US7048048B2 - Expandable sand control screen and method for use of same - Google Patents
Expandable sand control screen and method for use of same Download PDFInfo
- Publication number
- US7048048B2 US7048048B2 US10/607,011 US60701103A US7048048B2 US 7048048 B2 US7048048 B2 US 7048048B2 US 60701103 A US60701103 A US 60701103A US 7048048 B2 US7048048 B2 US 7048048B2
- Authority
- US
- United States
- Prior art keywords
- control screen
- sand control
- expandable sand
- recited
- removable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
- 239000004576 sand Substances 0.000 title claims abstract description 227
- 238000004519 manufacturing process Methods 0.000 claims abstract description 58
- 238000001914 filtration Methods 0.000 claims abstract description 31
- 239000011236 particulate materials Substances 0.000 claims abstract description 27
- 239000011800 void materials Substances 0.000 claims abstract description 12
- 239000010410 layers Substances 0.000 claims description 188
- 239000000463 materials Substances 0.000 claims description 105
- 239000000945 fillers Substances 0.000 claims description 82
- 239000000126 substances Substances 0.000 claims description 19
- 239000002184 metals Substances 0.000 claims description 15
- 229910052751 metals Inorganic materials 0.000 claims description 15
- 210000002268 Wool Anatomy 0.000 claims description 13
- 229910000831 Steel Inorganic materials 0.000 claims description 11
- 239000010959 steel Substances 0.000 claims description 11
- 239000006260 foams Substances 0.000 claims description 10
- 150000002739 metals Chemical class 0.000 claims description 10
- 239000000919 ceramics Substances 0.000 claims description 9
- 239000011324 beads Substances 0.000 claims description 8
- 239000003112 inhibitors Substances 0.000 claims description 8
- 230000002401 inhibitory effects Effects 0.000 claims description 8
- 229920000642 polymers Polymers 0.000 claims description 8
- 230000001681 protective Effects 0.000 claims description 8
- 239000011347 resins Substances 0.000 claims description 7
- 229920005989 resins Polymers 0.000 claims description 7
- 239000011152 fibreglass Substances 0.000 claims description 6
- 229920000098 polyolefins Polymers 0.000 claims description 5
- 239000004814 polyurethane Substances 0.000 claims description 5
- 229920002635 polyurethanes Polymers 0.000 claims description 5
- 229920000915 polyvinyl chlorides Polymers 0.000 claims description 5
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 239000002253 acids Substances 0.000 claims description 4
- 150000007513 acids Chemical class 0.000 claims description 4
- 230000003115 biocidal Effects 0.000 claims description 4
- 239000003139 biocides Substances 0.000 claims description 4
- 238000005260 corrosion Methods 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000011499 joint compounds Substances 0.000 claims description 4
- 239000012188 paraffin waxes Substances 0.000 claims description 4
- 239000000843 powders Substances 0.000 claims description 4
- 239000002455 scale inhibitors Substances 0.000 claims description 4
- 239000011343 solid materials Substances 0.000 claims description 4
- 239000003826 tablets Substances 0.000 claims description 4
- 239000010408 films Substances 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 description 49
- 238000005755 formation reactions Methods 0.000 description 48
- 210000003660 Reticulum Anatomy 0.000 description 36
- 239000000203 mixtures Substances 0.000 description 15
- 238000000034 methods Methods 0.000 description 13
- 239000002245 particles Substances 0.000 description 8
- 229910001220 stainless steel Inorganic materials 0.000 description 8
- 239000000969 carriers Substances 0.000 description 7
- 230000000875 corresponding Effects 0.000 description 7
- 230000001419 dependent Effects 0.000 description 7
- 230000005012 migration Effects 0.000 description 7
- 229920000747 poly(lactic acid) polymers Polymers 0.000 description 7
- 238000009792 diffusion process Methods 0.000 description 5
- 150000002430 hydrocarbons Chemical class 0.000 description 5
- 230000001788 irregular Effects 0.000 description 5
- 239000007769 metal materials Substances 0.000 description 5
- 239000002356 single layers Substances 0.000 description 5
- 229920002988 biodegradable polymers Polymers 0.000 description 4
- 239000004621 biodegradable polymers Substances 0.000 description 4
- 238000005553 drilling Methods 0.000 description 4
- 239000000835 fibers Substances 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- 230000037250 Clearance Effects 0.000 description 3
- 230000035512 clearance Effects 0.000 description 3
- 239000007789 gases Substances 0.000 description 3
- 239000007788 liquids Substances 0.000 description 3
- 239000003921 oils Substances 0.000 description 3
- 230000002829 reduced Effects 0.000 description 3
- 239000007787 solids Substances 0.000 description 3
- 238000007906 compression Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229920001971 elastomers Polymers 0.000 description 2
- 239000011888 foils Substances 0.000 description 2
- 230000000670 limiting Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reactions Methods 0.000 description 2
- 239000002002 slurries Substances 0.000 description 2
- 210000001503 Joints Anatomy 0.000 description 1
- 238000005296 abrasive Methods 0.000 description 1
- 229920003232 aliphatic polyesters Polymers 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920001577 copolymers Polymers 0.000 description 1
- JJTUDXZGHPGLLC-UHFFFAOYSA-N dilactide Chemical compound   CC1OC(=O)C(C)OC1=O JJTUDXZGHPGLLC-UHFFFAOYSA-N 0.000 description 1
- 239000000806 elastomers Substances 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 239000012065 filter cakes Substances 0.000 description 1
- 239000000499 gels Substances 0.000 description 1
- 229910001026 inconels Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 281999990011 institutions and organizations companies 0.000 description 1
- 239000011159 matrix materials Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002365 multiple layers Substances 0.000 description 1
- 239000004745 nonwoven fabrics Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- -1 steels Chemical class 0.000 description 1
- 239000010409 thin films Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabrics Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
- E21B43/108—Expandable screens or perforated liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/088—Wire screens
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH DRILLING; MINING
- E21B—EARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
Abstract
Description
This invention relates in general to preventing the production of particulate materials into a wellbore traversing an unconsolidated or loosely consolidated subterranean formation and, in particular, to an expandable sand control screen and method for preventing voids between the expandable sand control screen and the wellbore.
Without limiting the scope of the present invention, its background is described with reference to the production of hydrocarbons through a wellbore traversing an unconsolidated or loosely consolidated formation, as an example.
It is well known in the subterranean well drilling and completion art that particulate materials such as sand may be produced during the production of hydrocarbons from a well traversing an unconsolidated or loosely consolidated subterranean formation. Numerous problems may occur as a result of the production of such particulate. For example, the particulate causes abrasive wear to components within the well, such as tubing, pumps and valves. In addition, the particulate may partially or fully clog the well creating the need for an expensive workover. Also, if the particulate matter is produced to the surface, it must be removed from the hydrocarbon fluids by processing equipment at the surface.
One method for preventing the production of such particulate material to the surface is gravel packing the well adjacent the unconsolidated or loosely consolidated production interval. In a typical gravel pack completion, a sand control screen is lowered into the wellbore on a work string to a position proximate the desired production interval. A fluid slurry including a liquid carrier and a particulate material known as gravel is then pumped down the work string and into the well annulus formed between the sand control screen and the perforated well casing or open hole production zone.
The liquid carrier either flows into the formation or returns to the surface by flowing through the sand control screen or both. In either case, the gravel is deposited around the sand control screen to form a gravel pack, which is highly permeable to the flow of hydrocarbon fluids but blocks the flow of the particulate carried in the hydrocarbon fluids. As such, gravel packs can successfully prevent the problems associated with the production of particulate materials from the formation.
It has been found, however, that a complete gravel pack of the desired production interval is difficult to achieve particularly in long or inclined/horizontal production intervals. These incomplete packs are commonly a result of the liquid carrier entering a permeable portion of the production interval causing the gravel to form a sand bridge in the annulus. Thereafter, the sand bridge prevents the slurry from flowing to the remainder of the annulus which, in turn, prevents the placement of sufficient gravel in the remainder of the annulus.
More recently, attempts have been made to foregoing the expense of cementing casing in the wellbore proximate the production interval and performing a gravel packing operation by utilizing expandable sand control screens. Typically, expandable sand control screens are designed to not only filter particulate materials out of the formation fluids, but also provide radial support to the formation to prevent the formation from collapsing into the wellbore. It has been found, however, that conventional expandable sand control screens are not capable of contacting the wall of the wellbore along their entire length as the wellbore profile is not uniform. More specifically, due to the process of drilling the wellbore and heterogeneity of the downhole strata, washouts or other irregularities commonly occur which result in certain locations within the wellbore having larger diameters than other areas or having non circular cross sections. Thus, when the expandable sand control screens are expanded, voids are created between the expandable sand control screens and the irregular areas of the wellbore. These voids then become filled with the particulate materials in the formation fluids which drastically reduces the production rate of formation fluids into the wellbore.
Therefore, a need has arisen for an expandable sand control screen that replaces the need for cementing casing in the wellbore proximate the production interval and performing a gravel packing operation. A need has also arisen for such an expandable sand control screen that is capable of not only filtering particulate materials out of the formation fluids, but also providing radial support to the formation to prevent the formation from collapsing into the wellbore. Further, a need has arisen for such an expandable sand control screen that does not leave voids between the expandable sand control screen and the wellbore after expansion.
The present invention disclosed herein comprises an expandable sand control screen that replaces the need for cementing casing in the wellbore proximate the production interval and performing a gravel packing operation. In addition, the expandable sand control screen of the present invention not only filters particulate materials out of the formation fluids, but also provides radial support to the formation to prevent the formation from collapsing into the wellbore. Further, the expandable sand control screen of the present invention does not leave voids between the expandable sand control screen and the wellbore after expansion.
