CN108933181B - 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法 - Google Patents

透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法 Download PDF

Info

Publication number
CN108933181B
CN108933181B CN201810744628.0A CN201810744628A CN108933181B CN 108933181 B CN108933181 B CN 108933181B CN 201810744628 A CN201810744628 A CN 201810744628A CN 108933181 B CN108933181 B CN 108933181B
Authority
CN
China
Prior art keywords
layer
inaln
cathode
aln
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810744628.0A
Other languages
English (en)
Other versions
CN108933181A (zh
Inventor
吴婕
戴文韬
赖彦洁
郑冰欣
何欢
符跃春
沈晓明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201810744628.0A priority Critical patent/CN108933181B/zh
Publication of CN108933181A publication Critical patent/CN108933181A/zh
Application granted granted Critical
Publication of CN108933181B publication Critical patent/CN108933181B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种透射式纳米绒面化InAlN基PETE太阳电池结构,由上而下依次包括以下结构:石英玻璃、透明导电层、ZnO纳米线层、阴极、绝热隔热垫、阳极。所述阴极由上而下依次包括以下结构:AlN缓冲层、INAlN渐变吸收层和InN发射层。所述阴极为InxAl1‑xN叠层结构,其中x由上而下从0逐渐增大到1。AlN层作为过渡层,使应力减小,减少裂纹密度。同时采用InxAl1‑xN叠层太阳能电池结构,当x发生从0~1的变化时,其禁带宽度变宽,其能量吸收范围变大,这样能使电池吸收不同能量的光子,从而提高能量转换效率。InN具有相对较窄的禁带宽度,其值0.7ev,这对它的光吸收是十分有利的。

Description

透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制 备方法
技术领域
本发明设计一种太阳电池及其制备方法,尤其涉及一种提出渐变带隙InAlN太阳光吸收层和纳米绒面化的InN热电子发射层的太阳能电池,属于太阳能电池光伏发电领域。
背景技术
随着全球气候变暖、环境污染以及能源紧缺的加剧,光伏发电受到了前所未有的重视,近年来发展极为迅速。但要实现光伏发电大规模应用并成为人类能源结构的重要组成部分,还需不断提高太阳电池的转换效率和降低其生产成本。
基于半导体阴极PETE效应的太阳能光电转换系统,这是一种新颖的太阳能发电系统,采用热电子发射能量转换器中热阴极和冷阳极以真空间隙相隔离的器件结构,通过阴阳极的温度差来遏制阳极反向热电子流。PETE太阳电池阴极材料在聚光条件下,通过阴极材料吸收汇聚太阳光产生大量的热电子,并将热电子发射到真空中再由阳极收集后形成光电流,同时将阳极剩余的热量传给与其相连的斯特林热机,实现进一步的热电转换,PETE太阳能转换系统的理论效率高达50%以上。
在提高太阳能电池转换效率方面,利用阴极进行表面纳米绒面化后低维结构引起的量子效应,降低表面附近态密度(DOS),以减缓热电子的冷却速率。同时,采用InxAl1-xN叠层结构,当x发生从0~1的变化时,禁带宽度变宽,能量吸收范围变大,使电池吸收不同能量的光子,从而提高能量转换效率。表面绒面化和组分渐变的阴极对提高该PETE器件的光电转换效率尤为重要。
发明内容
本发明的目的在于提出一种具有较高光电转化效率的组分渐变InAlN基PETE太阳能电池的制备工艺,克服热载流子冷却速率快,光电转换效率低的问题。
为了实现上述目的,本发明采用了以下技术方案:
一种透射式纳米绒面化InAlN基PETE太阳电池结构,由上而下依次包括以下结构:石英玻璃、透明导电层、ZnO纳米线层、阴极、绝热隔热垫、阳极。
进一步的,所述的透明导电层为ITO、AZO或FTO导电玻璃。
进一步的,应用激光分子束外延和沉积系统将ZnO纳米线形成在透明导电层上。
进一步的,所述阴极由上而下依次包括以下结构:AlN缓冲层、INAlN渐变吸收层和InN发射层。
进一步的,应用激光分子束外延和沉积系统依次沉积阴极的AlN缓冲层、INAlN渐变吸收层和InN发射层,最初的窗口层用AlN靶材来沉积,然后应用In靶材沉积得到INAlN层和InN层。
进一步的,所述阴极为InxAl1-xN叠层结构,其中x由上而下从0逐渐增大到1。
进一步的,所述绝热隔热垫采用O型垫圈,其厚度为0.1~3mm。
进一步的,所述阳极为金刚石薄膜阳极。
进一步的,所述金刚石薄膜阳极由热丝CVD法制备而成。
一种太阳电池的InxAl1-xN叠层结构阴极的制备方法,
将已生长好ZnO纳米线层的透明导电层作为衬底放入激光分子束外延和沉积系统中,环形In靶套在圆形AlN靶的外面,构成一个组合靶;
开启一路激光照射圆形AlN靶,产生AlN羽辉,AlN沉积在衬底上,形成组分渐变的太阳能薄膜电池阴极的第一层,AlN缓冲层;
开启两路激光分别照射圆形AlN靶和环形In靶,同时产生AlN羽辉和In羽辉,形成InAlN沉积在衬底上,得到阴极的中间层,InAlN渐变吸收层;
开启一路激光照射圆形靶材的环形周围,同时向脉冲激光沉积系统的超高真空反应室中通入氮气、氨气或等离子氮源,在N等离子体气体氛围下,产生In羽辉,形成InN沉积在衬底上,得到InN发射层。与现有技术相比较,本发明具备的有益效果:
ZnO纳米线层是阴极表面绒面化的基础,可以形成陷光结构,阴极设计具有带隙可变,与太阳光有很好的匹配的优点。
AlN缓冲层作用:由于衬底和薄膜材料的晶格参数不同,直接生长吸收层和发射层会产生应力,AlN层作为过渡层,使应力减小,减少裂纹密度。
InAlN渐变吸收层作用:通过改变合金材料的组分数可以调控叠层太阳电池的禁带宽度。受光照射面的带隙最高,越往里带隙逐渐减小,这样就可以使电池能够吸收具有不同的能量的光子,从而提高其转换效率。同时采用InxAl1-xN叠层太阳能电池结构,当x发生从0~1的变化时,其禁带宽度变宽,其能量吸收范围变大,这样能使电池吸收不同能量的光子,从而提高能量转换效率。
InN发射层作用:InN具有相对较窄的禁带宽度,其值0.7ev,这对它的光吸收是十分有利的。InN自身所具有的声子弥散特性使其在声学支和光学支之间具有较宽的能隙,因此可以利用从光学声子转化成声学声子的延迟形位慢化载流子的弛豫时间。
附图说明
图1是纳米绒面化InAlN基PETE太阳电池的结构示意图。
图中:
1、石英玻璃;2、透明导电层;3、AlN缓冲层;4、INAlN渐变吸收层;5、InN发射层、6、绝热隔热垫;7、阳极;8、真空封装外壳;9、负载。
具体实施方式
下面通过实施例对本发明的技术方案作进一步阐述。
实施例1
一种透射式纳米绒面化InAlN基PETE太阳电池结构,由上而下依次包括以下结构:石英玻璃、透明导电层、ZnO纳米线层、阴极、绝热隔热垫、阳极。
进一步的,所述的透明导电层为ITO或AZO或FTO导电玻璃。
进一步的,应用激光分子束外延和沉积系统将ZnO纳米线形成在ITO或AZO或FTO导电玻璃上。
进一步的,所述阴极由上而下依次包括以下结构:AlN缓冲层、INAlN渐变吸收层和InN发射层。
进一步的,所述阴极为InxAl1-xN叠层结构,其中x由上而下从0逐渐增大到1。
进一步的,采用激光分子束外延技术依次沉积阴极的AlN缓冲层、INAlN渐变吸收层和InN发射层,最初的窗口层用AlN靶材来沉积,然后逐渐增加靶材中In含量直至沉积得到InN层。
进一步的,所述绝热隔热垫采用O型垫圈,其厚度为2~3mm。绝热隔热垫使得阴极与阳极之间形成真空间隙。
进一步的,所述阳极为金刚石薄膜阳极。
进一步的,所述金刚石薄膜阳极由热丝CVD法制备而成。CVD即为低压化学气相沉积法。
一种太阳电池的InxAl1-xN叠层结构阴极的制备方法,将已生长好ZnO纳米线的ITO或AZO或FTO导电玻璃作为衬底放入激光分子束外延和沉积系统中,环形In靶套在圆形AlN靶的外面,构成一个组合靶。
开启一路激光照射圆形靶材的中心位置,产生AlN羽辉,AlN沉积在衬底上,形成组分渐变的太阳能薄膜电池阴极的第一层,AlN缓冲层;
开启两路激光分别照射圆形靶材的中心位置和环形周围,同时产生AlN羽辉和In羽辉,InAlN沉积在衬底上,得到了阴极的中间层,InAlN渐变吸收层;
开启一路激光照射圆形靶材的环形周围,同时向脉冲激光沉积系统的超高真空反应室中通入氮气、氨气或等离子氮源,在N等离子体气体氛围下,产生In羽辉,形成InN沉积在衬底上,得到了InN发射层。

