CN114497275A - 硅量子点光伏异质结制备方法 - Google Patents

硅量子点光伏异质结制备方法 Download PDF

Info

Publication number
CN114497275A
CN114497275A CN202111641234.0A CN202111641234A CN114497275A CN 114497275 A CN114497275 A CN 114497275A CN 202111641234 A CN202111641234 A CN 202111641234A CN 114497275 A CN114497275 A CN 114497275A
Authority
CN
China
Prior art keywords
quantum dot
silicon quantum
heterojunction
silicon
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111641234.0A
Other languages
English (en)
Inventor
唐利斌
方莉媛
张玉平
项金钟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN202111641234.0A priority Critical patent/CN114497275A/zh
Publication of CN114497275A publication Critical patent/CN114497275A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

硅量子点光伏异质结制备方法,涉及光电技术领域,尤其是一种硅量子点薄膜的制备技术。本发明的方法采用射频磁控溅射高纯石墨,直流磁控溅射n型硅共溅射在衬底上,溅射后退火处理形成硅量子点光伏异质结薄膜。与现有制备技术相比,本发明采用的是低成本的磁控溅射法制备硅量子点薄膜,很好的降低了制备成本、绿色环保、且薄膜可控性强、均匀性好。通过选择合适的半导体衬底材料,即可制备成具有光伏特性的硅量子点异质结,在光电子领域具有很大的应用前景。