The expandable sand control screen of the present invention comprises a generally tubular member that is expanded downhole. The generally tubular member has drainage openings that allow the flow of production fluids therethrough. A filtering assembly is disposed exteriorly of the generally tubular member. The filtering assembly prevents the flow of particulate material of a predetermined size therethrough but allows the flow of production fluids therethrough. In addition, the filtering assembly has a thickness that is radially variable downhole responsive to the wellbore profile such that void regions are prevented between the expandable sand control screen and the wellbore, thereby preventing the migration of formation fines into the wellbore.
In one embodiment, the filtering assembly is a multi component structure including a filter medium that prevents the flow of particulate material of a predetermined size therethrough but allows the flow of production fluids therethrough and a compliable member that has a thickness that is radially variable downhole responsive to the wellbore profile and that allows the flow of production fluids therethrough.
In one embodiment, the filter medium includes a plurality of layers of wire mesh that are bonded together to form a porous wire mesh screen. In another embodiment, the filter medium includes a layer of relatively fine wire mesh positioned between layers of relatively coarse wire mesh. In either embodiment, the filter medium may include a protective outer shroud.
In one embodiment, the compliable member is a compressible filler material disposed exteriorly of the filter medium that resiliently recovers downhole toward the wellbore in void regions. The compressible filler material may be an open cell foam constructed from resins, polyolefins, polyurethanes, polyvinylchlorides, metals and ceramics. The compressible filler material may alternatively be a fiberglass wool or a steel wool such as stainless steel wool.
In embodiments having a compressible filler material, the expandable sand control screen may include a removable outer wrapper that is disposed exteriorly of the compressible filler material to temporarily maintain the compressible filler material in a compressed position. The removable outer wrapper may be shrinkable to help place and maintain the compressible filler material in the compressed position. The removable outer wrapper may be removed from the compressible filler material during or following the downhole expansion of the expandable sand control screen mechanically, chemically, thermally, dissolvably, biodegradably or by other suitable means. In addition, the removable outer wrapper may be a film, a foil, a sleeve, a strap or the like and may be constructed from polymers, metals, ceramics or the like.
Treatment chemicals may be impregnated into the compressible filler material. The treatment chemicals may take the form of powders, tablets, beads or the like. The treatment chemicals may, for example, include mud breakers, oxidizers, enzymes, hydrolyzable esters, acids, scale inhibitors, biocides, corrosion inhibitors, paraffin inhibitors and the like. Alternative or additionally, solid materials such as sand, gravel, proppants or beads may be impregnated into the compressible filler material to assure permeability. In another embodiment, the compressible filler material may include one or more permeable sections positioned between one or more impermeable section.
In another embodiment, the compliable member is a crushable layer having a thickness that is radially reducible in response to contact between at least a portion of the expandable sand control screen and the wellbore when the expandable sand control screen is expanded downhole. The crushable layer may either be disposed between the filter medium and the generally tubular member or the crushable layer may be disposed exteriorly of the filter medium.
In one embodiment, the crushable layer may be a single layer or a multi layer honeycomb structure. In another embodiment, the crushable layer may include a plurality of crushable elements. In a further embodiment, the crushable layer may include a mesh structure. In yet another embodiment, the crushable layer may include a corrugated structure. In any of the embodiments, the crushable layer may be constructed from a metal such as a stainless steel.
In another embodiment, the filtering assembly is a single component structure comprising a crushable filter medium disposed exteriorly of the tubular member. The crushable filter medium has a thickness that is radially reducible in response to contact between at least a portion of the expandable sand control screen and the wellbore when the expandable sand control screen is expanded downhole. In addition, the crushable filter medium prevents the flow of particulate material of a predetermined size therethrough but allows the flow of production fluids therethrough.
The crushable filter medium may be constructed from plurality of layers of wire mesh that are bonded together to form a fluid porous wire mesh crushable filter medium including, for example, a layer of relatively fine wire mesh positioned between layers of relatively coarse wire mesh. The crushable filter medium may be take the form of a honeycomb structure, a multi layer honeycomb structure, a mesh structure, a corrugated structure or the like.
In another aspect, the present invention comprises a method of completing a wellbore that includes the steps of providing an expandable sand control screen having a filtering assembly disposed exteriorly of the generally tubular member, running the expandable sand control screen into the wellbore, expanding the expandable sand control screen downhole and radially varying the thickness of the filtering assembly downhole responsive to the wellbore profile.
In a further aspect, the present invention comprises a method for delivery of a treatment chemical into a downhole environment that includes the steps of impregnating the treatment chemical within a carrier material, running the carrier material downhole on a tubing string and releasing the treatment chemical into the downhole environment from the carrier material.
In still another aspect, the present invention comprises a method of production profile management that includes the steps of disposing a compressible filler material exteriorly of an expandable sand control screen in a compressed position, the compressible filler material having at least one permeable section and at least one impermeable, running the expandable sand control screen into the wellbore, expanding the expandable sand control screen downhole, releasing the compressible filler material from the compressed position such that the compressible filler material contacts the wellbore and isolating sections of the wellbore from one another with the at least one impermeable section of the filler material.
For a more complete understanding of the features and advantages of the present invention, reference is now made to the detailed description of the invention along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present invention are discussed in detail below, it should be appreciated that the present invention provides many applicable inventive concepts which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative of specific ways to make and use the invention, and do not delimit the scope of the present invention.
Referring initially to
A wellbore 32 extends through the various earth strata including formation 14. A casing 34 extends partially into wellbore 32 and is cemented therein. Wellbore 32 also has an open hole portion 36 that intersects formation 14. Work string 30 includes various tools such as packer 38 that provides fluid control in wellbore 32 and expandable sand control screen 40 that is positioned adjacent to formation 14 for filtering the fluids produced therefrom. Once expandable sand control screen 40 is position as depicted in
Even though
Referring now to
In order to foregoing the expense of cementing casing in wellbore 52 to prevent the collapse of wellbore 52 and performing a gravel packing operation to control the production of particulate materials from formation 54, expandable sand control screen 50 is expanded toward wellbore 52. In the illustrated embodiment, an expander member 60 is positioned in tubular member 62 by a retrievable conduit 64 and is operable to deform and radially expand tubular member 62 and expandable sand control screen 50.
Expander member 60 includes a tapered cone section 66, a piston 68 and an anchor section 70. In operation, a downward force is applied on expander member 60 by applying the weight of retrievable conduit 64 on expander member 60. This downward force operates to stroke piston 68 to its compressed position. Once piston 68 completes its downward stroke, fluid is pumped into expander member 60 which sets anchor section 70 creating a gripping force against the interior of tubular member 62. As more fluid is pumped down retrievable conduit 64 into the interior of expander member 60, the fluid pressure urges tapered cone section 66 downwardly such that tapered cone section 66 places a radially outward force against the wall of tubular member 62 causing tubular member 62 to radially outwardly deform into a larger diameter. This process continues in step wise fashion wherein each stroke of expander member 60 expands a section of tubular member 62. In addition, expander member 60 radially enlarges expandable sand control screen 50 when expander member 60 passes therethrough. After tubular member 62 and expandable sand control screen 50 have been expanded, retrievable conduit 64 and expander member 60 may be retrieved to the surface. It should be appreciated that although a specific type of expander member, i.e., a hydraulically powered expander member has been presented, the method of expanding expandable sand control screen 50 of the present invention may employ any suitable technique.
As best seen in
One of the advantages of expandable sand control screen 50 of the present invention is the prevention of such migration of particulate material from formation 54 into wellbore 52 by eliminating the voids between expandable sand control screen 50 and wellbore 52 including void regions 80, 82. Specifically, in the illustrated embodiment, an outer wrapper 84 that surrounds expandable sand control screen 50 is removed, as will be explained in greater detail below, such that a compliable member 86 is allowed to fill the voids between expandable sand control screen 50 and wellbore 52 including washout region 56, as best seen in
Even though wellbore 52 is depicted in
Referring additionally now to
Positioned around base pipe 102 is a filter medium 106. In the illustrated embodiment, filter medium 106 is a fluid-porous, particulate restricting, metal material such as a plurality of layers of a wire mesh that are diffusion bonded or sintered together to form a porous wire mesh screen designed to allow fluid flow therethrough but prevent the flow of particulate materials of a predetermined size from passing therethrough. More specifically, filter medium 106 includes three layers of filtering material, namely, an inner relatively coarse layer 108, a middle relatively fine layer 110 and an outer relatively coarse layer 112. The terms “fine” and “coarse” are used herein to indicate the relative size of particles permitted to pass through filter layers 108, 110, 112. That is, middle layer 110 filters fine or small-sized particles from fluid passing therethrough, while inner and outer layers 108, 112 filter coarse or larger-sized particles from fluid passing therethrough.
It should be noted that, inner and outer layers 108, 112 are not necessarily used for their filtering properties, although at least outer layer 112 will filter larger-sized particles from fluid flowing into expandable sand control screen 100. Instead, inner and outer layers 108, 112 are used primarily to provide for flow between openings 104 of base pipe 102 and opening 114 in outer shroud 116 after expandable sand control screen 100 is expanded. For example, if filter layers 108, 112 are made of a relatively coarse woven material, fluid may flow transversely through layers 108, 112 between shroud 116 and base pipe 102. Thus, fluid may flow into one of the openings 114, flow transversely through outer filter layer 112, flow inwardly through middle filter layer 100, flow transversely through inner filter layer 108 to one of the openings 104, and then flow inwardly through opening 104.
In the illustrated embodiment, expandable sand control screen 100 has a generally tubular protective outer shroud 116 outwardly overlying filter medium 106. Outer shroud 116 has openings 114 formed through a sidewall thereof to admit fluid into expandable sand control screen 100. Expandable sand control screen 100 has a generally tubular, compressible filler material 118 outwardly overlying outer shroud 116. Expandable sand control screen 100 also has a generally tubular removable outer wrapper 120 outwardly overlying filler material 118. Together, compressible filler material 118 and filter medium 106 form the filtering assembly of expandable sand control screen 100.
Filler material 118 may be in the form of a single layer or multi-layer sleeve, jacket or wrap that is tightly fitted, glued or otherwise attached to outer shroud 116. Filler material 118 is a compliable member that enables expandable sand control screen 100 of the present invention to fill any voids that exist between expandable sand control screen 100 and the wellbore after expandable sand control screen 100 has been expanded as the thickness of filler material 118 is radially variable downhole responsive to the wellbore profile. Filler material 118 preferably has a thickness of between about 0.25 inches and 2 inches. It should be apparent to those skilled in the art, however, that the thickness of filler material 118 will be dependent upon factors such the clearance within the wellbore, the composition of filler material 118, the compressibility and resilient recovery properties of filler material 118 and the like. Depending upon the composition of filler material 118, filler material 118 may be formed by molding, casting or other suitable techniques.
Filler material 118 is preferably constructed from a fluid permeable, compressible material such as an open cell foam. For example, the open cell foam may be formed from resins, polyolefins, polyurethanes, polyvinylchlorides, metals, ceramics or the like and combination thereof. Alternative, filler material 118 may be constructed from any other type of fluid permeable material that can be radially compressed to allow expandable sand control screen 100 to run through any restrictions in the wellbore and that will resiliently recover from the radially compressed configuration after expandable sand control screen 100 has been expanded and outer wrapper 120 has been removed, as best seen in
Removable outer wrapper 120 temporarily maintains filler material 118 in the radially compressed configuration for running expandable sand control screen 100 downhole. Removable outer wrapper 120 is preferably a relatively thin film, foil, sleeve, sheath, mesh network or the like constructed from polymers, metals, ceramics or the like. When removable outer wrapper 120 is a polymer, removable outer wrapper 120 may preferably be a biodegradable polymer or biodegradable polymer resin that degrades with time and exposure to temperatures above 120–140 degrees Fahrenheit. For example, suitable biodegradable polymers include, but are not limited to, lactide polymers, polylactide polymers, aliphatic polyesters and copolymers, blends and mixtures thereof. In particular, outer wrapper 120 may be constructed from fibers or filaments containing polylactide polymer in woven or nonwoven fabrics, the fibers being either monocomponent fibers or multicomponent fibers.
It should be noted by those skilled in the art that the polylactide polymer composition can include other components blended in with the polymer. Preferably, the composition will include at least about 20% by weight polylactide. More preferably, the composition will include at least about 70% by weight polylactide. Most preferably, the composition will include at least about 90% by weight polylactide. It should be appreciated, however, that the amount of polylactide present in a particular composition will depend upon the desired properties to be imparted to removable outer wrapper 120.
Preferably, removable outer wrapper 120 is positioned around filler material 118 once filler material 118 have been pressure-packed, vacuum-packed or otherwise compressed into the running position. Alternatively, removable outer wrapper 120 may be a shrink-wrap or heat-wrap used to compress filler material 118 once removable outer wrapper 120 is placed around filler material 118 by, for example, applying heat to removable outer wrapper 120. Once filler material 118 is held in the radially compressed configuration by removable outer wrapper 120 and expandable sand control screen 100 has been run downhole and expanded, removable outer wrapper 120 is removed such that filler material 118 is allowed to resiliently recover toward its non-compressed state to fill any voids surrounding expandable sand control screen 100. The method used to remove removable outer wrapper 120 from expandable sand control screen 100 will be determined based upon the material of removable outer wrapper 120. For example, if removable outer wrapper 120 is a biodegradable polymer, time and heat will remove removable outer wrapper 120. Alternatively, removable outer wrapper 120 may be removed using a chemical attack to dissolve removable outer wrapper 120 or by mechanical means either during or following expansion of expandable sand control screen 100.
Referring now to
Expandable sand control screen 130 has a removable outer wrapper 150 outwardly overlying filler material 148. In the illustrated embodiment, outer wrapper 150 is in the form of one or more straps or bands made from a polymer or metal that are preferably circumferentially or helically wound around filler material 148 to maintain filler material 148 in the radially compressed configuration depicted in
Referring next to
Unlike the previously described embodiments of the filler material, filler material 156 includes both permeable sections 158 and impermeable sections 160. Permeable sections 158 are constructed in the manner described above from open cell foams, steel wool, fiberglass wool and the like to allow the flow of production fluids therethrough but prevent the migration of formation fines into wellbore 152. Impermeable sections 160 are designed to prevent both the radial and axial flow of fluids and the migration of formation fines into wellbore 152. Impermeable sections 160 are constructed from closed cell foams, gels, resins, elastomers, rubbers or the like and combinations thereof.
Use of filler material 156 allows for production profile management of one or more production intervals in a wellbore by sealing off certain sections of the wellbore from other sections of the wellbore. For example, filler material 156 may be used in place of packers to seal off one producing zone from another. Alternatively, in certain horizontal completions, it may be desirable to break up a long producing interval into a plurality of shorter intervals. For example, filler material 156 could have permeable sections 158 that are fifty to two hundred feet long separated by impermeable sections 160 that are ten to twenty feet long. This type of production profile management can increase the production rate for the entire interval by minimizing the likelihood of hot spots developing within the production interval.
Referring next to
Unlike the previously described filler material, filler material 176 includes treatment chemicals 178 impregnated therein. As it is commonly desirable to chemically treat a producing interval of a wellbore to, for example, remove filter cake from the surface of the wellbore, filler material 176 may be used as the carrier material in a chemical delivery system. Specifically, treatment chemicals 178 in the form of powders, tablets, beads or the like are carried downhole within filler material 176. Depending upon the type and number of treatments to be performed, treatment chemicals 178 can be release into wellbore 172 quickly or over several hours or even days. Likewise, a treatment regiment may include multiple types of treatment chemicals 178 that may be release simultaneously or sequentially as desired. By way of example, treatment chemicals 178 may include mud breakers, oxidizers, enzymes, hydrolyzable esters, acids, scale inhibitors, biocides, corrosion inhibitors, paraffin inhibitors or the like and combination thereof.
Alternatively, items 178 of
Referring now to
In order to foregoing the expense of gravel packing wellbore 252 to control the production of particulate materials from formation 254 and to prevent the collapse of wellbore 252, expandable sand control screen 250 will be expanded into contact with wellbore 252. In the illustrated embodiment, an expander member 260 is positioned in tubular member 262 by a retrievable conduit 264 and is operable to deform and radially expand tubular member 262 and expandable sand control screen 250. Expander member 260 includes a tapered cone section 266, a piston 268 and an anchor section 270 and is operated in a manner similar to expander member 60 described above.
As best seen in
Even though wellbore 252 is depicted in
Referring additionally now to
Positioned around base pipe 282 is a compliable member depicted as crushable layer 286. Crushable layer 286 is fluid-porous such that production fluid may flow therethrough. Preferably, the porosity of crushable layer 286, even in its crushed configuration, is greater than the porosity of the surrounding filter medium such that crushable layer 286 will not significantly increase the pressure drop in the fluids produced therethrough. Crushable layer 286 preferably has a thickness of between about 0.25 inches and 2 inches and is preferably crushable to 80% of its original thickness, more preferably crushable to 50% of its original thickness and most preferably crushable to 20% of its original thickness. It should be apparent to those skilled in the art, however, that the thickness and crushability of crushable layer 286 will be dependent upon a variety of factors such as the clearance within the wellbore, the size of expandable sand control screen 280, the structural composition of crushable layer 286, the desired amount of expansion of expandable sand control screen 280, the expected deviation in the wellbore diameter and the like.
Positioned around crushable layer 286 is a filter medium 288. Together, crushable layer 286 and filter medium 288 form the filtering assembly of expandable sand control screen 280. In the illustrated embodiment, filter medium 288 is a fluid-porous, particulate restricting, metal material such as a plurality of layers of a wire mesh that are diffusion bonded or sintered together to form a porous wire mesh screen designed to allow fluid flow therethrough but prevent the flow of particulate materials of a predetermined size from passing therethrough. More specifically, the illustrated filter medium 288 includes three layers of filtering material, namely, an inner relatively coarse layer 290, a middle relatively fine layer 292 and an outer relatively coarse layer 294. As stated above, the terms “fine” and “coarse” are used herein to indicate the relative size of particles permitted to pass through filter layers 290, 292, 294. That is, middle layer 292 filters fine or small-sized particles from fluid passing therethrough, while inner and outer layers 290, 294 filter coarse or larger-sized particles from fluid passing therethrough.
It should be noted that, inner and outer layers 290, 294 are not necessarily used for their filtering properties, although at least outer layer 294 will filter larger-sized particles from fluid flowing into expandable sand control screen 280. Instead, inner and outer layers 290, 294 are used primarily as drain layers that provide for transverse flow within filter medium 288 which assures that production fluids will be able to radially pass through filter medium 288. In addition, it should be appreciated that in embodiments having filter medium 288 positioned around crushable layer 286, inner layer 290 of filter medium 288 may not be required as crushable layer 286 may also serve as the inner drain layer.
In the illustrated embodiment, positioned around outer layer 294 is a generally tubular protective outer shroud 296 which forms the outermost layer of filter medium 288 as well as the outer layer of expandable sand control screen 280. Outer shroud 296 has openings 298 formed through a sidewall thereof to admit fluid into expandable sand control screen 280. Outer shroud 296 protects filter layers 290, 292, 294 from damage while expandable sand control screen 280 is being conveyed and positioned in a well. Additionally, when expandable sand control screen 280 is expanded into radial contact with the wellbore, outer shroud 296 protects filter layers 290, 292, 294 from damage due to such contact and provides radial support to prevent collapse of the wellbore. Thus, outer shroud 296 is preferably constructed of a durable, deformable, high strength material, such as steel, which allows outer shroud 296 to comply with the irregular wellbore profile, although other materials may be used in keeping with the principles of the present invention. It should be noted that, in some embodiments wherein outer layer 294 is sufficiently rugged, outer shroud 296 may not be required, thereby positioning outer layer 294 directly against the wellbore upon expansion.
In operation, when expandable sand control screen 280 is expanded, crushable layer 286 has the strength to provide the desired level of support to filter medium 288 such that filter medium 288 can be radially expanded. In addition, crushable layer 286 has the desired level of compliability such that when one or more portions of filter medium 288 contact the wellbore, the thickness of the corresponding portions of crushable layer 286 are radially reducible such that expandable sand control screen 280 will comply with the irregular surface of the wellbore profile. Thus, crushable layer 286 is preferably constructed of a durable, elastically or plastically deformable, high strength material, such as a metal including steels and stainless steels, although other materials, including nonmetallic materials, may be used in keeping with the principles of the present invention.
In some embodiments, it may be desirable to include one or more expansion joints (not pictured) within filter medium 288 that reduce the force required to radially expand filter medium 288. For example, filter medium 288 could be formed with one or more circumferentially overlapping filter layers that are capable of sliding movement relative to one another when expandable sand control screen 280 is expanded. Alternatively, filter medium 288 could include one or more sections without filtration capability that are easily circumferentially expandable thereby allowing the filter medium to be more easily radially expanded.
Referring next to
Positioned around base pipe 302 is a filter medium 306. In the illustrated embodiment, filter medium 306 is a fluid-porous, particulate restricting, metal material such as a plurality of layers of a wire mesh that are diffusion bonded or sintered together to form a porous wire mesh screen designed to allow fluid flow therethrough but prevent the flow of particulate materials of a predetermined size from passing therethrough. More specifically, filter medium 306 includes three layers of filtering material, namely, an inner relatively coarse layer 308, a middle relatively fine layer 310 and an outer relatively coarse layer 312, as described above.
Positioned around outer layer 312 is a compliable member illustrated as fluid permeable crushable layer 318. Together, filter medium 306 and crushable layer 318 form the filtering assembly of expandable sand control screen 300. Crushable layer 318 preferably has a thickness of between about 0.25 inches and 2 inches and is preferably crushable to 80% of its original thickness, more preferably crushable to 50% of its original thickness and most preferably crushable to 20% of its original thickness, however, other thicknesses and crushability properties are possible and considered to be within the scope of the present invention. Preferably, the porosity of crushable layer 318, even in its crushed configuration, is greater than the porosity of the filter medium 306 such that crushable layer 318 will not significantly increase the pressure drop in the fluids produced therethrough. In addition, it should be appreciated that in embodiments having filter medium 306 positioned within crushable layer 318, outer layer 312 of filter medium 306 may not be required as crushable layer 318 may also serve as the outer drain layer.
As it is desirable to have a relatively smooth surface as the outmost component of expandable sand control screen 300, a generally tubular protective outer shroud 320 is positioned around crushable layer 318 in the illustrated embodiment. Outer shroud 320 has openings 322 formed through a sidewall thereof to admit fluid into expandable sand control screen 300. Outer shroud 320 protects crushable layer 318 from damage while expandable sand control screen 300 is being conveyed into its downhole position. Additionally, when expandable sand control screen 300 is expanded into compliant radial contact with a wellbore, outer shroud 320 provides radial support to prevent collapse of the wellbore. Even though
One benefit of the embodiment of expandable sand control screen 300 depicted in
Referring next to
Crushable layer 330 is also permeable to the flow of formation fluids. In the illustrated embodiment, crushable layer 330 includes a plurality of openings 336 both on an exterior surface of the honeycomb structure and an interior surface of the honeycomb structure. The exact number, size and shape of openings 336 are not critical to the present invention, so long as sufficient area is provided for fluid production and the strength and deformation characteristics of crushable layer 330 are maintained. Preferably, the permeability of crushable layer 330 in its crushed configuration will be at least 30 percent greater than the permeability of the associated filter medium such that crushable layer 330 will not significantly increase the pressure drop in the fluids produced therethrough.
As should be apparent to those skilled in the art, the number of cells in the honeycomb structure will be dependent upon the diameter of crushable layer 330 as well as the size and shape of the cells in the honeycomb structure. The thickness of crushable layer 330, which will determine, in large part, the amount of deviation in the diameter of the wellbore that the present invention can overcome, will likewise be dependent upon the size and shape of the cells in the honeycomb structure. In addition, the thickness of crushable layer 330 will be dependent upon the organization of cells in the honeycomb structure. For example, as best seen in
Additionally, even though
Crushable layer 340 is permeable to the flow of formation fluids. In the illustrated embodiment, crushable layer 340 includes a plurality of openings 354 that traverse both honeycomb layers 342, 344. The exact number, size and shape of openings 354 are not critical to the present invention, so long as sufficient area is provided for fluid production and the strength and deformation characteristics of crushable layer 340 are maintained.
Referring next to
The following example will describe the operation of crushable layer 360 when crushable layer 360 is positioned between a base pipe and a filter medium of an expandable sand control screen such as crushable layer 286 of
Even though
Referring next to
In addition, mesh structure 382 has resiliency under compression such that mesh structure 382 exerts a radially outward force which enhances the ability of the expandable sand control screen to support the wellbore. Also, in those embodiments in which crushable layer 380 is disposed exteriorly of the filter medium, mesh structure 382 has the added advantage of serving as a pre-filter for the formation fluids traveling therethrough. Even though fluid permeable crushable layer 380 of
Referring next to
In the illustrated embodiment, crushable layer 390 is depicted as having an axially oriented corrugated structure 392. As should be understood by those skilled in the art, as an expandable sand control screen including crushable layer 390 is expanded, the thickness of corrugated structure 392 will be reduced. Accordingly, the thickness of corrugated structure 392 is sufficient to not only allow for expansion, but also, provide for compliability during expansion. Also, it should be noted by those skilled in the art that a crushable layer having a corrugated structure with a different orientation including, but not limited to, a circumferentially oriented corrugated structure, a helically oriented corrugated structure and the like could alternatively be used without departing from the principles of the present invention. In addition, those skilled in the art will recognize that a multi layer corrugated structure could alternatively be used as the crushable layer of the present invention. In such a multi layer corrugated structure, the orientation of the corrugated layers within the corrugated structure could vary, for example, one of the corrugated layers could have axially oriented corrugations while another of the corrugated layers could have circumferentially oriented corrugations.
Referring additionally now to
Positioned around base pipe 402 is a crushable filter medium 406 that serves as the entire filtering assembly for expandable sand control screen 400. Crushable filter medium 406 preferably has a thickness of between about 0.25 inches and 2 inches and is preferably crushable to 80% of its original thickness, more preferably crushable to 50% of its original thickness and most preferably crushable to 20% of its original thickness. It should be apparent to those skilled in the art, however, that the thickness and crushability of crushable filter medium 406 will be dependent upon a variety of factors such as the clearance within the wellbore, the size of expandable sand control screen 400, the structural composition of crushable filter medium 406, the desired amount of expansion of expandable sand control screen 400, the expected deviation in the wellbore diameter and the like.
In the illustrated embodiment, each surface of crushable filter medium 406 is a fluid-porous, particulate restricting, metal material such as a plurality of layers of a wire mesh that are diffusion bonded or sintered together to form a porous wire mesh screen designed to allow fluid flow therethrough but prevent the flow of particulate materials of a predetermined size from passing therethrough, as explained in greater detail below.
In the illustrated embodiment, positioned around crushable filter medium 406 is a generally tubular protective outer shroud 408 that forms the outermost layer of crushable filter medium 406 as well as the outer layer of expandable sand control screen 400. Outer shroud 408 has openings 410 formed through a sidewall thereof to admit fluid into expandable sand control screen 400. Outer shroud 408 protects crushable filter medium 406 from damage while expandable sand control screen 400 is being conveyed and positioned in a well. Additionally, when expandable sand control screen 400 is expanded into radial contact with a wellbore, outer shroud 408 protects crushable filter medium 406 from damage due to such direct contact and provides radial support to prevent collapse of the wellbore. Thus, outer shroud 408 is preferably constructed of a durable, deformable, high strength material, such as steel, although other materials may be used in keeping with the principles of the present invention. It should be noted by those skilled in the art that outer shroud 408 could optionally be omitted from around crushable filter medium 406 in which case crushable filter medium 406 would compliantly contact the wellbore when expandable sand control screen 400 is expanded.
In operation, when expandable sand control screen 400 is expanded, crushable filter medium 406 has the desired level of deformability such that when one or more portions of expandable sand control screen 400 contact the wellbore, the thickness of the corresponding portion of crushable filter medium 406 is radially reducible such that expandable sand control screen 400 will comply with the irregular surface of the wellbore profile. Thereafter, crushable filter medium 406 serves to prevent the production of formation fines therethrough.
Referring next to
Even though
The thickness of crushable filter medium 420, which will determine, in large part, the amount of deviation in the diameter of the wellbore that the present invention can overcome, will be dependent upon the size and shape of the cells in the honeycomb structure and whether the honeycomb structure is a single or a multi layer honeycomb structure. In embodiment having a multi layer honeycomb structure, it should be understood by those skilled in the art that cells in the different honeycomb layers may have different sizes or geometries without departing from the principles of the present invention.
Referring next to
In the illustrated embodiment, crushable filter medium 440 is depicted as being a single layer axially oriented corrugated structure 442, it should be noted, however, by those skilled in the art that a crushable filter medium having a corrugated structure having multiple layers and/or with a different orientation including, but not limited to, a circumferentially oriented corrugated structure, a helically oriented corrugated structure and the like could alternatively be used without departing from the principles of the present invention. Also, as should be understood by those skilled in the art, as an expandable sand control screen including crushable filter medium 430 is expanded, the thickness of corrugated structure 442 will be reduced. Accordingly, the thickness of corrugated structure 442 is sufficient to not only allow for expansion, but also, provide for crushability during expansion.
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
Claims (32)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/607,011 US7048048B2 (en) | 2003-06-26 | 2003-06-26 | Expandable sand control screen and method for use of same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/607,011 US7048048B2 (en) | 2003-06-26 | 2003-06-26 | Expandable sand control screen and method for use of same |
PCT/US2004/020925 WO2005001244A2 (en) | 2003-06-26 | 2004-06-24 | Expandable sand control screen and method for use of same |
GB0601533A GB2420140B (en) | 2003-06-26 | 2004-06-24 | Expandable Sand Control Screen And Method For Use Of Same |
Publications (2)
Publication Number | Publication Date |
---|---|
US20040261994A1 US20040261994A1 (en) | 2004-12-30 |
US7048048B2 true US7048048B2 (en) | 2006-05-23 |
Family
ID=33540179
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/607,011 Active 2023-12-26 US7048048B2 (en) | 2003-06-26 | 2003-06-26 | Expandable sand control screen and method for use of same |
Country Status (3)
Country | Link |
---|---|
US (1) | US7048048B2 (en) |
GB (1) | GB2420140B (en) |
WO (1) | WO2005001244A2 (en) |
Cited By (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070068671A1 (en) * | 2003-10-01 | 2007-03-29 | Shell Oil Companyu | Expandable wellbore assembly |
US20080042362A1 (en) * | 2006-07-14 | 2008-02-21 | Wood Edward T | Closeable open cell foam for downhole use |
WO2009009190A2 (en) * | 2007-04-18 | 2009-01-15 | Dynamic Tubular Systems, Inc. | Porous tubular structures |
US20100089565A1 (en) * | 2008-10-13 | 2010-04-15 | Baker Hughes Incorporated | Shape Memory Polyurethane Foam for Downhole Sand Control Filtration Devices |
US20100101788A1 (en) * | 2008-10-29 | 2010-04-29 | Schlumberger Technology Corporation | Multi-Point Chemical Injection System |
US20110067872A1 (en) * | 2009-09-22 | 2011-03-24 | Baker Hughes Incorporated | Wellbore Flow Control Devices Using Filter Media Containing Particulate Additives in a Foam Material |
US20110073296A1 (en) * | 2009-09-25 | 2011-03-31 | Baker Hughes Incorporated | System and apparatus for well screening including a foam layer |
US20110132623A1 (en) * | 2009-12-08 | 2011-06-09 | Halliburton Energy Services, Inc. | Expandable Wellbore Liner System |
US20110132622A1 (en) * | 2009-12-08 | 2011-06-09 | Halliburton Energy Services, Inc. | Apparatus and method for installing a liner string in a wellbore casing |
US20110232901A1 (en) * | 2010-03-26 | 2011-09-29 | Baker Hughes Incorporated | VARIABLE Tg SHAPE MEMORY POLYURETHANE FOR WELLBORE DEVICES |
WO2011130122A2 (en) * | 2010-04-12 | 2011-10-20 | Baker Hughes Incorporated | Screen device and downhole screen |
WO2012054290A2 (en) * | 2010-10-19 | 2012-04-26 | Schlumberger Technology Corporation | Screen assembly |
US8215409B2 (en) | 2008-08-08 | 2012-07-10 | Baker Hughes Incorporated | Method and apparatus for expanded liner extension using uphole expansion |
WO2012112247A2 (en) * | 2011-02-17 | 2012-08-23 | Baker Hughes Incorporated | Screen, method of expanding a screen and method of conforming a screen to a borehole |
WO2013106154A1 (en) * | 2012-01-11 | 2013-07-18 | Baker Hughes Incorporated | Nanocomposites for absorption tunable sandscreens |
US20130206393A1 (en) * | 2012-02-13 | 2013-08-15 | Halliburton Energy Services, Inc. | Economical construction of well screens |
WO2013126193A1 (en) * | 2012-02-23 | 2013-08-29 | Halliburton Energy Services, Inc. | Enhanced expandable tubing run through production tubing and into open hole |
US20140000871A1 (en) * | 2012-05-29 | 2014-01-02 | Halliburton Energy Services, Inc. | Porous Medium Screen |
US20140027108A1 (en) * | 2012-07-27 | 2014-01-30 | Halliburton Energy Services, Inc. | Expandable Screen Using Magnetic Shape Memory Alloy Material |
US8664318B2 (en) | 2011-02-17 | 2014-03-04 | Baker Hughes Incorporated | Conformable screen, shape memory structure and method of making the same |
US8684075B2 (en) | 2011-02-17 | 2014-04-01 | Baker Hughes Incorporated | Sand screen, expandable screen and method of making |
US8721958B2 (en) | 2011-08-05 | 2014-05-13 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
US8720590B2 (en) | 2011-08-05 | 2014-05-13 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
WO2014109732A1 (en) * | 2013-01-08 | 2014-07-17 | Halliburton Energy Services, Inc. | Expandable screen completion tool |
WO2014163613A1 (en) * | 2013-04-01 | 2014-10-09 | Stephen Michael Greci | Well screen assembly with extending screen |
US8980799B2 (en) | 2010-09-16 | 2015-03-17 | Baker Hughes Incorporated | Polymer foam cell morphology control and use in borehole filtration devices |
US9017501B2 (en) | 2011-02-17 | 2015-04-28 | Baker Hughes Incorporated | Polymeric component and method of making |
US9040013B2 (en) | 2011-08-04 | 2015-05-26 | Baker Hughes Incorporated | Method of preparing functionalized graphene |
US9044914B2 (en) | 2011-06-28 | 2015-06-02 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
US9068437B2 (en) | 2010-03-26 | 2015-06-30 | Baker Hughes Incorporated | Variable Tg shape memory materials for wellbore devices |
US9193879B2 (en) | 2010-02-17 | 2015-11-24 | Baker Hughes Incorporated | Nano-coatings for articles |
WO2015176139A1 (en) * | 2014-05-22 | 2015-11-26 | Romolo Lorenzo Bertani | Shale gas extraction |
US9428383B2 (en) | 2011-08-19 | 2016-08-30 | Baker Hughes Incorporated | Amphiphilic nanoparticle, composition comprising same and method of controlling oil spill using amphiphilic nanoparticle |
RU2625423C2 (en) * | 2012-07-04 | 2017-07-13 | Эбсолют Кэмплишн Текнолоджиз Лтд. | Downhole filter |
US9938802B2 (en) | 2015-02-03 | 2018-04-10 | Weatherford Technology Holdings, Llc | Temporarily impermeable sleeve for running a well component in hole |
WO2018191783A1 (en) * | 2017-04-19 | 2018-10-25 | Romolo Lorenzo Bertani | Contaminant extraction in a borehole |
US10385261B2 (en) | 2017-08-22 | 2019-08-20 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
US10443322B2 (en) * | 2015-12-09 | 2019-10-15 | Baker Hughes, a GE company | Protection of downhole tools against mechanical influences with a pliant material |
US10633955B2 (en) | 2012-03-22 | 2020-04-28 | Halliburton Energy Services, Inc. | Nano-particle reinforced well screen |
Families Citing this family (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10240419B2 (en) | 2009-12-08 | 2019-03-26 | Baker Hughes, A Ge Company, Llc | Downhole flow inhibition tool and method of unplugging a seat |
BRPI0413886A (en) * | 2003-08-25 | 2006-11-21 | Dynamic Tubular Systems Inc | expandable tubular for use in geological structures, methods for expanding an expandable tubular in a geological structure and forming an expandable tubular for use in a geological structure, sand control screen for use in geological structures, and method for expanding a geological structure. sand control in a geological structure |
US20050056425A1 (en) * | 2003-09-16 | 2005-03-17 | Grigsby Tommy F. | Method and apparatus for temporarily maintaining a downhole foam element in a compressed state |
US20050126779A1 (en) * | 2003-12-10 | 2005-06-16 | The Cavins Corporation | Seamless woven wire sintered well screen |
US7497257B2 (en) * | 2006-05-04 | 2009-03-03 | Purolator Facet, Inc. | Particle control screen with depth filtration |
CN101326341B (en) * | 2006-05-04 | 2013-01-02 | 普罗雷特菲塞特有限公司 | Particle control screen with depth filtration |
EP1983153A1 (en) * | 2007-04-17 | 2008-10-22 | PRAD Research and Development N.V. | Flexible liner for drilled drainhole deployment |
GB0712345D0 (en) * | 2007-06-26 | 2007-08-01 | Metcalfe Paul D | Downhole apparatus |
US20090151942A1 (en) * | 2007-09-13 | 2009-06-18 | Bernardi Jr Louis Anthony | Sand control system and method for controlling sand production |
US8171999B2 (en) * | 2008-05-13 | 2012-05-08 | Baker Huges Incorporated | Downhole flow control device and method |
GB0918617D0 (en) * | 2009-10-23 | 2009-12-09 | Tendeka Bv | Wellbore treatment apparatus and method |
US8376058B2 (en) | 2009-11-18 | 2013-02-19 | David K. Adamson | Well drilling wash down end cap and method |
US9682425B2 (en) | 2009-12-08 | 2017-06-20 | Baker Hughes Incorporated | Coated metallic powder and method of making the same |
GB2480869B (en) | 2010-06-04 | 2017-01-11 | Bisn Tec Ltd | Method and apparatus for use in well abandonment |
US8631876B2 (en) | 2011-04-28 | 2014-01-21 | Baker Hughes Incorporated | Method of making and using a functionally gradient composite tool |
US9080098B2 (en) | 2011-04-28 | 2015-07-14 | Baker Hughes Incorporated | Functionally gradient composite article |
CN102220857A (en) * | 2011-05-17 | 2011-10-19 | 中国石油天然气股份有限公司 | Foam metal composite sand prevention structure and liquid extracting pipe |
US9139928B2 (en) | 2011-06-17 | 2015-09-22 | Baker Hughes Incorporated | Corrodible downhole article and method of removing the article from downhole environment |
US9707739B2 (en) | 2011-07-22 | 2017-07-18 | Baker Hughes Incorporated | Intermetallic metallic composite, method of manufacture thereof and articles comprising the same |
US9833838B2 (en) | 2011-07-29 | 2017-12-05 | Baker Hughes, A Ge Company, Llc | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9643250B2 (en) | 2011-07-29 | 2017-05-09 | Baker Hughes Incorporated | Method of controlling the corrosion rate of alloy particles, alloy particle with controlled corrosion rate, and articles comprising the particle |
US9033055B2 (en) | 2011-08-17 | 2015-05-19 | Baker Hughes Incorporated | Selectively degradable passage restriction and method |
US9090956B2 (en) | 2011-08-30 | 2015-07-28 | Baker Hughes Incorporated | Aluminum alloy powder metal compact |
US9856547B2 (en) | 2011-08-30 | 2018-01-02 | Bakers Hughes, A Ge Company, Llc | Nanostructured powder metal compact |
US9109269B2 (en) | 2011-08-30 | 2015-08-18 | Baker Hughes Incorporated | Magnesium alloy powder metal compact |
US9643144B2 (en) | 2011-09-02 | 2017-05-09 | Baker Hughes Incorporated | Method to generate and disperse nanostructures in a composite material |
CA2752022C (en) * | 2011-09-09 | 2018-10-16 | Cenovus Energy Inc. | Apparatus for reducing operationally induced deformities in well production screens |
RU2479711C1 (en) * | 2011-11-28 | 2013-04-20 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Reinforcement method of productive formations at thermal methods of oil extraction, and extendable filter for its implementation |
US9010416B2 (en) | 2012-01-25 | 2015-04-21 | Baker Hughes Incorporated | Tubular anchoring system and a seat for use in the same |
US9309733B2 (en) | 2012-01-25 | 2016-04-12 | Baker Hughes Incorporated | Tubular anchoring system and method |
US9284803B2 (en) | 2012-01-25 | 2016-03-15 | Baker Hughes Incorporated | One-way flowable anchoring system and method of treating and producing a well |
GB2500110B (en) | 2012-03-07 | 2014-02-19 | Darcy Technologies Ltd | Downhole Apparatus |
US9605508B2 (en) | 2012-05-08 | 2017-03-28 | Baker Hughes Incorporated | Disintegrable and conformable metallic seal, and method of making the same |
US9085968B2 (en) * | 2012-12-06 | 2015-07-21 | Baker Hughes Incorporated | Expandable tubular and method of making same |
US9382781B2 (en) * | 2012-12-19 | 2016-07-05 | Baker Hughes Incorporated | Completion system for accomodating larger screen assemblies |
GB201223055D0 (en) * | 2012-12-20 | 2013-02-06 | Carragher Paul | Method and apparatus for use in well abandonment |
US9816339B2 (en) | 2013-09-03 | 2017-11-14 | Baker Hughes, A Ge Company, Llc | Plug reception assembly and method of reducing restriction in a borehole |
US9097108B2 (en) | 2013-09-11 | 2015-08-04 | Baker Hughes Incorporated | Wellbore completion for methane hydrate production |
US9725990B2 (en) | 2013-09-11 | 2017-08-08 | Baker Hughes Incorporated | Multi-layered wellbore completion for methane hydrate production |
US10233746B2 (en) | 2013-09-11 | 2019-03-19 | Baker Hughes, A Ge Company, Llc | Wellbore completion for methane hydrate production with real time feedback of borehole integrity using fiber optic cable |
GB201323121D0 (en) * | 2013-12-30 | 2014-02-12 | Darcy Technologies Ltd | Downhole Apparatus |
GB201414565D0 (en) | 2014-08-15 | 2014-10-01 | Bisn Oil Tools Ltd | Methods and apparatus for use in oil and gas well completion |
US9910026B2 (en) | 2015-01-21 | 2018-03-06 | Baker Hughes, A Ge Company, Llc | High temperature tracers for downhole detection of produced water |
US10378303B2 (en) | 2015-03-05 | 2019-08-13 | Baker Hughes, A Ge Company, Llc | Downhole tool and method of forming the same |
US10221637B2 (en) | 2015-08-11 | 2019-03-05 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing dissolvable tools via liquid-solid state molding |
US10107065B2 (en) * | 2015-12-04 | 2018-10-23 | Baker Hughes, A Ge Company, Llc | Through-tubing deployed annular isolation device and method |
US10016810B2 (en) | 2015-12-14 | 2018-07-10 | Baker Hughes, A Ge Company, Llc | Methods of manufacturing degradable tools using a galvanic carrier and tools manufactured thereof |
CN105626001A (en) * | 2016-03-04 | 2016-06-01 | 中国石油集团渤海钻探工程有限公司 | Novel self-expansion screen pipe |
CN105626002A (en) * | 2016-03-04 | 2016-06-01 | 中国石油集团渤海钻探工程有限公司 | Filling-free expandable sieve tube |
CN106014357B (en) * | 2016-05-17 | 2018-11-06 | 太原理工大学 | A kind of method of oil shale thick deposit original position heat injection separate zone production oil gas |
CN107060703B (en) * | 2017-06-28 | 2019-06-07 | 中国石油集团渤海钻探工程有限公司 | Multiple expansion sand control screen well completion technique tubular pile in a kind of casing |
SG10201708842QA (en) * | 2017-10-27 | 2019-05-30 | Galileo Innovations Pte Ltd | Conformance screen assembly |
US20190169963A1 (en) * | 2017-12-04 | 2019-06-06 | Baker Hughes, A Ge Company, Llc | Selectively expandable screen for a resource exploration and recovery system |
US20190257178A1 (en) * | 2018-02-22 | 2019-08-22 | Baker Hughes, A Ge Company, Llc | Additively manufactured downhole component including fractal geometry |
US10830021B2 (en) * | 2018-07-05 | 2020-11-10 | Baker Hughes, A Ge Company, Llc | Filtration media for an open hole production system having an expandable outer surface |
US10634102B2 (en) | 2018-09-06 | 2020-04-28 | Trico Group, LLC | Fuel pump assembly |
USD871456S1 (en) | 2018-09-06 | 2019-12-31 | Trico Group, LLC | Fuel pump assembly |
WO2020172092A1 (en) * | 2019-02-20 | 2020-08-27 | Schlumberger Technology Corporation | Non-metallic compliant sand control screen |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2981333A (en) * | 1957-10-08 | 1961-04-25 | Montgomery K Miller | Well screening method and device therefor |
US2981332A (en) * | 1957-02-01 | 1961-04-25 | Montgomery K Miller | Well screening method and device therefor |
US3099318A (en) | 1961-01-23 | 1963-07-30 | Montgomery K Miller | Well screening device |
WO2000039432A1 (en) * | 1998-12-23 | 2000-07-06 | Well Engineering Partners B.V. | Apparatus for completing a subterranean well and method of using same |
WO2001092681A1 (en) | 2000-05-31 | 2001-12-06 | Shell Internationale Research Maatschappij B.V. | Method and system for reducing longitudinal fluid flow around a permeable well tubular |
WO2002023009A2 (en) | 2000-09-11 | 2002-03-21 | Baker Hughes Incorporated | Multi layer screen for downhole use. |
US6431282B1 (en) * | 1999-04-09 | 2002-08-13 | Shell Oil Company | Method for annular sealing |
US20030056948A1 (en) | 2001-09-26 | 2003-03-27 | Weatherford/Lamb, Inc. | Profiled encapsulation for use with instrumented expandable tubular completions |
US6543545B1 (en) * | 2000-10-27 | 2003-04-08 | Halliburton Energy Services, Inc. | Expandable sand control device and specialized completion system and method |
US20030075323A1 (en) * | 2001-10-22 | 2003-04-24 | Claude Vercaemer | Technique utilizing an insertion guide within a wellbore |
US20040035590A1 (en) * | 2002-08-23 | 2004-02-26 | Richard Bennett M. | Self -conforming screen |
US20040040703A1 (en) * | 2002-09-03 | 2004-03-04 | Jeffrey Longmore | Downhole expandable bore liner-filter |
-
2003
- 2003-06-26 US US10/607,011 patent/US7048048B2/en active Active
-
2004
- 2004-06-24 GB GB0601533A patent/GB2420140B/en not_active Expired - Fee Related
- 2004-06-24 WO PCT/US2004/020925 patent/WO2005001244A2/en active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2981332A (en) * | 1957-02-01 | 1961-04-25 | Montgomery K Miller | Well screening method and device therefor |
US2981333A (en) * | 1957-10-08 | 1961-04-25 | Montgomery K Miller | Well screening method and device therefor |
US3099318A (en) | 1961-01-23 | 1963-07-30 | Montgomery K Miller | Well screening device |
WO2000039432A1 (en) * | 1998-12-23 | 2000-07-06 | Well Engineering Partners B.V. | Apparatus for completing a subterranean well and method of using same |
US6431282B1 (en) * | 1999-04-09 | 2002-08-13 | Shell Oil Company | Method for annular sealing |
WO2001092681A1 (en) | 2000-05-31 | 2001-12-06 | Shell Internationale Research Maatschappij B.V. | Method and system for reducing longitudinal fluid flow around a permeable well tubular |
WO2002023009A2 (en) | 2000-09-11 | 2002-03-21 | Baker Hughes Incorporated | Multi layer screen for downhole use. |
US6543545B1 (en) * | 2000-10-27 | 2003-04-08 | Halliburton Energy Services, Inc. | Expandable sand control device and specialized completion system and method |
US20030056948A1 (en) | 2001-09-26 | 2003-03-27 | Weatherford/Lamb, Inc. | Profiled encapsulation for use with instrumented expandable tubular completions |
US20030075323A1 (en) * | 2001-10-22 | 2003-04-24 | Claude Vercaemer | Technique utilizing an insertion guide within a wellbore |
US20040035590A1 (en) * | 2002-08-23 | 2004-02-26 | Richard Bennett M. | Self -conforming screen |
US20040040703A1 (en) * | 2002-09-03 | 2004-03-04 | Jeffrey Longmore | Downhole expandable bore liner-filter |
Non-Patent Citations (1)
Title |
---|
"International Search Report": 15 pages. |
Cited By (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070068671A1 (en) * | 2003-10-01 | 2007-03-29 | Shell Oil Companyu | Expandable wellbore assembly |
US8061423B2 (en) * | 2003-10-01 | 2011-11-22 | Shell Oil Company | Expandable wellbore assembly |
US20080042362A1 (en) * | 2006-07-14 | 2008-02-21 | Wood Edward T | Closeable open cell foam for downhole use |
US7552767B2 (en) * | 2006-07-14 | 2009-06-30 | Baker Hughes Incorporated | Closeable open cell foam for downhole use |
WO2009009190A2 (en) * | 2007-04-18 | 2009-01-15 | Dynamic Tubular Systems, Inc. | Porous tubular structures |
WO2009009190A3 (en) * | 2007-04-18 | 2009-07-16 | Dynamic Tubular Systems Inc | Porous tubular structures |
US8978776B2 (en) | 2007-04-18 | 2015-03-17 | Dynamic Tubular Systems, Inc. | Porous tubular structures and a method for expanding porous tubular structures |
US20100116495A1 (en) * | 2007-04-18 | 2010-05-13 | Dynamic Tubular Systems, Inc. | Porous tubular structures |
US8215409B2 (en) | 2008-08-08 | 2012-07-10 | Baker Hughes Incorporated | Method and apparatus for expanded liner extension using uphole expansion |
US8225878B2 (en) | 2008-08-08 | 2012-07-24 | Baker Hughes Incorporated | Method and apparatus for expanded liner extension using downhole then uphole expansion |
EA026165B1 (en) * | 2008-10-13 | 2017-03-31 | Бейкер Хьюз Инкорпорейтед | Wellbore filtration device and method of installing same |
US8048348B2 (en) | 2008-10-13 | 2011-11-01 | Baker Hughes Incorporated | Shape memory polyurethane foam for downhole sand control filtration devices |
EA019958B1 (en) * | 2008-10-13 | 2014-07-30 | Бейкер Хьюз Инкорпорейтед | Downhole filtration device |
US7926565B2 (en) | 2008-10-13 | 2011-04-19 | Baker Hughes Incorporated | Shape memory polyurethane foam for downhole sand control filtration devices |
EA026068B1 (en) * | 2008-10-13 | 2017-02-28 | Бейкер Хьюз Инкорпорейтед | Method for production of a downhole filtering device of shape-memory foamed polyurethane |
WO2010045077A3 (en) * | 2008-10-13 | 2010-07-08 | Baker Hughes Incorporated | Shape memory polyurethane foam for downhole sand control filtration devices |
US20100089565A1 (en) * | 2008-10-13 | 2010-04-15 | Baker Hughes Incorporated | Shape Memory Polyurethane Foam for Downhole Sand Control Filtration Devices |
US8286709B2 (en) | 2008-10-29 | 2012-10-16 | Schlumberger Technology Corporation | Multi-point chemical injection system |
US20100101788A1 (en) * | 2008-10-29 | 2010-04-29 | Schlumberger Technology Corporation | Multi-Point Chemical Injection System |
US8528640B2 (en) * | 2009-09-22 | 2013-09-10 | Baker Hughes Incorporated | Wellbore flow control devices using filter media containing particulate additives in a foam material |
GB2485943A (en) * | 2009-09-22 | 2012-05-30 | Baker Hughes Inc | Wellbore flow control devices using filter media containing particulate additives in a foam material |
GB2485943B (en) * | 2009-09-22 | 2013-09-11 | Baker Hughes Inc | Wellbore flow control devices using filter media containing particulate additives in a foam material |
US20110067872A1 (en) * | 2009-09-22 | 2011-03-24 | Baker Hughes Incorporated | Wellbore Flow Control Devices Using Filter Media Containing Particulate Additives in a Foam Material |
WO2011037950A3 (en) * | 2009-09-22 | 2011-06-23 | Baker Hughes Incorporated | Wellbore flow control devices using filter media containing particulate additives in a foam material |
US20110073296A1 (en) * | 2009-09-25 | 2011-03-31 | Baker Hughes Incorporated | System and apparatus for well screening including a foam layer |
US9212541B2 (en) * | 2009-09-25 | 2015-12-15 | Baker Hughes Incorporated | System and apparatus for well screening including a foam layer |
US20110132623A1 (en) * | 2009-12-08 | 2011-06-09 | Halliburton Energy Services, Inc. | Expandable Wellbore Liner System |
US20110132622A1 (en) * | 2009-12-08 | 2011-06-09 | Halliburton Energy Services, Inc. | Apparatus and method for installing a liner string in a wellbore casing |
US8371388B2 (en) | 2009-12-08 | 2013-02-12 | Halliburton Energy Services, Inc. | Apparatus and method for installing a liner string in a wellbore casing |
US8261842B2 (en) | 2009-12-08 | 2012-09-11 | Halliburton Energy Services, Inc. | Expandable wellbore liner system |
US9193879B2 (en) | 2010-02-17 | 2015-11-24 | Baker Hughes Incorporated | Nano-coatings for articles |
US9433975B2 (en) | 2010-02-17 | 2016-09-06 | Baker Hughes Incorporated | Method of making a polymer/functionalized nanographene composite coating |
US20120193019A1 (en) * | 2010-03-26 | 2012-08-02 | Baker Hughes Incorporated | Variable Tg Shape Memory Polyurethane For Wellbore Devices |
US20110232901A1 (en) * | 2010-03-26 | 2011-09-29 | Baker Hughes Incorporated | VARIABLE Tg SHAPE MEMORY POLYURETHANE FOR WELLBORE DEVICES |
US8365833B2 (en) | 2010-03-26 | 2013-02-05 | Baker Hughes Incorporated | Variable Tg shape memory polyurethane for wellbore devices |
US9068437B2 (en) | 2010-03-26 | 2015-06-30 | Baker Hughes Incorporated | Variable Tg shape memory materials for wellbore devices |
US9441458B2 (en) * | 2010-03-26 | 2016-09-13 | Baker Hughes Incorporated | Variable Tg shape memory polyurethane for wellbore devices |
US9387420B2 (en) | 2010-04-12 | 2016-07-12 | Baker Hughes Incorporated | Screen device and downhole screen |
GB2492018A (en) * | 2010-04-12 | 2012-12-19 | Baker Hughes Inc | Screen device and downhole screen |
GB2492018B (en) * | 2010-04-12 | 2018-04-18 | Baker Hughes Inc | Screen device and downhole screen |
WO2011130122A3 (en) * | 2010-04-12 | 2011-12-01 | Baker Hughes Incorporated | Screen device and downhole screen |
WO2011130122A2 (en) * | 2010-04-12 | 2011-10-20 | Baker Hughes Incorporated | Screen device and downhole screen |
US8980799B2 (en) | 2010-09-16 | 2015-03-17 | Baker Hughes Incorporated | Polymer foam cell morphology control and use in borehole filtration devices |
WO2012054290A3 (en) * | 2010-10-19 | 2012-06-14 | Prad Research And Development Limited | Screen assembly |
WO2012054290A2 (en) * | 2010-10-19 | 2012-04-26 | Schlumberger Technology Corporation | Screen assembly |
US8851171B2 (en) | 2010-10-19 | 2014-10-07 | Schlumberger Technology Corporation | Screen assembly |
US8664318B2 (en) | 2011-02-17 | 2014-03-04 | Baker Hughes Incorporated | Conformable screen, shape memory structure and method of making the same |
GB2504010A (en) * | 2011-02-17 | 2014-01-15 | Baker Hughes Inc | Screen, method of expanding a screen and method of conforming a screen to a bore-hole |
WO2012112247A3 (en) * | 2011-02-17 | 2012-12-27 | Baker Hughes Incorporated | Screen, method of expanding a screen and method of conforming a screen to a borehole |
US9017501B2 (en) | 2011-02-17 | 2015-04-28 | Baker Hughes Incorporated | Polymeric component and method of making |
WO2012112247A2 (en) * | 2011-02-17 | 2012-08-23 | Baker Hughes Incorporated | Screen, method of expanding a screen and method of conforming a screen to a borehole |
US9155983B2 (en) | 2011-02-17 | 2015-10-13 | Baker Hughes Incorporated | Method of making a shape memory structure |
US8684075B2 (en) | 2011-02-17 | 2014-04-01 | Baker Hughes Incorporated | Sand screen, expandable screen and method of making |
US9044914B2 (en) | 2011-06-28 | 2015-06-02 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
US9040013B2 (en) | 2011-08-04 | 2015-05-26 | Baker Hughes Incorporated | Method of preparing functionalized graphene |
US8721958B2 (en) | 2011-08-05 | 2014-05-13 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
US8720590B2 (en) | 2011-08-05 | 2014-05-13 | Baker Hughes Incorporated | Permeable material compacting method and apparatus |
US9428383B2 (en) | 2011-08-19 | 2016-08-30 | Baker Hughes Incorporated | Amphiphilic nanoparticle, composition comprising same and method of controlling oil spill using amphiphilic nanoparticle |
GB2511961B (en) * | 2012-01-11 | 2018-12-12 | Baker Hughes Inc | Nanocomposites for absorption tunable sandscreens |
WO2013106154A1 (en) * | 2012-01-11 | 2013-07-18 | Baker Hughes Incorporated | Nanocomposites for absorption tunable sandscreens |
US9441462B2 (en) | 2012-01-11 | 2016-09-13 | Baker Hughes Incorporated | Nanocomposites for absorption tunable sandscreens |
GB2511961A (en) * | 2012-01-11 | 2014-09-17 | Baker Hughes Inc | Nanocomposites for absorption tunable sandscreens |
US20130206393A1 (en) * | 2012-02-13 | 2013-08-15 | Halliburton Energy Services, Inc. | Economical construction of well screens |
US8875784B2 (en) | 2012-02-13 | 2014-11-04 | Halliburton Energy Services, Inc. | Economical construction of well screens |
US9273538B2 (en) | 2012-02-13 | 2016-03-01 | Halliburton Energy Services, Inc. | Economical construction of well screens |
US8776899B2 (en) | 2012-02-23 | 2014-07-15 | Halliburton Energy Services, Inc. | Flow control devices on expandable tubing run through production tubing and into open hole |
US9212542B2 (en) | 2012-02-23 | 2015-12-15 | Halliburton Energy Services, Inc. | Expandable tubing run through production tubing and into open hole |
US9169724B2 (en) | 2012-02-23 | 2015-10-27 | Halliburton Energy Services, Inc. | Expandable conical tubing run through production tubing and into open hole |
WO2013126193A1 (en) * | 2012-02-23 | 2013-08-29 | Halliburton Energy Services, Inc. | Enhanced expandable tubing run through production tubing and into open hole |
US9322249B2 (en) | 2012-02-23 | 2016-04-26 | Halliburton Energy Services, Inc. | Enhanced expandable tubing run through production tubing and into open hole |
US9464511B2 (en) | 2012-02-23 | 2016-10-11 | Halliburton Energy Services, Inc. | Expandable tubing run through production tubing and into open hole |
US10633955B2 (en) | 2012-03-22 | 2020-04-28 | Halliburton Energy Services, Inc. | Nano-particle reinforced well screen |
US20140000871A1 (en) * | 2012-05-29 | 2014-01-02 | Halliburton Energy Services, Inc. | Porous Medium Screen |
US9174151B2 (en) * | 2012-05-29 | 2015-11-03 | Halliburton Energy Services, Inc. | Porous medium screen |
US20140034570A1 (en) * | 2012-05-29 | 2014-02-06 | Halliburton Energy Services, Inc. | Porous Medium Screen |
RU2625423C2 (en) * | 2012-07-04 | 2017-07-13 | Эбсолют Кэмплишн Текнолоджиз Лтд. | Downhole filter |
US20140027108A1 (en) * | 2012-07-27 | 2014-01-30 | Halliburton Energy Services, Inc. | Expandable Screen Using Magnetic Shape Memory Alloy Material |
WO2014109732A1 (en) * | 2013-01-08 | 2014-07-17 | Halliburton Energy Services, Inc. | Expandable screen completion tool |
US9399902B2 (en) | 2013-01-08 | 2016-07-26 | Halliburton Energy Services, Inc. | Expandable screen completion tool |
GB2526962A (en) * | 2013-04-01 | 2015-12-09 | Halliburton Energy Services Inc | Well screen assembly with extending screen |
WO2014163613A1 (en) * | 2013-04-01 | 2014-10-09 | Stephen Michael Greci | Well screen assembly with extending screen |
GB2526962B (en) * | 2013-04-01 | 2017-08-16 | Halliburton Energy Services Inc | Well screen assembly with extending screen |
US10267125B2 (en) | 2014-05-22 | 2019-04-23 | Annsca Energy Pty Ltd | Shale gas extraction |
WO2015176139A1 (en) * | 2014-05-22 | 2015-11-26 | Romolo Lorenzo Bertani | Shale gas extraction |
CN106460488A (en) * | 2014-05-22 | 2017-02-22 | 安纳斯卡能源有限公司 | Shale gas extraction |
US9938802B2 (en) | 2015-02-03 | 2018-04-10 | Weatherford Technology Holdings, Llc | Temporarily impermeable sleeve for running a well component in hole |
US10443322B2 (en) * | 2015-12-09 | 2019-10-15 | Baker Hughes, a GE company | Protection of downhole tools against mechanical influences with a pliant material |
WO2018191783A1 (en) * | 2017-04-19 | 2018-10-25 | Romolo Lorenzo Bertani | Contaminant extraction in a borehole |
US10385261B2 (en) | 2017-08-22 | 2019-08-20 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
US10851291B2 (en) | 2017-08-22 | 2020-12-01 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
US10647911B2 (en) | 2017-08-22 | 2020-05-12 | Covestro Llc | Coated particles, methods for their manufacture and for their use as proppants |
Also Published As
Publication number | Publication date |
---|---|
WO2005001244A2 (en) | 2005-01-06 |
GB2420140B (en) | 2007-02-28 |
US20040261994A1 (en) | 2004-12-30 |
WO2005001244A3 (en) | 2005-06-02 |
GB0601533D0 (en) | 2006-03-08 |
GB2420140A (en) | 2006-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2011341386B2 (en) | Well screens having enhanced well treatment capabilities | |
EP2652244B1 (en) | Packer for alternate flow channel gravel packing and method for completing a wellbore | |
AU2011341563B2 (en) | Wellbore apparatus and methods for multi-zone well completion, production and injection | |
AU2011202581B2 (en) | Sand control screen assembly having control line capture capability | |
US10060217B2 (en) | Lattice seal packer assembly and other downhole tools | |
US5857521A (en) | Method of using a retrievable screen apparatus | |
US7644773B2 (en) | Self-conforming screen | |
CA2446115C (en) | Profiled recess for instrumented expandable components | |
US8555985B2 (en) | Permeability modification | |
US3816894A (en) | Multi-layer well sand screen | |
CA2364917C (en) | Apparatus and method providing alternate fluid flow path for gravel pack completion | |
AU2009285794B2 (en) | Sand control screen assembly and method for use of same | |
US6263966B1 (en) | Expandable well screen | |
US7891420B2 (en) | Wellbore apparatus and method for completion, production and injection | |
CA2666045C (en) | Profiled encapsulation for use with instrumented expandable tubular completions | |
DE60309532T2 (en) | Method and device for completing and repacking of boreholes | |
US4771829A (en) | Well liner with selective isolation screen | |
US6932157B2 (en) | Apparatus and method for treating an interval of a wellbore | |
US6702019B2 (en) | Apparatus and method for progressively treating an interval of a wellbore | |
EP1608845B1 (en) | A wellbore apparatus and method for completion, production and injection | |
US5507345A (en) | Methods for sub-surface fluid shut-off | |
US8245778B2 (en) | Fluid control apparatus and methods for production and injection wells | |
US7845407B2 (en) | Profile control apparatus and method for production and injection wells | |
US5310000A (en) | Foil wrapped base pipe for sand control | |
US7213654B2 (en) | Apparatus and methods to complete wellbore junctions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: HALLIBURTON ENERGY SERVICES, INC., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NGUYEN, PHILIP D.;WEAVER, JIMMIE D.;BARTON, JOHNNY A.;AND OTHERS;REEL/FRAME:014516/0001;SIGNING DATES FROM 20030730 TO 20030808 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |