilizing gradient composites |
US4372384A (en) | 1980-09-19 | 1983-02-08 | Geo Vann, Inc. | Well completion method and apparatus |
US4395440A (en) | 1980-10-09 | 1983-07-26 | Matsushita Electric Industrial Co., Ltd. | Method of and apparatus for manufacturing ultrafine particle film |
US4384616A (en) | 1980-11-28 | 1983-05-24 | Mobil Oil Corporation | Method of placing pipe into deviated boreholes |
US4716964A (en) | 1981-08-10 | 1988-01-05 | Exxon Production Research Company | Use of degradable ball sealers to seal casing perforations in well treatment fluid diversion |
US4422508A (en) | 1981-08-27 | 1983-12-27 | Fiberflex Products, Inc. | Methods for pulling sucker rod strings |
US4373952A (en) | 1981-10-19 | 1983-02-15 | Gte Products Corporation | Intermetallic composite |
US4399871A (en) | 1981-12-16 | 1983-08-23 | Otis Engineering Corporation | Chemical injection valve with openable bypass |
GB2112020B (en) | 1981-12-23 | 1985-07-03 | London And Scandinavian Metall | Introducing one or more metals into a melt comprising aluminium |
US4450136A (en) | 1982-03-09 | 1984-05-22 | Pfizer, Inc. | Calcium/aluminum alloys and process for their preparation |
US4452311A (en) | 1982-09-24 | 1984-06-05 | Otis Engineering Corporation | Equalizing means for well tools |
US4681133A (en) | 1982-11-05 | 1987-07-21 | Hydril Company | Rotatable ball valve apparatus and method |
US4534414A (en) | 1982-11-10 | 1985-08-13 | Camco, Incorporated | Hydraulic control fluid communication nipple |
US4526840A (en) | 1983-02-11 | 1985-07-02 | Gte Products Corporation | Bar evaporation source having improved wettability |
US4499048A (en) | 1983-02-23 | 1985-02-12 | Metal Alloys, Inc. | Method of consolidating a metallic body |
US4499049A (en) | 1983-02-23 | 1985-02-12 | Metal Alloys, Inc. | Method of consolidating a metallic or ceramic body |
US4498543A (en) | 1983-04-25 | 1985-02-12 | Union Oil Company Of California | Method for placing a liner in a pressurized well |
US4554986A (en) | 1983-07-05 | 1985-11-26 | Reed Rock Bit Company | Rotary drill bit having drag cutting elements |
US4619699A (en) | 1983-08-17 | 1986-10-28 | Exxon Research And Engineering Co. | Composite dispersion strengthened composite metal powders |
US4539175A (en) | 1983-09-26 | 1985-09-03 | Metal Alloys Inc. | Method of object consolidation employing graphite particulate |
US4524825A (en) | 1983-12-01 | 1985-06-25 | Halliburton Company | Well packer |
FR2556406B1 (fr) | 1983-12-08 | 1986-10-10 | Flopetrol | Procede pour actionner un outil dans un puits a une profondeur determinee et outil permettant la mise en oeuvre du procede |
US4475729A (en) | 1983-12-30 | 1984-10-09 | Spreading Machine Exchange, Inc. | Drive platform for fabric spreading machines |
US4708202A (en) | 1984-05-17 | 1987-11-24 | The Western Company Of North America | Drillable well-fluid flow control tool |
US4709761A (en) | 1984-06-29 | 1987-12-01 | Otis Engineering Corporation | Well conduit joint sealing system |
JPS6167770A (ja) | 1984-09-07 | 1986-04-07 | Kizai Kk | マグネシウムおよびマグネシウム合金のめつき法 |
US4674572A (en) | 1984-10-04 | 1987-06-23 | Union Oil Company Of California | Corrosion and erosion-resistant wellhousing |
US4664962A (en) | 1985-04-08 | 1987-05-12 | Additive Technology Corporation | Printed circuit laminate, printed circuit board produced therefrom, and printed circuit process therefor |
US4678037A (en) | 1985-12-06 | 1987-07-07 | Amoco Corporation | Method and apparatus for completing a plurality of zones in a wellbore |
US4668470A (en) | 1985-12-16 | 1987-05-26 | Inco Alloys International, Inc. | Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications |
US4738599A (en) | 1986-01-25 | 1988-04-19 | Shilling James R | Well pump |
US4673549A (en) | 1986-03-06 | 1987-06-16 | Gunes Ecer | Method for preparing fully dense, near-net-shaped objects by powder metallurgy |
US4690796A (en) | 1986-03-13 | 1987-09-01 | Gte Products Corporation | Process for producing aluminum-titanium diboride composites |
US4693863A (en) | 1986-04-09 | 1987-09-15 | Carpenter Technology Corporation | Process and apparatus to simultaneously consolidate and reduce metal powders |
NZ218154A (en) | 1986-04-26 | 1989-01-06 | Takenaka Komuten Co | Container of borehole crevice plugging agentopened by falling pilot weight |
NZ218143A (en) | 1986-06-10 | 1989-03-29 | Takenaka Komuten Co | Annular paper capsule with lugged frangible plate for conveying plugging agent to borehole drilling fluid sink |
US4869325A (en) | 1986-06-23 | 1989-09-26 | Baker Hughes Incorporated | Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well |
US4708208A (en) | 1986-06-23 | 1987-11-24 | Baker Oil Tools, Inc. | Method and apparatus for setting, unsetting, and retrieving a packer from a subterranean well |
US4805699A (en) | 1986-06-23 | 1989-02-21 | Baker Hughes Incorporated | Method and apparatus for setting, unsetting, and retrieving a packer or bridge plug from a subterranean well |
US4688641A (en) | 1986-07-25 | 1987-08-25 | Camco, Incorporated | Well packer with releasable head and method of releasing |
US4719971A (en) | 1986-08-18 | 1988-01-19 | Vetco Gray Inc. | Metal-to-metal/elastomeric pack-off assembly for subsea wellhead systems |
US5222867A (en) | 1986-08-29 | 1993-06-29 | Walker Sr Frank J | Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance |
US5063775A (en) | 1987-08-19 | 1991-11-12 | Walker Sr Frank J | Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance |
US4714116A (en) | 1986-09-11 | 1987-12-22 | Brunner Travis J | Downhole safety valve operable by differential pressure |
US5076869A (en) | 1986-10-17 | 1991-12-31 | Board Of Regents, The University Of Texas System | Multiple material systems for selective beam sintering |
US4817725A (en) | 1986-11-26 | 1989-04-04 | C. "Jerry" Wattigny, A Part Interest | Oil field cable abrading system |
DE3640586A1 (de) | 1986-11-27 | 1988-06-09 | Norddeutsche Affinerie | Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit |
US4741973A (en) | 1986-12-15 | 1988-05-03 | United Technologies Corporation | Silicon carbide abrasive particles having multilayered coating |
US4768588A (en) | 1986-12-16 | 1988-09-06 | Kupsa Charles M | Connector assembly for a milling tool |
US4917966A (en) | 1987-02-24 | 1990-04-17 | The Ohio State University | Galvanic protection of steel with zinc alloys |
US4952902A (en) | 1987-03-17 | 1990-08-28 | Tdk Corporation | Thermistor materials and elements |
USH635H (en) | 1987-04-03 | 1989-06-06 | Injection mandrel | |
US4784226A (en) | 1987-05-22 | 1988-11-15 | Arrow Oil Tools, Inc. | Drillable bridge plug |
US5006044A (en) | 1987-08-19 | 1991-04-09 | Walker Sr Frank J | Method and system for controlling a mechanical pump to monitor and optimize both reservoir and equipment performance |
US4853056A (en) | 1988-01-20 | 1989-08-01 | Hoffman Allan C | Method of making tennis ball with a single core and cover bonding cure |
CH675089A5 (pt) | 1988-02-08 | 1990-08-31 | Asea Brown Boveri | |
US5084088A (en) | 1988-02-22 | 1992-01-28 | University Of Kentucky Research Foundation | High temperature alloys synthesis by electro-discharge compaction |
US4975412A (en) | 1988-02-22 | 1990-12-04 | University Of Kentucky Research Foundation | Method of processing superconducting materials and its products |
FR2642439B2 (pt) | 1988-02-26 | 1993-04-16 | Pechiney Electrometallurgie | |
US4929415A (en) | 1988-03-01 | 1990-05-29 | Kenji Okazaki | Method of sintering powder |
US4869324A (en) | 1988-03-21 | 1989-09-26 | Baker Hughes Incorporated | Inflatable packers and methods of utilization |
US4889187A (en) | 1988-04-25 | 1989-12-26 | Jamie Bryant Terrell | Multi-run chemical cutter and method |
US4938809A (en) | 1988-05-23 | 1990-07-03 | Allied-Signal Inc. | Superplastic forming consolidated rapidly solidified, magnestum base metal alloy powder |
US4932474A (en) | 1988-07-14 | 1990-06-12 | Marathon Oil Company | Staged screen assembly for gravel packing |
US4880059A (en) | 1988-08-12 | 1989-11-14 | Halliburton Company | Sliding sleeve casing tool |
US4834184A (en) | 1988-09-22 | 1989-05-30 | Halliburton Company | Drillable, testing, treat, squeeze packer |
US4909320A (en) | 1988-10-14 | 1990-03-20 | Drilex Systems, Inc. | Detonation assembly for explosive wellhead severing system |
US4850432A (en) | 1988-10-17 | 1989-07-25 | Texaco Inc. | Manual port closing tool for well cementing |
US4934459A (en) | 1989-01-23 | 1990-06-19 | Baker Hughes Incorporated | Subterranean well anchoring apparatus |
US4901794A (en) | 1989-01-23 | 1990-02-20 | Baker Hughes Incorporated | Subterranean well anchoring apparatus |
US5049165B1 (en) | 1989-01-30 | 1995-09-26 | Ultimate Abrasive Syst Inc | Composite material |
US4890675A (en) | 1989-03-08 | 1990-01-02 | Dew Edward G | Horizontal drilling through casing window |
US4938309A (en) | 1989-06-08 | 1990-07-03 | M.D. Manufacturing, Inc. | Built-in vacuum cleaning system with improved acoustic damping design |
EP0406580B1 (en) | 1989-06-09 | 1996-09-04 | Matsushita Electric Industrial Co., Ltd. | A composite material and a method for producing the same |
JP2511526B2 (ja) | 1989-07-13 | 1996-06-26 | ワイケイケイ株式会社 | 高力マグネシウム基合金 |
US4977958A (en) | 1989-07-26 | 1990-12-18 | Miller Stanley J | Downhole pump filter |
FR2651244B1 (fr) | 1989-08-24 | 1993-03-26 | Pechiney Recherche | Procede d'obtention d'alliages de magnesium par pulverisation-depot. |
US5456317A (en) | 1989-08-31 | 1995-10-10 | Union Oil Co | Buoyancy assisted running of perforated tubulars |
US4986361A (en) | 1989-08-31 | 1991-01-22 | Union Oil Company Of California | Well casing flotation device and method |
US5117915A (en) | 1989-08-31 | 1992-06-02 | Union Oil Company Of California | Well casing flotation device and method |
IE903114A1 (en) | 1989-08-31 | 1991-03-13 | Union Oil Co | Well casing flotation device and method |
US5304588A (en) | 1989-09-28 | 1994-04-19 | Union Carbide Chemicals & Plastics Technology Corporation | Core-shell resin particle |
US4981177A (en) | 1989-10-17 | 1991-01-01 | Baker Hughes Incorporated | Method and apparatus for establishing communication with a downhole portion of a control fluid pipe |
US4944351A (en) | 1989-10-26 | 1990-07-31 | Baker Hughes Incorporated | Downhole safety valve for subterranean well and method |
US4949788A (en) | 1989-11-08 | 1990-08-21 | Halliburton Company | Well completions using casing valves |
US5273569A (en) | 1989-11-09 | 1993-12-28 | Allied-Signal Inc. | Magnesium based metal matrix composites produced from rapidly solidified alloys |
US5095988A (en) | 1989-11-15 | 1992-03-17 | Bode Robert E | Plug injection method and apparatus |
US5387380A (en) | 1989-12-08 | 1995-02-07 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
US5204055A (en) | 1989-12-08 | 1993-04-20 | Massachusetts Institute Of Technology | Three-dimensional printing techniques |
GB2240798A (en) | 1990-02-12 | 1991-08-14 | Shell Int Research | Method and apparatus for perforating a well liner and for fracturing a surrounding formation |
US5178216A (en) | 1990-04-25 | 1993-01-12 | Halliburton Company | Wedge lock ring |
US5271468A (en) | 1990-04-26 | 1993-12-21 | Halliburton Company | Downhole tool apparatus with non-metallic components and methods of drilling thereof |
US5665289A (en) | 1990-05-07 | 1997-09-09 | Chang I. Chung | Solid polymer solution binders for shaping of finely-divided inert particles |
US5074361A (en) | 1990-05-24 | 1991-12-24 | Halliburton Company | Retrieving tool and method |
US5010955A (en) | 1990-05-29 | 1991-04-30 | Smith International, Inc. | Casing mill and method |
US5048611A (en) | 1990-06-04 | 1991-09-17 | Lindsey Completion Systems, Inc. | Pressure operated circulation valve |
US5090480A (en) | 1990-06-28 | 1992-02-25 | Slimdril International, Inc. | Underreamer with simultaneously expandable cutter blades and method |
US5036921A (en) | 1990-06-28 | 1991-08-06 | Slimdril International, Inc. | Underreamer with sequentially expandable cutter blades |
US5188182A (en) | 1990-07-13 | 1993-02-23 | Otis Engineering Corporation | System containing expendible isolation valve with frangible sealing member, seat arrangement and method for use |
US5316598A (en) | 1990-09-21 | 1994-05-31 | Allied-Signal Inc. | Superplastically formed product from rolled magnesium base metal alloy sheet |
US5087304A (en) | 1990-09-21 | 1992-02-11 | Allied-Signal Inc. | Hot rolled sheet of rapidly solidified magnesium base alloy |
US5061323A (en) | 1990-10-15 | 1991-10-29 | The United States Of America As Represented By The Secretary Of The Navy | Composition and method for producing an aluminum alloy resistant to environmentally-assisted cracking |
US5240742A (en) | 1991-03-25 | 1993-08-31 | Hoeganaes Corporation | Method of producing metal coatings on metal powders |
US5171734A (en) | 1991-04-22 | 1992-12-15 | Sri International | Coating a substrate in a fluidized bed maintained at a temperature below the vaporization temperature of the resulting coating composition |
US5188183A (en) | 1991-05-03 | 1993-02-23 | Baker Hughes Incorporated | Method and apparatus for controlling the flow of well bore fluids |
US5161614A (en) | 1991-05-31 | 1992-11-10 | Marguip, Inc. | Apparatus and method for accessing the casing of a burning oil well |
US5292478A (en) | 1991-06-24 | 1994-03-08 | Ametek, Specialty Metal Products Division | Copper-molybdenum composite strip |
US5285798A (en) | 1991-06-28 | 1994-02-15 | R. J. Reynolds Tobacco Company | Tobacco smoking article with electrochemical heat source |
US5453293A (en) | 1991-07-17 | 1995-09-26 | Beane; Alan F. | Methods of manufacturing coated particles having desired values of intrinsic properties and methods of applying the coated particles to objects |
US5228518A (en) | 1991-09-16 | 1993-07-20 | Conoco Inc. | Downhole activated process and apparatus for centralizing pipe in a wellbore |
US5234055A (en) | 1991-10-10 | 1993-08-10 | Atlantic Richfield Company | Wellbore pressure differential control for gravel pack screen |
US5318746A (en) | 1991-12-04 | 1994-06-07 | The United States Of America As Represented By The Secretary Of Commerce | Process for forming alloys in situ in absence of liquid-phase sintering |
US5252365A (en) | 1992-01-28 | 1993-10-12 | White Engineering Corporation | Method for stabilization and lubrication of elastomers |
US5511620A (en) | 1992-01-29 | 1996-04-30 | Baugh; John L. | Straight Bore metal-to-metal wellbore seal apparatus and method of sealing in a wellbore |
US5394236A (en) | 1992-02-03 | 1995-02-28 | Rutgers, The State University | Methods and apparatus for isotopic analysis |
US5226483A (en) | 1992-03-04 | 1993-07-13 | Otis Engineering Corporation | Safety valve landing nipple and method |
US5285706A (en) | 1992-03-11 | 1994-02-15 | Wellcutter Inc. | Pipe threading apparatus |
US5293940A (en) | 1992-03-26 | 1994-03-15 | Schlumberger Technology Corporation | Automatic tubing release |
US5477923A (en) | 1992-08-07 | 1995-12-26 | Baker Hughes Incorporated | Wellbore completion using measurement-while-drilling techniques |
US5454430A (en) | 1992-08-07 | 1995-10-03 | Baker Hughes Incorporated | Scoophead/diverter assembly for completing lateral wellbores |
US5474131A (en) | 1992-08-07 | 1995-12-12 | Baker Hughes Incorporated | Method for completing multi-lateral wells and maintaining selective re-entry into laterals |
US5417285A (en) | 1992-08-07 | 1995-05-23 | Baker Hughes Incorporated | Method and apparatus for sealing and transferring force in a wellbore |
US5623993A (en) | 1992-08-07 | 1997-04-29 | Baker Hughes Incorporated | Method and apparatus for sealing and transfering force in a wellbore |
US5253714A (en) | 1992-08-17 | 1993-10-19 | Baker Hughes Incorporated | Well service tool |
US5282509A (en) | 1992-08-20 | 1994-02-01 | Conoco Inc. | Method for cleaning cement plug from wellbore liner |
US5647444A (en) | 1992-09-18 | 1997-07-15 | Williams; John R. | Rotating blowout preventor |
US5310000A (en) | 1992-09-28 | 1994-05-10 | Halliburton Company | Foil wrapped base pipe for sand control |
US5902424A (en) | 1992-09-30 | 1999-05-11 | Mazda Motor Corporation | Method of making an article of manufacture made of a magnesium alloy |
JP2676466B2 (ja) | 1992-09-30 | 1997-11-17 | マツダ株式会社 | マグネシウム合金製部材およびその製造方法 |
US5380473A (en) | 1992-10-23 | 1995-01-10 | Fuisz Technologies Ltd. | Process for making shearform matrix |
US5309874A (en) | 1993-01-08 | 1994-05-10 | Ford Motor Company | Powertrain component with adherent amorphous or nanocrystalline ceramic coating system |
US5392860A (en) | 1993-03-15 | 1995-02-28 | Baker Hughes Incorporated | Heat activated safety fuse |
US5677372A (en) | 1993-04-06 | 1997-10-14 | Sumitomo Electric Industries, Ltd. | Diamond reinforced composite material |
JP3489177B2 (ja) | 1993-06-03 | 2004-01-19 | マツダ株式会社 | 塑性加工成形品の製造方法 |
US5427177A (en) | 1993-06-10 | 1995-06-27 | Baker Hughes Incorporated | Multi-lateral selective re-entry tool |
US5394941A (en) | 1993-06-21 | 1995-03-07 | Halliburton Company | Fracture oriented completion tool system |
US5368098A (en) | 1993-06-23 | 1994-11-29 | Weatherford U.S., Inc. | Stage tool |
US5536485A (en) | 1993-08-12 | 1996-07-16 | Agency Of Industrial Science & Technology | Diamond sinter, high-pressure phase boron nitride sinter, and processes for producing those sinters |
US6024915A (en) | 1993-08-12 | 2000-02-15 | Agency Of Industrial Science & Technology | Coated metal particles, a metal-base sinter and a process for producing same |
JP3533459B2 (ja) | 1993-08-12 | 2004-05-31 | 独立行政法人産業技術総合研究所 | 被覆金属準微粒子の製造法 |
US5531716A (en) | 1993-09-29 | 1996-07-02 | Hercules Incorporated | Medical devices subject to triggered disintegration |
US5407011A (en) | 1993-10-07 | 1995-04-18 | Wada Ventures | Downhole mill and method for milling |
KR950014350B1 (ko) | 1993-10-19 | 1995-11-25 | 주승기 | W-Cu 계 합금의 제조방법 |
US5494538A (en) | 1994-01-14 | 1996-02-27 | Magnic International, Inc. | Magnesium alloy for hydrogen production |
US5722033A (en) | 1994-01-19 | 1998-02-24 | Alyn Corporation | Fabrication methods for metal matrix composites |
US5398754A (en) | 1994-01-25 | 1995-03-21 | Baker Hughes Incorporated | Retrievable whipstock anchor assembly |
US5439051A (en) | 1994-01-26 | 1995-08-08 | Baker Hughes Incorporated | Lateral connector receptacle |
US5435392A (en) | 1994-01-26 | 1995-07-25 | Baker Hughes Incorporated | Liner tie-back sleeve |
US5411082A (en) | 1994-01-26 | 1995-05-02 | Baker Hughes Incorporated | Scoophead running tool |
US5472048A (en) | 1994-01-26 | 1995-12-05 | Baker Hughes Incorporated | Parallel seal assembly |
US5524699A (en) | 1994-02-03 | 1996-06-11 | Pcc Composites, Inc. | Continuous metal matrix composite casting |
US5425424A (en) | 1994-02-28 | 1995-06-20 | Baker Hughes Incorporated | Casing valve |
DE4407593C1 (de) | 1994-03-08 | 1995-10-26 | Plansee Metallwerk | Verfahren zur Herstellung von Pulverpreßlingen hoher Dichte |
US5456327A (en) | 1994-03-08 | 1995-10-10 | Smith International, Inc. | O-ring seal for rock bit bearings |
US5479986A (en) | 1994-05-02 | 1996-01-02 | Halliburton Company | Temporary plug system |
US5826661A (en) | 1994-05-02 | 1998-10-27 | Halliburton Energy Services, Inc. | Linear indexing apparatus and methods of using same |
US5526881A (en) | 1994-06-30 | 1996-06-18 | Quality Tubing, Inc. | Preperforated coiled tubing |
US5707214A (en) | 1994-07-01 | 1998-01-13 | Fluid Flow Engineering Company | Nozzle-venturi gas lift flow control device and method for improving production rate, lift efficiency, and stability of gas lift wells |
US5506055A (en) * | 1994-07-08 | 1996-04-09 | Sulzer Metco (Us) Inc. | Boron nitride and aluminum thermal spray powder |
GB9413957D0 (en) | 1994-07-11 | 1994-08-31 | Castex Prod | Release devices |
AU3708495A (en) | 1994-08-01 | 1996-03-04 | Franz Hehmann | Selected processing for non-equilibrium light alloys and products |
FI95897C (fi) | 1994-12-08 | 1996-04-10 | Westem Oy | Kuormalava |
US5526880A (en) | 1994-09-15 | 1996-06-18 | Baker Hughes Incorporated | Method for multi-lateral completion and cementing the juncture with lateral wellbores |
US5531735A (en) | 1994-09-27 | 1996-07-02 | Hercules Incorporated | Medical devices containing triggerable disintegration agents |
US5934372A (en) | 1994-10-20 | 1999-08-10 | Muth Pump Llc | Pump system and method for pumping well fluids |
US5765639A (en) | 1994-10-20 | 1998-06-16 | Muth Pump Llc | Tubing pump system for pumping well fluids |
US5558153A (en) | 1994-10-20 | 1996-09-24 | Baker Hughes Incorporated | Method & apparatus for actuating a downhole tool |
US6250392B1 (en) | 1994-10-20 | 2001-06-26 | Muth Pump Llc | Pump systems and methods |
US5507439A (en) | 1994-11-10 | 1996-04-16 | Kerr-Mcgee Chemical Corporation | Method for milling a powder |
US5695009A (en) | 1995-10-31 | 1997-12-09 | Sonoma Corporation | Downhole oil well tool running and pulling with hydraulic release using deformable ball valving member |
GB9425240D0 (en) | 1994-12-14 | 1995-02-08 | Head Philip | Dissoluable metal to metal seal |
JPH11503489A (ja) | 1995-02-02 | 1999-03-26 | ハイドロ−ケベック | ナノ結晶Mg基−材料及びその水素輸送と水素貯蔵への利用 |
US5829520A (en) | 1995-02-14 | 1998-11-03 | Baker Hughes Incorporated | Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device |
US6230822B1 (en) | 1995-02-16 | 2001-05-15 | Baker Hughes Incorporated | Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations |
JPH08232029A (ja) | 1995-02-24 | 1996-09-10 | Sumitomo Electric Ind Ltd | Ni基粒子分散型銅系焼結合金とその製造方法 |
US6403210B1 (en) | 1995-03-07 | 2002-06-11 | Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno | Method for manufacturing a composite material |
US5728195A (en) | 1995-03-10 | 1998-03-17 | The United States Of America As Represented By The Department Of Energy | Method for producing nanocrystalline multicomponent and multiphase materials |
DK0852977T3 (da) | 1995-03-14 | 2003-10-06 | Nittetsu Mining Co Ltd | Pulver med flerlagsfilm på sin overflade samt fremgangsmåde til dets fremstilling |
US5607017A (en) | 1995-07-03 | 1997-03-04 | Pes, Inc. | Dissolvable well plug |
US5641023A (en) | 1995-08-03 | 1997-06-24 | Halliburton Energy Services, Inc. | Shifting tool for a subterranean completion structure |
US5636691A (en) | 1995-09-18 | 1997-06-10 | Halliburton Energy Services, Inc. | Abrasive slurry delivery apparatus and methods of using same |
DE69513203T2 (de) | 1995-10-31 | 2000-07-20 | Ecole Polytechnique Federale De Lausanne (Epfl), Lausanne | Batterie-anordnung von fotovoltaischen zellen und herstellungsverfahren |
US5772735A (en) | 1995-11-02 | 1998-06-30 | University Of New Mexico | Supported inorganic membranes |
CA2163946C (en) | 1995-11-28 | 1997-10-14 | Integrated Production Services Ltd. | Dizzy dognut anchoring system |
US5698081A (en) | 1995-12-07 | 1997-12-16 | Materials Innovation, Inc. | Coating particles in a centrifugal bed |
US5810084A (en) | 1996-02-22 | 1998-09-22 | Halliburton Energy Services, Inc. | Gravel pack apparatus |
EP0828922B1 (en) | 1996-03-22 | 2001-06-27 | Smith International, Inc. | Actuating ball |
US6007314A (en) | 1996-04-01 | 1999-12-28 | Nelson, Ii; Joe A. | Downhole pump with standing valve assembly which guides the ball off-center |
US5762137A (en) | 1996-04-29 | 1998-06-09 | Halliburton Energy Services, Inc. | Retrievable screen apparatus and methods of using same |
US6047773A (en) | 1996-08-09 | 2000-04-11 | Halliburton Energy Services, Inc. | Apparatus and methods for stimulating a subterranean well |
US5905000A (en) | 1996-09-03 | 1999-05-18 | Nanomaterials Research Corporation | Nanostructured ion conducting solid electrolytes |
US5720344A (en) | 1996-10-21 | 1998-02-24 | Newman; Frederic M. | Method of longitudinally splitting a pipe coupling within a wellbore |
US5782305A (en) | 1996-11-18 | 1998-07-21 | Texaco Inc. | Method and apparatus for removing fluid from production tubing into the well |
EP0851515A3 (en) | 1996-12-27 | 2004-10-27 | Canon Kabushiki Kaisha | Powdery material, electrode member, method for manufacturing same and secondary cell |
ATE260159T1 (de) | 1997-03-17 | 2004-03-15 | Levinski Leonid | Pulvermischung zum thermischen diffusionsbeschichten |
US5826652A (en) | 1997-04-08 | 1998-10-27 | Baker Hughes Incorporated | Hydraulic setting tool |
US5881816A (en) | 1997-04-11 | 1999-03-16 | Weatherford/Lamb, Inc. | Packer mill |
DE19716524C1 (de) | 1997-04-19 | 1998-08-20 | Daimler Benz Aerospace Ag | Verfahren zur Herstellung eines Körpers mit einem Hohlraum |
US5960881A (en) | 1997-04-22 | 1999-10-05 | Jerry P. Allamon | Downhole surge pressure reduction system and method of use |
ES2526604T3 (es) | 1997-05-13 | 2015-01-13 | Allomet Corporation | Polvos duros con recubrimiento tenaz y artículos sinterizados de los mismos |
WO1999000575A2 (en) | 1997-06-27 | 1999-01-07 | Baker Hughes Incorporated | Drilling system with sensors for determining properties of drilling fluid downhole |
US5924491A (en) | 1997-07-03 | 1999-07-20 | Baker Hughes Incorporated | Thru-tubing anchor seal assembly and/or packer release devices |
GB9715001D0 (en) | 1997-07-17 | 1997-09-24 | Specialised Petroleum Serv Ltd | A downhole tool |
DE19731021A1 (de) | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo abbaubares metallisches Implantat |
CN1092240C (zh) | 1997-08-19 | 2002-10-09 | 钛坦诺克斯发展有限公司 | 钛合金基弥散强化的复合物 |
US6283208B1 (en) | 1997-09-05 | 2001-09-04 | Schlumberger Technology Corp. | Orienting tool and method |
US5992520A (en) | 1997-09-15 | 1999-11-30 | Halliburton Energy Services, Inc. | Annulus pressure operated downhole choke and associated methods |
US6612826B1 (en) | 1997-10-15 | 2003-09-02 | Iap Research, Inc. | System for consolidating powders |
US6095247A (en) | 1997-11-21 | 2000-08-01 | Halliburton Energy Services, Inc. | Apparatus and method for opening perforations in a well casing |
US6397950B1 (en) | 1997-11-21 | 2002-06-04 | Halliburton Energy Services, Inc. | Apparatus and method for removing a frangible rupture disc or other frangible device from a wellbore casing |
US6079496A (en) | 1997-12-04 | 2000-06-27 | Baker Hughes Incorporated | Reduced-shock landing collar |
US6170583B1 (en) | 1998-01-16 | 2001-01-09 | Dresser Industries, Inc. | Inserts and compacts having coated or encrusted cubic boron nitride particles |
US6265205B1 (en) | 1998-01-27 | 2001-07-24 | Lynntech, Inc. | Enhancement of soil and groundwater remediation |
GB2334051B (en) | 1998-02-09 | 2000-08-30 | Antech Limited | Oil well separation method and apparatus |
