CN114122169A - 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用 - Google Patents

一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用 Download PDF

Info

Publication number
CN114122169A
CN114122169A CN202111328336.7A CN202111328336A CN114122169A CN 114122169 A CN114122169 A CN 114122169A CN 202111328336 A CN202111328336 A CN 202111328336A CN 114122169 A CN114122169 A CN 114122169A
Authority
CN
China
Prior art keywords
zinc
tin
copper
sputtering
selenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111328336.7A
Other languages
English (en)
Inventor
王书荣
李祥
李新毓
刘信
李秋莲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202111328336.7A priority Critical patent/CN114122169A/zh
Publication of CN114122169A publication Critical patent/CN114122169A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,具体包括以下步骤:(1)衬底预处理;(2)钼层的制备;(3)铜锌锡硒预制层的制备:以Cu靶、ZnSe化合物靶、SnSe靶作为靶源,在所述钼层上按照ZnSe/SnSe/Cu的顺序溅射,即得到铜锌锡硒预制层;(4)铜锌锡硒吸收层薄膜的制备:将所述铜锌锡硒预制层制备完成后的所述衬底退火硒化处理后,得到一种硒化物靶溅射制备的铜锌锡硒吸收层薄膜;本发明的制备工艺简便、薄膜组分可控、样品制备周期短、薄膜重复性较好,可以制备出符合高效率铜锌锡硒薄膜太阳电池要求的贫铜富锌的铜锌锡硒吸收层薄膜。

Description

一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
技术领域
本发明涉及光电材料新能源技术领域,更具体的说是涉及一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用。
背景技术
自从法国物理学家贝克雷尔(Becqurel)在1839年第一次发现光生伏特效应以来,太阳能电池发展迅速。到目前,共经历了第一代太阳能电池(单晶硅太阳电池、多晶硅太阳电池、非晶硅太阳电池)、第二代太阳电池(碲化镉太阳电池、砷化镓太阳电池、铜铟镓硒太阳电池、铟镓砷太阳电池等)、以及现阶段逐渐兴起的第三代太阳电池(叠层太阳电池、多带隙太阳电池等)。
目前,铜铟镓硒(Cu(In,Ga)Se2,CIGS)薄膜太阳电池的制备技术已经相对成熟,并且已基本商业化。但是由于铟、镓元素均为稀有元素,这在很大的程度上限制了铜铟镓硒太阳电池的大规模生产。因此,使用含量较为丰富的Zn、Sn来代替In和Ga元素制备而成的铜锌锡硒(Cu2ZnSnSe4,CZTSe)太阳电池应运而生,其带隙约为1.0eV左右,相对较低的带隙使得CZTSe薄膜电池能够有效地利用太阳光谱。
CZTSe薄膜太阳电池的制备通常有真空法和非真空法两种,截至目前,CZTSe薄膜太阳电池的最高效率记录为2020年暨南大学李建军团队制备的效率为12.5%的CZTSe太阳电池,但是该研究组采用的直流溅射单质Cu、Zn、Sn靶材制备CZTSe薄膜,并制备了MgF2增透膜。
因此,如何提供一种制备工艺简便、薄膜组分可控、样品制备周期短、薄膜重复性较好的制备铜锌锡硒薄膜吸收层的方法是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明的目的在于提供一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,本发明的制备工艺简便、薄膜组分可控、样品制备周期短、薄膜重复性较好,可以制备出符合高效率铜锌锡硒薄膜太阳电池要求的贫铜富锌的铜锌锡硒吸收层薄膜。
为了实现上述目的,本发明采用如下技术方案:
一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,具体包括以下步骤:
(1)衬底预处理:将衬底清洗浸泡后,吹干备用;
(2)钼层的制备:在预处理后的所述衬底上沉积钼层;
(3)铜锌锡硒预制层的制备:以Cu靶、ZnSe化合物靶、SnSe靶作为靶源,在所述钼层上按照ZnSe/SnSe/Cu的顺序溅射,即得到铜锌锡硒预制层;
(4)铜锌锡硒吸收层薄膜的制备:将所述铜锌锡硒预制层制备完成后的所述衬底退火硒化处理后,得到一种硒化物靶溅射制备的铜锌锡硒吸收层薄膜。
本发明通过溅射含Se的靶材制备CZTSe预制层,相对传统单质靶溅射制备CZTSe,其优点是可以在预制层内部引入Se元素,在退火的过程中,存在薄膜外部的高温Se蒸气和内部Se元素两个Se源,有利于形成结晶质量优良的CZTSe。
优选地,所述衬底为钠钙玻璃衬底。
本发明中采用的为钠钙玻璃衬底,钠钙玻璃衬底中含有Na元素能够促进晶体的生长,钠钙玻璃衬底被广泛应用于薄膜太阳电池的制备过程中。
优选地,步骤(1)中所述清洗浸泡的步骤为:依次用去污粉、洗衣粉对衬底进行清洗,然后采用丙酮、酒精分别对衬底进行超声清洗10~15min,再将衬底分别放置于酸性混合液和碱性混合液中分别煮沸10~15min,最后采用去离子水超声清洗10min。
本发明中采用去污粉、洗衣粉清除衬底表面的灰尘与杂质,采用丙酮、酒精以去除表面的油脂等有机物,采用酸性混合液和碱性混合液以去除表面残留的丙酮、酒精溶剂。
优选地,所述酸性混合液为体积比为1:2:4~4.5的36.46wt%浓盐酸、30wt%过氧化氢和去离子水的混合液;所述碱性混合液为体积比为1:2:4~4.5的25wt%氨水、过氧化氢和去离子水的混合液。
本发明中采用该比例的酸性混合液和碱性混合液可以较好的去除表面残留的溶剂。
优选地,步骤(2)中所述钼层为2层,总厚度为1~1.5μm,第一钼层和第二钼层的厚度比约为1:2.5~3。
本发明中采用双层钼结构,第一钼层采用1.5Pa的溅射气压,以增强Mo与钠钙玻璃衬底的粘连性;第二钼层采用0.3Pa的溅射气压,在低气压制备的Mo电阻率较低,有利于Mo层与CZTSe吸收层之间形成欧姆接触,提升电池器件的性能。
优选地,步骤(3)中所述溅射为周期分步溅射沉积,所述周期为2个。
本发明通过采用霜走起分步溅射,可以保证溅射制备的CZTSe预制层中各组分能够较好的混合,进而提升硒化制备CZTSe时的结晶质量。
优选地,每个所述周期的具体步骤为:将Cu靶、ZnSe化合物靶、SnSe靶作为靶源,在所述钼层上按照ZnSe/SnSe/Cu的的顺序分别进行溅射沉积,每个所述靶材的溅射功率依次为100W、50W和50W。
本发明通过采用ZnSe、SnSe化合物靶,在预制层中引入Se元素,在后续硒化处理时提升器件结晶质量。同时由于不同靶材物质原子被轰击脱离靶材所需能量不同,本次采用的功率分别为100W、50W和50W。
优选地,步骤(3)中所述铜锌锡硫预制层的厚度为800-1000nm。
本发明中所制备的薄膜厚度约1μm,依照CZTSe的带隙及薄膜的吸收系数,计算及相关研究均表明厚度在1μm左右时,能够吸收太阳光中的绝大多数光子。
优选地,步骤(3)中所述铜锌锡硫预制层中Cu、Zn、Sn元素的摩尔关系满足Cu/Zn+Sn=0.77,Zn/Sn=0.9。
本发明中采用贫铜富锌的溅射比例,相关研究表明贫铜富锌的元素组分是获得高性能器件的决定因素,因此溅射时采用贫铜富锌的元素比例设计。
优选地,步骤(4)所述退火硒化的步骤为:将所述衬底在氩气保护下250℃~280℃退火处理25min~30min,然后将所述衬底和硒粉放入石墨舟中,将所述石墨舟放入硒化炉中,从室温开始以30℃/min的升温速率加热硒化炉直至温度升至530℃~550℃,维持15min~20min,随后自然冷却至室温,即可。
本发明中首先采用250℃~280℃退火处理25min~30min,通过加热让预制层中各层之间产生互扩散,从而使得薄膜各组分均匀分布,为高温硒化提供一定的保障,并以30℃/min的速率让样品迅速达到CZTSe的生长温度530℃~550℃,以保证CZTSe晶体质量。
上述所述一种硒化物靶溅射制备铜锌锡硒吸收层薄膜方法制备的铜锌锡硒吸收层薄膜在制备太阳电池中的应用。
本发明中首先采用的硒化物靶能够有效提升晶粒的成相质量,提升薄膜纯度,减少体内的孔洞、缺陷等产生,有利于制备出性能优良的薄膜太阳电池器件。
经由上述的技术方案可知,与现有技术相比,本发明公开了一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,具有以下技术效果:
本发明的制备工艺简便、薄膜组分可控、样品制备周期短、薄膜重复性较好,可以制备出符合高效率铜锌锡硒薄膜太阳电池要求的贫铜富锌的铜锌锡硒吸收层薄膜。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是实施例1制备的铜锌锡硒吸收层薄膜的XRD图;
图2是实施例1制备的铜锌锡硒吸收层薄膜的SEM图;
图3是实施例1制备的铜锌锡硒吸收层薄膜的Raman图;
图4是实施例2制备的太阳电池的J-V曲线图
图5是对比例制备的铜锌锡硒吸收层薄膜的XRD图;
图6是对比例制备的铜锌锡硒吸收层薄膜的SEM图;
图7是对比例制备的太阳电池的J-V曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,具体包括以下步骤:
(1)衬底预处理:将钠钙玻璃衬底依次用去污粉、洗衣粉对样品进行清洗,之后采用丙酮、酒精对衬底进行超声清洗,再将衬底分别放置于酸性混合液和碱性混合液中分别煮沸10min,最后采用去离子水超声清洗10min,并用氮气吹干钠钙玻璃备用;其中,酸性混合液为体积比为1:2:4.5的36.46wt%浓盐酸、30wt%过氧化氢和去离子水的混合液;碱性混合液为体积比为1:2:4.5的25wt%氨水、过氧化氢和去离子水的混合液;
(2)钼层的制备:将预处理后的钠钙玻璃放入磁控溅射系统里,采用直流溅射单质钼靶来制备钼电极,并使用真空系统对整个溅射腔室抽真空,待系统的真空度达到5.5×10-4Pa以下时开始通入氩气,至系统的气压为1.5Pa时开始启辉,启辉气压为1.5Pa,功率为200W,在氩气气压为1.5Pa时溅射20min,随后调节气压为0.3Pa溅射100min,按照以上要求操作在钠钙玻璃上得到了总厚度为1.2μm的第一钼层和第二钼层,双层钼层的厚度比为1:3,作为薄膜太阳电池的背电极;
(3)铜锌锡硒预制层的制备:以Cu靶、ZnSe化合物靶、SnSe靶作为靶源进行射频溅射,溅射功率分别为100W、50W和50W,本底真空为5.5×10-4Pa,启辉气压为1.5Pa,启辉后将气压调至0.3Pa进行溅射,在步骤(2)第二钼层上按照ZnSe/SnSe/Cu的顺序进行2个周期溅射,具体为:
ZnSe(62min)→SnSe(34min)→Cu(18min)
ZnSe(62min)→SnSe(34min)→Cu(18min)
另外,放置衬底的样品台转速为8r/min,溅射完成后可得出厚度为1000nm的铜锌锡硒薄膜预制层;
(4)铜锌锡硒吸收层薄膜的制备:将步骤(3)铜锌锡硒预制层制备完成后的钠钙玻璃在氩气保护下280℃退火处理30min,接着将退火处理后的钠钙玻璃和硒粉0.5g一同放入石墨舟,然后将石墨舟放入硒化炉中,在室温时以30℃/min的升温速率加热硒化炉直至温度升至540℃,并维持20min,随后自然冷却至室温得到铜锌锡硒吸收层薄膜;
同时,如图1,是本实施例薄膜的XRD图,由图可知:实施例1所制备的CZTSe薄膜中已经生长出CZTSe晶体,且基本无二次相。
如图2,是本实施例薄膜的SEM图,由图可知:实施例1所制备的CZTSe薄膜表面晶粒较为致密,晶粒尺寸约为1.2μm,薄膜整体较为平整。
如图3,是本实施例薄膜的Raman图,由图可知:因XRD中,ZnSe、Cu2SnSe3等二次相与CZTSe衍射峰重合,为验证薄膜中是否存有ZnSe、Cu2SnSe3等二次相,对薄膜进行Raman测试,结果显示薄膜中没有发现ZnSe的衍射峰,即薄膜中不含ZnSe相。
实施例2
一种铜锌锡硒吸收层薄膜太阳电池的制备方法,具体包括以下步骤:
通过化学水浴沉积(CBD)法在实施例1制备出的铜锌锡硒吸收层薄膜上方沉积一层厚度约为60nm的弱n型缓冲层CdS,和P型层CZTSe形成pn结;并采用磁控溅射制备50nm的本征氧化锌(i-ZnO)和300nm氧化铟锡(ITO)窗口层薄膜;最后通过蒸发法制备出Ni-Al电极,制备出结构为Mo/SLG/CZTSe/CdS/i-ZnO/ITO/Ni-Al的太阳电池器件,并对器件进行JV特性测试,结果如图4,可知最终制备的CZTSe薄膜的开路电压为518.1mV,短路电流密度为25.73mA/cm2,而填充因子FF达到了61.62%,最终制备的器件的光电转换效率为8.22%。
对比例
为证实硒化物靶制备CZTSe晶体的优越性,采用与实施例2同样的制备工艺,仅仅将实施例1中的第(3)环节ZnSe、SnSe靶分别替换为Zn和Sn单质靶,其余制备环节均一致,相应结果如下:
如图5,是对比例薄膜的XRD图,由图可知:对比例所制备的CZTSe薄膜中虽有CZTSe晶体,但是也存有明显的Cu2Se二次相;
如图6,是对比例薄膜的SEM图,由图可知:实施例1所制备的CZTSe薄膜表面晶粒较为致密,但晶粒尺寸大小不一,薄膜表面较为粗糙;
如图7,是本对比例薄膜的JV特性曲线,由图可知:采用单质靶终制备的CZTSe薄膜的开路电压为505.4mV,短路电流密度为21.91mA/cm2,而填充因子FF达到了55.47%,最终制备的器件的光电转换效率为6.14%。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

1.一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,具体包括以下步骤:
(1)衬底预处理:将衬底清洗浸泡后,吹干备用;
(2)钼层的制备:在预处理后的所述衬底上沉积钼层;
(3)铜锌锡硒预制层的制备:以Cu靶、ZnSe化合物靶、SnSe靶作为靶源,在所述钼层上按照ZnSe/SnSe/Cu的顺序溅射,即得到铜锌锡硒预制层;
(4)铜锌锡硒吸收层薄膜的制备:将所述铜锌锡硒预制层制备完成后的所述衬底退火硒化处理后,得到一种硒化物靶溅射制备的铜锌锡硒吸收层薄膜。
2.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,所述衬底为钠钙玻璃衬底。
3.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(1)中所述清洗浸泡的步骤为:依次用去污粉、洗衣粉对衬底进行清洗,然后采用丙酮、酒精分别对衬底进行超声清洗10~15min,再将衬底分别放置于酸性混合液和碱性混合液中分别煮沸10~15min,最后采用去离子水超声清洗10min。
4.根据权利要求3所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,所述酸性混合液为体积比为1:2:4~4.5的36.46wt%浓盐酸、30wt%过氧化氢和去离子水的混合液;所述碱性混合液为体积比为1:2:4~4.5的25wt%氨水、过氧化氢和去离子水的混合液。
5.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(2)中所述钼层为2层,总厚度为1~1.5μm,第一钼层和第二钼层的厚度比为1:2.5~3。
6.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(3)中所述溅射为周期分步溅射沉积,所述周期为2个;每个所述周期的具体步骤为:将Cu靶、ZnSe化合物靶、SnSe靶作为靶源,在所述钼层上按照ZnSe/SnSe/Cu的的顺序分别进行溅射沉积,每个所述靶材的溅射功率依次为100W、50W和50W。
7.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(3)中所述铜锌锡硫预制层的厚度为800-1000nm。
8.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(3)中所述铜锌锡硫预制层中Cu、Zn、Sn元素的摩尔关系满足Cu/Zn+Sn=0.77,Zn/Sn=0.9。
9.根据权利要求1所述的一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法,其特征在于,步骤(4)所述退火硒化的步骤为:将所述衬底在氩气保护下250℃~280℃退火处理25min~30min,然后将所述衬底和硒粉放入石墨舟中,将所述石墨舟放入硒化炉中,从室温开始以30℃/min的升温速率加热硒化炉直至温度升至530℃~550℃,维持15min~20min,随后自然冷却至室温,即可。
10.一种权利要求1-9任一项所述硒化物靶溅射制备铜锌锡硒吸收层薄膜方法制备的铜锌锡硒吸收层薄膜在制备太阳电池中的应用。
CN202111328336.7A 2021-11-10 2021-11-10 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用 Pending CN114122169A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111328336.7A CN114122169A (zh) 2021-11-10 2021-11-10 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111328336.7A CN114122169A (zh) 2021-11-10 2021-11-10 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用

Publications (1)

Publication Number Publication Date
CN114122169A true CN114122169A (zh) 2022-03-01

Family

ID=80378176

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111328336.7A Pending CN114122169A (zh) 2021-11-10 2021-11-10 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用

Country Status (1)

Country Link
CN (1) CN114122169A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
US20130255535A1 (en) * 2011-07-29 2013-10-03 Cheng-Chou Chien CZTSe NANOINK COMPOSITION AND SPUTTERING TARGET THEREOF
US20140216925A1 (en) * 2013-02-01 2014-08-07 Jason D. Myers Single Target Sputtering of Copper Zinc Tin Sulfide Selenide, CZT(S, Se)
CN105428212A (zh) * 2015-11-11 2016-03-23 云南师范大学 单靶溅射制备铜锌锡硒薄膜吸收层的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110094557A1 (en) * 2009-10-27 2011-04-28 International Business Machines Corporation Method of forming semiconductor film and photovoltaic device including the film
US20130255535A1 (en) * 2011-07-29 2013-10-03 Cheng-Chou Chien CZTSe NANOINK COMPOSITION AND SPUTTERING TARGET THEREOF
US20140216925A1 (en) * 2013-02-01 2014-08-07 Jason D. Myers Single Target Sputtering of Copper Zinc Tin Sulfide Selenide, CZT(S, Se)
CN105428212A (zh) * 2015-11-11 2016-03-23 云南师范大学 单靶溅射制备铜锌锡硒薄膜吸收层的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李祥: "磁控溅射硒化物靶制备铜锌锡硫硒薄膜太阳能电池", 中国硕士学位论文全文数据库工程科技Ⅱ辑, pages 17 - 51 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295684A (zh) * 2022-10-08 2022-11-04 合肥工业大学 一种铜锑硒太阳能电池光伏吸收层薄膜的制备方法

Similar Documents

Publication Publication Date Title
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN101789469B (zh) 铜铟镓硒硫薄膜太阳电池光吸收层的制备方法
CN108447936B (zh) 一种锑基双结叠层太阳电池的制备方法
CN107946393B (zh) 基于SnTe作为背电极缓冲层的CdTe薄膜太阳能电池及其制备方法
TW201108425A (en) Solar cell and fabrication method thereof
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN102610673A (zh) 一种铜锌锡硫化合物薄膜太阳能电池及其制备方法
CN105742402B (zh) 一种叠层太阳能电池的制备方法及其结构
CN114122169A (zh) 一种硒化物靶溅射制备铜锌锡硒吸收层薄膜的方法及应用
KR101300791B1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
CN112259639A (zh) 一种应用于玻璃衬底cigs薄膜太阳电池的低成本制备方法
CN104051577A (zh) 提高太阳电池吸收层铜锌锡硫薄膜结晶性能的制备方法
CN108389934A (zh) 一种运用一步溅射法制备铜铟镓硒太阳电池的方法
CN106374012B (zh) 一种简单结构制备铜锌锡硫薄膜太阳电池的方法
CN106684210B (zh) 一种用于太阳电池的铜锌锡硫硒薄膜制备方法、该方法制备的薄膜及包含该薄膜的太阳电池
CN113078224A (zh) 透明导电玻璃铜铟硒薄膜太阳能电池器件及其制备方法与应用
CN112563117B (zh) 一种具有硫组分梯度的铜锌锡硫硒薄膜的制备方法
CN103268906B (zh) 硫化镉薄膜及具有硫化镉薄膜的太阳能电池的制备方法
CN102610690A (zh) 一种铜铟镓硒薄膜太阳能电池缓冲层材料制备方法
Petti et al. Thin Films in Photovoltaics
CN114122170B (zh) 一种铜锌锡硫吸收层薄膜、制备及包含其的太阳电池
CN110323293B (zh) 一种铜铟镓硒薄膜太阳能电池
CN112531048B (zh) 一种铜铟镓硒叠层薄膜太阳能电池及其制备方法
Ding et al. Fabrication of Buffer-Window Layer System for Cu (In, Ga) Se2 Thin Film Devices by Chemical Bath Deposition and Sol–Gel Methods

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination