WO2010103641A1 - 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物 - Google Patents

鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物 Download PDF

Info

Publication number
WO2010103641A1
WO2010103641A1 PCT/JP2009/054743 JP2009054743W WO2010103641A1 WO 2010103641 A1 WO2010103641 A1 WO 2010103641A1 JP 2009054743 W JP2009054743 W JP 2009054743W WO 2010103641 A1 WO2010103641 A1 WO 2010103641A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
cast iron
molten metal
solid slurry
temperature
Prior art date
Application number
PCT/JP2009/054743
Other languages
English (en)
French (fr)
Inventor
修一 四海
泰史 藤永
稔 佐々木
俊雄 大加戸
西川 進
Original Assignee
虹技株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 虹技株式会社 filed Critical 虹技株式会社
Priority to PCT/JP2009/054743 priority Critical patent/WO2010103641A1/ja
Priority to EP09841469.1A priority patent/EP2407259A4/en
Priority to JP2009511698A priority patent/JP4382152B1/ja
Priority to US13/256,014 priority patent/US8486329B2/en
Publication of WO2010103641A1 publication Critical patent/WO2010103641A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/007Semi-solid pressure die casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D27/00Treating the metal in the mould while it is molten or ductile ; Pressure or vacuum casting
    • B22D27/20Measures not previously mentioned for influencing the grain structure or texture; Selection of compositions therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/12Making non-ferrous alloys by processing in a semi-solid state, e.g. holding the alloy in the solid-liquid phase
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • C22C33/10Making cast-iron alloys including procedures for adding magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/10Cast-iron alloys containing aluminium or silicon

Definitions

  • the present invention relates to a method for producing a semi-solid slurry of an iron-based alloy, a method for producing a cast iron casting using the method for producing a semi-solid slurry, and a cast iron casting.
  • a metal semi-solid slurry When the metal material is cooled from a molten state (melt) and is in a solid-liquid coexistence state, this can be referred to as a metal semi-solid slurry.
  • a semi-solid slurry production method for metal a semi-solid slurry production method (Patent Document 1) in which mechanical stirring is applied during cooling, a semi-solid slurry production method (Patent Document 2) using an inclined cooling plate, electromagnetic stirring is performed.
  • Patent Document 3 A semi-solid slurry manufacturing method to be added (Patent Document 3) has been conventionally disclosed.
  • the shape of the tempered graphite tends to be agglomerated, and mechanical properties such as strength and elongation are inferior to those of a structure having spherical graphite.
  • the cast structure does not become a complete iron-cementite eutectic structure, graphite is crystallized at the center of the thickness, and the graphite is eutectic graphite. There was a problem that the strength of was inferior.
  • the present invention eliminates the above-mentioned conventional problems, and manufactures a semi-solid slurry of an iron-based alloy, particularly cast iron, mechanical stirring with a stirrer, electromagnetic stirring that requires special equipment, and contact cooling such as an inclined cooling plate. It is an object of the present invention to provide a method for producing a semi-solid slurry of an iron-based alloy that can obtain a good semi-solid slurry without using any means. Another object of the present invention is to provide a cast iron casting production method and cast iron casting using such a semi-solid slurry production method.
  • the present inventors have conducted various experiments and examinations, and as a result, have successfully controlled the temperature of the process from molten metal to solidification without using mechanical stirring means or electromagnetic stirring means.
  • This makes it possible to produce a semi-solid slurry having an arbitrary solid phase ratio, thereby completing the present invention. That is, the method for producing a semi-solid slurry of an iron-based alloy according to the present invention obtains a semi-solid slurry composed of a crystallization solid phase and a residual liquid phase by cooling a molten iron-based alloy in a semi-solid slurry generating container.
  • a method for producing a semi-solid slurry of an iron-based alloy wherein a material having a hypoeutectic cast iron composition is used, and the molten metal temperature of the material is equal to or higher than the crystallization start temperature of the primary crystal in the composition and higher than the crystallization start temperature.
  • Addition treatment that has a boiling point lower than the crystallization start temperature of the primary crystal is added to the molten metal within the specified temperature range, which is controlled to a specified temperature range of 50 ° C. or higher.
  • the first feature is that the stirring of the molten metal by boiling in the molten metal of the additive treatment agent and the temperature drop to the semi-solidification temperature range of the molten metal are performed simultaneously.
  • the second method for producing a semi-solid slurry of an iron-based alloy according to the present invention includes that a part or all of the additive treatment agent is composed of a graphite spheroidizing agent for cast iron. It is a feature.
  • the iron-based alloy semi-solid slurry production method of the present invention has a third feature that the graphite spheroidizing agent contains Mg.
  • the method for producing a semi-solid slurry of an iron-based alloy according to the present invention in addition to the characteristics described in any one of the first to third aspects, may be added by adding 85 wt. It is the 4th characteristic to contain% or more.
  • the cast iron casting production method of the present invention uses a semi-solid slurry obtained by the semi-solid slurry production method having the characteristics described in any one of the first to fourth above, and this semi-solid slurry is put into the mold space.
  • the fifth feature is to form by pressure filling.
  • the method for producing a cast iron casting according to the present invention has a sixth feature of performing graphitization heat treatment after molding.
  • the cast iron casting of the present invention has the seventh feature that it is obtained by the method for producing a cast iron casting described in the fifth feature or the sixth feature.
  • the cast iron casting of the present invention has an eighth feature that the structure is composed of granular crystals and spherical or massive graphite.
  • the cast iron casting of the present invention has a ninth feature that it contains 0.004 to 0.1% by weight of Mg.
  • the method for producing a semi-solid slurry of an iron-based alloy according to claim 1 for a molten metal controlled to a specified temperature range that is not less than the crystallization start temperature and not more than 50 ° C. higher than the crystallization start temperature.
  • the molten metal is lowered to the semi-solidified temperature range while stirring by boiling of the additive in the molten metal is performed. Go. At this time, by stirring the molten metal, the temperature of the entire molten metal is equalized, and the temperature gradient in the molten metal is eliminated.
  • the shape of the primary crystal that reaches the primary crystal crystallization temperature and crystallizes can be made granular rather than dendrite (dendritic crystal).
  • a part or all of the additive treatment agent is made of a graphite spheroidizing agent for cast iron. Therefore, when producing a cast iron casting using the obtained semi-solid slurry, it becomes possible to obtain a structure having spheroidized graphite in the structure, thereby adding to the above-mentioned granulated cast iron structure.
  • the graphite spheroidizing agent contains Mg, so that crystallization occurs.
  • the granulation of primary crystals can be further promoted, and a more preferable semi-solid slurry can be obtained by casting.
  • the additive treatment agent is either Ni or Cu, Since both of them are contained in an amount of 85% by weight or more in total, it becomes possible to make the specific gravity of the additive processing agent as a whole larger than that of the molten metal, and the additive is submerged in the bottom of the molten metal to boil from that state. Is possible. Therefore, the entire molten metal is more stably and reliably stirred, and good granular primary crystal crystallization is expected by soaking the molten metal temperature near the primary crystal crystallization temperature. This makes it possible to obtain a better semi-solid slurry.
  • the additive treatment agent contains a graphite spheroidizing agent
  • the yield of the graphite spheroidizing agent in the molten metal is improved, so that the cast iron casting produced using the obtained semi-solid slurry can be further spheroidized into graphite.
  • the effect can be obtained even if the amount of addition of the graphite spheroidizing agent is reduced.
  • the semi-solid slurry obtained by the semi-solid slurry production method having the characteristics according to any one of claims 1 to 4 is used.
  • a cast iron casting is obtained because the mold space is press-filled and molded using a semi-solid slurry with a crystallized grain structure as the starting material.
  • a cast iron casting containing a lot of granular crystals as the structure and having excellent mechanical properties can be produced.
  • the resulting cast iron casting has a structure containing a large amount of spherical graphite in addition to granular crystals. It becomes possible to obtain a cast iron casting having sufficiently good mechanical properties.
  • the graphitization heat treatment is performed after the molding. It becomes possible to modify the graphite and cementite present in the cast iron casting to obtain a cast iron casting in which good graphite is deposited.
  • the shape of the graphite can be spheroidized, and a cast iron casting having further excellent mechanical properties can be obtained.
  • the cast iron cast according to claim 7 since it is a cast iron cast obtained by the method for producing a cast iron cast according to claim 5 or 6, a semi-solid slurry having a crystal structure granulated as a starting material, Since it is manufactured by being filled in the mold space under pressure, it is possible to obtain a cast iron casting containing a large amount of granular crystals as a cast iron casting and having small crystal grains and excellent in mechanical properties.
  • a semi-solid slurry obtained using an additive that contains a part or all of the graphite spheroidizing agent it is possible to have a granular crystal structure and a structure containing a large amount of spherical graphite.
  • a cast iron casting having further excellent mechanical properties can be obtained.
  • the cast iron casting of the eighth aspect in addition to the effect of the configuration of the seventh aspect, since the structure is composed of granular crystals and spherical or massive graphite, the cast iron casting further excellent in mechanical properties. It can be.
  • the cast iron casting of the ninth aspect in addition to the effect of the configuration of the eighth aspect, the cast iron casting obtained by containing 0.004 to 0.1% by weight of Mg is cast. Cast iron castings in which most of the carbon is crystallized as spheroidal graphite even in the free state can be obtained, and more carbon can be present in the structure as spheroidal graphite and massive graphite by heat treatment of the as cast state. The cast iron casting having excellent mechanical strength can be obtained.
  • a cast iron material having a hypoeutectic cast iron composition is used.
  • the molten metal temperature decreases and reaches the liquidus, so that the molten metal begins to solidify and solid phase crystallization, that is, austenite is generated. Crystals come out. As a result, a solid-liquid mixed semi-solid slurry consisting of the crystallized solid and the residual liquid phase is produced.
  • the additive treatment with a low boiling point is added to the melt. Yes.
  • the additive By adding the additive having a low boiling point to the molten metal, the additive is boiled in the molten metal, thereby stirring the molten metal.
  • stirring the molten metal it is possible to eliminate a temperature difference in each part of the molten metal and to equalize the molten metal.
  • the primary crystal When the primary crystal is crystallized in a state where each part of the molten metal is soaked, the primary crystal does not become dendrite (dendritic crystal) and tends to be granular.
  • the stirring of the molten metal by boiling the additive treatment agent does not continue for a long time.
  • the duration of the stirring effect by boiling is at most a few tens of seconds at most.
  • the addition treatment timing of the additive treatment agent is very important in relation to the molten metal temperature. That is, the crystallization of the primary crystal must be performed in a state where the molten metal is agitated by the boiling of the additive treatment agent and the whole is soaked.
  • the duration of the stirring by boiling of the additive treatment agent depends on the amount of the additive treatment agent, it is difficult to continue for tens of seconds, and is about several seconds to several tens of seconds. Therefore, it is necessary to limit the melt temperature during the addition treatment of the additive treatment so that the melt temperature falls to the semi-solidification temperature (primary crystallization temperature) during such a stirring duration. .
  • the present inventor can granulate the primary crystal that crystallizes from the molten metal instead of dendrite by adding the treatment agent and causing boiling.
  • Various experiments and research were repeated.
  • the addition treatment timing of the additive treatment agent when the molten metal temperature is not less than the primary crystal crystallization start temperature (liquidus temperature) for the cast iron composition and not more than 50 ° C. higher than the crystallization start temperature, I found it to be optimal.
  • This temperature range is referred to as a specified temperature range in the present invention.
  • the primary crystal crystallization start temperature (the lower limit temperature of the specified temperature range) in the cast iron composition
  • the primary crystal is already a dendrite (dendritic crystal) when stirring is started. )
  • the primary crystal cannot be granulated.
  • the addition treatment time of the additive treatment exceeds 50 ° C. higher than the primary crystal crystallization start temperature (upper limit temperature in the specified temperature range)
  • the molten metal temperature is maintained during the stirring. Since the temperature does not drop to the crystallization temperature and the temperature uniformity of the molten metal is broken again at the start of the initial crystallization, the crystallization initial crystal cannot be granulated well.
  • the additive treatment is added while the molten metal is in the specified temperature range (not less than the primary crystallization start temperature for the cast iron composition and not more than 50 ° C. higher than the crystallization start temperature).
  • the primary crystal can be crystallized while the molten metal is soaked by stirring, and a semi-solid slurry consisting of crystallized solids with granulated crystals and residual molten metal can be easily and reliably obtained.
  • a semi-solid slurry having such granulated primary crystals, a molded product having excellent structure and excellent mechanical properties can be obtained when performing subsequent casting and molding in a broader concept. .
  • the additive treatment to be added to the molten metal is at least an additive having a boiling point lower than the crystallization start temperature (liquidus temperature) of the primary crystal in the molten metal composition.
  • an additive treatment having a boiling point lower than the solidus temperature in the molten metal composition is preferable.
  • Mg, Zn, or Se can be used as the additive treatment having a boiling point lower than the primary crystallization start temperature of the hypoeutectic cast iron composition.
  • the addition treatment method of the additive treatment agent a method of adding treatment by adding the additive treatment agent to the molten metal can be adopted.
  • a method may be adopted in which an additive treatment agent is disposed in advance in a semi-solidified slurry generation container in which the molten metal is put, and the molten metal is caused to flow into the generation container.
  • the molten metal may be stirred by boiling due to the addition treatment of the additive treatment agent.
  • it can be put into the molten metal in a state of being wrapped with a coating means such as metal.
  • the additive treatment agent can be added in an integrated state, for example, by mixing with other heavy metal solids or other non-metallic solids. Thereby, it becomes possible to start boiling in a state where the additive treatment agent is surely immersed in the molten metal.
  • a pushing means such as a push rod for pushing the additive treatment agent into the molten metal may be used.
  • Part or all of the additive treatment agent can be composed of a graphite spheroidizing agent for cast iron.
  • a cast product obtained using the semi-solid slurry As the structure, it is possible to obtain a cast iron structure in which graphite is spheroidized in an as-cast state or a state after post-heat treatment. Thereby, it is possible to obtain a cast iron casting having further excellent mechanical and chemical properties.
  • Mg-based, Ca-based, Ce-based and other known graphite spheroidizing agents can be used as the graphite spheroidizing agent.
  • Mg-based graphite spheroidizing agent examples include pure Mg, Cu—Mg alloy, Ni—Mg alloy, Fe—Si—Mg alloy, and Ni—Si—Mg alloy.
  • Ca-based graphite spheroidizing agent Ca—Si—Mg alloy, Fe—Ca—Si alloy, Ca—Si alloy, and Ce-based graphite spheroidizing alloy can be Misch metal.
  • the additive treatment agent when all of the additive treatment agent is composed of a graphite spheroidizing agent, at least part of the graphite spheroidizing agent is based on the low-boiling substance, that is, the crystallization start temperature (liquidus temperature) of the primary crystal in the molten metal composition. It is necessary to include a substance having a low boiling point.
  • low boiling point substances used for such a graphite spheroidizing agent there are Mg (boiling point 1090 ° C.) and Ce (boiling point 671 ° C.), but it can be said that Mg is preferable in consideration of cost and the like.
  • the graphite spheroidizing agent one containing Mg is preferable because an effect of stirring the molten metal due to boiling of Mg can be expected.
  • those containing metals and non-metals with high specific gravity are preferred.
  • the graphite spheroidizing agent can be easily immersed in the molten metal.
  • the amount of Mg added as a graphite spheronizing agent to the molten metal is preferably 0.1 to 0.5% by weight.
  • the reaction time is too short, such as less than a few seconds, and therefore the time for maintaining the temperature equalization and temperature equalization of the molten metal is too short.
  • the reaction is so intense that it is not preferable.
  • the content of the cast iron casting described later in the as-cast state is preferably 0.004 to 0.1% by weight.
  • Cu and Ni are examples of metals larger than the specific gravity of Fe.
  • the specific gravity of the graphite spheroidizing agent becomes heavier than the specific gravity of the cast iron melt and sinks into the molten metal. Therefore, the molten metal stirring effect by the graphite spheroidizing agent can be further increased, and the effect of spheroidizing graphite can also be increased. Further, the yield of spheroidizing elements such as Mg contained is improved.
  • the graphite spheroidizing agent when used as part or all of the additive treatment agent, it can be said that a graphite spheroidizing agent containing Cu and Ni in addition to Mg is preferable.
  • the graphite spheroidizing agent containing Mg, Cu, and Ni can contain, for example, Mg, Cu, and Ni as a Cu—Mg alloy, a Ni—Mg alloy, and a Cu—Ni—Mg alloy.
  • Cu or Ni can be added to an additive treatment agent including a graphite spheroidizing agent in an amount of 85% by weight or more in one or both.
  • the degree of the boiling of the molten metal and the increase / decrease in the duration of the boiling due to the addition treatment with the additive treatment agent can be controlled, for example, by adjusting the amount of the additive treatment agent or the pressure in the semi-solidified slurry generation container.
  • the semi-solidified slurry generation container is a container for injecting molten metal from a ladle or the like and cooling it until it becomes a semi-solid slurry. It is preferable that the semi-solidified slurry generation container is provided with a cooling rate adjusting means for controlling the cooling rate of the molten metal that has flowed in.
  • the cooling rate adjusting means is required for the molten metal temperature to fall from the upper limit temperature within the specified temperature range (temperature higher by 50 ° C. than the primary crystal crystallization start temperature) to the lower limit temperature within the specified temperature range (primary crystal start temperature). Control the time.
  • the cooling rate adjusting means includes a preheating means and a cooling accelerating means, whereby the cooling rate of the molten metal in the semi-solid slurry generating container can be adjusted to a desired speed.
  • the semi-solid slurry production container is quickly heated by using preheating means such as high-frequency induction heating means, so that the production container contact portion of the semi-solid slurry is obtained. Only by heating, it is easy to take out, prevent temperature unevenness from occurring in the semi-solidified slurry, and ensure taking out at a desired solid phase ratio.
  • the timing of pouring the molten metal into the semi-solidified slurry generation container is when the molten metal is in the range after the specified temperature.
  • the hot water may be poured into the semi-solidified slurry generation container at a temperature exceeding the specified temperature range.
  • stirring by the addition treatment of the additive treatment agent is performed.
  • a material having a hypoeutectic cast iron composition is used as a raw material for producing the semi-solid slurry.
  • the raw material is melted in a melting furnace to obtain a molten metal having a predetermined hypoeutectic cast iron composition.
  • the molten metal melted in the melting furnace is poured into a semi-solid slurry generating container through a ladle and other intermediate containers in appropriate amounts.
  • the molten metal poured into the semi-solidified slurry production vessel is cooled there to become a semi-solid slurry in which primary crystals have crystallized.
  • the addition treatment agent is added when the molten metal temperature falls within the specified temperature range, but when the molten metal having reached the specified temperature range is poured into the semi-solidified slurry generation container, or poured into the semi-solidified slurry generation container. This is performed when the molten metal drops to a specified temperature range.
  • the molten metal is cooled while being stirred by the boiling of the additive agent that has been subjected to the addition treatment, reaches a soaking state, and reaches the primary crystallization temperature. Therefore, a granular primary crystal is crystallized, not a dendrite, and a semi-solid slurry consisting of the granular primary crystal and the residual liquid phase is generated.
  • the semi-solid slurry is taken out of the semi-solid slurry container as it is and is subjected to a molding process such as casting.
  • FIG. 1 shows an outline of a die casting machine as an example of a casting apparatus used in a method for producing a cast iron casting according to the present invention.
  • the die casting machine performs molding by pressurizing and filling the mold space with the semi-solid slurry.
  • a mold space 7 is constituted by a movable mold 1 and a fixed mold 2.
  • An injection sleeve 4 is attached to the fixed mold 2.
  • An injection path 9 is configured in the injection sleeve 4 so that the plunger 5 can advance and retract through the injection path 9.
  • An insertion port 8 for inserting the semi-solid slurry 6 is provided in a part of the injection sleeve 4.
  • the semi-solid slurry 6 of the present invention obtained by the semi-solid slurry generating container is put into the injection sleeve 4 from the insertion port 8 and passes through the injection path 9 by the plunger 5 from the gate 3 into the mold space 7. It is pressure filled and cast.
  • the movable mold 1 is separated from the fixed mold 2 and the cast iron casting is taken out.
  • the method for producing a cast iron casting a method of pressurizing and filling the semi-solid slurry 6 into the mold space 7 and solidifying under pressure is employed.
  • the method of pressurizing and filling the mold is described above.
  • the method is not limited to the method using a die casting machine.
  • the semi-solid slurry of the primary crystal having a granular crystal and the molten metal obtained by the method for producing a semi-solid slurry of the present invention is further pressure-filled in the mold space. Therefore, the resulting cast iron casting has a dense structure free from defects and dendrites, and a cast iron casting excellent in mechanical properties and chemical properties can be obtained.
  • the graphitized heat treatment may be performed as a post-treatment instead of the as-cast state.
  • the graphitization heat treatment it becomes possible to improve the structure of the cast iron casting in an as-cast state, to crystallize crystallized or precipitated carbon and to improve the shape of the graphite. This makes it possible to obtain a cast iron casting that is further excellent in mechanical and chemical properties.
  • the graphite in the structure is sufficiently spheroidized by performing a graphitizing heat treatment as a post-treatment.
  • the graphitization heat treatment can be performed, for example, by holding at 800 to 900 ° C. for several hours or by repeating this several times.
  • the graphitization heat treatment temperature is not limited to the above temperature, and a known heat treatment temperature can be used.
  • the cast iron cast of the present invention is a cast iron cast produced by the above-described method for producing a cast iron cast of the present invention.
  • This cast iron casting includes a cast iron cast subjected to a graphitizing heat treatment as a post-treatment in addition to an as-cast cast iron cast.
  • the semi-solid slurry of primary crystals and molten metal having granular crystals obtained by the semi-solid slurry manufacturing method of the present invention is put into the mold space by the cast iron casting manufacturing method of the present invention. Since it is a cast iron casting formed by pressure filling, the cast iron casting has a dense structure free from defects and dendrites, and can exhibit good mechanical properties and chemical properties.
  • the cast iron casting of the present invention is composed of granular crystals and spherical or massive graphite, it is possible to provide a cast iron casting that is actually excellent in both strength and elongation.
  • the cast iron casting of the present invention contains Mg in an amount of 0.004 to 0.1% by weight. Those containing 0.004% by weight or more of Mg promote the spheroidization of the graphite to be crystallized and promote the spheroidization of the massive graphite precipitated by the graphitization heat treatment.
  • the amount of Mg contained in the cast iron casting is 0.1% by weight or less. If it exceeds 0.1% by weight, it is not preferable in terms of the structure.
  • the Mg content in the cast iron casting is preferably 0.01 to 0.05% by weight.
  • a raw material having a hypoeutectic cast iron composition containing 2.6% by weight of C (carbon) and 1.5% by weight of Si (silicon) was used.
  • the liquidus temperature (crystallization start temperature) of this raw material is 1300 ° C., and the solidus temperature is 1150 ° C. This was melted in a melting furnace to obtain a molten metal.
  • the molten metal was poured into a semi-solidified slurry generation container (inner diameter 70 mm) preheated to 1000 ° C. 3 kg of molten metal was used as Examples 1 to 11 and Comparative Examples 1 to 5, respectively.
  • Table 1 shows the production conditions of the semi-solid slurry.
  • the additive treatment method includes a method of adding the additive treatment agent into the semi-solidified slurry production vessel while pouring the molten metal at the treatment temperature into the semi-solidified slurry production vessel (in the molten metal), and a pre-solidification slurry generation.
  • An additive treatment agent was placed in the container (bottom), and two methods (container) were used to pour molten metal at the treatment temperature.
  • the poured molten metal was cooled to 1200 ° C. in a semi-solid slurry generating container to obtain a semi-solid slurry.
  • the obtained semi-solid slurry was taken out from the container and filled in the mold space by using a die casting machine as shown in FIG. 1 to obtain a cast iron casting of 100 ⁇ 50 ⁇ 20 mm.
  • the structure of the primary crystal in the as-cast cast iron casting was observed.
  • the structure of graphite in the cast iron cast in an as-cast state was observed.
  • the cast iron cast in the as-cast state was subjected to a heat treatment that was held at 900 ° C. for 2 hours, and the structure of the graphite shape of the cast iron cast after the heat treatment was observed.
  • Table 3 The results are shown in Table 3.
  • FIG. 2 shows the temperature change in the semi-solidified slurry production container of Example 5.
  • FIG. 3 shows the temperature change in the semi-solid slurry generating container of Comparative Example 4.
  • FIG. 4 shows the temperature change in the semi-solidified slurry production container of Comparative Example 2. Note that the temperature measurement of the molten metal in the semi-solid slurry generation container is performed by measuring the center position of the container in the longitudinal direction and the center in the radial direction and the center in the longitudinal direction and 5 mm from the inner wall of the container in the radial direction. It measured in two places with the outer position in the position.
  • FIG. 5 shows a microstructure of an as-cast iron casting in which primary crystals are granulated in the examples.
  • FIG. 6 shows a microstructure of an as-cast iron casting in which the primary crystals are dendrited in Comparative Examples 1 and 2.
  • FIG. 7 shows a microstructure of eutectic graphite crystallized in an as-cast cast iron casting in Comparative Examples 1 and 2.
  • FIG. 8 shows a microstructure in which “spherical + massive” graphite appears in the cast iron casting after heat treatment in the example.
  • FIG. 9 shows a microstructure in which “eutectic + lump” graphite appears in cast iron castings after heat treatment in Comparative Examples 1 and 2.
  • the additive treatment agent was added in the specified temperature range of 1300 ° C. (crystallization start temperature) to 1350 ° C. to obtain granular primary crystals. Can do. That is, a semi-solid slurry having a granular primary crystal can be obtained.
  • Comparative Examples 1 and 2 since no additive treatment agent is used, the stirring effect due to boiling cannot be obtained, and dendritic primary crystals are crystallized.
  • the temperature of the molten metal to which the additive treatment agent is added is out of the specified temperature range (1300 to 1350 ° C.), and the temperature of the molten metal cannot be equalized during the initial crystallization. The first crystal is crystallized.
  • FIG. 2 shows the temperature change of the molten metal after the addition treatment of the addition treatment agent in Example 5.
  • An additive treatment agent is added to the semi-solid slurry generating container at 1350 ° C. during pouring. Boiling and stirring by the additive containing Mg continues for about 6 seconds, and the temperature drops to about 1300 ° C., which is the initial crystallization start temperature (solidification start temperature), for about 8 seconds including 2 seconds thereafter. At the same time, by stirring by boiling, a temperature equalization state is obtained in which there is no temperature difference between the temperature at the center position of the melt (solid line) and the temperature at the outer position (dotted line). Thereby, a granular primary crystal is crystallized.
  • FIG. 1300 ° C. which is the initial crystallization start temperature (solidification start temperature)
  • FIG. 3 shows a comparative example 4 in which an additive treatment agent is placed in a semi-solidified slurry production container in advance (addition treatment) and a molten metal at 1400 ° C. is poured.
  • Stirring due to boiling of the additive treatment agent continued for about 6 seconds, and there was no temperature difference between the temperature at the center position (solid line) and the temperature at the outside position (dotted line) for about 8 seconds including the subsequent 2 seconds (equal level).
  • the pouring temperature is high, the temperature does not drop to the solidification start temperature during that time, and there is a temperature difference between the center position and the outer position at the start of solidification. As a result, a dendritic primary crystal is crystallized.
  • a semi-solid slurry having a granular primary crystal suitable for subsequent casting and other moldings can be obtained very easily as compared with the conventional semi-solid methods. Became possible. Furthermore, crystallization of eutectic graphite in thick parts can be prevented, and the massive graphite after graphitization heat treatment can be made close to spherical, making it possible to produce a material having high strength and excellent toughness.
  • the method for producing a semi-solid slurry of an iron-based alloy according to the present invention, a method for producing a cast iron casting using the same, and a cast iron casting have great industrial applicability in the field of molding using cast iron casting and other cast iron.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

 晶出固相と残留液相とからなる半凝固スラリーを得る鉄系合金の半凝固スラリー製造方法であって、亜共晶鋳鉄組成の材料を用い、溶湯温度が初晶の晶出開始温度以上で且つ晶出開始温度よりも50°C高い温度以下とする規定温度範囲にあるときに、少なくとも前記初晶の晶出開始温度よりも低い沸点を有する添加処理剤を添加処理して、添加処理剤の沸騰による溶湯の攪拌と溶湯の半凝固温度範囲への温度降下とを同時期的に行わせる。

Description

鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
 本発明は、鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物の製造方法及び鋳鉄鋳物に関する。
 金属材料が溶融した状態(融液)から冷却されて固液共存状態となっている場合、これを金属の半凝固スラリーの状態ということができる。
 金属の半凝固スラリー製造方法としては、冷却中に機械攪拌を加えるようにした半凝固スラリー製造方法(特許文献1)、傾斜冷却板を用いる半凝固スラリー製造方法(特許文献2)、電磁攪拌を加える半凝固スラリー製造方法(特許文献3)等が従来開示されている。
特開平6-297097号公報 特開平10-34307号公報 特開2005-88083号公報
 上記特許文献1に開示するような機械攪拌を加えるものにあっては、鋳鉄のような高融点材料の融液を対象に攪拌する場合、攪拌子がすぐに劣化したり、成分が溶け込んだりする等、使用できる実用的な攪拌子がないというような問題があった。
 また上記特許文献2による傾斜冷却板を用いるものでは、これを鋳鉄のような高融点材料の半凝固スラリー製造に用いる場合、傾斜冷却板が劣化し易い問題があった。また傾斜冷却板に接触させる溶融金属が凝固付着を起こし易いことから、傾斜冷却板に対する繊細な温度管理、操業管理を施さねばならないという厄介な問題があった。
 また上記特許文献3による電磁攪拌加えるものでは、大がかりな設備な必要となる他、実質的な攪拌を得るには溶湯の粘度を低く抑える必要があるため、固相率20%程度以下の低固相率のスラリーしか得られない。従って、そのような低固相率のスラリーでは、例えダイカスト等の方法で成形しても、鋳巣等の欠陥が多くなるという問題があった。
 一方、鉄系合金、特に鋳鉄の半凝固スラリーを用いて、鋳鉄鋳物を製造する場合は、得られる組織が鉄-セメンタイト共晶組織になり易く、このセメンタイトを焼き戻し熱処理によって黒鉛化した場合でも、その焼き戻し黒鉛の形状が塊状となり易く、球状黒鉛を有する組織に比べて強度や伸び等の機械的性質が劣る問題があった。また鋳物が厚肉品の場合には、鋳造組織が完全な鉄-セメンタイト共晶組織にはならず、肉厚中心部に黒鉛が晶出し、しかもその黒鉛が共晶状黒鉛であるため、鋳物の強度が劣る問題があった。
 そこで本発明は上記従来の問題を解消し、鉄系合金、特に鋳鉄の半凝固スラリーの製造を、攪拌子による機械攪拌、特別な設備を必要とする電磁攪拌、また傾斜冷却板の如き接触冷却手段を用いることなく、しかも良好な半凝固スラリーを得ることができる鉄系合金の半凝固スラリー製造方法の提供を課題とする。またそのような半凝固スラリー製造方法を用いた鋳鉄鋳物の製造方法及び鋳鉄鋳物の提供を課題とする。
 上記課題を解決するため本発明者らは種々の実験と検討を重ねた結果、機械的攪拌手段や電磁攪拌手段を用いなくとも、溶湯から凝固に至る過程の温度をうまく制御することができることを見出し、これによって任意の固相率の半凝固スラリーを製造することを可能とし、本発明の完成に至ったものである。
 即ち、本発明の鉄系合金の半凝固スラリー製造方法は、鉄系合金の溶湯を半凝固スラリー生成容器内で冷却することで、晶出固相と残留液相とからなる半凝固スラリーを得る鉄系合金の半凝固スラリー製造方法であって、亜共晶鋳鉄組成の材料を用い、この材料の溶湯温度を、その組成での初晶の晶出開始温度以上で且つ晶出開始温度よりも50℃高い温度以下とする規定温度範囲になるように制御し、前記規定温度範囲にある溶湯に対して少なくとも前記初晶の晶出開始温度よりも低い沸点を有する添加処理剤を添加処理することにより、該添加処理剤の溶湯内での沸騰による溶湯の攪拌と溶湯の半凝固温度範囲への温度降下とを同時期的に行わせるようにしたことを第1の特徴としている。
 また本発明の鉄系合金の半凝固スラリー製造方法は、上記第1の特徴に加えて、添加処理剤の一部若しくは全部を鋳鉄用の黒鉛球状化剤で構成していることを第2の特徴としている。
 また本発明の鉄系合金の半凝固スラリー製造方法は、上記第2の特徴に加えて、黒鉛球状化剤はMgを含有することを第3の特徴としている。
 また本発明の鉄系合金の半凝固スラリー製造方法は、上記第1~第3の何れかに記載の特徴に加えて、添加処理剤はNi、Cuの何れか一方若しくは両方を全体で85重量%以上含有することを第4の特徴としている。
 また本発明の鋳鉄鋳物の製造方法は、上記第1~第4の何れかに記載の特徴を有する半凝固スラリー製造方法により得られた半凝固スラリーを用い、この半凝固スラリーを金型空間に加圧充填して成形することを第5の特徴としている。
 また本発明の鋳鉄鋳物の製造方法は、上記第5の特徴に加えて、成形後に黒鉛化熱処理を行うことを第6の特徴としている。
 また本発明の鋳鉄鋳物は、上記第5の特徴若しくは第6の特徴に記載の鋳鉄鋳物の製造方法により得られることを第7の特徴としている。
 また本発明の鋳鉄鋳物は、上記第7の特徴に加えて、組織が粒状結晶と球状若しくは塊状の黒鉛とからなることを第8の特徴としている。
 また本発明の鋳鉄鋳物は、上記第8の特徴に加えて、Mgを0.004~0.1重量%含有していることを第9の特徴としている。
 請求項1に記載の鉄系合金の半凝固スラリー製造方法によれば、晶出開始温度以上で且つ晶出開始温度よりも50℃高い温度以下とする規定温度範囲に制御された溶湯に対して、前記規定温度範囲よりも低い沸点を有する添加処理剤が添加処理されることにより、該添加処理剤の溶湯中での沸騰による攪拌が行われながら、溶湯が半凝固温度範囲へと温度降下されてゆく。このとき前記溶湯が攪拌されることで、溶湯全体が均温化され、溶湯内での温度勾配が解消される。これにより初晶晶出温度に達して晶出してくる初晶の形状を、デンドライト(樹枝状晶)ではなく粒状とすることが可能となる。
 請求項2に記載の鉄系合金の半凝固スラリー製造方法によれば、上記請求項1に記載の構成による効果に加えて、添加処理剤の一部若しくは全部を鋳鉄用の黒鉛球状化剤で構成しているので、得られる半凝固スラリーを用いて鋳鉄鋳物を製造する際、その組織中に球状化した黒鉛を有する組織を得ることが可能となり、これによって上記粒状化した鋳鉄組織に加えて、黒鉛が球状化した、機械的性質に優れた鋳鉄鋳物を得ることが可能となる。
 請求項3に記載の鉄系合金の半凝固スラリー製造方法によれば、上記請求項2に記載の構成による効果に加えて、黒鉛球状化剤はMgを含有するようにしたので、晶出する初晶の粒状化を一層促進することができ、鋳造するのにより好ましい半凝固スラリーを得ることができる。
 請求項4に記載の鉄系合金の半凝固スラリー製造方法によれば、上記請求項1~3の何れかに記載の構成による効果に加えて、添加処理剤はNi、Cuの何れか一方若しくは両方を全体で85重量%以上含有するようにしたので、添加処理剤全体としての比重を、溶湯よりも大きくすることが可能となり、添加剤を溶湯の底に沈めて、その状態から沸騰させることが可能となる。よって溶湯全体の攪拌がより安定して確実に行われ、初晶晶出温度付近での溶湯温度の均温化による良好な粒状初晶の晶出が期待される。これによって一層良好な半凝固スラリーを得ることが可能となる。
 また添加処理剤に黒鉛球状化剤を含む場合には、その黒鉛球状化剤の溶湯中への歩留まりがよくなるので、得られた半凝固スラリーを用いて製造される鋳鉄鋳物の黒鉛球状化を一層促進することができ、また黒鉛球状化剤の添加処理量を少なくしても効果を得ることができる。
 請求項5に記載の鋳鉄鋳物の製造方法によれば、上記請求項1~4の何れかに記載の特徴を有する半凝固スラリー製造方法により得られた半凝固スラリーを用い、この半凝固スラリーを金型空間に加圧充填して成形するようにしたので、結晶組織が粒状化した半凝固スラリーを出発材料として、金型空間に加圧充填されて鋳物成形がなされるので、得られる鋳鉄鋳物の組織として粒状結晶を多く含み、機械的性質に優れた鋳鉄鋳物を製造することができる。また黒鉛球状化剤を一部若しくは全部とした添加処理剤を用いて得られた半凝固スラリーを出発材料とする場合には、得られる鋳鉄鋳物に粒状結晶の他、球状黒鉛を多く含む組織を得ることが可能となり、十分に良好な機械的性質を有する鋳鉄鋳物を得ることが可能となる。
 勿論、半凝固スラリーを金型空間に加圧充填して成形するので、結晶粒が小さく、緻密な機械的性質のよい鋳物を得ることが可能となる。
 請求項6に記載の鋳鉄鋳物の製造方法によれば、上記請求項5に記載の構成による効果に加えて、成形後に黒鉛化熱処理を行うようにしたので、黒鉛化熱処理により、鋳放し状態の鋳鉄鋳物に存在する黒鉛やセメンタイトを改質して、良好な黒鉛が析出した鋳鉄鋳物にすることが可能となる。特に黒鉛球状化剤を添加処理した鋳鉄鋳物では、黒鉛の形状を球状化することが可能となり、機械的性質に一層優れた鋳鉄鋳物を得ることができる。
 請求項7に記載の鋳鉄鋳物によれば、請求項5若しくは請求項6に記載の鋳鉄鋳物の製造方法により得られる鋳鉄鋳物であるので、結晶組織が粒状化した半凝固スラリーを出発材料として、金型空間に加圧充填されて製造されることから、鋳鉄鋳物として粒状結晶を多く含み、また結晶粒が小さい、緻密で機械的性質に優れた鋳鉄鋳物とすることができる。また黒鉛球状化剤を一部若しくは全部とした添加処理剤を用いて得られた半凝固スラリーを出発材料とする場合には、粒状結晶組織の他、球状黒鉛を多く含む組織とすることが可能となり、一層機械的性質に優れた鋳鉄鋳物とすることができる。
 請求項8に記載の鋳鉄鋳物によれば、上記請求項7に記載の構成による効果に加えて、組織が粒状結晶と球状若しくは塊状の黒鉛とからなるので、更に機械的性質に優れた鋳鉄鋳物とすることができる。
 請求項9に記載の鋳鉄鋳物によれば、上記請求項8に記載の構成による効果に加えて、Mgを0.004~0.1重量%含有していることにより、得られる鋳鉄鋳物が鋳放しの状態でも炭素の多くが球状黒鉛として晶出した鋳鉄鋳物とすることができると共に、鋳放し状態のものを熱処理することで、更により多くの炭素が球状黒鉛、塊状黒鉛として組織中に存在する、機械的強度に優れた鋳鉄鋳物とすることができる。
本発明の鋳鉄鋳物製造方法に用いられる鋳造装置の1例であるダイカストマシンの概略を示す断面図である。 本発明の実施例5における半凝固スラリー生成容器内での温度変化を示す図である。 本発明の比較例4における半凝固スラリー生成容器内での温度変化を示す図である。 本発明の比較例2における半凝固スラリー生成容器内での温度変化を示す図である。 粒状化した初晶が晶出した実施例(表3で判定○)の半凝固スラリーを用いた鋳放し鋳物の組織を示す写真である。 デンドライトが晶出した比較例(表3で判定×)の半凝固スラリーを用いた鋳放し鋳物の組織を示す写真である。 比較例の鋳放し鋳物に現れた共晶状黒鉛組織を示す写真である。 実施例において黒鉛形状が球状黒鉛と塊状黒鉛となった(表3で判定◎)鋳放し鋳物の熱処理後の組織を示す写真である。 比較例の鋳放し鋳物に現れた共晶状黒鉛組織の熱処理後の黒鉛形状の状態(共晶状+塊状の黒鉛)を示す写真である。
符号の説明
 1  可動金型
 2  固定金型
 3  ゲート
 4  射出スリーブ
 5  プランジャ
 6  半凝固スラリー
 7  金型空間
 8  挿入口
 9  射出路
 先ず本発明の鉄系合金の半凝固スラリー製造方法についての実施形態を説明する。
 本発明の鉄系合金の半凝固スラリー製造方法では、亜共晶鋳鉄組成の鋳鉄材料を用いる。亜共晶鋳鉄組成の鋳鉄材料の場合、この溶湯を冷却していくと、溶湯温度が降下して液相線に達することで、溶湯の凝固が開始され、固相の晶出、即ちオーステナイトが晶出してくる。これによって晶出固体と残留液相からなる固液混合の半凝固スラリーが生成されることになる。
 本発明の半凝固スラリー製造方法では、亜共晶鋳鉄溶湯の冷却中において、溶湯温度が規定温度範囲内にまで冷却されてきた時に、沸点の低い添加処理剤を溶湯に添加処理するようにしている。
 前記沸点の低い添加処理剤を溶湯に添加処理することで、その添加処理剤を溶湯内で沸騰させ、これによって溶湯を攪拌するのである。溶湯の攪拌を行うことで、溶湯内各部での温度差をなくし、溶湯の均温化を図ることができる。溶湯の各部が均温化された状態において初晶が晶出する場合は、その初晶はデンドライト(樹枝状晶)にはなることなく、粒状になり易い。
 ただし添加処理剤の沸騰による溶湯の攪拌は、長く継続することはない。本発明者による測定では、沸騰による攪拌効果の持続時間は、数秒から長くてもせいぜい十数秒であることを知得している。
 このため、添加処理剤の添加処理タイミングは、溶湯温度との関係で非常に重要となってくる。即ち、添加処理剤の沸騰により溶湯が攪拌されて全体が均温化されている状態で、初晶の晶出が行われなければならない。
 更に言えば、添加処理剤の沸騰による攪拌の継続時間は、添加処理剤の量にもよるが、何十秒も継続することは難しく、数秒から十数秒ぐらいである。従って、それぐらいの攪拌継続時間の間に溶湯温度が半凝固温度(初晶晶出温度)へと温度降下していくように、添加処理剤の添加処理時の溶湯温度を限定する必要がある。
 本発明者は、溶湯温度がどのような状態にあるときに添加処理剤を添加処理して沸騰を起こさせれば、溶湯からの晶出する初晶を、デンドライトではなく粒状化することができるかにつき、種々、実験と研究を重ねた。そして添加処理剤の添加処理タイミングとして、溶湯温度がその鋳鉄組成に対する初晶晶出開始温度(液相線温度)以上で且つ晶出開始温度よりも50℃高い温度以下の範囲にあるときが、最適であることを見出した。この温度範囲を本発明では規定温度範囲と呼ぶ。
 前記添加処理剤の添加処理時期が、その鋳鉄組成における初晶晶出開始温度(規定温度範囲の下限温度)未満の場合は、攪拌が開始される際には既に初晶がデンドライト(樹枝状晶)として晶出しており、攪拌が行われても初晶の粒状化が望めない。一方、添加処理剤の添加処理時期が、初晶晶出開始温度よりも50℃高い温度(規定温度範囲の上限温度)を超える場合は、攪拌が行われている間には溶湯温度が初晶晶出温度まで降下せず、初晶晶出開始時には溶湯の均温化が再び崩れた状態となるため、晶出初晶を良好に粒状化させることができない。
 本発明では、溶湯が規定温度範囲(その鋳鉄組成に対する初晶晶出開始温度以上で且つ晶出開始温度よりも50℃高い温度以下)にある間に添加処理剤を添加処理する。これにより溶湯が攪拌により均温化している状態で初晶の晶出を行わせることができ、粒状化した結晶をもつ晶出固体と残留溶湯とからなる半凝固スラリーを容易に、且つ確実に得ることができる。このような粒状化した初晶を有する半凝固スラリーを用いて、その後の鋳造、より広い概念における成形、を行う際に、優れた組織、優れた機械的性質をもつ成形品を得ることができる。
 前記溶湯に添加処理する添加処理剤は、少なくとも、その溶湯組成における初晶の晶出開始温度(液相線温度)よりも低い沸点を有する添加処理剤とする。好ましくは、その溶湯組成における固相線温度よりも低い沸点を有する添加処理剤がよい。
 亜共晶鋳鉄組成の初晶晶出開始温度よりも低い沸点を有する添加処理剤として、例えばMg、Zn、Seを用いることができる。またそれ以外の沸点が前記初晶晶出開始温度よりも低い金属固体、非金属個体を添加処理剤とすることも可能である。
 添加処理剤の添加処理方法は、溶湯に対して添加処理剤を投入することで添加処理する方法を採用することができる。
 また溶湯を入れる半凝固スラリー生成容器内に予め添加処理剤を配置しておいて、溶湯を前記生成容器内に流入させる方法を採用してもよい。要は、添加処理剤の添加処理による沸騰で、溶湯が攪拌されるようにすればよい。
 添加処理剤は、溶湯表面等において攪拌効果を奏することなく沸騰してしまうのを防止するため、金属等の被覆手段で包んだ状態にして溶湯に投入することができる。この場合には、添加処理剤が溶湯の中へ浸漬される前に沸騰してしまうのを防ぐことが可能である。
 また添加処理剤は、他の比重の重い金属固体やその他の非金属固体と混合するなどして、一体化した状態で投入することができる。これにより、添加処理剤を確実に溶湯内部に浸漬した状態で沸騰を開始させることが可能となる。
 添加処理剤の添加処理に際しては、添加処理剤を溶湯内に押し込むための押込棒等の押込手段を用いてもよい。
 前記添加処理剤は、その一部若しくは全部を鋳鉄用の黒鉛球状化剤で構成することができる。添加処理剤の一部若しくは全部を黒鉛球状化剤で構成することで、溶湯の攪拌による粒状化した結晶を有する半凝固スラリーを得ることができる他、その半凝固スラリーを用いて得た鋳造品の組織として、鋳放し状態或いは後熱処理を施した状態において黒鉛が球状化した鋳鉄組織を得ることが可能となる。これにより一層機械的、化学的性質に優れた鋳鉄鋳物を得ることができる。
 黒鉛球状化剤としては、Mg系、Ca系、Ce系、その他の公知の黒鉛球状化剤を用いることが可能である。Mg系黒鉛球状化剤としては、例えば純Mg、Cu-Mg合金、Ni-Mg合金、Fe-Si-Mg合金、Ni-Si-Mg合金がある。またCa系黒鉛球状化剤としては、Ca-Si-Mg合金、Fe-Ca-Si合金、Ca-Si合金、Ce系黒鉛球状化合金としては、ミッシュメタル等を用いることができる。
 ただし、添加処理剤の全てを黒鉛球状化剤で構成する場合には、黒鉛球状化剤の少なくとも一部に低沸点物質、即ち溶湯組成における初晶の晶出開始温度(液相線温度)よりも低い沸点を有する物質を含む必要がある。このような黒鉛球状化剤に用いられる低沸点物質としては、Mg(沸点1090℃)、Ce(沸点671℃)があるが、コスト等の面を考慮すればMgが好ましいと言える。
 前記黒鉛球状化剤としてはMgを含むものが、Mgの沸騰による溶湯攪拌効果を期待できるので好ましい。しかし、同時に比重の大きい金属や非金属を含むものが好ましい。比重の大きい金属を黒鉛球状化剤に含むことで、黒鉛球状化剤を容易に溶湯内へ浸漬させることができる。
 黒鉛球状化剤としてのMgの溶湯への添加処理量は、0.1~0.5重量%が好ましい。0.1重量%未満の場合は、反応時間が数秒未満となるなど短すぎ、よって溶湯の均温化及び均温化を保持できる時間が短すぎる。一方、0.5重量%を超える場合は、反応が激しすぎて好ましくない。上記の0.1~0.5重量%のMgを添加処理する場合に、後述する鋳鉄鋳物の鋳放し状態での含有量が0.004~0.1重量%となるのが好ましい。0.004~0.1重量%含有することで、晶出する黒鉛の球状化、及び黒鉛化熱処理で析出する塊状黒鉛の形状を球状に近づけることができる。
 前記Feの比重よりも大きい金属としては、Cu、Niがある。黒鉛球状化剤にCu、Niの何れか1種または両方で85重量%以上を含有させることで、黒鉛球状化剤の比重が鋳鉄溶湯の比重より重くなり、溶湯中に沈む。よって黒鉛球状化剤による溶湯攪拌効果を一層上げることができると共に、黒鉛球状化の効果をも上げることが可能となる。また含有されるMg等の球状化元素の歩留まりがよくなる。
 以上のように、黒鉛球状化剤を添加処理剤の一部若しくは全部として用いる場合においては、Mgの他、Cu、Niを含む黒鉛球状化剤が好ましいと言える。
 Mg、Cu、Niを含む黒鉛球状化剤は、例えばMg、Cu、NiをCu-Mg合金、Ni-Mg合金、Cu-Ni-Mg合金として含むようにすることができる。なおCu、Niは、黒鉛球状化剤を含めた添加処理剤に、一方または両方で85重量%以上含有させることができる。
 添加処理剤による添加処理による溶湯沸騰の程度や持続時間の加減は、例えば添加処理剤の量や半凝固スラリー生成容器内の圧力を加減することで、制御することが可能である。
 半凝固スラリー生成容器は、取鍋等から溶湯を流入させ、そこで半凝固スラリーになるまで冷却を行うための容器である。該半凝固スラリー生成容器には、流入された溶湯の冷却速度を制御する冷却速度調節手段を備えるのが好ましい。
 前記冷却速度調節手段は、溶湯温度が規定温度範囲の上限温度(初晶晶出開始温度より50℃高い温度)から規定温度範囲の下限温度(初晶晶出開始温度)まで降下するのに要する時間を制御する。これによって、添加処理剤の添加処理による溶湯攪拌により溶湯各部が均温化している間に、確実に、溶湯からの初晶の晶出が開始されるようにすることが可能となる。
 例えば、添加処理剤の添加処理により溶湯が攪拌され、溶湯各部が均温状態になる時間が10秒である場合には、添加処理剤を添加処理した温度(例えば規定温度範囲の上限温度)から下限温度までの温度降下(例えば50℃)が10秒以下で行われるように、冷却速度調節手段により冷却速度(温度降下速度)を調節すればよい。
 冷却速度調節手段は、具体的には予熱手段と冷却促進手段とを備えたものとすることで、半凝固スラリー生成容器内での溶湯の冷却速度を所望の速度に調節することができる。
 なお、半凝固スラリー生成容器からの半凝固スラリーの取り出しの際には、高周波誘導加熱手段等からなる予熱手段を用いて、半凝固スラリー生成容器を素早く加熱し、半凝固スラリーの生成容器接触部分のみを加温することで、取り出しを容易に行うと共に、半凝固スラリーに温度ムラが発生するのを防止して、所望の固相率での取り出しを確保する。
 また溶湯を半凝固スラリー生成容器に注湯するタイミングは、溶湯が前記規定温後範囲になった時とする。が、勿論、規定温度範囲を超える温度で半凝固スラリー生成容器に注湯してもよい。この場合は、溶湯が半凝固スラリー生成容器内で冷却され、規定温度範囲内に達した時に添加処理剤の添加処理による攪拌を行わせることになる。
 次に上記した鉄系合金の半凝固スラリー製造方法においての作業手順は次のようになる。
 半凝固スラリーの製造原料は亜共晶鋳鉄組成の材料を用いる。原料を溶解炉にて溶解し、所定の亜共晶鋳鉄組成となる溶湯を得る。
 溶解炉で溶解された溶湯は、適当な量ずつ取鍋やその他の中間容器を経て半凝固スラリー生成容器に注湯される。半凝固スラリー生成容器に注湯された溶湯はそこで冷却され、初晶が晶出した半凝固スラリーとなる。添加処理剤の添加処理は溶湯温度が規定温度範囲になった時に行われるが、規定温度範囲となった溶湯が半凝固スラリー生成容器に注湯される際、或いは半凝固スラリー生成容器に注湯された溶湯が規定温度範囲にまで温度降下した時に行われる。添加処理された添加処理剤の沸騰により溶湯が攪拌されながら冷却され、均温状態となって初晶晶出温度に達する。よって、デンドライトではなく粒状の初晶が晶出され、粒状初晶と残留液相とからなる半凝固スラリーが生成される。半凝固スラリーはその状態のまま半凝固スラリー生成容器から取り出され、鋳造等による成型加工に供される。
 次に本発明の鋳鉄鋳物の製造方法を説明する。
 本発明の鋳鉄鋳物の製造方法は、以上で説明した本発明の半凝固スラリー製造方法により得られた半凝固スラリーを用い、この半凝固スラリーを金型空間に加圧充填して成形する鋳鉄鋳物の製造方法である。
 図1に本発明に係る鋳鉄鋳物の製造方法に用いられる鋳造装置の1例として、ダイカストマシンの概略を示す。該ダイカストマシンにより、金型空間に半凝固スラリーを加圧充填して成形を行う。このダイカストマシンには、可動金型1と固定金型2とによって金型空間7が構成されている。前記固定金型2に対して射出スリーブ4が取り付けられている。射出スリーブ4内には射出路9が構成され、プランジャ5が射出路9を進退できるように構成されている。前記射出スリーブ4の一部に半凝固スラリー6を挿入する挿入口8が設けられている。
 半凝固スラリー生成容器によって得られた本発明の半凝固スラリー6は、前記挿入口8から射出スリーブ4内に入れられ、プランジャ5によって射出路9内を通ってゲート3から金型空間7内に加圧充填され、鋳造がなされる。金型空間7内での鋳造が完了すると、可動金型1を固定金型2から離間させて、鋳鉄鋳物を取り出す。
 本発明の鋳鉄鋳物の製造方法では、半凝固スラリー6を金型空間7に加圧充填して、加圧下で凝固させる方法を採用するが、その金型への加圧充填の方法については上記ダイカストマシーンによる方法に限定されるものではない。
 本発発明の鋳鉄鋳物の製造方法によれば、本発明の半凝固スラリー製造方法により得られる、粒状結晶をもつ初晶と溶湯との半凝固スラリーを、更に金型空間内に加圧充填して成形するので、得られる鋳鉄鋳物の組織が欠陥やデンドライトのない緻密な組織となり、機械的性質、化学的性質に優れた鋳鉄鋳物を得ることができる。
 また本発明の鋳鉄鋳物の製造方法において、鋳造による鋳鉄鋳物の成形後に、鋳放し状態のままではなく、後処理として黒鉛化熱処理を行うようにしてもよい。黒鉛化熱処理を施すことにより、鋳放し状態にある鋳鉄鋳物の組織を改善し、晶出乃至析出した炭素の黒鉛化及び黒鉛の形状の改質化を図ることが可能となる。これにより一層、機械的、化学的に優れた鋳鉄鋳物を得ることが可能となる。
 また半凝固スラリーを生成する際に、予め黒鉛球状化剤による処理を施してなる鋳鉄鋳物の場合には、後処理として黒鉛化熱処理を施すことにより、組織中の黒鉛を十分に球状にし、また塊状にすることが可能となり、一層機械的、化学的に優れた鋳鉄鋳物とすることができる。
 前記黒鉛化熱処理は、例えば800~900℃で数時間保持し、またはこれを数回繰り返すことで行うことができる。なお、黒鉛化熱処理温度は前記温度に限らず、公知の熱処理温度を用いることができる。
 次に本発明の鋳鉄鋳物を説明する。
 本発明の鋳鉄鋳物は、上記した本発明の鋳鉄鋳物の製造方法により製造された鋳鉄鋳物である。この鋳鉄鋳物には鋳放し状態の鋳鉄鋳物の他、後処理として黒鉛化熱処理を施した鋳鉄鋳物を含む。
 本発発明の鋳鉄鋳物によれば、本発明の半凝固スラリー製造方法により得られる粒状結晶をもつ初晶と溶湯との半凝固スラリーを、本発明の鋳鉄鋳物の製造方法により金型空間内に加圧充填して成形された鋳鉄鋳物であるので、鋳鉄鋳物の組織が欠陥やデンドライトのない緻密な組織となり、良好な機械的性質、化学的性質を発揮することが可能となる。
 加えて、本発明の鋳鉄鋳物は、組織が粒状結晶と球状若しくは塊状の黒鉛とからなるので、現に強度、伸び共に優れた鋳鉄鋳物を提供することができる。
 また本発明の鋳鉄鋳物は、Mgを0.004~0.1重量%含有させるようにする。Mgを0.004重量%以上含有するものは、晶出する黒鉛の球状化を促進し、また黒鉛化熱処理で析出する塊状黒鉛の球状化を促進する。鋳鉄鋳物中に含有するMg量は0.1重量%以下で十分である。0.1重量%を超えると組織上好ましくない。
 鋳鉄鋳物中のMg含有量は、好ましくは0.01~0.05重量%とする。
 成分組成が、C(炭素)を2.6重量%、Si(珪素)を1.5重量%含む亜共晶鋳鉄組成とした原料を用いた。この原料の液相線温度(晶出開始温度)は1300℃、固相線温度は1150℃である。これを溶解炉で溶解して溶湯とした。そして溶湯を予め1000℃に予熱した半凝固スラリー生成容器(内径70mm)に注湯するようにした。
 それぞれ3kgの溶湯を、実施例1~11、比較例1~5とした。
 表1に半凝固スラリーの製造条件を示す。
 一方、沸騰による攪拌効果をもたらす添加処理剤として、A、B、Cの3種類の添加処理剤を用意した。添加処理剤は実施例1~11、比較例3~5にのみ添加処理し、比較例1、2には添加処理しなかった。
 表2に各添加処理剤の組成を示す。
 また各実施例1~11において、添加処理剤中のMg分の添加処理量(重量%)は、0.1重量%のものと、0.3重量%のものと、0.5重量%のものとした。
 添加処理剤の添加処理の方法は、半凝固スラリー生成容器に処理温度の溶湯を注湯しながら添加処理剤を半凝固スラリー生成容器に投入する方法(注湯中)と、予め半凝固スラリー生成容器内(底部)に添加処理剤を入れておき、処理温度の溶湯を注湯する方法(容器)の2方法とした。
 注湯した溶湯を半凝固スラリー生成容器内で1200℃まで冷却し、半凝固スラリーを得た。
 得られた半凝固スラリーを容器から取り出し、図1に示すようなダイカストマシンを用いて金型空間に加圧充填して、100×50×20mmの鋳鉄鋳物を得た。
 鋳放し状態の鋳鉄鋳物での初晶形状を組織観察した。
 鋳放し状態の鋳鉄鋳物での黒鉛形状を組織観察した。
 前記鋳放し状態の鋳鉄鋳物を900℃で2時間保持する熱処理を施し、該熱処理後の鋳鉄鋳物の黒鉛形状を組織観察した。
 結果を表3に示す。
 表3において、初晶が粒状に晶出したものは○、デンドライトとして晶出したものは×とした。また初晶が粒状に晶出したもの(○)のうち、鋳放しの鋳鉄鋳物の黒鉛形状が球状となり、熱処理後の鋳鉄鋳物の黒鉛形状が、球状+塊状となったものを◎とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図2に実施例5の半凝固スラリー生成容器内での温度変化を示す。
 図3に比較例4の半凝固スラリー生成容器内での温度変化を示す。
 図4に比較例2の半凝固スラリー生成容器内での温度変化を示す。
 なお半凝固スラリー生成容器内での溶湯の温度測定は、容器の長さ方向の中心で且つ径方向の中心でもある中心位置と、長さ方向の中心で且つ径方向には容器の内壁から5mmの位置にある外側位置との2箇所で測定した。
 図5に実施例において初晶が粒状化した鋳放し鋳鉄鋳物の顕微鏡組織を示す。
 図6に比較例1、2において初晶がデンドライト化した鋳放し鋳鉄鋳物の顕微鏡組織を示す。
 図7に比較例1、2において鋳放し状態の鋳鉄鋳物に共晶状黒鉛が晶出した顕微鏡組織を示す。
 図8に実施例において熱処理後の鋳鉄鋳物に「球状+塊状」黒鉛が現れた顕微鏡組織を示す。
 図9に比較例1、2において熱処理後の鋳鉄鋳物に「共晶状+塊状」の黒鉛が現れた顕微鏡組織を示す。
 表3から明らかなように、実施例1~11は、何れも1300℃(晶出開始温度)~1350℃の規定温度範囲において添加処理剤を添加処理しており、粒状の初晶を得ることができる。即ち、粒状の初晶をもつ半凝固スラリーを得ることができる。
 一方、比較例1、2は添加処理剤を用いないので、沸騰による攪拌効果が得られず、デンドライトの初晶が晶出する。比較例3、4は、添加処理剤を添加処理する溶湯の温度が、規定温度範囲(1300~1350℃)から外れており、初晶晶出時に溶湯を均温化させることができず、デンドライトの初晶が晶出する。
 図2は、実施例5において、添加処理剤の添加処理後における溶湯の温度変化を示す。溶湯を1350℃で半凝固スラリー生成容器へ注湯中に添加処理剤を添加処理する。Mgを含む添加処理剤による沸騰、攪拌が約6秒間継続し、その後の2秒間を含めた約8秒の間に初晶晶出開始温度(凝固開始温度)である1300℃付近まで温度が降下すると共に、沸騰による攪拌で溶湯の中心位置での温度(実線)と外側位置での温度(点線)での温度差がない均温化状態となる。これにより粒状の初晶が晶出する。
 図3は、比較例4において、半凝固スラリー生成容器に添加処理剤を予め入れて(添加処理して)おき、1400℃の溶湯を注湯したものである。添加処理剤の沸騰による攪拌が約6秒間継続し、その後の2秒間を含めた約8秒の間は中心位置の温度(実線)と外側位置の温度(点線)との温度差がない(均温化状態)が、注湯温度が高いため、その間に凝固開始温度まで下らず、凝固開始時には中心位置と外側位置で温度差が生じている。これによりデンドライトの初晶が晶出する。
 図4は、比較例2の半凝固スラリー生成容器内での温度変化を示す。添加処理剤による攪拌効果が望めず、注湯直後から中心位置での温度(実線)と外側位置での温度(点線)とに大きな温度勾配が生じている。
 表3において、実施例1~11のうち◎判定となった熱処理後の鋳鉄鋳物と、比較例1、2のうち×判定となった熱処理後の鋳鉄鋳物とを、それぞれ900℃で2時間保持後に炉から取り出して放冷する照準熱処理を行い、引張り試験を実施した。比較例1、2のものは引張り強度が400MPa以下、伸びが1%以下であるのに対し、◎判定となった実施例3、5、6、7、8、9、11のものは引張り強度が850MPaで、伸びはおおよそ5%であった。
 実施例から明らかなように、本発明により、これまでの半凝固法と比較して非常に簡便に、且つその後の鋳造やその他の成形に適した粒状の初晶を有する半凝固スラリーを得ることが可能となった。
 更に厚肉部品での共晶状黒鉛の晶出を防止し、且つ黒鉛化熱処理後の塊状黒鉛を球状に近づけることができ、高強度で靭性に優れる材料の作製が可能となった。
 本発明の鉄系合金の半凝固スラリー製造方法、それを用いた鋳鉄鋳物の製造方法及び鋳鉄鋳物は、鋳鉄鋳物やその他の鋳鉄を用いた成形加工の分野において、産業上の利用性が大きい。

Claims (9)

  1.  鉄系合金の溶湯を半凝固スラリー生成容器内で冷却することで、晶出固相と残留液相とからなる半凝固スラリーを得る鉄系合金の半凝固スラリー製造方法であって、亜共晶鋳鉄組成の材料を用い、この材料の溶湯温度を、その組成での初晶の晶出開始温度以上で且つ晶出開始温度よりも50℃高い温度以下とする規定温度範囲になるように制御し、前記規定温度範囲にある溶湯に対して少なくとも前記初晶の晶出開始温度よりも低い沸点を有する添加処理剤を添加処理することにより、該添加処理剤の溶湯内での沸騰による溶湯の攪拌と溶湯の半凝固温度範囲への温度降下とを同時期的に行わせるようにしたことを特徴とする鉄系合金の半凝固スラリー製造方法。
  2.  添加処理剤の一部若しくは全部を鋳鉄用の黒鉛球状化剤で構成していることを特徴とする請求項1に記載の鉄系合金の半凝固スラリー製造方法。
  3.  黒鉛球状化剤はMgを含有することを特徴とする請求項2に記載の鉄系合金の半凝固スラリー製造方法。
  4.  添加処理剤はNi、Cuの何れか一方若しくは両方を全体で85重量%以上含有することを特徴とする請求項1~3の何れかに記載の鉄系合金の半凝固スラリー製造方法。
  5.  請求項1~4の何れかに記載の特徴を有する半凝固スラリー製造方法により得られた半凝固スラリーを用い、この半凝固スラリーを金型空間に加圧充填して成形することを特徴とする鋳鉄鋳物の製造方法。
  6.  成形後に黒鉛化熱処理を行うことを特徴とする請求項5に記載の鋳鉄鋳物の製造方法。
  7.  請求項5若しくは6に記載の鋳鉄鋳物の製造方法により得られる鋳鉄鋳物。
  8.  組織が粒状結晶と球状若しくは塊状の黒鉛とからなることを特徴とする請求項7に記載の鋳鉄鋳物。
  9.  Mgを0.004~0.1重量%含有していることを特徴とする請求項8に記載の鋳鉄鋳物。
PCT/JP2009/054743 2009-03-12 2009-03-12 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物 WO2010103641A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/054743 WO2010103641A1 (ja) 2009-03-12 2009-03-12 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
EP09841469.1A EP2407259A4 (en) 2009-03-12 2009-03-12 PROCESS FOR PRODUCING A SEMI-SOLIDIFIED SUSPENSION OF IRON ALLOY; PROCESS FOR PRODUCING CAST CASTS USING THE PROCESS AND CASTING CAST IRON
JP2009511698A JP4382152B1 (ja) 2009-03-12 2009-03-12 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
US13/256,014 US8486329B2 (en) 2009-03-12 2009-03-12 Process for production of semisolidified slurry of iron-base alloy and process for production of cast iron castings by using a semisolidified slurry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054743 WO2010103641A1 (ja) 2009-03-12 2009-03-12 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物

Publications (1)

Publication Number Publication Date
WO2010103641A1 true WO2010103641A1 (ja) 2010-09-16

Family

ID=41459768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054743 WO2010103641A1 (ja) 2009-03-12 2009-03-12 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物

Country Status (4)

Country Link
US (1) US8486329B2 (ja)
EP (1) EP2407259A4 (ja)
JP (1) JP4382152B1 (ja)
WO (1) WO2010103641A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043685A1 (ja) * 2016-09-04 2018-03-08 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
JP2021045795A (ja) * 2020-12-25 2021-03-25 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10240419B2 (en) 2009-12-08 2019-03-26 Baker Hughes, A Ge Company, Llc Downhole flow inhibition tool and method of unplugging a seat
US9707739B2 (en) 2011-07-22 2017-07-18 Baker Hughes Incorporated Intermetallic metallic composite, method of manufacture thereof and articles comprising the same
US9033055B2 (en) 2011-08-17 2015-05-19 Baker Hughes Incorporated Selectively degradable passage restriction and method
US9090956B2 (en) 2011-08-30 2015-07-28 Baker Hughes Incorporated Aluminum alloy powder metal compact
US9010416B2 (en) 2012-01-25 2015-04-21 Baker Hughes Incorporated Tubular anchoring system and a seat for use in the same
US9816339B2 (en) 2013-09-03 2017-11-14 Baker Hughes, A Ge Company, Llc Plug reception assembly and method of reducing restriction in a borehole
GB2537576A (en) 2014-02-21 2016-10-19 Terves Inc Manufacture of controlled rate dissolving materials
US10865465B2 (en) 2017-07-27 2020-12-15 Terves, Llc Degradable metal matrix composite
US10150713B2 (en) 2014-02-21 2018-12-11 Terves, Inc. Fluid activated disintegrating metal system
US20170268088A1 (en) 2014-02-21 2017-09-21 Terves Inc. High Conductivity Magnesium Alloy
US11167343B2 (en) 2014-02-21 2021-11-09 Terves, Llc Galvanically-active in situ formed particles for controlled rate dissolving tools
US10689740B2 (en) 2014-04-18 2020-06-23 Terves, LLCq Galvanically-active in situ formed particles for controlled rate dissolving tools
CN106460133B (zh) 2014-04-18 2019-06-18 特维斯股份有限公司 用于受控速率溶解工具的电化活性的原位形成的颗粒
US10378303B2 (en) 2015-03-05 2019-08-13 Baker Hughes, A Ge Company, Llc Downhole tool and method of forming the same
US10221637B2 (en) 2015-08-11 2019-03-05 Baker Hughes, A Ge Company, Llc Methods of manufacturing dissolvable tools via liquid-solid state molding
US10016810B2 (en) 2015-12-14 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof
CN108067600A (zh) * 2016-11-17 2018-05-25 机械科学研究总院(将乐)半固态技术研究所有限公司 一种高效低成本制造半固态Al-Si系铝合金铸件的流变成形方法
CN108237210A (zh) * 2016-12-26 2018-07-03 北京有色金属研究总院 一种高强韧铝合金汽车连接件半固态压铸成形方法
CN109954858A (zh) * 2019-04-17 2019-07-02 昆明理工大学 一种半固态制浆成形一体化方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297097A (ja) 1993-04-19 1994-10-25 Leotec:Kk 半凝固金属の製造法
JPH1034307A (ja) 1996-07-24 1998-02-10 Ahresty Corp レオキャスト鋳造法及びレオキャスト鋳造装置
JP2004292932A (ja) * 2003-03-28 2004-10-21 Honda Motor Co Ltd 半溶融成形用鉄−炭素系合金とそれを用いた半溶融成形法及び半溶融成形体
JP2005088083A (ja) 2003-07-15 2005-04-07 Chunpyo Hong 固液共存状態金属スラリの製造装置
JP2006122971A (ja) * 2004-10-29 2006-05-18 Nagoya Industrial Science Research Inst 鋳鉄の鋳造方法
WO2008096411A1 (ja) * 2007-02-06 2008-08-14 Kogi Corporation 鉄系合金の半凝固スラリーの製造方法及び製造装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2841489A (en) * 1951-02-07 1958-07-01 Int Nickel Co Nodular cast iron and process of making same
US3058822A (en) * 1959-04-17 1962-10-16 Ct Technique Des Ind Fonderie Method of making additions to molten metal
US3843356A (en) * 1972-01-27 1974-10-22 Int Nickel Co Magnesium addition alloy
US5531261A (en) * 1994-01-13 1996-07-02 Rheo-Technology, Ltd. Process for diecasting graphite cast iron at solid-liquid coexisting state
US6769473B1 (en) * 1995-05-29 2004-08-03 Ube Industries, Ltd. Method of shaping semisolid metals
EP1460143B1 (en) * 1996-09-02 2006-11-22 Honda Giken Kogyo Kabushiki Kaisha A process for preparing an Fe-based thixocast material
JP2004255422A (ja) * 2003-02-26 2004-09-16 Toyota Motor Corp 固液金属スラリーの製造装置および製造方法
US6918427B2 (en) * 2003-03-04 2005-07-19 Idraprince, Inc. Process and apparatus for preparing a metal alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06297097A (ja) 1993-04-19 1994-10-25 Leotec:Kk 半凝固金属の製造法
JPH1034307A (ja) 1996-07-24 1998-02-10 Ahresty Corp レオキャスト鋳造法及びレオキャスト鋳造装置
JP2004292932A (ja) * 2003-03-28 2004-10-21 Honda Motor Co Ltd 半溶融成形用鉄−炭素系合金とそれを用いた半溶融成形法及び半溶融成形体
JP2005088083A (ja) 2003-07-15 2005-04-07 Chunpyo Hong 固液共存状態金属スラリの製造装置
JP2006122971A (ja) * 2004-10-29 2006-05-18 Nagoya Industrial Science Research Inst 鋳鉄の鋳造方法
WO2008096411A1 (ja) * 2007-02-06 2008-08-14 Kogi Corporation 鉄系合金の半凝固スラリーの製造方法及び製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407259A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043685A1 (ja) * 2016-09-04 2018-03-08 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
JP2018034202A (ja) * 2016-09-04 2018-03-08 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
US11920205B2 (en) 2016-09-04 2024-03-05 Tohoku University Spherical graphite cast iron semi-solid casting method and semi-solid cast product
JP2021045795A (ja) * 2020-12-25 2021-03-25 国立大学法人東北大学 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品
JP7220428B2 (ja) 2020-12-25 2023-02-10 国立大学法人東北大学 球状黒鉛鋳鉄の鋳造品の製造方法

Also Published As

Publication number Publication date
US8486329B2 (en) 2013-07-16
EP2407259A1 (en) 2012-01-18
EP2407259A4 (en) 2014-04-23
JPWO2010103641A1 (ja) 2012-09-10
US20120003115A1 (en) 2012-01-05
JP4382152B1 (ja) 2009-12-09

Similar Documents

Publication Publication Date Title
JP4382152B1 (ja) 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
Maleki et al. Effects of squeeze casting parameters on density, macrostructure and hardness of LM13 alloy
JP4836244B2 (ja) 鋳造方法
Abbasi-Khazaei et al. A novel process in semi-solid metal casting
JP2006519704A (ja) 金属合金を調製するための方法及び装置
JP2011144443A (ja) セミソリッド鋳造用アルミニウム合金
JP5107942B2 (ja) 鉄系合金の半凝固スラリーの製造方法及び製造装置
JP3246363B2 (ja) 半溶融金属の成形方法
JP3246296B2 (ja) 半溶融金属の成形方法
JP2010131635A (ja) 鉄のダイカスト成型方法およびダイカスト成型体
US20070215311A1 (en) Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot
CN1301166C (zh) 一种高速钢坯料的制备方法及设备
JP3246273B2 (ja) 半溶融金属の成形方法
JP5035508B2 (ja) アルミニウム合金凝固体およびその製造方法
CN102286710A (zh) 铸轧双控法制备合金半固态成型板坯的方法
JP6975421B2 (ja) アルミニウム合金の製造方法
JP3783275B2 (ja) 半溶融金属の成形方法
JP2003183756A (ja) 半凝固成形用アルミニウム合金
JPH10128516A (ja) 半溶融金属の成形方法
JP2003126950A (ja) 半溶融金属の成形方法
US3662810A (en) Method of internal nucleation of a casting
JP4296158B2 (ja) Mg合金の製造方法
JPH0987773A (ja) 半溶融金属の成形方法
KR100510056B1 (ko) 반응고 성형용 마그네슘 합금 슬러리 제조방법
WO2018043685A1 (ja) 球状黒鉛鋳鉄の半凝固鋳造方法及び半凝固鋳造品

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2009511698

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009841469

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13256014

Country of ref document: US