US6076600A (en) | 1998-02-27 | 2000-06-20 | Halliburton Energy Services, Inc. | Plug apparatus having a dispersible plug member and a fluid barrier |
AU1850199A (en) | 1998-03-11 | 1999-09-23 | Baker Hughes Incorporated | Apparatus for removal of milling debris |
US6173779B1 (en) | 1998-03-16 | 2001-01-16 | Halliburton Energy Services, Inc. | Collapsible well perforating apparatus |
CA2232748C (en) | 1998-03-19 | 2007-05-08 | Ipec Ltd. | Injection tool |
AU6472798A (en) | 1998-03-19 | 1999-10-11 | University Of Florida | Process for depositing atomic to nanometer particle coatings on host particles |
US6050340A (en) | 1998-03-27 | 2000-04-18 | Weatherford International, Inc. | Downhole pump installation/removal system and method |
US5990051A (en) | 1998-04-06 | 1999-11-23 | Fairmount Minerals, Inc. | Injection molded degradable casing perforation ball sealers |
US6189618B1 (en) | 1998-04-20 | 2001-02-20 | Weatherford/Lamb, Inc. | Wellbore wash nozzle system |
US6167970B1 (en) | 1998-04-30 | 2001-01-02 | B J Services Company | Isolation tool release mechanism |
GB2342940B (en) | 1998-05-05 | 2002-12-31 | Baker Hughes Inc | Actuation system for a downhole tool or gas lift system and an automatic modification system |
US6675889B1 (en) | 1998-05-11 | 2004-01-13 | Offshore Energy Services, Inc. | Tubular filling system |
AU3746099A (en) | 1998-05-14 | 1999-11-29 | Fike Corporation | Downhole dump valve |
US6135208A (en) | 1998-05-28 | 2000-10-24 | Halliburton Energy Services, Inc. | Expandable wellbore junction |
CA2239645C (en) | 1998-06-05 | 2003-04-08 | Top-Co Industries Ltd. | Method and apparatus for locating a drill bit when drilling out cementing equipment from a wellbore |
US6357332B1 (en) | 1998-08-06 | 2002-03-19 | Thew Regents Of The University Of California | Process for making metallic/intermetallic composite laminate materian and materials so produced especially for use in lightweight armor |
FR2782096B1 (fr) | 1998-08-07 | 2001-05-18 | Commissariat Energie Atomique | Procede de fabrication d'un alliage intermetallique fer-aluminium renforce par des dispersoides de ceramique et alliage ainsi obtenu |
US6273187B1 (en) | 1998-09-10 | 2001-08-14 | Schlumberger Technology Corporation | Method and apparatus for downhole safety valve remediation |
US6033622A (en) | 1998-09-21 | 2000-03-07 | The United States Of America As Represented By The Secretary Of The Air Force | Method for making metal matrix composites |
US6213202B1 (en) | 1998-09-21 | 2001-04-10 | Camco International, Inc. | Separable connector for coil tubing deployed systems |
US6142237A (en) | 1998-09-21 | 2000-11-07 | Camco International, Inc. | Method for coupling and release of submergible equipment |
US6779599B2 (en) | 1998-09-25 | 2004-08-24 | Offshore Energy Services, Inc. | Tubular filling system |
DE19844397A1 (de) | 1998-09-28 | 2000-03-30 | Hilti Ag | Abrasive Schneidkörper enthaltend Diamantpartikel und Verfahren zur Herstellung der Schneidkörper |
US6161622A (en) | 1998-11-02 | 2000-12-19 | Halliburton Energy Services, Inc. | Remote actuated plug method |
US5992452A (en) | 1998-11-09 | 1999-11-30 | Nelson, Ii; Joe A. | Ball and seat valve assembly and downhole pump utilizing the valve assembly |
US7603758B2 (en) | 1998-12-07 | 2009-10-20 | Shell Oil Company | Method of coupling a tubular member |
US6220350B1 (en) | 1998-12-01 | 2001-04-24 | Halliburton Energy Services, Inc. | High strength water soluble plug |
JP2000185725A (ja) | 1998-12-21 | 2000-07-04 | Sachiko Ando | 筒状包装体 |
FR2788451B1 (fr) | 1999-01-20 | 2001-04-06 | Elf Exploration Prod | Procede de destruction d'un isolant thermique rigide dispose dans un espace confine |
US6315041B1 (en) | 1999-04-15 | 2001-11-13 | Stephen L. Carlisle | Multi-zone isolation tool and method of stimulating and testing a subterranean well |
US6186227B1 (en) | 1999-04-21 | 2001-02-13 | Schlumberger Technology Corporation | Packer |
US6561269B1 (en) | 1999-04-30 | 2003-05-13 | The Regents Of The University Of California | Canister, sealing method and composition for sealing a borehole |
US6220349B1 (en) | 1999-05-13 | 2001-04-24 | Halliburton Energy Services, Inc. | Low pressure, high temperature composite bridge plug |
US6406745B1 (en) | 1999-06-07 | 2002-06-18 | Nanosphere, Inc. | Methods for coating particles and particles produced thereby |
AU5453200A (en) | 1999-06-09 | 2000-12-28 | Laird Technologies, Inc. | Electrically conductive polymeric foam and method of preparation thereof |
US6613383B1 (en) | 1999-06-21 | 2003-09-02 | Regents Of The University Of Colorado | Atomic layer controlled deposition on particle surfaces |
US6241021B1 (en) | 1999-07-09 | 2001-06-05 | Halliburton Energy Services, Inc. | Methods of completing an uncemented wellbore junction |
US6341747B1 (en) | 1999-10-28 | 2002-01-29 | United Technologies Corporation | Nanocomposite layered airfoil |
US6401547B1 (en) | 1999-10-29 | 2002-06-11 | The University Of Florida | Device and method for measuring fluid and solute fluxes in flow systems |
US6237688B1 (en) | 1999-11-01 | 2001-05-29 | Halliburton Energy Services, Inc. | Pre-drilled casing apparatus and associated methods for completing a subterranean well |
US6279656B1 (en) | 1999-11-03 | 2001-08-28 | Santrol, Inc. | Downhole chemical delivery system for oil and gas wells |
US6341653B1 (en) | 1999-12-10 | 2002-01-29 | Polar Completions Engineering, Inc. | Junk basket and method of use |
US6513600B2 (en) | 1999-12-22 | 2003-02-04 | Richard Ross | Apparatus and method for packing or anchoring an inner tubular within a casing |
US6325148B1 (en) | 1999-12-22 | 2001-12-04 | Weatherford/Lamb, Inc. | Tools and methods for use with expandable tubulars |
AU782553B2 (en) | 2000-01-05 | 2005-08-11 | Baker Hughes Incorporated | Method of providing hydraulic/fiber conduits adjacent bottom hole assemblies for multi-step completions |
US6354372B1 (en) | 2000-01-13 | 2002-03-12 | Carisella & Cook Ventures | Subterranean well tool and slip assembly |
US6828026B2 (en) | 2000-01-25 | 2004-12-07 | Glatt Systemtechnik Dresden Gmbh | Hollow balls and a method for producing hollow balls and for producing light-weight structural components by means of hollow balls |
US6390200B1 (en) | 2000-02-04 | 2002-05-21 | Allamon Interest | Drop ball sub and system of use |
US7036594B2 (en) | 2000-03-02 | 2006-05-02 | Schlumberger Technology Corporation | Controlling a pressure transient in a well |
KR100756752B1 (ko) | 2000-03-10 | 2007-09-07 | 코루스 알루미늄 발쯔프로두크테 게엠베하 | 브레이징 시트 제품 및 상기 브레이징 시트 제품을 이용하여 조립체를 제조하는 방법 |
US6679176B1 (en) | 2000-03-21 | 2004-01-20 | Peter D. Zavitsanos | Reactive projectiles for exploding unexploded ordnance |
US6699305B2 (en) | 2000-03-21 | 2004-03-02 | James J. Myrick | Production of metals and their alloys |
US6662886B2 (en) | 2000-04-03 | 2003-12-16 | Larry R. Russell | Mudsaver valve with dual snap action |
US6276457B1 (en) | 2000-04-07 | 2001-08-21 | Alberta Energy Company Ltd | Method for emplacing a coil tubing string in a well |
US6371206B1 (en) | 2000-04-20 | 2002-04-16 | Kudu Industries Inc | Prevention of sand plugging of oil well pumps |
US6408946B1 (en) | 2000-04-28 | 2002-06-25 | Baker Hughes Incorporated | Multi-use tubing disconnect |
JP3696514B2 (ja) | 2000-05-31 | 2005-09-21 | 本田技研工業株式会社 | 合金粉末の製造方法 |
DE60106149T2 (de) | 2000-05-31 | 2005-02-24 | Honda Giken Kogyo K.K. | Wasserstoffabsorbierndes Legierungspulver und Verfahren zur Herstellung desselben sowie Treibstofftank zur Lagerung von Wasserstoff |
EG22932A (en) | 2000-05-31 | 2002-01-13 | Shell Int Research | Method and system for reducing longitudinal fluid flow around a permeable well tubular |
US6446717B1 (en) | 2000-06-01 | 2002-09-10 | Weatherford/Lamb, Inc. | Core-containing sealing assembly |
US6581681B1 (en) | 2000-06-21 | 2003-06-24 | Weatherford/Lamb, Inc. | Bridge plug for use in a wellbore |
US6713177B2 (en) | 2000-06-21 | 2004-03-30 | Regents Of The University Of Colorado | Insulating and functionalizing fine metal-containing particles with conformal ultra-thin films |
US7255178B2 (en) | 2000-06-30 | 2007-08-14 | Bj Services Company | Drillable bridge plug |
DE60116096D1 (de) | 2000-06-30 | 2006-01-26 | Watherford Lamb Inc | Verfahren und vorrichtung zur komplettierung einer abzweigung in bohrlöchern mit einer mehrzahl seitlicher bohrungen |
US7600572B2 (en) | 2000-06-30 | 2009-10-13 | Bj Services Company | Drillable bridge plug |
GB0016595D0 (en) | 2000-07-07 | 2000-08-23 | Moyes Peter B | Deformable member |
US6394180B1 (en) | 2000-07-12 | 2002-05-28 | Halliburton Energy Service,S Inc. | Frac plug with caged ball |
MXPA03000534A (es) | 2000-07-21 | 2004-09-10 | Sinvent As | Sistema combinado de tuberia de revestimiento y matriz. |
US6382244B2 (en) | 2000-07-24 | 2002-05-07 | Roy R. Vann | Reciprocating pump standing head valve |
US6394185B1 (en) | 2000-07-27 | 2002-05-28 | Vernon George Constien | Product and process for coating wellbore screens |
US7360593B2 (en) | 2000-07-27 | 2008-04-22 | Vernon George Constien | Product for coating wellbore screens |
US6390195B1 (en) | 2000-07-28 | 2002-05-21 | Halliburton Energy Service,S Inc. | Methods and compositions for forming permeable cement sand screens in well bores |
US6357322B1 (en) | 2000-08-08 | 2002-03-19 | Williams-Sonoma, Inc. | Inclined rack and spiral radius pinion corkscrew machine |
US6470965B1 (en) | 2000-08-28 | 2002-10-29 | Colin Winzer | Device for introducing a high pressure fluid into well head components |
WO2002017883A2 (en) | 2000-08-31 | 2002-03-07 | Rtp Pharma Inc. | Milled particles |
US6630008B1 (en) | 2000-09-18 | 2003-10-07 | Ceracon, Inc. | Nanocrystalline aluminum metal matrix composites, and production methods |
US6712797B1 (en) | 2000-09-19 | 2004-03-30 | Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College | Blood return catheter |
US6439313B1 (en) | 2000-09-20 | 2002-08-27 | Schlumberger Technology Corporation | Downhole machining of well completion equipment |
GB0025302D0 (en) | 2000-10-14 | 2000-11-29 | Sps Afos Group Ltd | Downhole fluid sampler |
US7090025B2 (en) | 2000-10-25 | 2006-08-15 | Weatherford/Lamb, Inc. | Methods and apparatus for reforming and expanding tubulars in a wellbore |
GB0026063D0 (en) | 2000-10-25 | 2000-12-13 | Weatherford Lamb | Downhole tubing |
US6472068B1 (en) | 2000-10-26 | 2002-10-29 | Sandia Corporation | Glass rupture disk |
NO313341B1 (no) | 2000-12-04 | 2002-09-16 | Ziebel As | Hylseventil for regulering av fluidstrom og fremgangsmate til sammenstilling av en hylseventil |
US6491097B1 (en) | 2000-12-14 | 2002-12-10 | Halliburton Energy Services, Inc. | Abrasive slurry delivery apparatus and methods of using same |
US6457525B1 (en) | 2000-12-15 | 2002-10-01 | Exxonmobil Oil Corporation | Method and apparatus for completing multiple production zones from a single wellbore |
US6725934B2 (en) | 2000-12-21 | 2004-04-27 | Baker Hughes Incorporated | Expandable packer isolation system |
US6899777B2 (en) | 2001-01-02 | 2005-05-31 | Advanced Ceramics Research, Inc. | Continuous fiber reinforced composites and methods, apparatuses, and compositions for making the same |
US6491083B2 (en) | 2001-02-06 | 2002-12-10 | Anadigics, Inc. | Wafer demount receptacle for separation of thinned wafer from mounting carrier |
US6601650B2 (en) | 2001-08-09 | 2003-08-05 | Worldwide Oilfield Machine, Inc. | Method and apparatus for replacing BOP with gate valve |
US6513598B2 (en) | 2001-03-19 | 2003-02-04 | Halliburton Energy Services, Inc. | Drillable floating equipment and method of eliminating bit trips by using drillable materials for the construction of shoe tracks |
US6668938B2 (en) | 2001-03-30 | 2003-12-30 | Schlumberger Technology Corporation | Cup packer |
US6644412B2 (en) | 2001-04-25 | 2003-11-11 | Weatherford/Lamb, Inc. | Flow control apparatus for use in a wellbore |
US6634428B2 (en) | 2001-05-03 | 2003-10-21 | Baker Hughes Incorporated | Delayed opening ball seat |
US7032662B2 (en) | 2001-05-23 | 2006-04-25 | Core Laboratories Lp | Method for determining the extent of recovery of materials injected into oil wells or subsurface formations during oil and gas exploration and production |
US6712153B2 (en) | 2001-06-27 | 2004-03-30 | Weatherford/Lamb, Inc. | Resin impregnated continuous fiber plug with non-metallic element system |
US6588507B2 (en) | 2001-06-28 | 2003-07-08 | Halliburton Energy Services, Inc. | Apparatus and method for progressively gravel packing an interval of a wellbore |
AU2002320588A1 (en) | 2001-07-18 | 2003-03-03 | The Regents Of The University Of Colorado | Insulating and functionalizing fine metal-containing particles with comformal ultra-thin films |
US6655459B2 (en) | 2001-07-30 | 2003-12-02 | Weatherford/Lamb, Inc. | Completion apparatus and methods for use in wellbores |
US7331388B2 (en) | 2001-08-24 | 2008-02-19 | Bj Services Company | Horizontal single trip system with rotating jetting tool |
US7017664B2 (en) | 2001-08-24 | 2006-03-28 | Bj Services Company | Single trip horizontal gravel pack and stimulation system and method |
JP3607655B2 (ja) | 2001-09-26 | 2005-01-05 | 株式会社東芝 | マウント材、半導体装置及び半導体装置の製造方法 |
US6949491B2 (en) | 2001-09-26 | 2005-09-27 | Cooke Jr Claude E | Method and materials for hydraulic fracturing of wells |
CN1602387A (zh) | 2001-10-09 | 2005-03-30 | 伯林顿石油及天然气资源公司 | 井下油井泵 |
US20030070811A1 (en) | 2001-10-12 | 2003-04-17 | Robison Clark E. | Apparatus and method for perforating a subterranean formation |
US6601648B2 (en) | 2001-10-22 | 2003-08-05 | Charles D. Ebinger | Well completion method |
RU2320867C2 (ru) | 2001-12-03 | 2008-03-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ и устройство для введения жидкости в пласт |
US7017677B2 (en) | 2002-07-24 | 2006-03-28 | Smith International, Inc. | Coarse carbide substrate cutting elements and method of forming the same |
CA2471261A1 (en) | 2001-12-18 | 2003-06-26 | Sand Control, Inc. | A drilling method for maintaining productivity while eliminating perforating and gravel packing |
US7051805B2 (en) | 2001-12-20 | 2006-05-30 | Baker Hughes Incorporated | Expandable packer with anchoring feature |
US7445049B2 (en) | 2002-01-22 | 2008-11-04 | Weatherford/Lamb, Inc. | Gas operated pump for hydrocarbon wells |
US6973973B2 (en) | 2002-01-22 | 2005-12-13 | Weatherford/Lamb, Inc. | Gas operated pump for hydrocarbon wells |
US6899176B2 (en) | 2002-01-25 | 2005-05-31 | Halliburton Energy Services, Inc. | Sand control screen assembly and treatment method using the same |
US6719051B2 (en) | 2002-01-25 | 2004-04-13 | Halliburton Energy Services, Inc. | Sand control screen assembly and treatment method using the same |
US7096945B2 (en) | 2002-01-25 | 2006-08-29 | Halliburton Energy Services, Inc. | Sand control screen assembly and treatment method using the same |
US6715541B2 (en) | 2002-02-21 | 2004-04-06 | Weatherford/Lamb, Inc. | Ball dropping assembly |
US6776228B2 (en) | 2002-02-21 | 2004-08-17 | Weatherford/Lamb, Inc. | Ball dropping assembly |
US6799638B2 (en) | 2002-03-01 | 2004-10-05 | Halliburton Energy Services, Inc. | Method, apparatus and system for selective release of cementing plugs |
US20040005483A1 (en) | 2002-03-08 | 2004-01-08 | Chhiu-Tsu Lin | Perovskite manganites for use in coatings |
US6896061B2 (en) | 2002-04-02 | 2005-05-24 | Halliburton Energy Services, Inc. | Multiple zones frac tool |
US6883611B2 (en) | 2002-04-12 | 2005-04-26 | Halliburton Energy Services, Inc. | Sealed multilateral junction system |
AU2003228520A1 (en) | 2002-04-12 | 2003-10-27 | Weatherford/Lamb, Inc. | Whipstock assembly and method of manufacture |
US6810960B2 (en) | 2002-04-22 | 2004-11-02 | Weatherford/Lamb, Inc. | Methods for increasing production from a wellbore |
EP1527326B1 (en) | 2002-05-15 | 2019-05-01 | Aarhus Universitet | Sampling device and method for measuring fluid flow and solute mass transport |
US6769491B2 (en) | 2002-06-07 | 2004-08-03 | Weatherford/Lamb, Inc. | Anchoring and sealing system for a downhole tool |
AUPS311202A0 (en) | 2002-06-21 | 2002-07-18 | Cast Centre Pty Ltd | Creep resistant magnesium alloy |
GB2390106B (en) | 2002-06-24 | 2005-11-30 | Schlumberger Holdings | Apparatus and methods for establishing secondary hydraulics in a downhole tool |
US7035361B2 (en) | 2002-07-15 | 2006-04-25 | Quellan, Inc. | Adaptive noise filtering and equalization for optimal high speed multilevel signal decoding |
US7049272B2 (en) | 2002-07-16 | 2006-05-23 | Santrol, Inc. | Downhole chemical delivery system for oil and gas wells |
US20040058167A1 (en) | 2002-07-19 | 2004-03-25 | Mehran Arbab | Article having nano-scaled structures and a process for making such article |
US6939388B2 (en) | 2002-07-23 | 2005-09-06 | General Electric Company | Method for making materials having artificially dispersed nano-size phases and articles made therewith |
US6945331B2 (en) | 2002-07-31 | 2005-09-20 | Schlumberger Technology Corporation | Multiple interventionless actuated downhole valve and method |
US7128145B2 (en) | 2002-08-19 | 2006-10-31 | Baker Hughes Incorporated | High expansion sealing device with leak path closures |
US6932159B2 (en) | 2002-08-28 | 2005-08-23 | Baker Hughes Incorporated | Run in cover for downhole expandable screen |
WO2004025160A2 (en) | 2002-09-11 | 2004-03-25 | Hiltap Fittings, Ltd. | Fluid system component with sacrificial element |
US7264056B2 (en) | 2002-09-13 | 2007-09-04 | University Of Wyoming | System and method for the mitigation of paraffin wax deposition from crude oil by using ultrasonic waves |
US6943207B2 (en) | 2002-09-13 | 2005-09-13 | H.B. Fuller Licensing & Financing Inc. | Smoke suppressant hot melt adhesive composition |
US6817414B2 (en) | 2002-09-20 | 2004-11-16 | M-I Llc | Acid coated sand for gravel pack and filter cake clean-up |
US6854522B2 (en) | 2002-09-23 | 2005-02-15 | Halliburton Energy Services, Inc. | Annular isolators for expandable tubulars in wellbores |
US6827150B2 (en) | 2002-10-09 | 2004-12-07 | Weatherford/Lamb, Inc. | High expansion packer |
US6887297B2 (en) | 2002-11-08 | 2005-05-03 | Wayne State University | Copper nanocrystals and methods of producing same |
US7090027B1 (en) | 2002-11-12 | 2006-08-15 | Dril—Quip, Inc. | Casing hanger assembly with rupture disk in support housing and method |
US8297364B2 (en) * | 2009-12-08 | 2012-10-30 | Baker Hughes Incorporated | Telescopic unit with dissolvable barrier |
US8327931B2 (en) | 2009-12-08 | 2012-12-11 | Baker Hughes Incorporated | Multi-component disappearing tripping ball and method for making the same |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
US9079246B2 (en) | 2009-12-08 | 2015-07-14 | Baker Hughes Incorporated | Method of making a nanomatrix powder metal compact |
US9109429B2 (en) | 2002-12-08 | 2015-08-18 | Baker Hughes Incorporated | Engineered powder compact composite material |
US8403037B2 (en) | 2009-12-08 | 2013-03-26 | Baker Hughes Incorporated | Dissolvable tool and method |
US9101978B2 (en) | 2002-12-08 | 2015-08-11 | Baker Hughes Incorporated | Nanomatrix powder metal compact |
CA2511826C (en) | 2002-12-26 | 2008-07-22 | Baker Hughes Incorporated | Alternative packer setting method |
JP2004225765A (ja) | 2003-01-21 | 2004-08-12 | Nissin Kogyo Co Ltd | 車両用ディスクブレーキのディスクロータ |
JP2004225084A (ja) | 2003-01-21 | 2004-08-12 | Nissin Kogyo Co Ltd | 自動車用ナックル |
US7128154B2 (en) | 2003-01-30 | 2006-10-31 | Weatherford/Lamb, Inc. | Single-direction cementing plug |
US7013989B2 (en) | 2003-02-14 | 2006-03-21 | Weatherford/Lamb, Inc. | Acoustical telemetry |
DE10306887A1 (de) | 2003-02-18 | 2004-08-26 | Daimlerchrysler Ag | Verfahren zur Beschichtung von Partikeln für generative rapid prototyping Prozesse |
US7021389B2 (en) | 2003-02-24 | 2006-04-04 | Bj Services Company | Bi-directional ball seat system and method |
US7373978B2 (en) | 2003-02-26 | 2008-05-20 | Exxonmobil Upstream Research Company | Method for drilling and completing wells |
US7108080B2 (en) | 2003-03-13 | 2006-09-19 | Tesco Corporation | Method and apparatus for drilling a borehole with a borehole liner |
US7288325B2 (en) | 2003-03-14 | 2007-10-30 | The Pennsylvania State University | Hydrogen storage material based on platelets and/or a multilayered core/shell structure |
NO318013B1 (no) | 2003-03-21 | 2005-01-17 | Bakke Oil Tools As | Anordning og fremgangsmåte for frakopling av et verktøy fra en rørstreng |
US7416029B2 (en) | 2003-04-01 | 2008-08-26 | Specialised Petroleum Services Group Limited | Downhole tool |
US20060102871A1 (en) | 2003-04-08 | 2006-05-18 | Xingwu Wang | Novel composition |
WO2004092292A1 (ja) | 2003-04-14 | 2004-10-28 | Sekisui Chemical Co., Ltd. | 被着体の剥離方法 |
DE10318801A1 (de) | 2003-04-17 | 2004-11-04 | Aesculap Ag & Co. Kg | Flächiges Implantat und seine Verwendung in der Chirurgie |
US7017672B2 (en) | 2003-05-02 | 2006-03-28 | Go Ii Oil Tools, Inc. | Self-set bridge plug |
US6926086B2 (en) | 2003-05-09 | 2005-08-09 | Halliburton Energy Services, Inc. | Method for removing a tool from a well |
US6962206B2 (en) | 2003-05-15 | 2005-11-08 | Weatherford/Lamb, Inc. | Packer with metal sealing element |
US20090107684A1 (en) | 2007-10-31 | 2009-04-30 | Cooke Jr Claude E | Applications of degradable polymers for delayed mechanical changes in wells |
US20040231845A1 (en) | 2003-05-15 | 2004-11-25 | Cooke Claude E. | Applications of degradable polymers in wells |
US8181703B2 (en) | 2003-05-16 | 2012-05-22 | Halliburton Energy Services, Inc. | Method useful for controlling fluid loss in subterranean formations |
US7097906B2 (en) | 2003-06-05 | 2006-08-29 | Lockheed Martin Corporation | Pure carbon isotropic alloy of allotropic forms of carbon including single-walled carbon nanotubes and diamond-like carbon |
EP1649134A2 (en) | 2003-06-12 | 2006-04-26 | Element Six (PTY) Ltd | Composite material for drilling applications |
EP1644438A1 (en) | 2003-06-23 | 2006-04-12 | William Marsh Rice University | Elastomers reinforced with carbon nanotubes |
US20050064247A1 (en) | 2003-06-25 | 2005-03-24 | Ajit Sane | Composite refractory metal carbide coating on a substrate and method for making thereof |
US7048048B2 (en) | 2003-06-26 | 2006-05-23 | Halliburton Energy Services, Inc. | Expandable sand control screen and method for use of same |
US7032663B2 (en) | 2003-06-27 | 2006-04-25 | Halliburton Energy Services, Inc. | Permeable cement and sand control methods utilizing permeable cement in subterranean well bores |
US7144441B2 (en) | 2003-07-03 | 2006-12-05 | General Electric Company | Process for producing materials reinforced with nanoparticles and articles formed thereby |
US7111682B2 (en) | 2003-07-21 | 2006-09-26 | Mark Kevin Blaisdell | Method and apparatus for gas displacement well systems |
KR100558966B1 (ko) | 2003-07-25 | 2006-03-10 | 한국과학기술원 | 탄소나노튜브가 강화된 금속 나노복합분말 및 그 제조방법 |
NZ544613A (en) | 2003-07-29 | 2007-11-30 | Shell Int Research | A system for sealing a space in a wellbore comprising a swelleable body including a matrix material |
WO2005016599A1 (en) | 2003-08-08 | 2005-02-24 | Mykrolys Corporation | Methods and materials for making a monolithic porous pad cast onto a rotatable base |
JP4222157B2 (ja) | 2003-08-28 | 2009-02-12 | 大同特殊鋼株式会社 | 剛性および強度が向上したチタン合金 |
GB0320252D0 (en) | 2003-08-29 | 2003-10-01 | Caledyne Ltd | Improved seal |
US7833944B2 (en) | 2003-09-17 | 2010-11-16 | Halliburton Energy Services, Inc. | Methods and compositions using crosslinked aliphatic polyesters in well bore applications |
US8153052B2 (en) | 2003-09-26 | 2012-04-10 | General Electric Company | High-temperature composite articles and associated methods of manufacture |
GB0323627D0 (en) | 2003-10-09 | 2003-11-12 | Rubberatkins Ltd | Downhole tool |
US8342240B2 (en) | 2003-10-22 | 2013-01-01 | Baker Hughes Incorporated | Method for providing a temporary barrier in a flow pathway |
US7461699B2 (en) | 2003-10-22 | 2008-12-09 | Baker Hughes Incorporated | Method for providing a temporary barrier in a flow pathway |
CN2658384Y (zh) | 2003-10-27 | 2004-11-24 | 大庆油田有限责任公司 | 更换气井油管阀门装置 |
JPWO2005040066A1 (ja) | 2003-10-29 | 2007-03-01 | 住友精密工業株式会社 | カーボンナノチューブ分散複合材料とその製造方法並びにその適用物 |
WO2005040065A1 (ja) | 2003-10-29 | 2005-05-06 | Sumitomo Precision Products Co., Ltd. | カーボンナノチューブ分散複合材料の製造方法 |
US20050102255A1 (en) | 2003-11-06 | 2005-05-12 | Bultman David C. | Computer-implemented system and method for handling stored data |
US7078073B2 (en) | 2003-11-13 | 2006-07-18 | General Electric Company | Method for repairing coated components |
US7182135B2 (en) | 2003-11-14 | 2007-02-27 | Halliburton Energy Services, Inc. | Plug systems and methods for using plugs in subterranean formations |
US7316274B2 (en) | 2004-03-05 | 2008-01-08 | Baker Hughes Incorporated | One trip perforating, cementing, and sand management apparatus and method |
US7013998B2 (en) | 2003-11-20 | 2006-03-21 | Halliburton Energy Services, Inc. | Drill bit having an improved seal and lubrication method using same |
US20050109502A1 (en) | 2003-11-20 | 2005-05-26 | Jeremy Buc Slay | Downhole seal element formed from a nanocomposite material |
US7503390B2 (en) | 2003-12-11 | 2009-03-17 | Baker Hughes Incorporated | Lock mechanism for a sliding sleeve |
US7384443B2 (en) | 2003-12-12 | 2008-06-10 | Tdy Industries, Inc. | Hybrid cemented carbide composites |
US7264060B2 (en) | 2003-12-17 | 2007-09-04 | Baker Hughes Incorporated | Side entry sub hydraulic wireline cutter and method |
US20050133121A1 (en) * | 2003-12-22 | 2005-06-23 | General Electric Company | Metallic alloy nanocomposite for high-temperature structural components and methods of making |
FR2864202B1 (fr) | 2003-12-22 | 2006-08-04 | Commissariat Energie Atomique | Dispositif tubulaire instrumente pour le transport d'un fluide sous pression |
US7096946B2 (en) | 2003-12-30 | 2006-08-29 | Baker Hughes Incorporated | Rotating blast liner |
WO2005065281A2 (en) | 2003-12-31 | 2005-07-21 | The Regents Of The University Of California | Articles comprising high-electrical-conductivity nanocomposite material and method for fabricating same |
US20050161212A1 (en) | 2004-01-23 | 2005-07-28 | Schlumberger Technology Corporation | System and Method for Utilizing Nano-Scale Filler in Downhole Applications |
US7044230B2 (en) | 2004-01-27 | 2006-05-16 | Halliburton Energy Services, Inc. | Method for removing a tool from a well |
US7210533B2 (en) | 2004-02-11 | 2007-05-01 | Halliburton Energy Services, Inc. | Disposable downhole tool with segmented compression element and method |
US7810558B2 (en) | 2004-02-27 | 2010-10-12 | Smith International, Inc. | Drillable bridge plug |
US7424909B2 (en) | 2004-02-27 | 2008-09-16 | Smith International, Inc. | Drillable bridge plug |
NO325291B1 (no) | 2004-03-08 | 2008-03-17 | Reelwell As | Fremgangsmate og anordning for etablering av en undergrunns bronn. |
GB2427887B (en) | 2004-03-12 | 2008-07-30 | Schlumberger Holdings | Sealing system and method for use in a well |
US7353879B2 (en) | 2004-03-18 | 2008-04-08 | Halliburton Energy Services, Inc. | Biodegradable downhole tools |
US7168494B2 (en) | 2004-03-18 | 2007-01-30 | Halliburton Energy Services, Inc. | Dissolvable downhole tools |
US7093664B2 (en) | 2004-03-18 | 2006-08-22 | Halliburton Energy Services, Inc. | One-time use composite tool formed of fibers and a biodegradable resin |
US7250188B2 (en) | 2004-03-31 | 2007-07-31 | Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defense Of Her Majesty's Canadian Government | Depositing metal particles on carbon nanotubes |
AU2005233602B2 (en) | 2004-04-12 | 2010-02-18 | Baker Hughes Incorporated | Completion with telescoping perforation & fracturing tool |
US7255172B2 (en) | 2004-04-13 | 2007-08-14 | Tech Tac Company, Inc. | Hydrodynamic, down-hole anchor |
US20050268746A1 (en) | 2004-04-19 | 2005-12-08 | Stanley Abkowitz | Titanium tungsten alloys produced by additions of tungsten nanopowder |
US7322416B2 (en) | 2004-05-03 | 2008-01-29 | Halliburton Energy Services, Inc. | Methods of servicing a well bore using self-activating downhole tool |
US7163066B2 (en) | 2004-05-07 | 2007-01-16 | Bj Services Company | Gravity valve for a downhole tool |
US7723272B2 (en) | 2007-02-26 | 2010-05-25 | Baker Hughes Incorporated | Methods and compositions for fracturing subterranean formations |
US20080060810A9 (en) | 2004-05-25 | 2008-03-13 | Halliburton Energy Services, Inc. | Methods for treating a subterranean formation with a curable composition using a jetting tool |
US10316616B2 (en) | 2004-05-28 | 2019-06-11 | Schlumberger Technology Corporation | Dissolvable bridge plug |
US8211247B2 (en) | 2006-02-09 | 2012-07-03 | Schlumberger Technology Corporation | Degradable compositions, apparatus comprising same, and method of use |
JP4476701B2 (ja) | 2004-06-02 | 2010-06-09 | 日本碍子株式会社 | 電極内蔵焼結体の製造方法 |
US7819198B2 (en) | 2004-06-08 | 2010-10-26 | Birckhead John M | Friction spring release mechanism |
US7736582B2 (en) | 2004-06-10 | 2010-06-15 | Allomet Corporation | Method for consolidating tough coated hard powders |
US7287592B2 (en) | 2004-06-11 | 2007-10-30 | Halliburton Energy Services, Inc. | Limited entry multiple fracture and frac-pack placement in liner completions using liner fracturing tool |
US7401648B2 (en) | 2004-06-14 | 2008-07-22 | Baker Hughes Incorporated | One trip well apparatus with sand control |
US8009787B2 (en) | 2004-06-15 | 2011-08-30 | Battelle Energy Alliance, Llc | Method for non-destructive testing |
US7621435B2 (en) | 2004-06-17 | 2009-11-24 | The Regents Of The University Of California | Designs and fabrication of structural armor |
US7243723B2 (en) | 2004-06-18 | 2007-07-17 | Halliburton Energy Services, Inc. | System and method for fracturing and gravel packing a borehole |
US20080149325A1 (en) | 2004-07-02 | 2008-06-26 | Joe Crawford | Downhole oil recovery system and method of use |
CN1321939C (zh) * | 2004-07-15 | 2007-06-20 | 中国科学院金属研究所 | 一种用三氧化二铝弥散强化钛二铝氮陶瓷复合材料及其制备方法 |
US7322412B2 (en) | 2004-08-30 | 2008-01-29 | Halliburton Energy Services, Inc. | Casing shoes and methods of reverse-circulation cementing of casing |
US7141207B2 (en) | 2004-08-30 | 2006-11-28 | General Motors Corporation | Aluminum/magnesium 3D-Printing rapid prototyping |
US7380600B2 (en) | 2004-09-01 | 2008-06-03 | Schlumberger Technology Corporation | Degradable material assisted diversion or isolation |
US7709421B2 (en) | 2004-09-03 | 2010-05-04 | Baker Hughes Incorporated | Microemulsions to convert OBM filter cakes to WBM filter cakes having filtration control |
JP2006078614A (ja) | 2004-09-08 | 2006-03-23 | Ricoh Co Ltd | 電子写真感光体中間層用塗工液、それを用いた電子写真感光体、画像形成装置及び画像形成装置用プロセスカートリッジ |
US7303014B2 (en) | 2004-10-26 | 2007-12-04 | Halliburton Energy Services, Inc. | Casing strings and methods of using such strings in subterranean cementing operations |
US7234530B2 (en) | 2004-11-01 | 2007-06-26 | Hydril Company Lp | Ram BOP shear device |
US8309230B2 (en) | 2004-11-12 | 2012-11-13 | Inmat, Inc. | Multilayer nanocomposite barrier structures |
US7337854B2 (en) | 2004-11-24 | 2008-03-04 | Weatherford/Lamb, Inc. | Gas-pressurized lubricator and method |
RU2391366C2 (ru) | 2004-12-03 | 2010-06-10 | Эксонмобил Кемикэл Пейтентс Инк. | Модифицированные слоистые наполнители и их применение при приготовлении нанокомпозитов |
US20090084553A1 (en) | 2004-12-14 | 2009-04-02 | Schlumberger Technology Corporation | Sliding sleeve valve assembly with sand screen |
US7322417B2 (en) | 2004-12-14 | 2008-01-29 | Schlumberger Technology Corporation | Technique and apparatus for completing multiple zones |
US7387165B2 (en) | 2004-12-14 | 2008-06-17 | Schlumberger Technology Corporation | System for completing multiple well intervals |
US7513320B2 (en) | 2004-12-16 | 2009-04-07 | Tdy Industries, Inc. | Cemented carbide inserts for earth-boring bits |
US7387578B2 (en) | 2004-12-17 | 2008-06-17 | Integran Technologies Inc. | Strong, lightweight article containing a fine-grained metallic layer |
US20060134312A1 (en) | 2004-12-20 | 2006-06-22 | Slim-Fast Foods Company, Division Of Conopco, Inc. | Wetting system |
US7350582B2 (en) | 2004-12-21 | 2008-04-01 | Weatherford/Lamb, Inc. | Wellbore tool with disintegratable components and method of controlling flow |
US7426964B2 (en) | 2004-12-22 | 2008-09-23 | Baker Hughes Incorporated | Release mechanism for downhole tool |
US20060153728A1 (en) | 2005-01-10 | 2006-07-13 | Schoenung Julie M | Synthesis of bulk, fully dense nanostructured metals and metal matrix composites |
US20060150770A1 (en) | 2005-01-12 | 2006-07-13 | Onmaterials, Llc | Method of making composite particles with tailored surface characteristics |
US7353876B2 (en) | 2005-02-01 | 2008-04-08 | Halliburton Energy Services, Inc. | Self-degrading cement compositions and methods of using self-degrading cement compositions in subterranean formations |
US8062554B2 (en) | 2005-02-04 | 2011-11-22 | Raytheon Company | System and methods of dispersion of nanostructures in composite materials |
GB2435659B (en) | 2005-03-15 | 2009-06-24 | Schlumberger Holdings | System for use in wells |
US7267172B2 (en) | 2005-03-15 | 2007-09-11 | Peak Completion Technologies, Inc. | Cemented open hole selective fracing system |
US7926571B2 (en) | 2005-03-15 | 2011-04-19 | Raymond A. Hofman | Cemented open hole selective fracing system |
US7640988B2 (en) | 2005-03-18 | 2010-01-05 | Exxon Mobil Upstream Research Company | Hydraulically controlled burst disk subs and methods for their use |
US7537825B1 (en) | 2005-03-25 | 2009-05-26 | Massachusetts Institute Of Technology | Nano-engineered material architectures: ultra-tough hybrid nanocomposite system |
BRPI0610519A2 (pt) | 2005-04-05 | 2010-06-22 | Elixir Medical Corp | estrutura degradável, e, implante degradável |
US8256504B2 (en) | 2005-04-11 | 2012-09-04 | Brown T Leon | Unlimited stroke drive oil well pumping system |
US20060260031A1 (en) | 2005-05-20 | 2006-11-23 | Conrad Joseph M Iii | Potty training device |
US8231703B1 (en) | 2005-05-25 | 2012-07-31 | Babcock & Wilcox Technical Services Y-12, Llc | Nanostructured composite reinforced material |
US7875132B2 (en) | 2005-05-31 | 2011-01-25 | United Technologies Corporation | High temperature aluminum alloys |
FR2886636B1 (fr) | 2005-06-02 | 2007-08-03 | Inst Francais Du Petrole | Materiau inorganique presentant des nanoparticules metalliques piegees dans une matrice mesostructuree |
US20070131912A1 (en) | 2005-07-08 | 2007-06-14 | Simone Davide L | Electrically conductive adhesives |
US7422055B2 (en) | 2005-07-12 | 2008-09-09 | Smith International, Inc. | Coiled tubing wireline cutter |
US7422060B2 (en) | 2005-07-19 | 2008-09-09 | Schlumberger Technology Corporation | Methods and apparatus for completing a well |
US7422058B2 (en) | 2005-07-22 | 2008-09-09 | Baker Hughes Incorporated | Reinforced open-hole zonal isolation packer and method of use |
US7798225B2 (en) | 2005-08-05 | 2010-09-21 | Weatherford/Lamb, Inc. | Apparatus and methods for creation of down hole annular barrier |
US7509993B1 (en) | 2005-08-13 | 2009-03-31 | Wisconsin Alumni Research Foundation | Semi-solid forming of metal-matrix nanocomposites |
US20070107899A1 (en) | 2005-08-17 | 2007-05-17 | Schlumberger Technology Corporation | Perforating Gun Fabricated from Composite Metallic Material |
US7306034B2 (en) | 2005-08-18 | 2007-12-11 | Baker Hughes Incorporated | Gripping assembly for expandable tubulars |
US7451815B2 (en) | 2005-08-22 | 2008-11-18 | Halliburton Energy Services, Inc. | Sand control screen assembly enhanced with disappearing sleeve and burst disc |
US7581498B2 (en) | 2005-08-23 | 2009-09-01 | Baker Hughes Incorporated | Injection molded shaped charge liner |
JP4721828B2 (ja) | 2005-08-31 | 2011-07-13 | 東京応化工業株式会社 | サポートプレートの剥離方法 |
US8230936B2 (en) | 2005-08-31 | 2012-07-31 | Schlumberger Technology Corporation | Methods of forming acid particle based packers for wellbores |
US8567494B2 (en) | 2005-08-31 | 2013-10-29 | Schlumberger Technology Corporation | Well operating elements comprising a soluble component and methods of use |
JP5148820B2 (ja) | 2005-09-07 | 2013-02-20 | 株式会社イーアンドエフ | チタン合金複合材料およびその製造方法 |
US7699946B2 (en) | 2005-09-07 | 2010-04-20 | Los Alamos National Security, Llc | Preparation of nanostructured materials having improved ductility |
US20070051521A1 (en) | 2005-09-08 | 2007-03-08 | Eagle Downhole Solutions, Llc | Retrievable frac packer |
US7776256B2 (en) | 2005-11-10 | 2010-08-17 | Baker Huges Incorporated | Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies |
US20080020923A1 (en) | 2005-09-13 | 2008-01-24 | Debe Mark K | Multilayered nanostructured films |
WO2007032429A1 (ja) | 2005-09-15 | 2007-03-22 | Senju Metal Industry Co., Ltd. | フォームはんだとその製造方法 |
CN101277775A (zh) | 2005-10-06 | 2008-10-01 | 国际钛金属粉末公司 | 硼化钛 |
US7363970B2 (en) | 2005-10-25 | 2008-04-29 | Schlumberger Technology Corporation | Expandable packer |
DE102005052470B3 (de) | 2005-11-03 | 2007-03-29 | Neue Materialien Fürth GmbH | Verfahren zur Herstellung eines Verbundwerkstoffs oder eines Vorprodukts zur Herstellung eines Verbundwerkstoffs |
KR100629793B1 (ko) | 2005-11-11 | 2006-09-28 | 주식회사 방림 | 전해도금으로 마그네슘합금과 밀착성 좋은 동도금층 형성방법 |
US8231947B2 (en) | 2005-11-16 | 2012-07-31 | Schlumberger Technology Corporation | Oilfield elements having controlled solubility and methods of use |
FI120195B (fi) | 2005-11-16 | 2009-07-31 | Canatu Oy | Hiilinanoputket, jotka on funktionalisoitu kovalenttisesti sidotuilla fullereeneilla, menetelmä ja laitteisto niiden tuottamiseksi ja niiden komposiitit |
US20070151769A1 (en) | 2005-11-23 | 2007-07-05 | Smith International, Inc. | Microwave sintering |
US7946340B2 (en) | 2005-12-01 | 2011-05-24 | Halliburton Energy Services, Inc. | Method and apparatus for orchestration of fracture placement from a centralized well fluid treatment center |
US7604049B2 (en) | 2005-12-16 | 2009-10-20 | Schlumberger Technology Corporation | Polymeric composites, oilfield elements comprising same, and methods of using same in oilfield applications |
US7647964B2 (en) | 2005-12-19 | 2010-01-19 | Fairmount Minerals, Ltd. | Degradable ball sealers and methods for use in well treatment |
US7552777B2 (en) | 2005-12-28 | 2009-06-30 | Baker Hughes Incorporated | Self-energized downhole tool |
US7392841B2 (en) | 2005-12-28 | 2008-07-01 | Baker Hughes Incorporated | Self boosting packing element |
US7579087B2 (en) | 2006-01-10 | 2009-08-25 | United Technologies Corporation | Thermal barrier coating compositions, processes for applying same and articles coated with same |
US7387158B2 (en) | 2006-01-18 | 2008-06-17 | Baker Hughes Incorporated | Self energized packer |
AU2006337613B2 (en) | 2006-02-03 | 2012-01-12 | Exxonmobil Upstream Research Company | Wellbore method and apparatus for completion, production and injection |
US7346456B2 (en) | 2006-02-07 | 2008-03-18 | Schlumberger Technology Corporation | Wellbore diagnostic system and method |
US20110067889A1 (en) | 2006-02-09 | 2011-03-24 | Schlumberger Technology Corporation | Expandable and degradable downhole hydraulic regulating assembly |
US8770261B2 (en) | 2006-02-09 | 2014-07-08 | Schlumberger Technology Corporation | Methods of manufacturing degradable alloys and products made from degradable alloys |
US8220554B2 (en) | 2006-02-09 | 2012-07-17 | Schlumberger Technology Corporation | Degradable whipstock apparatus and method of use |
US20070207266A1 (en) | 2006-02-15 | 2007-09-06 | Lemke Harald K | Method and apparatus for coating particulates utilizing physical vapor deposition |
US20070207182A1 (en) | 2006-03-06 | 2007-09-06 | Jan Weber | Medical devices having electrically aligned elongated particles |
EP1994257A2 (en) | 2006-03-10 | 2008-11-26 | Dynamic Tubular Systems, Inc. | Expandable tubulars for use in geologic structures |
NO325431B1 (no) | 2006-03-23 | 2008-04-28 | Bjorgum Mekaniske As | Opplosbar tetningsanordning samt fremgangsmate derav. |
US7325617B2 (en) | 2006-03-24 | 2008-02-05 | Baker Hughes Incorporated | Frac system without intervention |
DE102006025848A1 (de) | 2006-03-29 | 2007-10-04 | Byk-Chemie Gmbh | Herstellung von Nanopartikeln, insbesondere Nanopartikelkompositen, ausgehend von Pulveragglomeraten |
US7455118B2 (en) | 2006-03-29 | 2008-11-25 | Smith International, Inc. | Secondary lock for a downhole tool |
DK1840325T3 (da) | 2006-03-31 | 2012-12-17 | Schlumberger Technology Bv | Fremgangsmåde og indretning til at cementere et perforeret foringsrør |
WO2007118048A2 (en) | 2006-04-03 | 2007-10-18 | William Marsh Rice University | Processing of single-walled carbon nanotube metal-matrix composites manufactured by an induction heating method |
KR100763922B1 (ko) | 2006-04-04 | 2007-10-05 | 삼성전자주식회사 | 밸브 유닛 및 이를 구비한 장치 |
RU2455381C2 (ru) | 2006-04-21 | 2012-07-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Высокопрочные сплавы |
US7513311B2 (en) | 2006-04-28 | 2009-04-07 | Weatherford/Lamb, Inc. | Temporary well zone isolation |
US8021721B2 (en) | 2006-05-01 | 2011-09-20 | Smith International, Inc. | Composite coating with nanoparticles for improved wear and lubricity in down hole tools |
US7621351B2 (en) | 2006-05-15 | 2009-11-24 | Baker Hughes Incorporated | Reaming tool suitable for running on casing or liner |
US20070270942A1 (en) | 2006-05-19 | 2007-11-22 | Medtronic Vascular, Inc. | Galvanic Corrosion Methods and Devices for Fixation of Stent Grafts |
CN101074479A (zh) | 2006-05-19 | 2007-11-21 | 何靖 | 镁合金工件的表面处理方法、处理所得的工件及用于该方法的各组成物 |
WO2007140320A2 (en) | 2006-05-26 | 2007-12-06 | Nanyang Technological University | Implantable article, method of forming same and method for reducing thrombogenicity |
CA2653738C (en) | 2006-05-26 | 2011-01-04 | Owen Oil Tools Lp | Configurable wellbore zone isolation system and related methods |
US7661481B2 (en) | 2006-06-06 | 2010-02-16 | Halliburton Energy Services, Inc. | Downhole wellbore tools having deteriorable and water-swellable components thereof and methods of use |
US20080257549A1 (en) | 2006-06-08 | 2008-10-23 | Halliburton Energy Services, Inc. | Consumable Downhole Tools |
US7478676B2 (en) | 2006-06-09 | 2009-01-20 | Halliburton Energy Services, Inc. | Methods and devices for treating multiple-interval well bores |
US7575062B2 (en) | 2006-06-09 | 2009-08-18 | Halliburton Energy Services, Inc. | Methods and devices for treating multiple-interval well bores |
US7441596B2 (en) | 2006-06-23 | 2008-10-28 | Baker Hughes Incorporated | Swelling element packer and installation method |
US7897063B1 (en) | 2006-06-26 | 2011-03-01 | Perry Stephen C | Composition for denaturing and breaking down friction-reducing polymer and for destroying other gas and oil well contaminants |
US8211248B2 (en) | 2009-02-16 | 2012-07-03 | Schlumberger Technology Corporation | Aged-hardenable aluminum alloy with environmental degradability, methods of use and making |
US20130133897A1 (en) | 2006-06-30 | 2013-05-30 | Schlumberger Technology Corporation | Materials with environmental degradability, methods of use and making |
US7686982B2 (en) | 2006-06-30 | 2010-03-30 | Asahi Kasei Emd Corporation | Conductive filler |
US7607476B2 (en) | 2006-07-07 | 2009-10-27 | Baker Hughes Incorporated | Expandable slip ring |
US7562704B2 (en) | 2006-07-14 | 2009-07-21 | Baker Hughes Incorporated | Delaying swelling in a downhole packer element |
US7591318B2 (en) | 2006-07-20 | 2009-09-22 | Halliburton Energy Services, Inc. | Method for removing a sealing plug from a well |
GB0615135D0 (en) | 2006-07-29 | 2006-09-06 | Futuretec Ltd | Running bore-lining tubulars |
WO2008014607A1 (en) | 2006-07-31 | 2008-02-07 | Tekna Plasma Systems Inc. | Plasma surface treatment using dielectric barrier discharges |
US8281860B2 (en) | 2006-08-25 | 2012-10-09 | Schlumberger Technology Corporation | Method and system for treating a subterranean formation |
US7963342B2 (en) | 2006-08-31 | 2011-06-21 | Marathon Oil Company | Downhole isolation valve and methods for use |
KR100839613B1 (ko) | 2006-09-11 | 2008-06-19 | 주식회사 씨앤테크 | 카본나노튜브를 활용한 복합소결재료 및 그 제조방법 |
US8889065B2 (en) | 2006-09-14 | 2014-11-18 | Iap Research, Inc. | Micron size powders having nano size reinforcement |
US7726406B2 (en) | 2006-09-18 | 2010-06-01 | Yang Xu | Dissolvable downhole trigger device |
US7464764B2 (en) | 2006-09-18 | 2008-12-16 | Baker Hughes Incorporated | Retractable ball seat having a time delay material |
CA2663762A1 (en) | 2006-09-18 | 2008-03-27 | Boston Scientific Limited | Endoprostheses |
US7578353B2 (en) | 2006-09-22 | 2009-08-25 | Robert Bradley Cook | Apparatus for controlling slip deployment in a downhole device |
GB0618687D0 (en) | 2006-09-22 | 2006-11-01 | Omega Completion Technology | Erodeable pressure barrier |
EP2077468A1 (en) | 2006-09-29 | 2009-07-08 | Kabushiki Kaisha Toshiba | Liquid developer, process for producing the same, and process for producing display |
US20090068051A1 (en) * | 2006-10-13 | 2009-03-12 | Karl Gross | Methods of forming nano-structured materials including compounds capable of storing and releasing hydrogen |
US7828055B2 (en) | 2006-10-17 | 2010-11-09 | Baker Hughes Incorporated | Apparatus and method for controlled deployment of shape-conforming materials |
GB0621073D0 (en) | 2006-10-24 | 2006-11-29 | Isis Innovation | Metal matrix composite material |
US7565929B2 (en) | 2006-10-24 | 2009-07-28 | Schlumberger Technology Corporation | Degradable material assisted diversion |
US7559357B2 (en) | 2006-10-25 | 2009-07-14 | Baker Hughes Incorporated | Frac-pack casing saver |
EP1918507A1 (en) | 2006-10-31 | 2008-05-07 | Services Pétroliers Schlumberger | Shaped charge comprising an acid |
US7712541B2 (en) | 2006-11-01 | 2010-05-11 | Schlumberger Technology Corporation | System and method for protecting downhole components during deployment and wellbore conditioning |
ES2935269T3 (es) | 2006-11-06 | 2023-03-03 | Agency Science Tech & Res | Pila de barrera de encapsulación de nanopartículas |
US20080210473A1 (en) | 2006-11-14 | 2008-09-04 | Smith International, Inc. | Hybrid carbon nanotube reinforced composite bodies |
US20080179104A1 (en) | 2006-11-14 | 2008-07-31 | Smith International, Inc. | Nano-reinforced wc-co for improved properties |
US7757758B2 (en) | 2006-11-28 | 2010-07-20 | Baker Hughes Incorporated | Expandable wellbore liner |
US8056628B2 (en) | 2006-12-04 | 2011-11-15 | Schlumberger Technology Corporation | System and method for facilitating downhole operations |
US8028767B2 (en) | 2006-12-04 | 2011-10-04 | Baker Hughes, Incorporated | Expandable stabilizer with roller reamer elements |
US7699101B2 (en) | 2006-12-07 | 2010-04-20 | Halliburton Energy Services, Inc. | Well system having galvanic time release plug |
US7861744B2 (en) | 2006-12-12 | 2011-01-04 | Expansion Technologies | Tubular expansion device and method of fabrication |
US7628228B2 (en) | 2006-12-14 | 2009-12-08 | Longyear Tm, Inc. | Core drill bit with extended crown height |
US8088193B2 (en) | 2006-12-16 | 2012-01-03 | Taofang Zeng | Method for making nanoparticles |
US7909088B2 (en) | 2006-12-20 | 2011-03-22 | Baker Huges Incorporated | Material sensitive downhole flow control device |
US20080149351A1 (en) | 2006-12-20 | 2008-06-26 | Schlumberger Technology Corporation | Temporary containments for swellable and inflatable packer elements |
EP2125065B1 (en) | 2006-12-28 | 2010-11-17 | Boston Scientific Limited | Bioerodible endoprostheses and methods of making same |
US20080169130A1 (en) | 2007-01-12 | 2008-07-17 | M-I Llc | Wellbore fluids for casing drilling |
US7510018B2 (en) | 2007-01-15 | 2009-03-31 | Weatherford/Lamb, Inc. | Convertible seal |
US7617871B2 (en) | 2007-01-29 | 2009-11-17 | Halliburton Energy Services, Inc. | Hydrajet bottomhole completion tool and process |
US20080202764A1 (en) | 2007-02-22 | 2008-08-28 | Halliburton Energy Services, Inc. | Consumable downhole tools |
US20080202814A1 (en) | 2007-02-23 | 2008-08-28 | Lyons Nicholas J | Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same |
JP4980096B2 (ja) | 2007-02-28 | 2012-07-18 | 本田技研工業株式会社 | 自動二輪車のシートレール構造 |
US7909096B2 (en) | 2007-03-02 | 2011-03-22 | Schlumberger Technology Corporation | Method and apparatus of reservoir stimulation while running casing |
US20080220991A1 (en) | 2007-03-06 | 2008-09-11 | Halliburton Energy Services, Inc. - Dallas | Contacting surfaces using swellable elements |
US20080216383A1 (en) * | 2007-03-07 | 2008-09-11 | David Pierick | High performance nano-metal hybrid fishing tackle |
US7770652B2 (en) | 2007-03-13 | 2010-08-10 | Bbj Tools Inc. | Ball release procedure and release tool |
CA2625766A1 (en) | 2007-03-16 | 2008-09-16 | Isolation Equipment Services Inc. | Ball injecting apparatus for wellbore operations |
US20080236829A1 (en) | 2007-03-26 | 2008-10-02 | Lynde Gerald D | Casing profiling and recovery system |
US20080236842A1 (en) | 2007-03-27 | 2008-10-02 | Schlumberger Technology Corporation | Downhole oilfield apparatus comprising a diamond-like carbon coating and methods of use |
US7875313B2 (en) | 2007-04-05 | 2011-01-25 | E. I. Du Pont De Nemours And Company | Method to form a pattern of functional material on a substrate using a mask material |
US7708078B2 (en) | 2007-04-05 | 2010-05-04 | Baker Hughes Incorporated | Apparatus and method for delivering a conductor downhole |
EP2147184A2 (en) | 2007-04-18 | 2010-01-27 | Dynamic Tubular Systems, Inc. | Porous tubular structures |
US7690436B2 (en) | 2007-05-01 | 2010-04-06 | Weatherford/Lamb Inc. | Pressure isolation plug for horizontal wellbore and associated methods |
GB2448927B (en) | 2007-05-04 | 2010-05-05 | Dynamic Dinosaurs Bv | Apparatus and method for expanding tubular elements |
US7938191B2 (en) | 2007-05-11 | 2011-05-10 | Schlumberger Technology Corporation | Method and apparatus for controlling elastomer swelling in downhole applications |
JP4871787B2 (ja) * | 2007-05-14 | 2012-02-08 | キヤノン株式会社 | 表面増強振動分光分析を行うための分析試料用保持部材の製造方法 |
US7527103B2 (en) | 2007-05-29 | 2009-05-05 | Baker Hughes Incorporated | Procedures and compositions for reservoir protection |
US20080314588A1 (en) | 2007-06-20 | 2008-12-25 | Schlumberger Technology Corporation | System and method for controlling erosion of components during well treatment |
US7810567B2 (en) | 2007-06-27 | 2010-10-12 | Schlumberger Technology Corporation | Methods of producing flow-through passages in casing, and methods of using such casing |
JP5229934B2 (ja) | 2007-07-05 | 2013-07-03 | 住友精密工業株式会社 | 高熱伝導性複合材料 |
US7757773B2 (en) | 2007-07-25 | 2010-07-20 | Schlumberger Technology Corporation | Latch assembly for wellbore operations |
US7673673B2 (en) | 2007-08-03 | 2010-03-09 | Halliburton Energy Services, Inc. | Apparatus for isolating a jet forming aperture in a well bore servicing tool |
US20090038858A1 (en) | 2007-08-06 | 2009-02-12 | Smith International, Inc. | Use of nanosized particulates and fibers in elastomer seals for improved performance metrics for roller cone bits |
US7503392B2 (en) | 2007-08-13 | 2009-03-17 | Baker Hughes Incorporated | Deformable ball seat |
US7637323B2 (en) | 2007-08-13 | 2009-12-29 | Baker Hughes Incorporated | Ball seat having fluid activated ball support |
US7644772B2 (en) | 2007-08-13 | 2010-01-12 | Baker Hughes Incorporated | Ball seat having segmented arcuate ball support member |
US9157141B2 (en) | 2007-08-24 | 2015-10-13 | Schlumberger Technology Corporation | Conditioning ferrous alloys into cracking susceptible and fragmentable elements for use in a well |
US7798201B2 (en) | 2007-08-24 | 2010-09-21 | General Electric Company | Ceramic cores for casting superalloys and refractory metal composites, and related processes |
US7703510B2 (en) | 2007-08-27 | 2010-04-27 | Baker Hughes Incorporated | Interventionless multi-position frac tool |
US8191633B2 (en) | 2007-09-07 | 2012-06-05 | Frazier W Lynn | Degradable downhole check valve |
US7909115B2 (en) | 2007-09-07 | 2011-03-22 | Schlumberger Technology Corporation | Method for perforating utilizing a shaped charge in acidizing operations |
NO328882B1 (no) | 2007-09-14 | 2010-06-07 | Vosstech As | Aktiveringsmekanisme og fremgangsmate for a kontrollere denne |
CN101386926B (zh) | 2007-09-14 | 2011-11-09 | 清华大学 | 镁基复合材料的制备方法及制备装置 |
US7775284B2 (en) | 2007-09-28 | 2010-08-17 | Halliburton Energy Services, Inc. | Apparatus for adjustably controlling the inflow of production fluids from a subterranean well |
US8998978B2 (en) | 2007-09-28 | 2015-04-07 | Abbott Cardiovascular Systems Inc. | Stent formed from bioerodible metal-bioceramic composite |
US20090084539A1 (en) | 2007-09-28 | 2009-04-02 | Ping Duan | Downhole sealing devices having a shape-memory material and methods of manufacturing and using same |
EP2193702A1 (en) | 2007-10-02 | 2010-06-09 | Parker-Hannifin Corporation | Nano coating for emi gaskets |
US20090090440A1 (en) | 2007-10-04 | 2009-04-09 | Ensign-Bickford Aerospace & Defense Company | Exothermic alloying bimetallic particles |
US7784543B2 (en) | 2007-10-19 | 2010-08-31 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
US7793714B2 (en) | 2007-10-19 | 2010-09-14 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
US7913765B2 (en) | 2007-10-19 | 2011-03-29 | Baker Hughes Incorporated | Water absorbing or dissolving materials used as an in-flow control device and method of use |
US8347950B2 (en) | 2007-11-05 | 2013-01-08 | Helmut Werner PROVOST | Modular room heat exchange system with light unit |
US7909110B2 (en) | 2007-11-20 | 2011-03-22 | Schlumberger Technology Corporation | Anchoring and sealing system for cased hole wells |
US7918275B2 (en) | 2007-11-27 | 2011-04-05 | Baker Hughes Incorporated | Water sensitive adaptive inflow control using couette flow to actuate a valve |
US7806189B2 (en) | 2007-12-03 | 2010-10-05 | W. Lynn Frazier | Downhole valve assembly |
US8371369B2 (en) | 2007-12-04 | 2013-02-12 | Baker Hughes Incorporated | Crossover sub with erosion resistant inserts |
US8092923B2 (en) | 2007-12-12 | 2012-01-10 | GM Global Technology Operations LLC | Corrosion resistant spacer |
JP2009144207A (ja) | 2007-12-14 | 2009-07-02 | Gooshuu:Kk | 金属粉末の連続押出加工方法 |
US7775279B2 (en) | 2007-12-17 | 2010-08-17 | Schlumberger Technology Corporation | Debris-free perforating apparatus and technique |
US20090152009A1 (en) | 2007-12-18 | 2009-06-18 | Halliburton Energy Services, Inc., A Delaware Corporation | Nano particle reinforced polymer element for stator and rotor assembly |
US9005420B2 (en) | 2007-12-20 | 2015-04-14 | Integran Technologies Inc. | Variable property electrodepositing of metallic structures |
US7987906B1 (en) | 2007-12-21 | 2011-08-02 | Joseph Troy | Well bore tool |
US7735578B2 (en) | 2008-02-07 | 2010-06-15 | Baker Hughes Incorporated | Perforating system with shaped charge case having a modified boss |
US20090205841A1 (en) | 2008-02-15 | 2009-08-20 | Jurgen Kluge | Downwell system with activatable swellable packer |
GB2457894B (en) | 2008-02-27 | 2011-12-14 | Swelltec Ltd | Downhole apparatus and method |
FR2928662B1 (fr) | 2008-03-11 | 2011-08-26 | Arkema France | Procede et systeme de depot d'un metal ou metalloide sur des nanotubes de carbone |
US7686082B2 (en) | 2008-03-18 | 2010-03-30 | Baker Hughes Incorporated | Full bore cementable gun system |
CA2629651C (en) | 2008-03-18 | 2015-04-21 | Packers Plus Energy Services Inc. | Cement diffuser for annulus cementing |
US8196663B2 (en) | 2008-03-25 | 2012-06-12 | Baker Hughes Incorporated | Dead string completion assembly with injection system and methods |
US7806192B2 (en) | 2008-03-25 | 2010-10-05 | Foster Anthony P | Method and system for anchoring and isolating a wellbore |
US8020619B1 (en) | 2008-03-26 | 2011-09-20 | Robertson Intellectual Properties, LLC | Severing of downhole tubing with associated cable |
US8096358B2 (en) | 2008-03-27 | 2012-01-17 | Halliburton Energy Services, Inc. | Method of perforating for effective sand plug placement in horizontal wells |
US7661480B2 (en) | 2008-04-02 | 2010-02-16 | Saudi Arabian Oil Company | Method for hydraulic rupturing of downhole glass disc |
CA2660219C (en) | 2008-04-10 | 2012-08-28 | Bj Services Company | System and method for thru tubing deepening of gas lift |
US8535604B1 (en) | 2008-04-22 | 2013-09-17 | Dean M. Baker | Multifunctional high strength metal composite materials |
US7828063B2 (en) | 2008-04-23 | 2010-11-09 | Schlumberger Technology Corporation | Rock stress modification technique |
WO2009131700A2 (en) | 2008-04-25 | 2009-10-29 | Envia Systems, Inc. | High energy lithium ion batteries with particular negative electrode compositions |
US8757273B2 (en) | 2008-04-29 | 2014-06-24 | Packers Plus Energy Services Inc. | Downhole sub with hydraulically actuable sleeve valve |
AU2009244317B2 (en) | 2008-05-05 | 2016-01-28 | Weatherford Technology Holdings, Llc | Tools and methods for hanging and/or expanding liner strings |
US8540035B2 (en) | 2008-05-05 | 2013-09-24 | Weatherford/Lamb, Inc. | Extendable cutting tools for use in a wellbore |
US8171999B2 (en) | 2008-05-13 | 2012-05-08 | Baker Huges Incorporated | Downhole flow control device and method |
BRPI0913591A8 (pt) | 2008-06-02 | 2017-11-21 | Tdy Ind Inc | Carboneto cimentado - compósitos de liga metálica |
US20100055492A1 (en) * | 2008-06-03 | 2010-03-04 | Drexel University | Max-based metal matrix composites |
CA2726207A1 (en) | 2008-06-06 | 2009-12-10 | Packers Plus Energy Services Inc. | Wellbore fluid treatment process and installation |
US8631877B2 (en) | 2008-06-06 | 2014-01-21 | Schlumberger Technology Corporation | Apparatus and methods for inflow control |
US20090308588A1 (en) | 2008-06-16 | 2009-12-17 | Halliburton Energy Services, Inc. | Method and Apparatus for Exposing a Servicing Apparatus to Multiple Formation Zones |
US8152985B2 (en) | 2008-06-19 | 2012-04-10 | Arlington Plating Company | Method of chrome plating magnesium and magnesium alloys |
TW201000644A (en) | 2008-06-24 | 2010-01-01 | Song-Ren Huang | Magnesium alloy composite material having doped grains |
EP2307069A2 (en) | 2008-06-25 | 2011-04-13 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agent in conjunction with galvanic corrosion |
US7958940B2 (en) | 2008-07-02 | 2011-06-14 | Jameson Steve D | Method and apparatus to remove composite frac plugs from casings in oil and gas wells |
US8122940B2 (en) | 2008-07-16 | 2012-02-28 | Fata Hunter, Inc. | Method for twin roll casting of aluminum clad magnesium |
US7752971B2 (en) | 2008-07-17 | 2010-07-13 | Baker Hughes Incorporated | Adapter for shaped charge casing |
CN101638786B (zh) | 2008-07-29 | 2011-06-01 | 天津东义镁制品股份有限公司 | 一种高电位镁合金牺牲阳极及其制造方法 |
CN101638790A (zh) | 2008-07-30 | 2010-02-03 | 深圳富泰宏精密工业有限公司 | 镁及镁合金的电镀方法 |
US7775286B2 (en) | 2008-08-06 | 2010-08-17 | Baker Hughes Incorporated | Convertible downhole devices and method of performing downhole operations using convertible downhole devices |
US7900696B1 (en) | 2008-08-15 | 2011-03-08 | Itt Manufacturing Enterprises, Inc. | Downhole tool with exposable and openable flow-back vents |
US8267177B1 (en) | 2008-08-15 | 2012-09-18 | Exelis Inc. | Means for creating field configurable bridge, fracture or soluble insert plugs |
US8960292B2 (en) | 2008-08-22 | 2015-02-24 | Halliburton Energy Services, Inc. | High rate stimulation method for deep, large bore completions |
US20100051278A1 (en) | 2008-09-04 | 2010-03-04 | Integrated Production Services Ltd. | Perforating gun assembly |
US9119906B2 (en) | 2008-09-24 | 2015-09-01 | Integran Technologies, Inc. | In-vivo biodegradable medical implant |
US20100089587A1 (en) | 2008-10-15 | 2010-04-15 | Stout Gregg W | Fluid logic tool for a subterranean well |
US7775285B2 (en) | 2008-11-19 | 2010-08-17 | Halliburton Energy Services, Inc. | Apparatus and method for servicing a wellbore |
US8459347B2 (en) | 2008-12-10 | 2013-06-11 | Oiltool Engineering Services, Inc. | Subterranean well ultra-short slip and packing element system |
US7861781B2 (en) | 2008-12-11 | 2011-01-04 | Tesco Corporation | Pump down cement retaining device |
US7855168B2 (en) | 2008-12-19 | 2010-12-21 | Schlumberger Technology Corporation | Method and composition for removing filter cake |
US8899317B2 (en) | 2008-12-23 | 2014-12-02 | W. Lynn Frazier | Decomposable pumpdown ball for downhole plugs |
US8079413B2 (en) | 2008-12-23 | 2011-12-20 | W. Lynn Frazier | Bottom set downhole plug |
CN101457321B (zh) | 2008-12-25 | 2010-06-16 | 浙江大学 | 一种镁基复合储氢材料及制备方法 |
US9260935B2 (en) | 2009-02-11 | 2016-02-16 | Halliburton Energy Services, Inc. | Degradable balls for use in subterranean applications |
US20100200230A1 (en) | 2009-02-12 | 2010-08-12 | East Jr Loyd | Method and Apparatus for Multi-Zone Stimulation |
WO2010093926A2 (en) * | 2009-02-13 | 2010-08-19 | Babcock & Wilcox Technical Services Y-12, Llc | Composite materials formed with anchored nanostructures |
EP2224032A1 (en) | 2009-02-13 | 2010-09-01 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Process for manufacturing magnesium alloy based products |
US7878253B2 (en) | 2009-03-03 | 2011-02-01 | Baker Hughes Incorporated | Hydraulically released window mill |
WO2010103641A1 (ja) | 2009-03-12 | 2010-09-16 | 虹技株式会社 | 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物 |
US9291044B2 (en) | 2009-03-25 | 2016-03-22 | Weatherford Technology Holdings, Llc | Method and apparatus for isolating and treating discrete zones within a wellbore |
US20120089232A1 (en) | 2009-03-27 | 2012-04-12 | Jennifer Hagyoung Kang Choi | Medical devices with galvanic particulates |
US7909108B2 (en) | 2009-04-03 | 2011-03-22 | Halliburton Energy Services Inc. | System and method for servicing a wellbore |
US9127527B2 (en) | 2009-04-21 | 2015-09-08 | W. Lynn Frazier | Decomposable impediments for downhole tools and methods for using same |
US9109428B2 (en) | 2009-04-21 | 2015-08-18 | W. Lynn Frazier | Configurable bridge plugs and methods for using same |
US8454816B1 (en) | 2009-09-11 | 2013-06-04 | Simbol Inc. | Selective recovery of manganese and zinc from geothermal brines |
US9089445B2 (en) | 2009-04-27 | 2015-07-28 | Cook Medical Technologies Llc | Stent with protected barbs |
US8276670B2 (en) | 2009-04-27 | 2012-10-02 | Schlumberger Technology Corporation | Downhole dissolvable plug |
US8286697B2 (en) | 2009-05-04 | 2012-10-16 | Baker Hughes Incorporated | Internally supported perforating gun body for high pressure operations |
US8261761B2 (en) | 2009-05-07 | 2012-09-11 | Baker Hughes Incorporated | Selectively movable seat arrangement and method |
US8104538B2 (en) | 2009-05-11 | 2012-01-31 | Baker Hughes Incorporated | Fracturing with telescoping members and sealing the annular space |
US8413727B2 (en) | 2009-05-20 | 2013-04-09 | Bakers Hughes Incorporated | Dissolvable downhole tool, method of making and using |
CA2762826C (en) | 2009-05-22 | 2018-03-13 | Mesocoat, Inc. | Article and method of manufacturing related to nanocomposite overlays |
US8367217B2 (en) | 2009-06-02 | 2013-02-05 | Integran Technologies, Inc. | Electrodeposited metallic-materials comprising cobalt on iron-alloy substrates with enhanced fatigue performance |
US20100314126A1 (en) | 2009-06-10 | 2010-12-16 | Baker Hughes Incorporated | Seat apparatus and method |
WO2010144872A1 (en) | 2009-06-12 | 2010-12-16 | Altarock Energy, Inc. | An injection-backflow technique for measuring fracture surface area adjacent to a wellbore |
US8109340B2 (en) | 2009-06-27 | 2012-02-07 | Baker Hughes Incorporated | High-pressure/high temperature packer seal |
US7992656B2 (en) | 2009-07-09 | 2011-08-09 | Halliburton Energy Services, Inc. | Self healing filter-cake removal system for open hole completions |
US8668016B2 (en) | 2009-08-11 | 2014-03-11 | Halliburton Energy Services, Inc. | System and method for servicing a wellbore |
US8695710B2 (en) | 2011-02-10 | 2014-04-15 | Halliburton Energy Services, Inc. | Method for individually servicing a plurality of zones of a subterranean formation |
US8291980B2 (en) | 2009-08-13 | 2012-10-23 | Baker Hughes Incorporated | Tubular valving system and method |
US8113290B2 (en) | 2009-09-09 | 2012-02-14 | Schlumberger Technology Corporation | Dissolvable connector guard |
US8528640B2 (en) | 2009-09-22 | 2013-09-10 | Baker Hughes Incorporated | Wellbore flow control devices using filter media containing particulate additives in a foam material |
EP2483510A2 (en) | 2009-09-30 | 2012-08-08 | Baker Hughes Incorporated | Remotely controlled apparatus for downhole applications and methods of operation |
US20110088891A1 (en) | 2009-10-15 | 2011-04-21 | Stout Gregg W | Ultra-short slip and packing element system |
US8342094B2 (en) | 2009-10-22 | 2013-01-01 | Schlumberger Technology Corporation | Dissolvable material application in perforating |
US8245788B2 (en) | 2009-11-06 | 2012-08-21 | Weatherford/Lamb, Inc. | Cluster opening sleeves for wellbore treatment and method of use |
JP5894079B2 (ja) | 2009-12-07 | 2016-03-23 | ユー アンド アイ コーポレーション | マグネシウム合金 |
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
US8573295B2 (en) | 2010-11-16 | 2013-11-05 | Baker Hughes Incorporated | Plug and method of unplugging a seat |
US9243475B2 (en) * | 2009-12-08 | 2016-01-26 | Baker Hughes Incorporated | Extruded powder metal compact |
US8425651B2 (en) * | 2010-07-30 | 2013-04-23 | Baker Hughes Incorporated | Nanomatrix metal composite |
US9127515B2 (en) | 2010-10-27 | 2015-09-08 | Baker Hughes Incorporated | Nanomatrix carbon composite |
US8528633B2 (en) | 2009-12-08 | 2013-09-10 | Baker Hughes Incorporated | Dissolvable tool and method |
US20110135805A1 (en) | 2009-12-08 | 2011-06-09 | Doucet Jim R | High diglyceride structuring composition and products and methods using the same |
US20110139465A1 (en) | 2009-12-10 | 2011-06-16 | Schlumberger Technology Corporation | Packing tube isolation device |
US8408319B2 (en) | 2009-12-21 | 2013-04-02 | Schlumberger Technology Corporation | Control swelling of swellable packer by pre-straining the swellable packer element |
FR2954796B1 (fr) | 2009-12-24 | 2016-07-01 | Total Sa | Utilisation de nanoparticules pour le marquage d'eaux d'injection de champs petroliers |
US8584746B2 (en) | 2010-02-01 | 2013-11-19 | Schlumberger Technology Corporation | Oilfield isolation element and method |
US9539643B2 (en) * | 2010-02-12 | 2017-01-10 | GM Global Technology Operations LLC | Making metal and bimetal nanostructures with controlled morphology |
US8424610B2 (en) | 2010-03-05 | 2013-04-23 | Baker Hughes Incorporated | Flow control arrangement and method |
US8230731B2 (en) | 2010-03-31 | 2012-07-31 | Schlumberger Technology Corporation | System and method for determining incursion of water in a well |
US8430173B2 (en) | 2010-04-12 | 2013-04-30 | Halliburton Energy Services, Inc. | High strength dissolvable structures for use in a subterranean well |
AU2011240646B2 (en) | 2010-04-16 | 2015-05-14 | Wellbore Integrity Solutions Llc | Cementing whipstock apparatus and methods |
WO2011133810A2 (en) | 2010-04-23 | 2011-10-27 | Smith International, Inc. | High pressure and high temperature ball seat |
US20110277996A1 (en) | 2010-05-11 | 2011-11-17 | Halliburton Energy Services, Inc. | Subterranean flow barriers containing tracers |
US8813848B2 (en) | 2010-05-19 | 2014-08-26 | W. Lynn Frazier | Isolation tool actuated by gas generation |
CN103003010A (zh) | 2010-05-20 | 2013-03-27 | 贝克休斯公司 | 形成钻地工具的至少一部分的方法,以及通过此类方法形成的制品 |
MX2012013454A (es) | 2010-05-20 | 2013-05-01 | Baker Hughes Inc | Metodos para formar al menos una porcion de herramientas para perforar la tierra. |
US8297367B2 (en) | 2010-05-21 | 2012-10-30 | Schlumberger Technology Corporation | Mechanism for activating a plurality of downhole devices |
US20110284232A1 (en) | 2010-05-24 | 2011-11-24 | Baker Hughes Incorporated | Disposable Downhole Tool |
CN101851716B (zh) | 2010-06-14 | 2014-07-09 | 清华大学 | 镁基复合材料及其制备方法,以及其在发声装置中的应用 |
US8778035B2 (en) | 2010-06-24 | 2014-07-15 | Old Dominion University Research Foundation | Process for the selective production of hydrocarbon based fuels from algae utilizing water at subcritical conditions |
WO2012003502A2 (en) | 2010-07-02 | 2012-01-05 | University Of Florida Research Foundation, Inc. | Bioresorbable metal alloy and implants made of same |
AT510087B1 (de) | 2010-07-06 | 2012-05-15 | Ait Austrian Institute Of Technology Gmbh | Magnesiumlegierung |
US8579024B2 (en) | 2010-07-14 | 2013-11-12 | Team Oil Tools, Lp | Non-damaging slips and drillable bridge plug |
US9068447B2 (en) | 2010-07-22 | 2015-06-30 | Exxonmobil Upstream Research Company | Methods for stimulating multi-zone wells |
US8039422B1 (en) | 2010-07-23 | 2011-10-18 | Saudi Arabian Oil Company | Method of mixing a corrosion inhibitor in an acid-in-oil emulsion |
JP2013541443A (ja) | 2010-09-17 | 2013-11-14 | スリーエム イノベイティブ プロパティズ カンパニー | 繊維強化ナノ粒子装填熱硬化性ポリマー複合体ワイヤ及びケーブル、並びに方法 |
US20120067426A1 (en) | 2010-09-21 | 2012-03-22 | Baker Hughes Incorporated | Ball-seat apparatus and method |
US8851171B2 (en) | 2010-10-19 | 2014-10-07 | Schlumberger Technology Corporation | Screen assembly |
US9090955B2 (en) * | 2010-10-27 | 2015-07-28 | Baker Hughes Incorporated | Nanomatrix powder metal composite |
US8579023B1 (en) | 2010-10-29 | 2013-11-12 | Exelis Inc. | Composite downhole tool with ratchet locking mechanism |
US8561699B2 (en) | 2010-12-13 | 2013-10-22 | Halliburton Energy Services, Inc. | Well screens having enhanced well treatment capabilities |
US8668019B2 (en) | 2010-12-29 | 2014-03-11 | Baker Hughes Incorporated | Dissolvable barrier for downhole use and method thereof |
US9528352B2 (en) | 2011-02-16 | 2016-12-27 | Weatherford Technology Holdings, Llc | Extrusion-resistant seals for expandable tubular assembly |
US20120211239A1 (en) | 2011-02-18 | 2012-08-23 | Baker Hughes Incorporated | Apparatus and method for controlling gas lift assemblies |
US9211586B1 (en) * | 2011-02-25 | 2015-12-15 | The United States Of America As Represented By The Secretary Of The Army | Non-faceted nanoparticle reinforced metal matrix composite and method of manufacturing the same |
US9045953B2 (en) | 2011-03-14 | 2015-06-02 | Baker Hughes Incorporated | System and method for fracturing a formation and a method of increasing depth of fracturing of a formation |
US8584759B2 (en) | 2011-03-17 | 2013-11-19 | Baker Hughes Incorporated | Hydraulic fracture diverter apparatus and method thereof |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US8695714B2 (en) | 2011-05-19 | 2014-04-15 | Baker Hughes Incorporated | Easy drill slip with degradable materials |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
EP2725109A4 (en) | 2011-06-23 | 2015-03-11 | Univ Yonsei Iacf | ALLOY MATERIAL WITH DISTRIBUTED OXYGEN ATOMICS AND METAL ELEMENT FROM OXIDE PARTICLES AND PRODUCTION METHOD THEREFOR |
US20130008671A1 (en) | 2011-07-07 | 2013-01-10 | Booth John F | Wellbore plug and method |
US8877506B2 (en) | 2011-07-12 | 2014-11-04 | Lawrence Livermore National Security, Llc. | Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9057242B2 (en) | 2011-08-05 | 2015-06-16 | Baker Hughes Incorporated | Method of controlling corrosion rate in downhole article, and downhole article having controlled corrosion rate |
US9027655B2 (en) | 2011-08-22 | 2015-05-12 | Baker Hughes Incorporated | Degradable slip element |
US9856547B2 (en) * | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
US9033041B2 (en) | 2011-09-13 | 2015-05-19 | Schlumberger Technology Corporation | Completing a multi-stage well |
CA2752864C (en) | 2011-09-21 | 2014-04-22 | 1069416 Ab Ltd. | Sealing body for well perforation operations |
US9163467B2 (en) | 2011-09-30 | 2015-10-20 | Baker Hughes Incorporated | Apparatus and method for galvanically removing from or depositing onto a device a metallic material downhole |
CN103917738A (zh) | 2011-10-11 | 2014-07-09 | 帕克斯普拉斯能源服务有限公司 | 钻井致动器,处理柱以及其方法 |
EP2766560A4 (en) | 2011-10-11 | 2015-08-26 | Packers Plus Energy Serv Inc | DRILLING BALL, METHOD THEREFOR AND DEVICE THEREFOR |
US20130126190A1 (en) | 2011-11-21 | 2013-05-23 | Baker Hughes Incorporated | Ion exchange method of swellable packer deployment |
WO2013078031A1 (en) | 2011-11-22 | 2013-05-30 | Baker Hughes Incorporated | Method of using controlled release tracers |
US9004091B2 (en) | 2011-12-08 | 2015-04-14 | Baker Hughes Incorporated | Shape-memory apparatuses for restricting fluid flow through a conduit and methods of using same |
US8905146B2 (en) | 2011-12-13 | 2014-12-09 | Baker Hughes Incorporated | Controlled electrolytic degredation of downhole tools |
US9617462B2 (en) | 2011-12-28 | 2017-04-11 | Schlumberger Technology Corporation | Degradable composite materials and uses |
US9428989B2 (en) | 2012-01-20 | 2016-08-30 | Halliburton Energy Services, Inc. | Subterranean well interventionless flow restrictor bypass system |
US9309733B2 (en) | 2012-01-25 | 2016-04-12 | Baker Hughes Incorporated | Tubular anchoring system and method |
US9284803B2 (en) | 2012-01-25 | 2016-03-15 | Baker Hughes Incorporated | One-way flowable anchoring system and method of treating and producing a well |
US9080403B2 (en) | 2012-01-25 | 2015-07-14 | Baker Hughes Incorporated | Tubular anchoring system and method |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9033060B2 (en) | 2012-01-25 | 2015-05-19 | Baker Hughes Incorporated | Tubular anchoring system and method |
US8490689B1 (en) | 2012-02-22 | 2013-07-23 | Tony D. McClinton | Bridge style fractionation plug |
US9759034B2 (en) | 2012-04-20 | 2017-09-12 | Baker Hughes Incorporated | Frac plug body |
US8950504B2 (en) | 2012-05-08 | 2015-02-10 | Baker Hughes Incorporated | Disintegrable tubular anchoring system and method of using the same |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9016363B2 (en) | 2012-05-08 | 2015-04-28 | Baker Hughes Incorporated | Disintegrable metal cone, process of making, and use of the same |
US20130310961A1 (en) | 2012-05-15 | 2013-11-21 | Schlumberger Technology Corporation | Addititve manufacturing of components for downhole wireline, tubing and drill pipe conveyed tools |
CA2816061A1 (en) | 2012-05-17 | 2013-11-17 | Encana Corporation | Pumpable seat assembly and use for well completion |
US9689231B2 (en) | 2012-06-08 | 2017-06-27 | Halliburton Energy Services, Inc. | Isolation devices having an anode matrix and a fiber cathode |
US9458692B2 (en) | 2012-06-08 | 2016-10-04 | Halliburton Energy Services, Inc. | Isolation devices having a nanolaminate of anode and cathode |
US9759035B2 (en) | 2012-06-08 | 2017-09-12 | Halliburton Energy Services, Inc. | Methods of removing a wellbore isolation device using galvanic corrosion of a metal alloy in solid solution |
US9777549B2 (en) | 2012-06-08 | 2017-10-03 | Halliburton Energy Services, Inc. | Isolation device containing a dissolvable anode and electrolytic compound |
US8905147B2 (en) | 2012-06-08 | 2014-12-09 | Halliburton Energy Services, Inc. | Methods of removing a wellbore isolation device using galvanic corrosion |
US8936093B2 (en) | 2012-06-13 | 2015-01-20 | Smithsonian Energy, Inc. | Controlled rise velocity bouyant ball assisted hydrocarbon lift system and method |
US9080439B2 (en) | 2012-07-16 | 2015-07-14 | Baker Hughes Incorporated | Disintegrable deformation tool |
US20140060834A1 (en) | 2012-08-31 | 2014-03-06 | Baker Hughes Incorporated | Controlled Electrolytic Metallic Materials for Wellbore Sealing and Strengthening |
US20140110112A1 (en) | 2012-10-24 | 2014-04-24 | Henry Joe Jordan, Jr. | Erodable Bridge Plug in Fracturing Applications |
US9951266B2 (en) | 2012-10-26 | 2018-04-24 | Halliburton Energy Services, Inc. | Expanded wellbore servicing materials and methods of making and using same |
US9528343B2 (en) | 2013-01-17 | 2016-12-27 | Parker-Hannifin Corporation | Degradable ball sealer |
EP2954083B1 (en) | 2013-02-11 | 2019-08-28 | National Research Council of Canada | Metal matrix composite and method of forming |
US9089408B2 (en) | 2013-02-12 | 2015-07-28 | Baker Hughes Incorporated | Biodegradable metallic medical implants, method for preparing and use thereof |
US9803439B2 (en) | 2013-03-12 | 2017-10-31 | Baker Hughes | Ferrous disintegrable powder compact, method of making and article of same |
US10308856B1 (en) * | 2013-03-15 | 2019-06-04 | The Research Foundation For The State University Of New York | Pastes for thermal, electrical and mechanical bonding |
US9359863B2 (en) | 2013-04-23 | 2016-06-07 | Halliburton Energy Services, Inc. | Downhole plug apparatus |
GB2533229B (en) | 2013-06-24 | 2016-08-31 | Inst Energiteknik | Mineral-encapsulated tracers |
US10502017B2 (en) | 2013-06-28 | 2019-12-10 | Schlumberger Technology Corporation | Smart cellular structures for composite packer and mill-free bridgeplug seals having enhanced pressure rating |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
WO2015127177A1 (en) | 2014-02-21 | 2015-08-27 | Terves, Inc. | Manufacture of controlled rate dissolving materials |
US9903010B2 (en) | 2014-04-18 | 2018-02-27 | Terves Inc. | Galvanically-active in situ formed particles for controlled rate dissolving tools |
US9790762B2 (en) | 2014-02-28 | 2017-10-17 | Exxonmobil Upstream Research Company | Corrodible wellbore plugs and systems and methods including the same |
US20160061381A1 (en) | 2014-03-17 | 2016-03-03 | Igor K. Kotliar | Pressure Vessels, Design and Method of Manufacturing Using Additive Printing |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
-
2011
- 2011-08-30 US US13/220,822 patent/US9090956B2/en active Active
-
2012
- 2012-08-03 EP EP12827733.2A patent/EP2751298A4/en not_active Ceased
- 2012-08-03 AU AU2012301491A patent/AU2012301491B2/en active Active
- 2012-08-03 MY MYPI2014700427A patent/MY171181A/en unknown
- 2012-08-03 CN CN201280041531.4A patent/CN103764858B/zh active Active
- 2012-08-03 WO PCT/US2012/049442 patent/WO2013032629A1/en unknown
- 2012-08-03 AP AP2014007460A patent/AP2014007460A0/xx unknown
- 2012-08-03 CA CA2842962A patent/CA2842962C/en active Active
- 2012-08-03 BR BR112014003726-4A patent/BR112014003726B1/pt active IP Right Grant
-
2015
- 2015-06-30 US US14/755,963 patent/US9925589B2/en active Active
-
2018
- 2018-02-14 US US15/896,125 patent/US11090719B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN103764858B (zh) | 2017-03-15 |
US20160001366A1 (en) | 2016-01-07 |
EP2751298A1 (en) | 2014-07-09 |
CA2842962A1 (en) | 2013-03-07 |
MY171181A (en) | 2019-09-30 |
US9090956B2 (en) | 2015-07-28 |
CA2842962C (en) | 2018-10-23 |
US11090719B2 (en) | 2021-08-17 |
AP2014007460A0 (en) | 2014-02-28 |
AU2012301491A1 (en) | 2014-01-30 |
US20180178289A1 (en) | 2018-06-28 |
AU2012301491B2 (en) | 2017-01-05 |
CN103764858A (zh) | 2014-04-30 |
US20130047784A1 (en) | 2013-02-28 |
BR112014003726A2 (pt) | 2017-03-14 |
WO2013032629A1 (en) | 2013-03-07 |
US9925589B2 (en) | 2018-03-27 |
EP2751298A4 (en) | 2015-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BR112014003726B1 (pt) | Pó de metal compactado de liga de alumínio | |
US10737321B2 (en) | Magnesium alloy powder metal compact | |
AU2012302064B2 (en) | Nanostructured powder metal compact | |
CA2841132C (en) | Extruded powder metal compact | |
AU2011283147B2 (en) | Nanomatrix metal composite | |
BR112012013673B1 (pt) | Material compósito compacto de pó de engenharia | |
BR112012013739B1 (pt) | Método para fabricar um pó compacto de metal com nanomatriz | |
BR112012013840B1 (pt) | Pó metálico compacto | |
BR112013010133B1 (pt) | Compósito de metal em pó de nanomatriz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
B07A | Application suspended after technical examination (opinion) [chapter 7.1 patent gazette] | ||
B09A | Decision: intention to grant [chapter 9.1 patent gazette] | ||
B16A | Patent or certificate of addition of invention granted [chapter 16.1 patent gazette] |
Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 03/08/2012, OBSERVADAS AS CONDICOES LEGAIS. |