Claims (5)

1.一种透射式纳米绒面化InAlN基PETE太阳电池结构,其特征在于,由上而下依次包括以下结构:石英玻璃、透明导电层、ZnO纳米线层、阴极、绝热隔热垫、阳极;所述的透明导电层为ITO、AZO或FTO导电玻璃;应用激光分子束外延和沉积系统将ZnO纳米线形成在透明导电层上;所述阴极由上而下依次包括以下结构:AlN缓冲层、INAlN渐变吸收层和InN发射层;应用激光分子束外延和沉积系统依次沉积阴极的AlN缓冲层、INAlN渐变吸收层和InN发射层,最初的窗口层用AlN靶材来沉积,然后应用In靶材沉积得到INAlN层和InN层;所述阴极为InxAl1-xN叠层结构,其中x由上而下从0逐渐增大到1。
2.根据权利要求1所述的透射式纳米绒面化InAlN基PETE太阳电池结构,其特征在于,所述绝热隔热垫采用O型垫圈,其厚度为0.1~3mm。
3.根据权利要求1所述的透射式纳米绒面化InAlN基PETE太阳电池结构,其特征在于,所述阳极为金刚石薄膜阳极。
4.根据权利要求3所述的透射式纳米绒面化InAlN基PETE太阳电池结构,其特征在于,所述金刚石薄膜阳极由热丝CVD法制备而成。
5.一种太阳电池的InxAl1-xN叠层结构阴极的制备方法,其特征在于,
将已生长好ZnO纳米线层的透明导电层作为衬底放入激光分子束外延和沉积系统中,环形In靶套在圆形AlN靶的外面,构成一个组合靶;
开启一路激光照射圆形AlN靶,产生AlN羽辉,AlN沉积在衬底上,形成组分渐变的太阳能薄膜电池阴极的第一层,AlN缓冲层;
开启两路激光分别照射圆形AlN靶和环形In靶,同时产生AlN羽辉和In羽辉,形成InAlN沉积在衬底上,得到阴极的中间层,InAlN渐变吸收层;
开启一路激光照射圆形靶材的环形周围,同时向脉冲激光沉积系统的超高真空反应室中通入氮气、氨气或等离子氮源,在N等离子体气体氛围下,产生In羽辉,形成InN沉积在衬底上,得到InN发射层。
CN201810744628.0A 2018-07-09 2018-07-09 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法 Active CN108933181B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810744628.0A CN108933181B (zh) 2018-07-09 2018-07-09 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810744628.0A CN108933181B (zh) 2018-07-09 2018-07-09 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法

Publications (2)

Publication Number Publication Date
CN108933181A CN108933181A (zh) 2018-12-04
CN108933181B true CN108933181B (zh) 2020-07-28

Family

ID=64447538

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810744628.0A Active CN108933181B (zh) 2018-07-09 2018-07-09 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法

Country Status (1)

Country Link
CN (1) CN108933181B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173373A1 (en) * 2008-01-07 2009-07-09 Wladyslaw Walukiewicz Group III-Nitride Solar Cell with Graded Compositions
CN101990713B (zh) * 2008-02-03 2012-12-05 尼坦能源公司 薄膜光伏器件和有关的制造方法
CN102187425B (zh) * 2008-10-16 2013-11-06 小利兰·斯坦福大学托管委员会 光子增强型热离子发射
CN101866976B (zh) * 2010-05-21 2011-09-28 重庆大学 基于变掺杂结构的透射式GaN紫外光电阴极及制作方法
CN102064206A (zh) * 2010-11-30 2011-05-18 南京理工大学 多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法
CN104659137B (zh) * 2014-12-22 2017-02-22 电子科技大学 一种全固态光子增强热电子发射器件

Also Published As

Publication number Publication date
CN108933181A (zh) 2018-12-04

Similar Documents

Publication Publication Date Title
Chu et al. Recent progress in thin‐film cadmium telluride solar cells
KR20100073717A (ko) 태양전지 및 그 제조 방법
CN109037374B (zh) 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN103999229A (zh) 具有双重带隙倾斜度的czts系薄膜的制造方法、具有双重带隙倾斜度的czts系太阳能电池的制造方法及czts系太阳能电池
CN103000742A (zh) 一种带隙渐变硅量子点多层膜的太阳电池及制备方法
CN104143579A (zh) 一种锑基化合物薄膜太阳能电池及其制备方法
JP2015233139A (ja) 原子層蒸着法で形成されたバッファ層を含む太陽電池、及び、その製造方法
CN102610673A (zh) 一种铜锌锡硫化合物薄膜太阳能电池及其制备方法
CN115181995A (zh) 一种硒化锑薄膜光阴极及其制备方法
CN101859814A (zh) 在硅衬底上生长InGaP/GaAs/Ge三结太阳能电池的方法
KR101848853B1 (ko) 반투명 cigs 태양전지 및 이의 제조방법 및 이를 구비하는 건물일체형 태양광 발전 모듈
Mazur et al. Solar cells based on CdTe thin films: Array
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法
KR20090078275A (ko) 요철 형태의 절연막을 포함하는 태양전지 및 그 제조방법
KR101438486B1 (ko) 탠덤구조 cigs 박막 제조방법 및 이를 이용하여 제조된 cigs 박막 태양전지
Xiaopeng et al. Photoelectric conversion characteristics of ZnO/SiC/Si heterojunctions
CN108933181B (zh) 透射式纳米绒面化InAlN基PETE太阳电池结构及其阴极的制备方法
CN102176490A (zh) 锑辅助生长的砷化铟/砷化镓量子点太阳电池的制作方法
US8258003B2 (en) Manufacturing method of compound semiconductor solar cell
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN108389934A (zh) 一种运用一步溅射法制备铜铟镓硒太阳电池的方法
CN114122169A (zh) 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
CN108538937B (zh) 一种太阳电池及其制备方法
CN107393804B (zh) 一种真空太阳能光电转换器件
Chung et al. 15% efficiency (1 sun, air mass 1.5), large‐area, 1.93 eV Al x Ga1− x As (x= 0.37) n‐p solar cell grown by metalorganic vapor phase epitaxy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant