GB2489620A - Method of producing tubular isolation apparatus. - Google Patents
Method of producing tubular isolation apparatus. Download PDFInfo
- Publication number
- GB2489620A GB2489620A GB1211011.0A GB201211011A GB2489620A GB 2489620 A GB2489620 A GB 2489620A GB 201211011 A GB201211011 A GB 201211011A GB 2489620 A GB2489620 A GB 2489620A
- Authority
- GB
- United Kingdom
- Prior art keywords
- tubular
- aperture
- layer
- seal
- seal member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 82
- 238000002955 isolation Methods 0.000 title description 2
- 238000004519 manufacturing process Methods 0.000 claims description 36
- 230000008878 coupling Effects 0.000 claims description 13
- 238000010168 coupling process Methods 0.000 claims description 13
- 238000005859 coupling reaction Methods 0.000 claims description 13
- 238000004080 punching Methods 0.000 claims description 5
- 238000003466 welding Methods 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 60
- 239000012530 fluid Substances 0.000 description 38
- 239000000376 reactant Substances 0.000 description 31
- 230000015572 biosynthetic process Effects 0.000 description 16
- 238000005755 formation reaction Methods 0.000 description 16
- 229930195733 hydrocarbon Natural products 0.000 description 11
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- 239000004576 sand Substances 0.000 description 9
- 238000007789 sealing Methods 0.000 description 9
- 230000008961 swelling Effects 0.000 description 8
- 229920001971 elastomer Polymers 0.000 description 7
- 239000000806 elastomer Substances 0.000 description 7
- 239000004215 Carbon black (E152) Substances 0.000 description 5
- 239000008398 formation water Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 239000013043 chemical agent Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- -1 Polytetrafluoroethylene Polymers 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 125000001183 hydrocarbyl group Chemical group 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
- E21B43/103—Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
- E21B43/108—Expandable screens or perforated liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/08—Screens or liners
- E21B43/086—Screens with preformed openings, e.g. slotted liners
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/02—Subsoil filtering
- E21B43/10—Setting of casings, screens, liners or the like in wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/32—Preventing gas- or water-coning phenomena, i.e. the formation of a conical column of gas or water around wells
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Filtering Materials (AREA)
Abstract
Method of producing wellbore apparatus 30. Providing a first tubular 32 with at least one aperture in a wall. Providing a second member comprising a structural layer 34 and a seal layer 36. Creating at least one aperture in the structural layer and seal layer. Locating the second member around the first tubular. The seal layer 34 may be on the interior or exterior surface of the second member. The aperture may be an elongate slot. The apertures in the seal layer and the structural layer may be substantially aligned. A filter screen layer 42 may be coupled to the first tubular. The filter layer may be formed of overlapping filter sheets. The filter sheets may remain overlapping after expansion of the tubular member.
Description
I
METHOD FOR PRODUC1NG ISOLATNG TUBING
HELD OF THE INVENTION
This invention relates to a method and apparatus for isolating at least a porfion of a tubular. In addition, th invention relates to a method for producing an apparatus for isolating at least a portion of a tubular,
BACKGROUND TO THE INVENIION
In the oH and gas industry, it is generaliy known that, in adthtion to hydrocarbons, an underground formation may include a reladvely high percentage of water, Typically, where water is present this wiH underlie the hydrocarbons within the formation.
In reference to Figure 1 of the drawings, a lower section 10 of a borehole 12 is shown extending from surface (not shown) towards an underground formation 14. The formation 14 comprises both a hydrocarbon reservoir 16 and a region containing water 18, the water 18 shown underlying the hydrocarbon reservoir 16. A weH 20 may be completed to a level adjacent the hydrocarbon/water interface within the formation 14 by running a first tubular section, or casing (not shown), into the borehole 12 and supplying cement to the annulus around the tubing section to seal and secure the casing within the borehole 12. The borehole 12 is then extended and a second tubing section, or liner, is run into the borehole 12 and cemented in pace, the liner supported by the casing above. The liner 15 adjacent the formation is then perforated to permit hydrocarbons from the reservoir 16 to be extracted to surface.
However, over time and due to the generaliy higher mobility of the water 18 within the formation 14, for example where relatively viscous hydrocarbons are present, water 18 is drawn towards the base 22 of the weli 20 (as shown in Figure 1 by the dotted nes 24, 26) until water is produced from the well 20. This phenomenon is known as conhig" and may be particularly prevalent in horizontal or deviated weUs as water is drawn to the heel of the well, that is, where the well deviates from vertical it will be recognised that where water production occurs at the expense of production of hydrocarbons from the well the recovery efficiency of the well will be adversely affected. The efficiency and utility of a well may be greatly reduced where a high percentage of water is produced from a well and, indeed, in some environments, it is known for a well to produce in excess of 50% water with water production approaching 100% in some areas of the well, while other areas may produce 100% hydrocarbons.
Typically, when water production is identified downhole, it is desired that the water producing zones are isolated in order to prevent this undesirable ingress of water.
For example. isolation may be achieved, for example, by setting mechanical packers across the water producing zone.
In US Patent 7059415, which is incorporated herein in its entirety by way of reference, when water production has been observed, a patch is run into the tubular and expanded into contact with the inner wall of the tubular to shut off water production from the respective zone. However, many current approaches may only be adopted after water production has been identified and typically require significant intervention into the well Alternatively, International Patent Application W02004/002291 1, which is incorporated herein in its entirety by way of reference, discloses a wellbore device comprising a tubular conduit comprising circular perforations. The device further comprises a swelling elastomer sleeve located about an exterior surface of the conduit.
The generally perforations may be closed when the swelling elastomer encounters formation water to prevent inflow of water into the tubular. a
As a further alternative, chemical agents may be pumped into the weH to shut off unwanted water production. However, where chemical agents are used, it has been found that there are difficulties in targeting the chemicals to the desired location with a high degree of accuracy.
SUMMARY OF THE INVENTION
According to a first aspect of the present invention there is provided an apparatus for isolating at least a portion of a tubular for use in a weflbore, the apparatus comprising: a tubular comprising at least one aperture in a waH of the tubular for permitting transfer of fluid through the aperture; and a seal member operatively assodated with the tubular, the seal member defining a first configuration permitting fluid flow through the aperture and, on exposure to a selected reactant, adopting a second configuration to restrict fluid flow through the aperture, the seal member adapted to return from the second configuration to the first configuration where concentration of the selected reactant faHe below a selected threshold.
The present invention thus provides an apparatus adapted to permit a desired fluid, for example, but not exclusively, production fluid, to enter the tubular and which is adapted to close in response to exposure to a selected reactant, for example formation water or the like! The present invention may obviate or mitigate the requirement for intervention into the well as the apparatus will react autonomously to the selected reactant to seal off the tubular in the affected region.
The seal member may be adapted to remain in the first configuration where ingress of the selected reactant is less than the selected threshold. Furthermore the seal member may be adapted to adopt the second configuration where the ingress of the selected reactant equals or exceeds the selected threshold.
The threshoki may be selected prior to location of the apparatus in the wellbore.
Whfle generally undesirable, the properties of the formation and/or economic factors may dictate that a degree of water production may be permitted. Thus, the selected threshold may be carefully selected depending on the well conditions and the permissible ingress of the selected reactant. This may be achieved by appropriate Section of the blend or composition of the seal member. Thus, the seal member may return to the first configuration to permit ingress of fluid into the tubular, which fluid may then be transported to surface. Where a part of the tubular is isolated, the reactant may retreat from the tubular, for example the hydrocarbon/water interface may fall or drop back from the tubular. Thus, the seal member may revert to the first configuration once more to permit the isolated zone or zones of the tubular to once more permit transfer of fluid through the tubular when no longer exposed to unacceptable levels of the selected reactant, The tubular may comprise an expandable tubular. The tubular may be adapted for expansion by any suitable means. For example, but not exclusively, the tubular may be adapted for expansion by a rotary expansion tool, such as that described in International Patent Application WO00/37766 which is incorporated herein in its entirety by way of reference. Alternatively, or in addition, other suitable expansion tools/techniques may be utilised. For example, swage expansion, the use of one or more inflatable members, bladders and the like are also contemplated.
The tubular may comprise slotted tubing, the aperture defining at least one elongate, longitudinal slot. For example. but not exclusively, the tubular may comprise a section of production tubing, carrier tube or the like. The tubular may typically comprise metal tubing, for example, but not exclusively, stainless steel though other suitable material may be used, where appropriate.
The apparatus may further comprise a filter screen layer, For example, the filter screen layer may comprise a sand screen, for example, but not exclusively, an expandable sand screen such as Appcanfs ESS®. Thus, entrained particulate matter, such as sand paftcles, may be prevented or inhibited from passing into the tubular by the filter screen layer.
The filter screen layer may be adapted for location externally of the tubular.
The apparatus may further comprise a second tubular, the second tubular comprising an outer tubular, protective shroud or the like. Beneficially; the second tub War may provide protection for the filter screen layer.
The second tubular may comprise at least one aperture adapted to permit fluid ingress through the second tubular aperture. The at least one seal member aperture may be adapted for radial alignment with the at least one aperture of the second tubular. Thus, the at least one seal member aperture may be adapted to permit ingress of production fluid through the second tubWar aperture.
The second tubular may comprise expandable tubing and the apparatus may be configured such that expansion of the tubular also expands the second tubular.
The second tubular may comprise slotted tubing, the at least one second tubular aperture defining at least one elongate, longitudinal slot.
The second tubular may be adapted for radial expansion substantially into contact with the wellbore, When used in combination with a rotary expansion tool or other variable diameter expansion tool, the use of a slotted tubular facilitates substantially full compliance of the second tubular with the wall of the wellbore. This is advantageous where it is necessary or desirable to isolate a section of the tubular in, for example, a rugose wellbore, where the wellbore has been subject to deformation or collapse, or in another condition resulting in a bore with a nonuniform cross-section, Substantially fully compliant expansion of the apparatus may permit the largest possible inner diameter of tubing to be achieved which may assist in increasing production from the formation. Also, it is considered that a larger inner diameter results e in a relatively even fluid inflow proffle from the formation which may assist in inhibiting ingress of the selected reactant.
The seal member may be adapted for location on an interior surface of the second tubular. It wiD be recognised that the seal member may be subject to wear or damage in the wellbore, in particular, during location of the apparatus in the weilbore, Location of the seal member within the second tubular may assist in protecting the seal member. This may be particularly advantageous where the tubular undergoes relatively low levels of expansion.
Alternatively the seal member may be adapted for location on an exterior surface of the second tubular.
The seal member may be bonded to the second tubular. For example, but not exclusively, the seal member may be vulcanised onto the interior or exterior surface of the second tubular.
The seal member may comprise an elastomeric seal member. Furthermore, the seal member may comprise a swelling elastomer, On exceeding the selected threshold, the seal member will swell to isolate the affected zone of the tubular. For example, the selected threshold may r&ate to the concentration of water production from the formation. Alternatively, or in addition, the selected threshold may relate to any other variable such as temperature and/or time. For example, the tool may be adapted to move from the first configuration to the second configuration where a selected level of water production is observed for a selected time period.
The seal member may thus be adapted to swell to close the aperture. For example, the seal member may be adapted to swell by up to approximately 200% of the seal member original volume on exposure to the selected reactant. The seal member may be adapted to swell circumferentially and axially to a pre-determined extent. Thus, the swelling of the seal member may be controlled and/or contained, where necessary.
The filter screen layer may be adapted for location between the tubular and the second tubular. Furthermore, the fHter screen layer may be adapted for location between the tubular and the seal member. The filter screen layer may comprise a pkiraHty of filter sheets, for example, but not exclusively, the filter screen layer may comprise a pluraty of overlapping filter sheets adapted for location on the tubular.
Each filter sheet may be coupled at one edge to the tubular.
The apparatus may further comprise a friction reducing layer. The friction reducing layer may be provided to facilitate relative movement of the filter sheets relative to one another. The friction reducing layer may also faciiltate relative movement of the filter layer and the seal member, for example, where the seal member is provided internally of the second tubular. The friction reducing layer may comprise a low friction coating applied to a least one of the filter sheets and/or the seal member.
Alternatively, or in addition, the apparatus may further comprise an alignment tool, for example a centraflser tool or the like. The provision of a centraliser tool may assist in facilitating location of the apparatus in the wellbore and assist in providing protection to the seal member, in particular where the seal member is provided externally of the second tubular.
It will be readily recognised that more than one tubular may be provided. For example, but not exclusively, a number of tubulars may be provided end to end to form a tubing string. Each tubular may be coupled to the adjacent tubular by any suitable means known to a person skilled in the art.
The apparatus may further comprise a further tubular, sub or the like, the centraliser tool being formed in or provided on the further tubular. The further tubular may be adapted for coupling to the tubular or, where a number of tubulars are provided, between tubulars. The further tubular may or may not be subject to expansion. a
The reactant may comprise a reactant fluid, for example, the reactant fluid may comprise formation water, Thus, the apparatus may be adapted to prevent water production from the wefi by reacting with water to isolate the tubular.
According to a second aspect of the present invention, there is provided a method for isolating at least a portion of a tubular for use in a wellbore the method comprising: providing a tubular comprising at least one aperture in a waU of the tubular for permitting transfer of fluid through the aperture; and providing a seal member operatively associated with the tubular, the seal member defining a first configuration permitting fluid flow through the aperture and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the aperture, the seal member adapted to move from the second configuration to the first configuration where concentration of the selected reactant falls below a selected threshold.
The method may further comprise locating the tubular downhole. The method may further comprise selecting the threshold prior to location of the apparatus in the wellbore. Thus, in use, when located downhole, the seal member will react autonomously to restrict fluid flow through the aperture without the requirement for intervention into the well.
The method may further comprise radially expanding the tubular. For example, but not exclusively, the tubular may be expanded by a rotary expansion tool.
The method may further comprise providing a filter screen layer, for example a sand screen or the like, The filter screen may be located between the tubular and the seal member and expansion of the tubular may also expand the filter screen layer. As noted hereinabove, the provision of a filter screen layer assists in preventing the ingress of particulate matter such as sand into the tubular.
The method may further comprise providing a second tubular, for example, an outer shroud or the like. Furthermore, the second tubular may comprise at least one aperture and, for example, may comprise slotted tubing.
Expanding the first tubular may also expand the second tubular such that the second tubular substantiay engages the waH of the borehole.
While tubing comprising generaHy circular apertures may be used, it has been found that the use of slotted tubing advantageously permits substantiafly fu compance between the second tubular and the borehole walL As noted hereinabove, substantiafly fufly compilant expansion may permit the largest possible inner diameter of tubing to be achieved which may assist in increasing production from the formation.
According to a further aspect of the present invention, there is provided a method for producing an apparatus for isolating at least a portion of a tubular, the method comprising the steps: providing a first member in the form of a tubular having at least one aperture in a wall of the tubular for permitting transfer of fluid through the aperture; providing a second member comprising a structural layer and a seal layer; creating at least one aperture in the second; and locating the second member around the tubular.
The method may further comprise creating the aperture in the structural layer and seal layer simultaneously, for example, but not exclusively, by a punching process or other suitable process. Thus, apertures which may be created in the seal layer and the structural layer will be substantially aligned. This obviates the requirement for separate alignment of the layers and advantageously reduces the manufacturing time and improves accuracy of alignment. The aperture may define an elongate longitudinal slot. Though the provision of a longitudinal slot may be preferred, it will be recognised that any suitable aperture may be utilised, The method may further comprise forming the second member such that the seal layer is provided on an exterior surface of the second member. Where the sealing layer is provided on the outer surface of the second member, an aUgnment tool such a centraliser may be provided, the aOgnment tool assisting in protecting the seal layer from, for example, abrasion with a well bore wall Alternatively, the method may further comprise forming the second member such that the seal layer is provided on an interior surface of the second member, Thus, the method of the present invention permits location of the seal layer on the interior or exterior of the second member.
The method may further comprise providing the structural layer in sheet form and coupflng a first end of the sheet to a second, opposite end of the sheet to create a tubular, For example, but not exclusively, the first end may be configured to abut the second end, Alternatively, the first end may be configured to overlap the second end, The method may further comprise the step of welding the first and second ends together to form the tubular, for example, but not exclusively, by laser welding, or the like.
The method may further comprise providing a filter screen layer coupled to the tubular, The filter screen layer may comprise a plurality of filter sheets coupled to the tubular. The method may further comprise coupling the filter sheets in an overlapping configuration. The method may further comprise coupling the filter sheets to the tubular such that on expansion of the tubular, the filter sheets remain overlapped.
According to a further aspect of the present invention there is provided an apparatus for isolating at least a portion of a tubular for use in a weilbore, the apparatus comprising: a first, inner tubular and a second, outer tubular; and a seal member for coupng to the second tubular, the seal member defining a first configuration permitting fluid flow through the Sot and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the slot According to a further aspect of the present invention there is provided a method for isolating at least a portion of a tubular for use in a wellbore, the apparatus comprising: providing a tubular comprising at least one longitudinal Sot in a wall of the tubular for permitting transfer of fluid through the Sot; and providing a seal member operatively associated with the tubular, the sea member defining a first configuration permitting fluid flow through the aperture and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the aperture.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects of the present invention wHI now be described, by way of example, with reference to the accompanying drawings, in which: Figure 1 is a diagrammatic representation of a borehole extending from surface towards a hydrocarbon bearing forrnaflon, the formation comprising oil producing regions and water producing regions; Figure 2 is a cross sectional view of an apparatus for isolating at least a portion of a tubular in accordance with an embodiment of the present invention, shown i:r an unexpanded configuration; Figure 3 is a cross sectional view of the apparatus of Figure 2, shown in an expanded configuration.
Figure 4 is a cross sectional view of an apparatus for isolating at least a portion of a tubular in accordance with a second embodiment of the present invention, shown in an unexpanded configuration; Figure 5 is a cross sectional view of the apparatus of Figure 4, shown in an expanded configuration; and Figures Se to Sc are diagrammatic views of an apparatus according to the second embodiment of the present invention shown in a horizontal weflbore, DETAILED DESCRIP11ON OF THE DRAWINGS Referring initially to Figure 2 of the drawings, there is shown an apparatus 30 for isolating at least a portion of a tubular in accordance with a first embodiment of the present invention the apparatus 30 shown in a first, unexpanded configuration.
The apparatus 30 comprises a first, inner tubular in the form of carrier tube 32 and a second, outer tubular in the form of protective shroud 34, coupled to the carrier tube 32. A seal member in the form of a sealing layer 36, is disposed on an inner surface 38 of the shroud 34. It will be recognised that the spacing between the carrier tube 32 and shroud 34 has been exaggerated for clarity.
The apparatus 30 further comprises a filter screen layer or screen 42 comprising meshed filter sheets 44a, 44b, 44c, and 44d, the filter sheets 44a, 44b, 44c, and 44d disposed between the carrier tube 32 and the shroud 34. Each of the filter sheets 44a, 44b, 44c, and 44d is mounted around the periphery of the carder tube 32 such that each filter sheet 44a, 44b, 44c, and 44d overlaps the adjacent. neighbouring filter sheet. The filter sheets 44a, 44b, 44c, and 44d are constructed from a woven wire mesh and are spot welded to the carrier tube 32.
The sealing member 36 comprises a water swelling elastomer which is vulcanised onto the surface 35 of the shroud 34. When the sealing member 36 encounters formation water, the swelling elastomer will swell on that part of the shroud 34 to restrict the flow of the water through the shroud 34. In particular, the composition and/or blend of the swelling elastomer is selected such that the sealing member will seal the shroud apertures on equalling or exceeding a selected threshold of water productions typicay defined in terms of a percentage water cut. For example, the sealing member 36 may be adapted to seal the shroud aperture at 50% water cut, though any other threshold may be selected as desired.
The restriction in flow may be targeted at the specific locations in which water production is expected or found to be present. The change in pressure caused by the restriction will modify the production profile and will be detectable at surface.
The carrier tube 32 comprises a pluraty of longitudinally extending slots 48, the carrier tube 32 being expandable such that, hi use, the slots 46 define a rhomboid or diamond shape 48.
As shown in Figures 2 and 3, the carrier tube 32 s radially expanded by an expansion tool (not shown). Expansion of the carrier tube 32 ako expands the shroud 34 such that the shroud 32 is in substantially full compilance with the weilbore wall. The shroud also comprises a phirality of longitudinally extending slots 50, While circular perforations may be used, it has been found that the used of slotted tubulars facilitates substantially full compllance of the shroud 34 with the borehole wall, this being particularly advantageous in a rugose wellbore as may be found in a horizontal well.
Expansion of the carrier tube 32 also results in expansion of the filter screen 42.
As noted above, the degree of overlap between the filter sheets 44a, 44b, 44c, and 44d is sufficient to permit an overlapping sheet arrangement to be retained post expansion.
In order to prevent damage to the relathiely fragile filter sheets 44a, 44b, 44c, and 44d in the downhole environment, and to facilitate relative circumferential movement of the filter sheets 44a, 44b, 44c, and 44d relative to each other and relative to the shroud 34, a low friction coating, for example Polytetrafluoroethylene (PTFE), may be applied to the filter sheets 44a, 44b, 44c, and 44d.
The pore size of the filter sheets 44a, 44b, 44c, and 44d will typically remain substantially constant post expansion, the pore size having been selected to prevent ingress of particulates, for example sand; from the formation into the carrier tube 32.
In use, where the carrier tube 32 is radiafly expanded, the free edges of the filter sheets 44a, 44b, 44c, and 44d sUde over each other to maintain the filter integrity of the screen 42. On expansion of the carrier tube 32? 5 radial retaining force is generated in the shroud 34 which is applied to the filter sheets 44a, 44b, 44c, and 44d to further maintain the integrity of the screen 42.
The carrier tube 32 and shroud 34 may be constructed from low carbon stainless steel, for example grade 316L, which is substantially inert to weilbore fluids, though other suitable materials may be used.
The shroud 34 is constructed from a metal sheet, the seal member 36 being vulcanised onto the surface of the sheet. Slots 50 are created in both the shroud 34 and seal member 36 by a punching process. This advantageously permits the slots 50 in the shroud 34 to be substantially allgned with the slots in the seal member 36 and obviates the requirement to aflgn the shroud 34 and seal member 36 independently.
The sheet is then formed into a tubular construction with opposing edges welded together to form the shroud 34. This forming step permits the operator to choose *whether to locate the seal member 3$ on the interior (as shown in Figure 2 and 3) or exterior (as shown in Figures 4, 5 and 6a to Bc) of the shroud 34, as required.
In use, the apparatus is located downhole and then expanded to permit production fluid 16 to be extracted from the well 20. In response to contact with water in the formation 14, the sealing member 36 is adapted to swell and expand to block and seal the apertures 50 of the shroud 34 at a given location and to prevent water production from the well 20 at that location, As noted above in respect of horizontal or deviated wells, water coning will initially tend to occur at the heel of the well 20. The sealing member 36 when exposed to water, will swell and restrict water ingress while permitting oil to flow from neighbouring portions of the well 20 which are not exposed. The restriction is applied only to the water producing region and is limited to that location for as long as the water cut exceeds the desired level. This wDl advantageously assist in increasing the recovery efficiency of the well 20.
It will be recognised that where a restriction has been imposed, water may then be drawn to an adjacent, open section of tubing and water production may again result.
An apparatus 30 according to the present invention will then isolate this section of tubing, while the point at which water production was first experienced, in the absence of water, will again permit ingress of production fluid. The apparatus 30 thus permits autonomous and reactive sealing without the requirement for intervention from surface, the restriction being applied at the required location and being adapted to automatically adjust over the llfe of the well 20.
The apparatus 30 can restrict flow from any water zone, and thus no pre-planning is required as to when to run the apparatus 30 downhole. This is particularly advantageous where unexpected water producing zones are encountered.
The apparatus will thus slow the ingress of water into the heel of a horizontal welL In addition, the apparatus will also assist in controlllng water production along the length of the well in multizone reservoirs or, alternatively in reservoirs with heterogeneous formations where a highly permeable layer or fracture is communicating to an underlying aquifer, The apparatus will enhance oil recovery improve sweep efficiency and extend well life by allowing more oil to be produced for longer at a lower water cut, This is especially true in heavier oil applications, where high water mobility may cut oil production dramatically. The apparatus has the additional economic benefit of reducing the cost of water handling that would otherwise be required, Those of skill in the art will further recognise that the illustrated apparatus is merely exemplary of the present invention, and that the same objectives may be achieved by using a variety of different configurations.
For example, an alternative embodiment of the present invention is shown in Figures 4 and 5 of the drawings. The second embodiment differs from the first embodiment in that the seal member is bonded to an exterior surface of the shroud. In this embodiment, the apparatus also comprises an ailgnment tool in the form of a centraliser tool (not shown). A centraliser tool assists in placing the apparatus downhole while protecting the seal member from damage.
Referring now to Figure Ga to Sc of the drawings, there is shown a diagrammatic view of the apparatus of Figures 4 and 5 shown in a horizontal wellbore, It wl of course be recognised that the apparatus of Figures 2 and 3 could also be used.
Figure Ga shows the apparatus prior to encountering water. Figure Gb shows the apparatus after water has been encountered at the heel of the wetore. Figure Sc shows the apparatus where water ingress has migrated. The position of the first water ingress is shown in dotted Hne. Thus, it will be recognised that where water is encountered, the apparatus will seal off that section while permitting those sections not exposed to water to continue or restart transfer of fluid.
Though the apparatus has been described as using slotted tubulars, other configurations of apertures may be used. For example perforated (generay circular apertures) tubing may be used, though it is understood that the use of perforated tubing limits the compliance that may be achieved. Typically, when expanding perforated tubulars, cone expander tools are preferred which, for relatively long secUons of tubing string require significant force to drive the expander through the tubing. It will be readily understood that the application of a high force will become increasingly difficult where the wellbore deviates from the vertical, Though the present embodiment is described in connection with a sand screen, in particular an expandable sand screen, it is within the scope of the invention that the assembly will be used in combination with any suitable tubular or the like.
It will be recognised that more than one tubular may be coupled together to form a tubing string. The properties of the seal member may he selected such that the threshod at which sweWng of the sea' member is nftiated may be different. More than one seat member may be provided on the or each tubu'ar and each sea member may be s&ected to react to a different s&ected reactant.
CLAUSES
1.. An apparatus for isolating at least a portion of a tubular for use in a weUbore, the apparatus comprising: a tubular comprisThg at least one aperture in a wall of the tubular; a seal member operatively associated with the tubthar, the seal member defining a first configuration permitting fluid flow through the aperture and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the aperture, the seal member adapted to return from the second configuration to the first configuration where concentration of the selected reactant falls below a selected threshold.
2. An apparatus according to clause 1, wherein the seal member is adapted to remain in the first configuration where concentration of the selected reactant is less than the selected threshold.
3. An apparatus according to clause 1, wherein the seal member is adapted to adopt the second configuration where the concentration of the selected reactant equals or exceeds the selected threshold, 4. An apparatus according to any preceding clause, wherein the threshold is selected prior to location of the apparatus in the welibore.
5. An apparatu.s according to any preceding clause, wherein the tubular comprises an expandable tubular.
6. An apparatus according to any preceding clause, wherein the tubular is adapted for expansion by a rotary expansion toot 7. An apparatus according to any preceding clause, wherein the tubular comprises slotted tubing.
S. An apparatus according to any preceding clause, wherein the apparatus further comprises a filter screen layer.
9. An apparatus according to clause 8, wherein the filter screen layer is adapted for location externafly of the tubular.
10. An apparatus according to clause 8 or 9, wherein the filter screen layer comprises a sand screen.
11. An apparatus according to any preceding clause, wherein the apparatus further comprises a second tubular.
12. An apparatus according to clause 11, wherein the second tubular comprises an outer tubular.
13. An apparatus according to clause 11 or 12, wherein the second tubular comprises at least one aperture adapted to permit fluid ingress through the second tubular aperture.
14. An apparatus according to clause 11 or 12, wherein the second tubular comprises slotted tubing.
15. An apparatus accordJng to any one of clauses 11 to 14, wherein the second tubular comprises expandable tubhig.
16. An apparatus according to any one of clauses 11 to 15, wherein the apparatus is configured such that expansion of the tubular also expands the second tubular.
17. An apparatus according to any one of clauses 11 to 16, wherein the second tubular is adapted for radial expansion substantially into contact with the wellbore.
15. An apparatus according to any one of clauses 11 to 17, wherein the seal member is adapted for location on an interior surface of the second tubular.
19. An apparatus according to any one of clauses 11 to 17, wherein the seal member is adapted for location on an exterior surface of the second tubular.
20. An apparatus according to any of clauses 11 to 19, wherein the seal member is bonded to the second tubular.
21. An apparatus according to any preceding clause, wherem the seal member comprises at least one aperture.
22. An apparatus according to clause 21, wherein the at least one seal member aperture is adapted for radial alignment with the at least one aperture of the second tubular.
23. An apparatus according to clause 22, wherein the seal member is adapted to swe on exposure to the selected reactant to dose the at least one seal member aperture.
24. An apparatus according to any preceding clause, wherein the seal member comprises an elastomeric seal member..
25. An apparatus according to any preceding clause, wherein the seal member comprises a swelling elastomer, 26. An apparatus according to any one of clauses 23, 24 or 25, wherein the seal member is adapted to swell to a predetermined extent.
27. An apparatus according to any one of clauses 8 to 26, wherein the filter screen layer is adapted for location between the seal member and the tubular.
28. An apparatus according to any one of clauses ii to 27, wherein the filter screen layer is adapted for location between the tubular and the second tubular.
29. An apparatus according to any one of clauses 8 to 28, wherein the filter screen layer comprises a plurality of filter sheets.
30. An apparatus according to any one of clauses 8 to 29, wherein the filter screen layer comprises a plurality of overlapping filter sheets mounting to the tubular.
31 An apparatus according to any one of clauses 6 to 30, wherein the filter screen Jayer comprises a plurality of filter sheets, each filter sheet being coupled at one edge to the tubular, 32. An apparatus according to any preceding clause, wherein the apparatus further comprises a friction reducing layer.
33. An apparatus according to clause 32, wherein the friction reducing layer comprises a low friction coating appiled to a least one of the filter sheets and seal member.
34. An apparatus according to any preceding clause, wherein the apparatus further comprises an aflgnment tool.
35. An apparatus according to clause 34, wherein the apparatus further comprises a further tubular, the alignment tool being formed in or provided on the further tubular, 36. An apparatus according to clause 35, wherein the further tubular is adapted for coupling to the tubular.
37. An apparatus according to clause 35 or 36, wherein the further tubular is not subject to expansion.
38. An apparatus according to any preceding clause, wherein the reactant comprises a reactant fluid.
39. An apparatus according to clause 38, wherein the reactant fluid comprises water, 40. A method for isolating at least a portion of a tubular for use in a wefibore, the method comprising: providing a tubular comprising at least one aperture in a wafl of the tubular; and providing a seal member operatively associated with the tubular, the seal member defining a first configuration permitting fluid flow through the aperture and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the aperture, the seal member adapted to move from the second configuration to the first configuration where concentration of the selected reactant falls below a selected threshold, 41. A method according to clause 40, further comprising locating the tubular downhole.
42. A method according to clause 40 or 41, further comprising selecting the threshold prior to location of the apparatus in the wefibore.
43. A method according to clause 40, 41 or 42, further comprising radially expanding the tubular, 44. A method according to any one of clauses 40 to 43, further comprising providing a second tubular, 45. A method according to clause 44, wherein expanding the first tubular expands the second tubular.
46. A method accorthng to any one of dauses 40 to 45, further compri&ng expanthng the tubu'ar by a rotary expan&on tool 47, A method accorthng to any one of dauses 40 to 46, further cornprlSng raday expandThg the tubu'ar such that the second tubuar substantãaily engages the waH of the borehole, 48. A method according to any one of clauses 40 to 47, further comprising providing a fflter screen layer.
49. A method according to dause 48, further comprising locating the filter screen layer between the tubular and the seal member, 50. A method according to clause 46 or 49, wherein expanding the tubular also expands the fflter screen layer.
51. A method for producing an apparatus for isolating at least a portion of a tubular, the method comprising the steps: providing a first tubular comprising at least one aperture in a wall of the tubular; providing a tubular member comprising at least one aperture in a w&th of the tubular; providing a second member comprising a structural layer and a seal layer; creating at least one aperture in the structural layer and the seal layer; and locating the second member around the tubular member.
52. The method of dause 51, wherein the second member is initially provided in planar form.
53. A method according to clause 51 or 52, further comprising forming the second member such that the seal layer is provided on an exterior surface of the second member.
54. A method according to clause 51 or 52, further comprising forming the second member such that the seal layer is provided on an interior surface of the second member.
55. A method according to any one of clauses 52 to 54, further comprising coupling a first edge of the structural layer to a second, opposite edge of the structural layer to create the second member.
56. A method according to clause 55, further comprising welding the first and second edges together to form the second member.
57. A method according to any one of clauses 51 to 56, further comprising forming the aperture by perforating the structural layer and seal layer simultaneously.
58. A method according to any one of clauses 51 to 57, further comprising forming the aperture by punching the sheet member and seal member simuftaneously.
59. A method according to any one of clauses 51 to 58, wherein the aperture defines an elongate longitudinal slot.
60. A method according to any one of clauses 51 to 59, wherein the apertures created hi the seal layer and the structural layer are substantiahy aUgned.
61. A method according to any one of clauses 51 to 60, further comprising providing a filter screen layer coupled to the tubular member.
62. A method according to clause 61, wherein the filter screen layer comprises a plurality of filter sheets coupled to the tubular member.
63. A method according to clause 61 or 62, comprising coupling the filter sheets in an overlapping configuration.
64. A method according to clause 61, 62 or 63, comprising coupling the filter sheets to the tubular member such that on expansion of the tubular member the filter sheets remain overlapped.
65. An apparatus for isolating at least a portion of a tubular for use in a wellbore, the apparatus comprising: a first inner tubular and a second, outer tubular, the first tubular comprising at least one longitudinal slot in a wall of the tubular; and a seal member for coupling to the second tubular, the seal member defining a first configuration permitting fluid flow through the slot and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the slot.
66. An apparatus according to clause 65, wherein the seal member is coupled to the interior of the second tubular.
67. An apparatus accordhig to clause 65 or 66, wherein the second tubular comprises at least one long tudinal slot in a wafl of the tubular.
68. An apparatus according to clause 65, 88 or 67, wherein the first and second tubulars comprise metal tubilig.
69. A method for isolating at least a portion of a tubular for use in a weHbore, the method compri&rig: providing a first inner tubular and a second, outer tubular, the first tubular comprising at least one longitudinal slot in a wall of the tubular; and providing a seal member coupled to the second tubular) the seal member defining a first configuration permitting fluid flow through the slot and on exposure to a selected reactant adopting a second configuration to restrict fluid flow through the slot, 70. An apparatus for isolating at least a portion of a tubular substantially as described herein and as shown in the accompanying drawings.
71. A method for isolating at least a portion of a tubular substantially as described herein.
72. A method for producing an apparatus for isolating at least a portion of a tubular substantially as described herein.
Claims (13)
- CLAIMS1. A method for producing an apparatus for isolating at least a portion of a tubular, the method comprising the steps: providing a first tubular comprising at least one aperture in a waU of the first tubular; providing a second member comprising a structur& layer and a seal layer; creating at least one aperture hi the structural layer and the seal layer; and locating the second member around the first tubular.
- 2. The method of claim 1, wherein the second member is initially provkled hi planar form.
- 3. A method as claimed in claim I or 2, further comprising forming the second member such that the seal layer is provided on an exterior surface of the second member.
- 4. A method as claimed in claim I or 2, further comprising forming the second member such that the seal layer s provided on an interior surface of the second member.
- 5. A method as claimed in any one of claims I to 4, further comprising coupling a first edge of the structural layer to a second, opposite edge of the structural layer to create the second member, 6. A method as daimed in claim 5, further comprising welding the first and second edges together to form the second member.7. A method as claimed in any one of claims I to 6, further comprising forming the aperture by perforating the structural layer and seal layer simultaneously.
- 6. A method as claimed in any one of claims I to 7, further comprising forming the aperture by punching the sheet member and seal member simultaneously.9. A method as claimed in any one of claims I to 8, wherein the aperture defines an elongate longitudinal slot, 10. A method as claimed in any one of claims Ito 9, wherein the apertures created in the seal layer and the structural layer are substantially allgned.II. A method as claimed in any one of claims I to 10, further comprising providing a fllter screen layer coupled to the first tubular.12. A method as claimed in claim Ii, wherein the filter screen layer comprises a pluraHty of filter sheets coupled to the first tubular.13. A method as claimed in claim 12, comprising coupling the filter sheets in an overlapping configuration.14. A method as claimed in claim 13, comprising coupllng the filter sheets to the tubular member such that on expansion of the tubular member, the filter sheets remain overlapped.15. A method for producing an apparatus for isolating at least a portion of a tubular substantially as described herein.AMENDMENTS TO THE CLAIMS HAVE BEEN FILE DAS FOLLOWSCLAIMS1. A method for producing an apparatus for isolating at least a portion of a tubular, the method comprising the steps: providing a first tubular comprising at least one aperture in a wall of the first tubular; providing a second member comprising a structural layer and a seal layer; simultaneously creating at least one aperture in the structural layer and at least one aperture in the seal layer such that the at least one aperture in the structural layer and the at least one aperture in the seal layer are substantially aligned; and then locating the second member around the first tubular.2. The method of claim 1, comprising initially providing the second member in planar form.C" 3. A method as claimed in claim 1 or 2, further comprising forming the second member such that the seal layer is provided on an exterior surface of the second CO member.O 20 4. A method as claimed in claim 1 or 2, further comprising forming the second member such that the seal layer is provided on an interior surface of the second member.5. A method as claimed in any one of claims 1 to 4, further comprising coupling a first edge of the structural layer to a second, opposite edge of the structural layer to create the second member.6. A method as claimed in claim 5, further comprising welding the first and second edges together to form the second member.
- 7. A method as claimed in any one of claims 1 to 6, further comprising creating the at least one aperture in the structural layer and the at least one aperture in the seal layer by perforating the structural layer and seal layer simultaneously.
- 8. A method as claimed in any one of claims 1 to 7, further comprising creating the at least one aperture in the structural layer and the at least one aperture in the seal layer by punching the sheet member and seal member simultaneously.
- 9. A method as claimed in any one of claims 1 to 8, comprising creating the at least one aperture in the structural layer and the at least one aperture in the seal layer so as define at least one elongate longitudinal slot.
- 10. A method as claimed in any one of claims 1 to 9, further comprising providing a filter screen layer coupled to the first tubular.
- 11. A method as claimed in claim 10, wherein the filter screen layer comprises a plurality of filter sheets coupled to the first tubular.
- 12. A method as claimed in claim 11, comprising coupling the filter sheets in an overlapping configuration.CD
- 13. A method as claimed in claim 12, comprising coupling the filter sheets to the tubular member such that on expansion of the tubular member, the filter sheets remain O 20 overlapped. r14. A method for producing an apparatus for isolating at least a portion of a tubular substantially as described herein.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1211011.0A GB2489620B (en) | 2007-12-22 | 2007-12-22 | Method for producing isolating tubing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1211011.0A GB2489620B (en) | 2007-12-22 | 2007-12-22 | Method for producing isolating tubing |
Publications (3)
Publication Number | Publication Date |
---|---|
GB201211011D0 GB201211011D0 (en) | 2012-08-01 |
GB2489620A true GB2489620A (en) | 2012-10-03 |
GB2489620B GB2489620B (en) | 2012-11-14 |
Family
ID=46641287
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB1211011.0A Expired - Fee Related GB2489620B (en) | 2007-12-22 | 2007-12-22 | Method for producing isolating tubing |
Country Status (1)
Country | Link |
---|---|
GB (1) | GB2489620B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004022911A2 (en) * | 2002-09-06 | 2004-03-18 | Shell Internationale Research Maatschappij B.V. | Wellbore device for selective transfer of fluid |
US20050173130A1 (en) * | 2002-08-23 | 2005-08-11 | Baker Hughes Incorporated | Self-conforming screen |
-
2007
- 2007-12-22 GB GB1211011.0A patent/GB2489620B/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050173130A1 (en) * | 2002-08-23 | 2005-08-11 | Baker Hughes Incorporated | Self-conforming screen |
WO2004022911A2 (en) * | 2002-09-06 | 2004-03-18 | Shell Internationale Research Maatschappij B.V. | Wellbore device for selective transfer of fluid |
Also Published As
Publication number | Publication date |
---|---|
GB2489620B (en) | 2012-11-14 |
GB201211011D0 (en) | 2012-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8863854B2 (en) | Method and apparatus for isolating tubing with a swellable seal | |
EP2245266B1 (en) | Sand control screen assembly and method for use of same | |
US7048048B2 (en) | Expandable sand control screen and method for use of same | |
US7134501B2 (en) | Expandable sand screen and methods for use | |
EP2495393B1 (en) | Downhole apparatus | |
US9528352B2 (en) | Extrusion-resistant seals for expandable tubular assembly | |
US7165622B2 (en) | Packer with metal sealing element | |
US20040007829A1 (en) | Downhole seal assembly and method for use of same | |
US9394765B2 (en) | Gravel packing apparatus having locking jumper tubes | |
NO20150549A1 (en) | Gravel packing apparatus having locking jumper tubes | |
GB2489620A (en) | Method of producing tubular isolation apparatus. | |
CA2544643C (en) | Expandable sand screen and methods for use | |
CA2367859C (en) | Expandable sand screen and methods for use | |
US20030188865A1 (en) | Method for assembly of a gravel packing apparatus having expandable channels | |
GB2567351B (en) | Gravel packing apparatus having locking jumper tubes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
732E | Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977) |
Free format text: REGISTERED BETWEEN 20150924 AND 20150930 |
|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 20181222 |