CN106684179A - 一种硒化锑双结薄膜太阳能电池及其制备方法 - Google Patents

一种硒化锑双结薄膜太阳能电池及其制备方法 Download PDF

Info

Publication number
CN106684179A
CN106684179A CN201610810669.6A CN201610810669A CN106684179A CN 106684179 A CN106684179 A CN 106684179A CN 201610810669 A CN201610810669 A CN 201610810669A CN 106684179 A CN106684179 A CN 106684179A
Authority
CN
China
Prior art keywords
film
type
antimony selenide
thin
black phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610810669.6A
Other languages
English (en)
Inventor
罗云荣
周如意
陈春玲
陈慧敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201610810669.6A priority Critical patent/CN106684179A/zh
Publication of CN106684179A publication Critical patent/CN106684179A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种硒化锑双结薄膜太阳能电池及其制备方法,其特征在于,所述太阳能电池的结构从上至下依次为:金属正面电极1、p型重掺杂黑磷烯薄膜2、p型纳米晶硅薄膜3、n型纳米晶硅薄膜4、本征黑磷烯过渡层5、p型硒化锑薄膜6、n型反蛋白石结构二氧化钛薄膜7、n型重掺杂黑磷烯衬底8、金属背面电极9。本发明的优点在于不仅利用了二氧化钛分等级多孔结构的优势,增大光电转换层间接触面积,而且发挥了黑磷烯高电导率,高透光率的特点,减少了太阳能电池的整体串联电阻,同时采用双结结构扩展了传统硒化锑薄膜太阳能电池的光波吸收范围,提高了太阳能电池的光电转换效率。

Description

一种硒化锑双结薄膜太阳能电池及其制备方法
技术领域
本发明属于新能源领域,具体涉及一种硒化锑双结薄膜太阳能电池及其制备方法。
背景技术
硒化锑作为一种具有潜在应用前景的低毒、廉价的新型光电转换材料,非常适合制作薄膜太阳能电池。硒化锑具有一系列优异的光电和材料性质,其禁带宽度为1.0~1.2eV,较接近太阳能电池的最佳禁带宽度;其属于直接带隙材料,对短波可见光的吸收系数大,仅需500nm薄膜就可以对入射太阳光进行充分吸收;且硒化锑相对介电常数较大,对自由电子或空穴的俘获能力低,能够降低缺陷引起的复合损失;除此之外,硒化锑为简单二元化合物,在常温常压下只有正交一种相,因此在制备和生产中可以避免复杂的组分和杂相控制的难题。若能制备出转换效率较高的硒化锑太阳能电池,无疑对能源的利用和环境保护方面起着重要的作用。
目前已有的硒化锑单结薄膜太阳能电池是以有机半导体和硒化锑作为光电转换层,且在阴极与光电转换层之间配置电子传输层,在光电转换层与电子传输层之间配置含有稀土元素和/或元素周期表第II族元素的薄膜层。该电池结构开路电压高、光电转换效率高,但也有缺点和不足。首先硒化锑薄膜的禁带宽度约为1.15eV,距离太阳能电池的最佳禁带宽度1.45eV还有差距,影响其光电转化效率的进一步提高。而且,目前应用于硒化锑薄膜太阳能电池的导电材料主要是掺杂氧化锡或金属或合金材料。但掺杂氧化锡里的金属离子容易自发扩散,削弱其导电能力。以上缺点制约了硒化锑薄膜太阳能电池的发展,人们急需寻找一种更好的硒化锑薄膜太阳能电池以推动太阳能电池领域的发展。
发明内容
为了利用上述材料的优势并弥补其不足,本发明提供了一种硒化锑双结薄膜太阳能电池及其制备方法。采用双结薄膜电池结构,扩展了硒化锑太阳能电池光谱吸收范围。利用二氧化钛优异的光电性能和特殊的结构特性与硒化锑薄膜形成异质结,反蛋白石结构的二氧化钛具有三维周期内联通大孔,可以有效地改善材料中的物质运输和维持大的比表面积,极大程度上增加p型材料与n型材料的接触面积,该结构还可增强对入射光的俘获,增加光程,有利于提高光电转换效率。采用黑磷烯作为导电材料,发挥其高导电性能的优势。同时利用黑磷烯良好的电子迁移率和非常高的漏电流调质率,减小薄膜太阳能电池整体串联电阻,提高光电转换效率。薄膜制备工艺上选择肼溶液法制备硒化锑薄膜,选取肼溶液法是因为其工艺简单,不会引入碳、氧、氮等杂质污染,易于对薄膜进行掺杂或者组分调节。通过薄膜制备和器件结构的协同优化,为制备高效率硒化锑薄膜太阳能电池提供了新思路。
为了达到上述目的,本发明技术方案是这样实现的:
一种硒化锑双结薄膜太阳能电池,其结构从上至下依次为:金属正面电极、p型重掺杂黑磷烯薄膜、p型纳米晶硅薄膜、n型纳米晶硅薄膜、本征黑磷烯过渡层、p型硒化锑薄膜、n型反蛋白石结构二氧化钛薄膜、n型重掺杂黑磷烯衬底、金属背面电极。该结构的优点是:所述p型纳米晶硅薄膜和n型纳米晶硅薄膜构成第一结电池,其禁带宽度控制在1.4—1.7eV,并且掺杂的纳米晶硅薄膜能够有效的减少发射极的串联电阻,提高填充因子和开路电压。所述p型硒化锑薄膜和n型反蛋白石结构二氧化钛薄膜构成第二结电池,其禁带宽度控制在1.0—1.2eV。不同禁带宽度的材料相结合,几乎可以吸收所有波段的可见光。正面的p型重掺杂黑磷烯薄膜与背面的n型重掺杂黑磷烯衬底作为太阳能电池的导电层,中间的本征黑磷烯过渡层起到串联两结电池和钝化的作用。以黑磷烯作为太阳能电池的导电材料,可以充分发挥黑磷烯高导电性的优势,减小薄膜太阳能电池整体串联电阻,使太阳能电池的光电转换率进一步提高。
本发明技术方案所提供的一种硒化锑双结薄膜太阳能电池的制备方法包括如下步骤:
将n型重掺杂黑磷烯衬底采用超声波化学清洗,在其上利用液相沉积法制备具有分等级介/大孔结构的反蛋白石n型二氧化钛薄膜;然后在n型二氧化钛薄膜上利用肼溶液法沉积p型硒化锑薄膜;接着在p型硒化锑薄膜上,通过化学气相沉积法沉积多原子层本征黑磷烯过渡层;然后采用等离子增强化学气相沉积法在本征黑磷烯过渡层表面依次制备n型与p型纳米晶硅薄膜;接下来在惰性气体保护下,通过化学气相沉积法在p型纳米晶硅表面沉积p型重掺杂黑磷烯薄膜;最后分别在p型重掺杂黑磷烯薄膜表面以及n型重掺杂黑磷烯衬底表面通过丝网印刷法制备金属电极,即制得所需要的硒化锑双结薄膜太阳能电池。
附图说明:
附图是本发明提供的一种硒化锑双结薄膜太阳能电池的层结构示意图。
附图标号说明:
1—金属正面电极;
2—p型重掺杂黑磷烯薄膜;
3—p型纳米晶硅薄膜;
4—n型纳米晶硅薄膜;
5—本征黑磷烯过渡层;
6—p型硒化锑(Sb2Se3)薄膜;
7—n型反蛋白石结构二氧化钛薄膜;
8—n型重掺杂黑磷烯衬底;
9—金属背面电极。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但本发明内容不仅限于实施例中所涉及的内容。
本发明按附图所示结构,它包括从上至下依次分布的金属正面电极1、p型重掺杂黑磷烯薄膜2、p型纳米晶硅薄膜3、n型纳米晶硅薄膜4、本征黑磷烯过渡层5、p型硒化锑薄膜6、n型反蛋白石结构二氧化钛薄膜7、n型重掺杂黑磷烯衬底8、金属背面电极9。
实施例1:一种硒化锑双结薄膜太阳能电池的制备方法,按照以下步骤操作:
将n型重掺杂黑磷烯衬底采用超声波化学清洗,在其上利用液相沉积法制备具有分等级介/大孔结构的反蛋白石n型二氧化钛薄膜;然后在n型反蛋白石结构二氧化钛薄膜上利用肼溶液法沉积p型硒化锑薄膜;接着在p型硒化锑薄膜上,通过化学气相沉积法沉积厚度为10nm—30nm的多原子层本征黑磷烯过渡层;然后采用等离子增强化学气相沉积法在本征黑磷烯过渡层表面依次制备n型与p型纳米晶硅薄膜;接下来在惰性气体保护下,通过化学气相沉积法在p型纳米晶硅表面沉积p型重掺杂黑磷烯薄膜;最后分别在p型重掺杂黑磷烯薄膜表面以及n型重掺杂黑磷烯衬底表面通过丝网印刷制备金属电极,即制得所需要的硒化锑双结薄膜太阳能电池。
实施例2:
本实施例制作一种硒化锑双结薄膜太阳能电池,与实施例1相似,不同的是所述p型硒化锑薄膜以硫硒锑合金层Sb2(SxSe1-x3代替。在硒化锑(Sb2Se3)上面进一步通过化学水浴沉积硫化锑(Sb2S3)层,并在300℃氩(Ar)气氛中退火5min形成Sb2(SxSe1-x3合金层。
实施例3:
本实施例制作一种硒化锑双结薄膜太阳能电池,与实施例1相似,不同的是所述p型硒化锑薄膜采用热蒸发法制备,并对其进行加硒化退火处理,提高薄膜的p型掺杂,减少复合损失,有利于效率的提高。
实施例4:
本实施例制作一种硒化锑双结薄膜太阳能电池,与实施例1相似,不同的是所述本征黑磷烯薄膜的制备采用碱性溶液液相剥离黑磷的方法,再采用黑磷烯薄膜转移技术将本征黑磷烯薄膜转移至p型硒化锑薄膜上。
实施例5:
本实施例制作一种硒化锑双结薄膜太阳能电池,与实施例1相似,不同的是所述p型重掺杂黑磷烯的制备采用机械剥离后,在300℃中的真空或氩气(Ar)氛围中经两小时退火处理,得到厚度约为15nm的多原子层黑磷烯。再采用黑磷烯薄膜转移技术将p型重掺杂黑磷烯薄膜转移至p型纳米晶硅薄膜上。
实施例6:
本实施例制作一种硒化锑双结薄膜太阳能电池,与实施例1相似,不同的是通过蒸发法制备15nm金属钛以及50nm金属金作为电极。

Claims (5)

1.一种硒化锑双结薄膜太阳能电池,其特征在于,所述太阳能电池的结构从上至下依次为:金属正面电极、p型重掺杂黑磷烯薄膜、p型纳米晶硅薄膜、n型纳米晶硅薄膜、本征黑磷烯过渡层、p型硒化锑薄膜、n型反蛋白石结构二氧化钛薄膜、n型重掺杂黑磷烯衬底、金属背面电极。
2.根据权利要求1所述的硒化锑双结薄膜太阳能电池,其特征在于,所述p型纳米晶硅薄膜和n型纳米晶硅薄膜形成第一结电池,其禁带宽度控制在1.4—1.7eV。
3.根据权利要求1所述的硒化锑双结薄膜太阳能电池,其特征在于,所述p型硒化锑薄膜和n型反蛋白石结构二氧化钛薄膜形成第二结电池,其禁带宽度控制在1.0—1.2eV。
4.根据权利要求1所述的硒化锑双结薄膜太阳能电池,其特征在于,所述n型二氧化钛薄膜采用反蛋白石结构,形成具有分等级多孔(介孔和有序大孔)的特殊结构。
5.一种如权利要求1所述的硒化锑双结薄膜太阳能电池的制备方法,其特征在于,将n型重掺杂黑磷烯衬底采用超声波化学清洗,在其上利用液相沉积法制备具有分等级介/大孔结构的反蛋白石n型二氧化钛薄膜;然后在n型反蛋白石结构二氧化钛薄膜上利用肼溶液法沉积p型硒化锑薄膜;接着在p型硒化锑薄膜上,通过化学气相沉积法沉积多原子层本征黑磷烯过渡层;然后采用等离子增强化学气相沉积法在本征黑磷烯过渡层表面依次制备n型与p型纳米晶硅薄膜;接下来在惰性气体保护下,通过化学气相沉积法在p型纳米晶硅表面沉积p型重掺杂黑磷烯薄膜;最后分别在p型重掺杂黑磷烯薄膜表面以及n型重掺杂黑磷烯衬底表面通过丝网印刷法制备金属电极,即制得所需要的硒化锑双结薄膜太阳能电池。
CN201610810669.6A 2016-09-09 2016-09-09 一种硒化锑双结薄膜太阳能电池及其制备方法 Pending CN106684179A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610810669.6A CN106684179A (zh) 2016-09-09 2016-09-09 一种硒化锑双结薄膜太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610810669.6A CN106684179A (zh) 2016-09-09 2016-09-09 一种硒化锑双结薄膜太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN106684179A true CN106684179A (zh) 2017-05-17

Family

ID=58840265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610810669.6A Pending CN106684179A (zh) 2016-09-09 2016-09-09 一种硒化锑双结薄膜太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN106684179A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107871820A (zh) * 2017-12-11 2018-04-03 湖南师范大学 一种以硫化镉作为窗口材料的钙钛矿薄膜太阳能电池及其制备方法
CN108447936A (zh) * 2018-04-21 2018-08-24 东北电力大学 一种锑基双结叠层太阳电池及其制备方法
CN109837514A (zh) * 2017-11-28 2019-06-04 中国科学院金属研究所 一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336434A (zh) * 2011-09-05 2012-02-01 西南科技大学 一种二氧化钛反蛋白石结构有序大孔材料的制备方法
CN203812892U (zh) * 2014-05-09 2014-09-03 湖南师范大学 一种石墨烯纳米晶硅太阳能电池
CN104112602A (zh) * 2014-07-14 2014-10-22 辽宁电能发展股份有限公司 一种反蛋白石复合结构太阳能电池的制备方法
CN104332515A (zh) * 2014-11-04 2015-02-04 湖南师范大学 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102336434A (zh) * 2011-09-05 2012-02-01 西南科技大学 一种二氧化钛反蛋白石结构有序大孔材料的制备方法
CN203812892U (zh) * 2014-05-09 2014-09-03 湖南师范大学 一种石墨烯纳米晶硅太阳能电池
CN104112602A (zh) * 2014-07-14 2014-10-22 辽宁电能发展股份有限公司 一种反蛋白石复合结构太阳能电池的制备方法
CN104332515A (zh) * 2014-11-04 2015-02-04 湖南师范大学 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109837514A (zh) * 2017-11-28 2019-06-04 中国科学院金属研究所 一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法
CN109837514B (zh) * 2017-11-28 2020-10-16 中国科学院金属研究所 一种纳米尺度多孔硒/碲化物薄膜材料及其制备方法
CN107871820A (zh) * 2017-12-11 2018-04-03 湖南师范大学 一种以硫化镉作为窗口材料的钙钛矿薄膜太阳能电池及其制备方法
CN108447936A (zh) * 2018-04-21 2018-08-24 东北电力大学 一种锑基双结叠层太阳电池及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法
CN117727815B (zh) * 2024-02-18 2024-04-23 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
Jang et al. Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer
US20110237019A1 (en) Method for Improving the Efficiency of Flexible Organic Solar Cells
CN105609643A (zh) 一种钙钛矿型太阳能电池及制备方法
CN105206690B (zh) 包括多重缓冲层的太阳能电池及其制造方法
US20100218820A1 (en) Solar cell and method of fabricating the same
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法
CN104332515B (zh) 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法
CN106098820B (zh) 一种新型硒化锑薄膜太阳能电池及其制备方法
WO2023115870A1 (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
US20140290739A1 (en) Thin-film solar battery and method of making same
CN102496639B (zh) 等离激元增强型中间带太阳能电池及其光电转换薄膜材料
WO2021238175A1 (zh) 双面透光碲化镉太阳能电池及其制备方法
CN113707735A (zh) 一种新型双面无掺杂异质结太阳电池及其制备方法
JP3519543B2 (ja) 半導体薄膜形成用前駆体及び半導体薄膜の製造方法
CN115172602B (zh) 一种掺杂金属氧化物复合层结构
CN113571594B (zh) 铜铟镓硒电池及其制造方法
KR20180096872A (ko) 광흡수층 조성물, 이를 포함하는 투명태양전지 및 이의 제조방법
KR101908472B1 (ko) 금속 및 화합물 박막 전구체를 이용한 czts계 광흡수층 제조방법
Blanker et al. Monolithic two-terminal hybrid a-Si: H/CIGS tandem cells
Jiang et al. Considerably improved photovoltaic performances of ITO/Si heterojunction solar cells by incorporating hydrogen into near-interface region
CN105144402A (zh) 具有梯度粒度和S:Se比例的光伏器件
CN110867500B (zh) 一种高转换效率的Si/ZnO异质结太阳电池的制备方法
CN107068779B (zh) 一种太阳电池结构及其制备方法
KR101924538B1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517

WD01 Invention patent application deemed withdrawn after publication