YU38202A - Metode obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih žica i uređaja zasnovanih na njima - Google Patents

Metode obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih žica i uređaja zasnovanih na njima

Info

Publication number
YU38202A
YU38202A YU38202A YUP38202A YU38202A YU 38202 A YU38202 A YU 38202A YU 38202 A YU38202 A YU 38202A YU P38202 A YUP38202 A YU P38202A YU 38202 A YU38202 A YU 38202A
Authority
YU
Yugoslavia
Prior art keywords
silicon
relief
wave
ion
quantum wire
Prior art date
Application number
YU38202A
Other languages
English (en)
Inventor
Valery K. Smirnov
Dmitri S. Kibalov
Original Assignee
Sceptre Electronics Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sceptre Electronics Limited filed Critical Sceptre Electronics Limited
Publication of YU38202A publication Critical patent/YU38202A/sh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2633Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/122Single quantum well structures
    • H01L29/125Quantum wire structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66439Unipolar field-effect transistors with a one- or zero-dimensional channel, e.g. quantum wire FET, in-plane gate transistor [IPG], single electron transistor [SET], striped channel transistor, Coulomb blockade transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Film Transistor (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Metoda obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih zica i uredaja zasnovanih na njima imaju za novost to sto se silikonska povrsina spateruje ujednacenim tokom jona molekulskog zaota u ultra visokom vakuumu tako da se obrazuje periodicni talasasti reljef, gde je talasni front pomenutog reljefa orijentisan u pravcu upadne ravni jonskog snopa. Energije jona, upadnog ugla jonskog snopa u odnosu na povrsinu materijala, temperature pomenutog silikonskog sloja, dubine obrazovanja talasastog reljefa, visine talasastog reljefa i dometa jonskog prodiranja u silikon se utvrduju na osnovu odabrane talasne duzine periodicnog talasastog reljefa u opsegu od 9 nm do 120 nm. Pozicioniranje maske od nitrida sadrzi prozor sa visecim ivicama, koje vise iznad silikonske povrsine preko oblasti za spaterovanje i spaterovanje silikonske povrsine kroz pomenuti prozor. Pre spaterovanja se uklanjaju bilo kakve necistoce iz povrsine silikonskog sloja na kojoj treba da se obrazuje talastasti reljef. Odabir debljine silikonskog sloja se vrsi tako da bude veci od zbira dubine obrazovanja talasastog reljefa, visine talastastog reljefa i dometa jonskog prodiranja. Za vreme spaterovanja dolazi do detektovanja signala sekundarne jonske emisije iz izolatorskog sloja materijala silikon-na-izolatoru i zaustavljanje spaterovanja kad vrednost detektovanog signala dostigne prethodno odredenu granicnu vrednost. Nanostrukture mogu biti upotrrebljene u optoelektronskim i nanoelektronskim uredajima, kao sto je FET.
YU38202A 1999-11-25 2002-05-24 Metode obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih žica i uređaja zasnovanih na njima YU38202A (sh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU99124768/28A RU2173003C2 (ru) 1999-11-25 1999-11-25 Способ образования кремниевой наноструктуры, решетки кремниевых квантовых проводков и основанных на них устройств

Publications (1)

Publication Number Publication Date
YU38202A true YU38202A (sh) 2006-08-17

Family

ID=20227346

Family Applications (1)

Application Number Title Priority Date Filing Date
YU38202A YU38202A (sh) 1999-11-25 2002-05-24 Metode obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih žica i uređaja zasnovanih na njima

Country Status (23)

Country Link
US (1) US6274007B1 (sh)
EP (1) EP1104011A1 (sh)
JP (1) JP2001156050A (sh)
KR (1) KR20020069195A (sh)
CN (1) CN1399791A (sh)
AU (1) AU7547400A (sh)
BG (1) BG106739A (sh)
BR (1) BR0016095A (sh)
CA (1) CA2392307A1 (sh)
CZ (1) CZ20021824A3 (sh)
EE (1) EE200200261A (sh)
HR (1) HRP20020459A2 (sh)
HU (1) HUP0203517A2 (sh)
IL (1) IL149832A0 (sh)
IS (1) IS6393A (sh)
MX (1) MXPA02005281A (sh)
NO (1) NO20022427L (sh)
PL (1) PL355890A1 (sh)
RU (1) RU2173003C2 (sh)
SK (1) SK7442002A3 (sh)
WO (1) WO2001039259A1 (sh)
YU (1) YU38202A (sh)
ZA (1) ZA200204822B (sh)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2191444C1 (ru) * 2001-10-09 2002-10-20 Общество с ограниченной ответственностью "Агентство маркетинга научных разработок" Способ изготовления полевого транзистора с периодически легированным каналом
US6872645B2 (en) * 2002-04-02 2005-03-29 Nanosys, Inc. Methods of positioning and/or orienting nanostructures
EP1547139A4 (en) 2002-09-30 2009-08-26 Nanosys Inc MACRO-ELECTRONIC SUBSTRATE WITH HIGH NANO-ACTIVATION SURFACE AREA AND USES THEREOF
US7067867B2 (en) * 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
EP1563480A4 (en) * 2002-09-30 2010-03-03 Nanosys Inc INTEGRATED ADS WITH NANOWIRE TRANSISTORS
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
US7619562B2 (en) * 2002-09-30 2009-11-17 Nanosys, Inc. Phased array systems
US7051945B2 (en) * 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
US7514328B2 (en) * 2003-06-26 2009-04-07 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with a superlattice therebetween
US7446002B2 (en) * 2003-06-26 2008-11-04 Mears Technologies, Inc. Method for making a semiconductor device comprising a superlattice dielectric interface layer
US7227174B2 (en) * 2003-06-26 2007-06-05 Rj Mears, Llc Semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7491587B2 (en) * 2003-06-26 2009-02-17 Mears Technologies, Inc. Method for making a semiconductor device having a semiconductor-on-insulator (SOI) configuration and including a superlattice on a thin semiconductor layer
US20070015344A1 (en) * 2003-06-26 2007-01-18 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Between at Least One Pair of Spaced Apart Stress Regions
US20060289049A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Semiconductor Device Having a Semiconductor-on-Insulator (SOI) Configuration and Including a Superlattice on a Thin Semiconductor Layer
US20070063185A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Semiconductor device including a front side strained superlattice layer and a back side stress layer
US7659539B2 (en) 2003-06-26 2010-02-09 Mears Technologies, Inc. Semiconductor device including a floating gate memory cell with a superlattice channel
US20050279991A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Semiconductor device including a superlattice having at least one group of substantially undoped layers
US20060011905A1 (en) * 2003-06-26 2006-01-19 Rj Mears, Llc Semiconductor device comprising a superlattice dielectric interface layer
US7531828B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a strained superlattice between at least one pair of spaced apart stress regions
US20070020833A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making a Semiconductor Device Including a Channel with a Non-Semiconductor Layer Monolayer
US20060292765A1 (en) * 2003-06-26 2006-12-28 Rj Mears, Llc Method for Making a FINFET Including a Superlattice
US20070010040A1 (en) * 2003-06-26 2007-01-11 Rj Mears, Llc Method for Making a Semiconductor Device Including a Strained Superlattice Layer Above a Stress Layer
US20070063186A1 (en) * 2003-06-26 2007-03-22 Rj Mears, Llc Method for making a semiconductor device including a front side strained superlattice layer and a back side stress layer
US7598515B2 (en) * 2003-06-26 2009-10-06 Mears Technologies, Inc. Semiconductor device including a strained superlattice and overlying stress layer and related methods
US6897472B2 (en) * 2003-06-26 2005-05-24 Rj Mears, Llc Semiconductor device including MOSFET having band-engineered superlattice
US7202494B2 (en) * 2003-06-26 2007-04-10 Rj Mears, Llc FINFET including a superlattice
JP2007521648A (ja) * 2003-06-26 2007-08-02 アール.ジェイ. メアーズ エルエルシー バンド設計超格子を有するmosfetを有する半導体装置
US7045377B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Method for making a semiconductor device including a superlattice and adjacent semiconductor layer with doped regions defining a semiconductor junction
US7531850B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including a memory cell with a negative differential resistance (NDR) device
US20040262594A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Semiconductor structures having improved conductivity effective mass and methods for fabricating same
US7586165B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Microelectromechanical systems (MEMS) device including a superlattice
US20060243964A1 (en) * 2003-06-26 2006-11-02 Rj Mears, Llc Method for making a semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US7153763B2 (en) 2003-06-26 2006-12-26 Rj Mears, Llc Method for making a semiconductor device including band-engineered superlattice using intermediate annealing
US20060231857A1 (en) * 2003-06-26 2006-10-19 Rj Mears, Llc Method for making a semiconductor device including a memory cell with a negative differential resistance (ndr) device
US7045813B2 (en) * 2003-06-26 2006-05-16 Rj Mears, Llc Semiconductor device including a superlattice with regions defining a semiconductor junction
US20060267130A1 (en) * 2003-06-26 2006-11-30 Rj Mears, Llc Semiconductor Device Including Shallow Trench Isolation (STI) Regions with a Superlattice Therebetween
US7612366B2 (en) * 2003-06-26 2009-11-03 Mears Technologies, Inc. Semiconductor device including a strained superlattice layer above a stress layer
US20040266116A1 (en) * 2003-06-26 2004-12-30 Rj Mears, Llc Methods of fabricating semiconductor structures having improved conductivity effective mass
US20060220118A1 (en) * 2003-06-26 2006-10-05 Rj Mears, Llc Semiconductor device including a dopant blocking superlattice
US20050282330A1 (en) * 2003-06-26 2005-12-22 Rj Mears, Llc Method for making a semiconductor device including a superlattice having at least one group of substantially undoped layers
US7531829B2 (en) * 2003-06-26 2009-05-12 Mears Technologies, Inc. Semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US20060273299A1 (en) * 2003-06-26 2006-12-07 Rj Mears, Llc Method for making a semiconductor device including a dopant blocking superlattice
US20070020860A1 (en) * 2003-06-26 2007-01-25 Rj Mears, Llc Method for Making Semiconductor Device Including a Strained Superlattice and Overlying Stress Layer and Related Methods
US7586116B2 (en) * 2003-06-26 2009-09-08 Mears Technologies, Inc. Semiconductor device having a semiconductor-on-insulator configuration and a superlattice
US7229902B2 (en) * 2003-06-26 2007-06-12 Rj Mears, Llc Method for making a semiconductor device including a superlattice with regions defining a semiconductor junction
US7535041B2 (en) * 2003-06-26 2009-05-19 Mears Technologies, Inc. Method for making a semiconductor device including regions of band-engineered semiconductor superlattice to reduce device-on resistance
US7033437B2 (en) * 2003-06-26 2006-04-25 Rj Mears, Llc Method for making semiconductor device including band-engineered superlattice
US7768018B2 (en) 2003-10-10 2010-08-03 Wostec, Inc. Polarizer based on a nanowire grid
RU2240280C1 (ru) * 2003-10-10 2004-11-20 Ворлд Бизнес Ассошиэйтс Лимитед Способ формирования упорядоченных волнообразных наноструктур (варианты)
DE10351059B4 (de) * 2003-10-31 2007-03-01 Roth & Rau Ag Verfahren und Vorrichtung zur Ionenstrahlbearbeitung von Oberflächen
US8025960B2 (en) * 2004-02-02 2011-09-27 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US7553371B2 (en) 2004-02-02 2009-06-30 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
US20110039690A1 (en) * 2004-02-02 2011-02-17 Nanosys, Inc. Porous substrates, articles, systems and compositions comprising nanofibers and methods of their use and production
JP2007535413A (ja) * 2004-04-30 2007-12-06 ナノシス・インコーポレイテッド ナノワイヤ成長および採取のための系および方法
US20050279274A1 (en) * 2004-04-30 2005-12-22 Chunming Niu Systems and methods for nanowire growth and manufacturing
US7785922B2 (en) 2004-04-30 2010-08-31 Nanosys, Inc. Methods for oriented growth of nanowires on patterned substrates
AU2005325265A1 (en) * 2004-07-07 2006-07-27 Nanosys, Inc. Systems and methods for harvesting and integrating nanowires
WO2006124055A2 (en) * 2004-10-12 2006-11-23 Nanosys, Inc. Fully integrated organic layered processes for making plastic electronics based on conductive polymers and semiconductor nanowires
US7473943B2 (en) * 2004-10-15 2009-01-06 Nanosys, Inc. Gate configuration for nanowire electronic devices
RU2267832C1 (ru) * 2004-11-17 2006-01-10 Александр Викторович Принц Способ изготовления микро- и наноприборов на локальных подложках
WO2006057818A2 (en) * 2004-11-24 2006-06-01 Nanosys, Inc. Contact doping and annealing systems and processes for nanowire thin films
WO2007044028A2 (en) * 2004-11-30 2007-04-19 Agoura Technologies, Inc. Applications and fabrication techniques for large scale wire grid polarizers
US7351346B2 (en) * 2004-11-30 2008-04-01 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
US7560366B1 (en) 2004-12-02 2009-07-14 Nanosys, Inc. Nanowire horizontal growth and substrate removal
KR100624461B1 (ko) * 2005-02-25 2006-09-19 삼성전자주식회사 나노 와이어 및 그 제조 방법
US7604690B2 (en) * 2005-04-05 2009-10-20 Wostec, Inc. Composite material for ultra thin membranes
EP1938381A2 (en) * 2005-09-23 2008-07-02 Nanosys, Inc. Methods for nanostructure doping
US7517702B2 (en) * 2005-12-22 2009-04-14 Mears Technologies, Inc. Method for making an electronic device including a poled superlattice having a net electrical dipole moment
US20070158640A1 (en) * 2005-12-22 2007-07-12 Rj Mears, Llc Electronic device including a poled superlattice having a net electrical dipole moment
JP2009522197A (ja) * 2005-12-29 2009-06-11 ナノシス・インコーポレイテッド パターン形成された基板上のナノワイヤの配向した成長のための方法
US7741197B1 (en) 2005-12-29 2010-06-22 Nanosys, Inc. Systems and methods for harvesting and reducing contamination in nanowires
US7700447B2 (en) * 2006-02-21 2010-04-20 Mears Technologies, Inc. Method for making a semiconductor device comprising a lattice matching layer
FI122010B (fi) * 2006-08-09 2011-07-15 Konstantin Arutyunov Ionisuihkuetsausmenetelmä ja -laitteisto
KR20090087467A (ko) * 2006-11-07 2009-08-17 나노시스, 인크. 나노와이어 성장 시스템 및 방법
KR100836426B1 (ko) * 2006-11-24 2008-06-09 삼성에스디아이 주식회사 비휘발성 메모리 소자 및 그 제조방법과 이를 포함한메모리 장치
US7786024B2 (en) * 2006-11-29 2010-08-31 Nanosys, Inc. Selective processing of semiconductor nanowires by polarized visible radiation
US20080129930A1 (en) * 2006-12-01 2008-06-05 Agoura Technologies Reflective polarizer configuration for liquid crystal displays
US7781827B2 (en) 2007-01-24 2010-08-24 Mears Technologies, Inc. Semiconductor device with a vertical MOSFET including a superlattice and related methods
US7928425B2 (en) * 2007-01-25 2011-04-19 Mears Technologies, Inc. Semiconductor device including a metal-to-semiconductor superlattice interface layer and related methods
US7880161B2 (en) * 2007-02-16 2011-02-01 Mears Technologies, Inc. Multiple-wavelength opto-electronic device including a superlattice
US7863066B2 (en) * 2007-02-16 2011-01-04 Mears Technologies, Inc. Method for making a multiple-wavelength opto-electronic device including a superlattice
US7812339B2 (en) * 2007-04-23 2010-10-12 Mears Technologies, Inc. Method for making a semiconductor device including shallow trench isolation (STI) regions with maskless superlattice deposition following STI formation and related structures
US8668833B2 (en) * 2008-05-21 2014-03-11 Globalfoundries Singapore Pte. Ltd. Method of forming a nanostructure
HUE054466T2 (hu) * 2009-05-19 2021-09-28 Oned Mat Inc Nanoszerkezetû anyagok akkumulátor alkalmazásokhoz
US8623288B1 (en) 2009-06-29 2014-01-07 Nanosys, Inc. Apparatus and methods for high density nanowire growth
CN102386096A (zh) * 2010-08-31 2012-03-21 上海华虹Nec电子有限公司 改善ldmos性能一致性和稳定性的方法
WO2013006077A1 (en) * 2011-07-06 2013-01-10 Wostec, Inc. Solar cell with nanostructured layer and methods of making and using
RU2569638C2 (ru) 2011-08-05 2015-11-27 Востек, Инк. Светоизлучающий диод с наноструктурированным слоем и способы изготовления и применения
US9057704B2 (en) 2011-12-12 2015-06-16 Wostec, Inc. SERS-sensor with nanostructured surface and methods of making and using
WO2013109157A1 (en) 2012-01-18 2013-07-25 Wostec, Inc. Arrangements with pyramidal features having at least one nanostructured surface and methods of making and using
US9134250B2 (en) 2012-03-23 2015-09-15 Wostec, Inc. SERS-sensor with nanostructured layer and methods of making and using
US9500789B2 (en) 2013-03-13 2016-11-22 Wostec, Inc. Polarizer based on a nanowire grid
CN106104805B (zh) 2013-11-22 2020-06-16 阿托梅拉公司 包括超晶格穿通停止层堆叠的垂直半导体装置和相关方法
US9406753B2 (en) 2013-11-22 2016-08-02 Atomera Incorporated Semiconductor devices including superlattice depletion layer stack and related methods
WO2015191561A1 (en) 2014-06-09 2015-12-17 Mears Technologies, Inc. Semiconductor devices with enhanced deterministic doping and related methods
US20170194167A1 (en) 2014-06-26 2017-07-06 Wostec, Inc. Wavelike hard nanomask on a topographic feature and methods of making and using
US9722046B2 (en) 2014-11-25 2017-08-01 Atomera Incorporated Semiconductor device including a superlattice and replacement metal gate structure and related methods
US9899479B2 (en) 2015-05-15 2018-02-20 Atomera Incorporated Semiconductor devices with superlattice layers providing halo implant peak confinement and related methods
WO2016196600A1 (en) 2015-06-02 2016-12-08 Atomera Incorporated Method for making enhanced semiconductor structures in single wafer processing chamber with desired uniformity control
US9558939B1 (en) 2016-01-15 2017-01-31 Atomera Incorporated Methods for making a semiconductor device including atomic layer structures using N2O as an oxygen source
WO2018093284A1 (en) 2016-11-18 2018-05-24 Wostec, Inc. Optical memory devices using a silicon wire grid polarizer and methods of making and using
WO2018156042A1 (en) 2017-02-27 2018-08-30 Wostec, Inc. Nanowire grid polarizer on a curved surface and methods of making and using
RU2671294C1 (ru) * 2017-11-28 2018-10-30 Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет" Способ изготовления полупроводникового прибора
CN110137254B (zh) * 2019-04-30 2021-07-09 中国科学技术大学 半导体栅极电控量子点及其制备方法
CN114497275A (zh) * 2021-12-29 2022-05-13 昆明物理研究所 硅量子点光伏异质结制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2141699C1 (ru) 1997-09-30 1999-11-20 Закрытое акционерное общество Центр "Анализ Веществ" Способ формирования твердотельных наноструктур

Also Published As

Publication number Publication date
RU2173003C2 (ru) 2001-08-27
US6274007B1 (en) 2001-08-14
JP2001156050A (ja) 2001-06-08
CZ20021824A3 (cs) 2004-10-13
EE200200261A (et) 2003-08-15
SK7442002A3 (en) 2003-05-02
HRP20020459A2 (en) 2005-10-31
CN1399791A (zh) 2003-02-26
KR20020069195A (ko) 2002-08-29
MXPA02005281A (es) 2006-02-10
IL149832A0 (en) 2002-11-10
NO20022427D0 (no) 2002-05-22
AU7547400A (en) 2001-06-04
IS6393A (is) 2002-05-24
BR0016095A (pt) 2004-03-23
NO20022427L (no) 2002-06-25
HUP0203517A2 (en) 2003-07-28
CA2392307A1 (en) 2001-05-31
ZA200204822B (en) 2003-11-26
WO2001039259A1 (en) 2001-05-31
PL355890A1 (en) 2004-05-31
EP1104011A1 (en) 2001-05-30
BG106739A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
YU38202A (sh) Metode obrazovanja silikonske nanostrukture, snopa silikonskih kvantnih žica i uređaja zasnovanih na njima
RU99124768A (ru) Способ образования кремниевой наноструктуры, решетки кремниевых квантовых проводков и основанных на них устройств
Fan et al. Graphite-strip-heater zone-melting recrystallization of Si films
CA2066002A1 (en) Fabrication of quantum devices in compound semiconductor layers and resulting structures
KR100357011B1 (ko) 다이아몬드표면의연마방법및이에의해제조되는제품
EP0363476A1 (en) METHOD AND APPARATUS FOR PRODUCING A MATERIAL LAYER FROM A LASER ION SOURCE.
JPS6476715A (en) Manufacture of polycrystalline semiconductor thin film
HK1077919A1 (en) Field emission backplate
Hayashi et al. Photoluminescence spectra of clusters of group IV elements embedded in SiO 2 matrices
KR20190057713A (ko) 가시광 흡수율이 향상된 산화물 반도체 포토 트랜지스터 및 그 제조 방법
MY136313A (en) Process to fabricate an integrated micro-fluidic system on a single wafer
CN208078005U (zh) 一种提高外部量子效率的led芯片
WO2003032398A3 (en) Field effect transistor having periodically doped channel
EP0762490A3 (en) Method of manufacturing a LDD-MOSFET
JP2004528707A5 (sh)
FR2481005A1 (fr) Procede de fabrication de transistors a effet de champ a canal court
Batalov et al. Fabrication of composite based on GeSi with Ag nanoparticles using ion implantation
Kim et al. Self-tailored one-dimensional ZnO nanodot arrays formed by metalorganic chemical vapor deposition
JPH0412629B2 (sh)
Dubbelday et al. Study of Photoluminescent Thin Film Porous Silicon on Sapphire
Arnoldussen et al. Ion‐Implanted Gallium‐Arsenide‐Phosphide Surfaces
Fassion et al. Study of beta-Ga2O3 dry-etching
Sharp et al. A Chemical Approach to 3-D Lithographic Patterning of Si and Ge Nanocrystals
Dubov et al. Self-formation of lead telluride nanostructures during argon plasma etching of single-crystal wafers
KR20040071502A (ko) 실리콘 나노결정립 형성방법