Description

硅量子点光伏异质结制备方法
技术领域
本发明涉及光电技术领域,尤其是一种硅量子点薄膜的制备技术。
背景技术
具有直接带隙结构的GaN、CdSe等半导体材料因其发光效率较高,一直是研究的重点。但是有一些半导体量子点材料中的重金属的剧毒特性,会危害环境及人体健康,这使得研究者们需要进一步的探索无毒、绿色且性能优异的量子点材料。硅作为地壳中含量第二的元素,是一种环保,且低成本的窄禁带半导体材料。
硅的间接带隙特性使其在发光过程中电子和空穴不能直接复合,需要声子参与辅助。因此本征体硅材料发光效率并不高,限制了其在光电领域中的应用,这一直是之前的研究者们面临的挑战。直到1990年Canham等人制备出的多孔硅被发现有光致发光现象,从而提出了量子限域模型。材料尺寸变小到一定程度时,材料的带隙是增大的,相应的材料发光效率也有所提高。这一发现把硅量子点的研究推入热潮,为研究者们开辟了新的研究思路。
制备硅量子点的常用方法为化学法合成,对于光伏异质结的制备,需要制备的量子点薄膜具有致密性好、均匀性好、薄膜质量好、面积可控性高等特点。化学合成法制备的量子点薄膜均一性较差、不易大面积制备、且容易造成化学污染,通过磁控溅射法制备的硅量子点薄膜均匀性好、效率高、成本低、且环保,很方面用于光伏异质结的制备。
发明内容
本发明的目的在于提供一种硅量子点光伏异质结的制备方法,通过使用磁控溅射法和退火处理,来有效的控制制备成本及周期,且制备的硅量子点异质结具有很好的光伏特性。
硅量子点光伏异质结的制备方法,其特征在于该方法采用射频磁控溅射高纯石墨,直流磁控溅射n型硅共溅射在衬底上,溅射后退火处理形成硅量子点光伏异质结薄膜。
所述的衬底,按体积比,过氧化氢:氨水:去离子水=1:1:3的混合溶液中进行清洗。
所述的退火处理,退火温度分别为600 ℃,退火时间为1 h。
本发明的技术整体技术路线创新,采用低成本、工艺简单的制备方法成功制备出了硅量子点光伏异质结。制备出来的硅量子点异质结,具有结特性,在光照下,具有明显的光伏效应。该法制备的硅量子点异质结,可以广泛地应用于光电器件领域。
与现有制备技术相比,本发明采用的是低成本的磁控溅射法制备硅量子点薄膜,很好的降低了制备成本、绿色环保、且薄膜可控性强、均匀性好。通过选择合适的半导体衬底材料,即可制备成具有光伏特性的硅量子点异质结,在光电子领域具有很大的应用前景。
附图说明
图1为实施例1硅量子点光伏异质结的结构示意图。
图2为量子点光伏异质结的制备流程图。
图3为实施例1硅量子点薄膜结构表征图。
图4为硅量子点异质结光电特性图。
图5为硅量子点异质结取对数后的光电特性图。
具体实施方式
下面结合实施例对本发明作进一步说明。
实施例1:硅量子点光伏异质结的制备方法,包括以下步骤:
步骤1,Si衬底在按体积比,过氧化氢:氨水:去离子水=1:1:3的混合溶液中,在80℃下浸泡30 min,然后用去离子水冲洗干净并且干燥;用模具遮盖其边缘处,防止材料之间相互扩散。
步骤2,将高纯石墨靶置于射频溅射靶上,n型硅靶置于直流靶上,在室温下采用磁控溅射共溅射的方式在衬底片上生长薄膜。射频磁控溅射石墨靶的功率为120 W,直流磁控溅射n型硅靶的功率为60 W;溅射压强为0.68 Pa、氩气气流为50 sccm的环境下,沉积20min。
步骤3,去除模具进行退火处理,退火温度分别为600 ℃,退火时间为1 h。
步骤4,分别在硅量子点薄膜(Si-QDs)以及Si衬底片上用真空蒸镀机镀上Al电极;电极上留下一个2×2 mm的光敏面用来提高电荷的收集。
步骤5,从Si衬底片和Al电极上分别引出电极。
如图4所示,本实施例的硅量子点光伏异质结薄膜在光照下具有好的光电效应。磁控溅射法制备的量子点薄膜具有很好的均匀性,通过与半导体衬底的结合,形成了具有整流特性的异质结,与化学合成法制备的量子点薄膜相比,该法制备简单、可控性强、环保,且直接制备形成了量子点薄膜,与先制备量子点再制备成薄膜的方法相比,具有更高的成膜效率和应用前景。
如图5所示,可以看到本实施例量子点异质结在光照后具有开路电压,展现出光伏异质结的特性。通过磁控溅射法直接制备得到的量子点薄膜异质结在波长为940nm,光功率密度为4.32 mW·cm-2的光照下,电流密度由~10-1 mA·cm-2量级提升至~10 mA·cm-2量级,适合应用于光伏异质结的发展。
本发明提到的一个或多个步骤并不排斥所述组合步骤还存在其他方法及操作过程;还应注意,该实例仅用于说明本发明的可行性,而不是限制本发明的范围。除此之外,在无实质性改变制备技术内容的情况下,亦当视为本发明的可实施范畴。

Claims (3)

1.硅量子点光伏异质结的制备方法,其特征在于该方法采用射频磁控溅射高纯石墨,直流磁控溅射n型硅共溅射在衬底上,溅射后退火处理形成硅量子点光伏异质结薄膜。
2.如权利要求1所述的硅量子点光伏异质结的制备方法,其特征在于所述的衬底,按体积比,过氧化氢:氨水:去离子水=1:1:3的混合溶液中进行清洗。
3.如权利要求1所述的硅量子点光伏异质结的制备方法,其特征在于所述的退火处理,退火温度分别为600 ℃,退火时间为1 h。
CN202111641234.0A 2021-12-29 2021-12-29 硅量子点光伏异质结制备方法 Pending CN114497275A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111641234.0A CN114497275A (zh) 2021-12-29 2021-12-29 硅量子点光伏异质结制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111641234.0A CN114497275A (zh) 2021-12-29 2021-12-29 硅量子点光伏异质结制备方法

Publications (1)

Publication Number Publication Date
CN114497275A true CN114497275A (zh) 2022-05-13

Family

ID=81508567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111641234.0A Pending CN114497275A (zh) 2021-12-29 2021-12-29 硅量子点光伏异质结制备方法

Country Status (1)

Country Link
CN (1) CN114497275A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2173003C2 (ru) * 1999-11-25 2001-08-27 Септре Электроникс Лимитед Способ образования кремниевой наноструктуры, решетки кремниевых квантовых проводков и основанных на них устройств
CN102134703A (zh) * 2010-11-16 2011-07-27 西安交通大学 一种具有多带特征的硅量子点薄膜的制备方法
CN103700576A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN105679857A (zh) * 2016-01-20 2016-06-15 浙江大学 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN106601591A (zh) * 2016-12-21 2017-04-26 昆明物理研究所 氯掺杂多层石墨烯薄膜制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2173003C2 (ru) * 1999-11-25 2001-08-27 Септре Электроникс Лимитед Способ образования кремниевой наноструктуры, решетки кремниевых квантовых проводков и основанных на них устройств
CN102134703A (zh) * 2010-11-16 2011-07-27 西安交通大学 一种具有多带特征的硅量子点薄膜的制备方法
CN103700576A (zh) * 2013-12-17 2014-04-02 西安文理学院 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN105679857A (zh) * 2016-01-20 2016-06-15 浙江大学 一种基于硅量子点/石墨烯/硅异质结构的光电传感器
CN106601591A (zh) * 2016-12-21 2017-04-26 昆明物理研究所 氯掺杂多层石墨烯薄膜制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIYUAN FANG等: "Preparation of Si quantum dots by phase transition with controlled annealing" *

Similar Documents

Publication Publication Date Title
JP5364782B2 (ja) 太陽電池の製造方法
CN101505035B (zh) 一种n-氧化锌/p-氧化镍异质pn结紫外激光二极管及其制备方法
US20050284518A1 (en) Compound solar cell and process for producing the same
JP5520496B2 (ja) 太陽電池の製造方法
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN113707760A (zh) 一种基于β-Ga2O3/MgO异质结的三端口紫外光探测器及其制作方法
CN113594234B (zh) 一种低开启电压的氧化镓肖特基二极管制备方法
CN109509819B (zh) 一种基于铒、氟共掺杂ZnO薄膜的电致发光器件及制备方法
Chang et al. A metal-insulator-semiconductor solar cell with high open-circuit voltage using a stacking structure
WO2012040917A1 (zh) 一种浅结太阳能电池及其制备方法
CN114497275A (zh) 硅量子点光伏异质结制备方法
CN104659174A (zh) 一种采用激光辐照氮化镓外延片改善以其为基底的led发光性能的方法
CN101515617B (zh) AlGaN基SiC衬底的紫外LED制作方法
CN106684248B (zh) 一种调节太阳能电池吸收波长的方法及制备的太阳能电池
CN110828666A (zh) 柔性钙钛矿量子点薄膜-砷化镓异质结电池及其制备方法
CN114334651A (zh) 一种基于超薄氮化镓自支撑衬底的hemt制备方法
CN107722966A (zh) 一种氧化物/金属核壳结构量子点及其制备方法、应用
CN111223918B (zh) P型半导体低阻欧姆接触结构及其制备方法
CN112670365A (zh) 一种GaAs/MXene异质结太阳电池及其制备方法
CN207938614U (zh) 一种p-AlN/i-AlN/n-ZnO结构
CN107871793A (zh) 硅基太阳能电池及其制造方法
CN106024862A (zh) 一种带有电极的新型金刚石薄膜/GaN异质结的制备方法
CN206210825U (zh) 一种n型氮化镓基发光二极管
CN103794692A (zh) 一种氧化锌基异质结发光器件及其制备方法
CN114121572B (zh) 一种新型光电发射材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220513

RJ01 Rejection of invention patent application after publication