WO2021238175A1 - 双面透光碲化镉太阳能电池及其制备方法 - Google Patents

双面透光碲化镉太阳能电池及其制备方法 Download PDF

Info

Publication number
WO2021238175A1
WO2021238175A1 PCT/CN2020/136395 CN2020136395W WO2021238175A1 WO 2021238175 A1 WO2021238175 A1 WO 2021238175A1 CN 2020136395 W CN2020136395 W CN 2020136395W WO 2021238175 A1 WO2021238175 A1 WO 2021238175A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
solar cell
double
conductive layer
layer
Prior art date
Application number
PCT/CN2020/136395
Other languages
English (en)
French (fr)
Inventor
彭寿
王伟
魏晓俊
周文彩
齐帅
于浩
曾红杰
李一哲
张纲
张正
Original Assignee
中国建材国际工程集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建材国际工程集团有限公司 filed Critical 中国建材国际工程集团有限公司
Publication of WO2021238175A1 publication Critical patent/WO2021238175A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/073Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIBVI compound semiconductors, e.g. CdS/CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/543Solar cells from Group II-VI materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a cadmium telluride solar cell, in particular to a double-sided light-transmitting cadmium telluride solar cell and a preparation method thereof.
  • Cadmium telluride (CdTe) solar cells have the advantages of convenient production, light weight, low manufacturing cost, and excellent photoelectric performance. They have received extensive attention from scientific research institutions and enterprises, and CdTe solar cells in many countries have moved from the laboratory research stage. Large-scale industrial production. The theoretical photoelectric conversion efficiency of CdTe solar cells is as high as 28%, and the highest photoelectric conversion efficiency of currently known CdTe solar cells is 22%. Therefore, CdTe solar cells still have a broad space for development.
  • CdTe solar cell is a solar cell based on the heterojunction of p-type cadmium telluride (CdTe) and n-type cadmium sulfide (CdS).
  • General CdTe solar cells include: light-transmitting support substrate, which mainly supports CdTe solar cells, prevents pollution and incident sunlight; transparent conductive oxide layer, which mainly plays the role of light transmission and conduction; CdS window layer, which provides n-type Semiconductor, with p-type CdTe to form a pn junction; CdTe absorption layer, as the main light absorption layer, and form a pn junction with the n-type CdS window layer; the back electrode, draw current.
  • CdTe solar cells light needs to pass through a transparent support substrate (such as glass) and a series of film layers before reaching the CdTe absorption layer, where the light is absorbed and converted into electrical energy.
  • the back electrodes in CdTe solar cells are molybdenum (Mo) metal back electrodes, and the thickness of the Mo metal back electrodes is usually above the micrometer level. Therefore, the existing Mo metal back electrodes are a kind of opaque material layer Therefore, the CdTe absorption layer in the CdTe solar cell cannot absorb sunlight from the back, which reduces the light energy utilization, photoelectric conversion rate and power generation of the CdTe solar cell, especially in areas with strong reflection, such as deserts and Gobi. Wait.
  • Mo molybdenum
  • the purpose of the present invention is to provide a double-sided light-transmitting cadmium telluride solar cell and a preparation method thereof, which is used to solve the problem that the cadmium telluride solar cell can only transmit light on one side in the prior art.
  • Cadmium telluride solar cells have low light energy utilization, photoelectric conversion rate and low power generation.
  • the present invention provides a double-sided light-transmitting cadmium telluride solar cell.
  • the double-sided light-transmitting cadmium telluride solar cell includes:
  • the CdS window layer is located on the surface of the FTO transparent conductive glass
  • the CdTe absorption layer is located on the surface of the CdS window layer;
  • NTO transparent conductive layer located on the surface of the CdTe absorption layer
  • the glass cover is located on the surface of the NTO transparent conductive layer.
  • the FTO transparent conductive glass includes float glass and an FTO transparent conductive layer plated on the surface of the float glass.
  • the FTO transparent conductive layer is a thin film of fluorine-doped tin oxide, and fluorine element replaces the oxide.
  • Part of the oxygen element in tin forms an n-type semiconductor;
  • the NTO transparent conductive layer is a thin film of nitrogen-doped tin oxide, and nitrogen element replaces part of the oxygen element in the tin oxide to form a p-type semiconductor.
  • the FTO transparent conductive layer in the FTO transparent conductive glass is a crystal film layer with a tetragonal rutile structure
  • the NTO transparent conductive layer is a crystal film layer with a tetragonal rutile structure.
  • the thickness range of the FTO transparent conductive glass includes 0.5 mm to 10 mm; the thickness range of the CdS window layer includes 50 nm to 300 nm; the thickness range of the CdTe absorption layer includes 1 ⁇ m to 5 ⁇ m; the NTO transparent conductive glass The thickness of the layer ranges from 50 nm to 500 nm; the thickness of the glass cover plate ranges from 0.5 mm to 10 mm.
  • the invention also provides a method for preparing a double-sided light-transmitting cadmium telluride solar cell, which includes the following steps:
  • a NTO transparent conductive layer is formed by magnetron sputtering
  • a glass cover is encapsulated.
  • the target used in the magnetron sputtering method includes a tin oxide ceramic target or a tin metal target.
  • the atmosphere used in the magnetron sputtering method includes one of nitrogen, a mixed gas of nitrogen and argon, a mixed gas of nitrogen and oxygen, or a mixed gas of nitrogen, argon, and oxygen.
  • the temperature range adopted by the magnetron sputtering method includes 200°C to 700°C.
  • the magnetron sputtering method uses a radio frequency power supply.
  • the FTO transparent conductive layer in the provided FTO transparent conductive glass is a crystalline film layer with a tetragonal rutile structure;
  • the formed NTO transparent conductive layer is a crystalline film layer with a tetragonal rutile structure;
  • the thickness range of the FTO transparent conductive glass includes 0.5mm-10mm;
  • the thickness range of the formed CdS window layer includes 50nm-300nm;
  • the thickness range of the formed CdTe absorption layer includes 1 ⁇ m-5 ⁇ m;
  • the formed NTO transparent conductive glass The thickness of the layer ranges from 50 nm to 500 nm;
  • the thickness of the formed glass cover plate ranges from 0.5 mm to 10 mm.
  • the double-sided light-transmitting cadmium telluride solar cell of the present invention and the preparation method thereof can realize the double-sided light transmission of the CdTe solar cell through the FTO transparent conductive glass and the NTO transparent conductive layer, thereby improving the performance of the CdTe solar cell.
  • the fluorine element in the FTO transparent conductive layer replaces the oxygen element in the tin oxide, it will provide electrons to form an n-type semiconductor, and the nitrogen element in the NTO transparent conductive layer replaces the tin oxide After the oxygen element in the NTO element, it will provide holes to form a p-type semiconductor, so that through the doping of tin oxide, the corresponding carrier concentration can be increased, thereby improving the conductivity of the tin oxide; the NTO transparent conductive layer uses magnetron sputtering
  • the method is simple, and can be realized by simply modifying the existing equipment for producing metal electrodes, which has strong applicability.
  • Fig. 1 shows a schematic diagram of the structure of the double-sided light-transmitting cadmium telluride solar cell in the present invention.
  • Fig. 2 shows a schematic diagram of the process flow for preparing a double-sided light-transmitting cadmium telluride solar cell in the present invention.
  • the double-sided light-transmitting CdTe solar cell includes: FTO transparent conductive glass 1, CdS window layer 2, CdTe absorption layer 3, and NTO transparent conductive layer 4 And glass cover 5; wherein the CdS window layer 2 is located on the surface of the FTO transparent conductive glass 1, the CdTe absorption layer 3 is located on the surface of the CdS window layer 2, and the NTO transparent conductive layer 4 It is located on the surface of the CdTe absorption layer 3, and the glass cover plate 5 is located on the surface of the NTO transparent conductive layer 4.
  • the double-sided light-transmitting CdTe solar cell of this embodiment can realize the double-sided light transmission of the CdTe solar cell through the FTO transparent conductive glass 1 and the NTO transparent conductive layer 4, thereby improving the light energy utilization of the CdTe solar cell Rate, photoelectric conversion rate and power generation.
  • the FTO transparent conductive glass 1 includes float glass and an FTO transparent conductive layer plated on the surface of the float glass.
  • the FTO transparent conductive layer is a thin film of fluorine-doped tin oxide, and the fluorine element replaces the oxide.
  • Part of the oxygen element in tin forms an n-type semiconductor;
  • the NTO transparent conductive layer 4 is a thin film of nitrogen-doped tin oxide, and nitrogen element replaces part of the oxygen element in the tin oxide to form a p-type semiconductor.
  • the fluorine element in the FTO transparent conductive layer can replace the oxygen element in the tin oxide, thereby providing electrons to form an n-type Semiconductor;
  • the nitrogen element can replace the oxygen element in the tin oxide, thereby providing holes to form a p-type semiconductor, so that the tin oxide is doped by the fluorine element and the nitrogen element, respectively,
  • the corresponding carrier concentration can be increased, and the conductivity of tin oxide can be improved, so as to further improve the photoelectric conversion rate and power generation of the CdTe solar cell.
  • the FTO transparent conductive layer in the FTO transparent conductive glass 1 is a crystalline film layer with a tetragonal rutile structure
  • the NTO transparent conductive layer 4 is a crystalline film layer with a tetragonal rutile structure; to further improve the FTO
  • the carrier concentration in the transparent conductive glass 1 and the NTO transparent conductive layer 4 can further improve the conductivity.
  • the thickness range of the FTO transparent conductive glass 1 includes 0.5 mm to 10 mm; the thickness range of the CdS window layer 2 includes 50 nm to 300 nm; the thickness range of the CdTe absorption layer 3 includes 1 ⁇ m to 5 ⁇ m; the NTO The thickness of the transparent conductive layer 4 ranges from 50 nm to 500 nm; the thickness of the glass cover plate 5 ranges from 0.5 mm to 10 mm.
  • the FTO transparent conductive layer can play the role of transmitting light and conducting electrons to block holes, and the float glass can play the role of supporting, preventing pollution and transmitting light.
  • the CdS window layer 2 can transmit light, form a p-n junction and transport electrons;
  • the CdTe absorption layer 3 as the main light-absorbing layer can play a role in absorbing light, forming a p-n junction and transporting holes Function;
  • the NTO transparent conductive layer 4 can play the role of light transmission, conduct holes and block electrons;
  • the glass cover 5 can play the role of light transmission and packaging protection.
  • the present invention replaces the traditional micron-level metal back electrode with the NTO transparent conductive layer 4 with a nano-level thickness.
  • the thickness of the FTO transparent conductive glass 1 may include 1 mm, 5 mm, 8 mm, etc.
  • the thickness of the CdS window layer 2 may include 100 nm, 150 mm, 200 nm, 300 nm, etc.
  • the thickness of the CdTe absorption layer 3 may include 2 ⁇ m. , 2.5 ⁇ m, 3 ⁇ m, etc.
  • the thickness of the NTO transparent conductive layer 4 may include 100 nm, 250 nm, 300 nm, 500 nm, etc.
  • the thickness of the glass cover 5 may include 0.5 mm, 1 mm, 5 mm, 10 mm, etc.
  • this embodiment also provides a method for preparing a double-sided light-transmitting CdTe solar cell, which includes the following steps:
  • an NTO transparent conductive layer 4 is formed by magnetron sputtering
  • a glass cover plate 5 is encapsulated.
  • the double-sided light-transmitting CdTe solar cell prepared by this method may include the above-mentioned double-sided light-transmitting CdTe solar cell, but it is not limited to this, and the preparation method of the above-mentioned double-sided light-transmitting CdTe solar cell is not limited to Limited to this.
  • the double-sided light-transmitting CdTe solar cell in this embodiment is prepared by the magnetron sputtering method when preparing the NTO transparent conductive layer 4.
  • the method is simple and only needs to be applied to the existing equipment for producing metal electrodes. It can be realized by simple modification.
  • the molybdenum metal target can be replaced with a tin oxide ceramic target or a tin metal target
  • the argon gas in the chamber can be replaced with a mixed gas containing nitrogen
  • the DC power supply can be changed to a radio frequency power supply
  • heating can be added
  • the device is sufficient, so it has strong applicability.
  • the target material used in the magnetron sputtering method may include a tin oxide ceramic target or a tin metal target;
  • the atmosphere used in the magnetron sputtering method includes nitrogen, a mixed gas of nitrogen and argon, nitrogen and One of a mixed gas of oxygen, or a mixed gas of nitrogen, argon, and oxygen;
  • the temperature range adopted by the magnetron sputtering method includes 200°C to 700°C; the magnetron sputtering method uses a radio frequency power supply.
  • the FTO transparent conductive layer in the provided FTO transparent conductive glass 1 is a crystalline film layer with a tetragonal rutile structure
  • the formed NTO transparent conductive layer 4 is a crystalline film layer with a tetragonal rutile structure
  • the thickness range of the FTO transparent conductive glass 1 includes 0.5 mm to 10 mm
  • the thickness range of the formed CdS window layer 2 includes 50 nm to 300 nm
  • the thickness range of the formed CdTe absorption layer 3 includes 1 ⁇ m to 5 ⁇ m
  • the thickness of the NTO transparent conductive layer 4 ranges from 50 nm to 500 nm
  • the thickness of the formed glass cover plate 5 ranges from 0.5 mm to 10 mm.
  • This embodiment is a double-sided light-transmitting CdTe solar cell. As shown in Figure 1, it includes FTO transparent conductive glass 1, CdS window layer 2, CdTe absorption layer 3, NTO transparent conductive layer 4, and glass cover from bottom to top. 5.
  • the preparation process is as follows:
  • step b Take out the sample in step b), and deposit the NTO transparent conductive layer 4 by magnetron sputtering.
  • the preparation process parameters and processes are as follows:
  • the sputtering power is 100W
  • the pre-sputtering is 10min.
  • step d) Using a POE packaging material, the sample in step c) and the glass cover 5 are laminated and packaged to complete the preparation of the double-sided light-transmitting CdTe solar cell of this embodiment to obtain the double-sided light-transmitting CdTe solar cell Battery.
  • This embodiment provides another method for preparing a double-sided light-transmitting CdTe solar cell, as shown in FIG. 1, which includes FTO transparent conductive glass 1, CdS window layer 2, CdTe absorption layer 3, and NTO transparent conductive glass from bottom to top. Layer 4 and glass cover 5.
  • the preparation process is as follows:
  • step b Take out the sample in step b), and deposit the NTO transparent conductive layer 4 by magnetron sputtering.
  • the preparation process parameters and processes are as follows:
  • the tin metal target is selected, the sputtering gas is Ar, O 2 and N 2 in a ratio of 5:3:2, and the radio frequency power supply is selected.
  • the sputtering power is 150W
  • the pre-sputtering is 10min.
  • step c) Using EVA packaging material, the sample in step c) is laminated and packaged with the glass cover 5 to complete the preparation of the double-sided light-transmitting CdTe solar cell of this embodiment to obtain the double-sided light-transmitting CdTe solar cell Battery.
  • the NTO transparent conductive layer 4 with a nanometer-level thickness is used as the back electrode of the CdTe solar cell, which can realize the double-sided light transmission effect of the CdTe cell, which is beneficial to improve the light energy utilization rate and photoelectricity of the CdTe solar cell.
  • the conversion rate and power generation capacity are simple, easy to operate, and completely repeatable and controllable.
  • the double-sided light-transmitting cadmium telluride solar cell of the present invention and the preparation method thereof can realize the double-sided light transmission of the CdTe solar cell through the FTO transparent conductive glass and the NTO transparent conductive layer, thereby improving the CdTe solar cell
  • the fluorine element in the transparent conductive layer of FTO will replace part of the oxygen element in the tin oxide, which will provide electrons to form an n-type semiconductor
  • the nitrogen element in the transparent conductive layer of NTO will replace After part of the oxygen element in tin oxide, it will provide holes to form a p-type semiconductor, so that through the doping of tin oxide, the corresponding carrier concentration can be increased, thereby improving the conductivity of tin oxide
  • NTO transparent conductive layer adopts
  • the preparation method of magnetron sputtering method is simple, and can be realized only by simple modification of the existing equipment for producing metal electrodes, thereby having strong applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

一种双面透光碲化镉太阳能电池及其制备方法,通过FTO透明导电玻璃(1)及NTO透明导电层(4),可实现CdTe太阳能电池的双面透光,从而可提高CdTe太阳能电池的光能利用率、光电转化率及发电量;FTO透明导电层中氟元素取代氧化锡中的部分氧元素后,会形成n型半导体,NTO透明导电层(4)中氮元素取代氧化锡中的部分氧元素后,会形成p型半导体,从而通过对氧化锡的掺杂,可以增加相应的载流子浓度,进而提高氧化锡的导电性能;NTO透明导电层(4)采用磁控溅射法制备,方法简单,且只需对现有的生产金属电极的设备进行简单的改造即可实现,从而具有较强的适用性。

Description

双面透光碲化镉太阳能电池及其制备方法 技术领域
本发明涉及碲化镉太阳能电池,特别是涉及一种双面透光碲化镉太阳能电池及其制备方法。
背景技术
碲化镉(CdTe)太阳能电池,具有制作方便、质量轻、制造成本低及光电性能优异等优势,受到科研机构及企业的广泛关注,并且许多国家的CdTe太阳能电池已由实验室研究阶段开始走向规模工业化生产。CdTe太阳能电池的理论光电转化效率高达28%,目前已知的CdTe太阳能电池的最高光电转化效率为22%,因此,CdTe太阳能电池仍具有广阔的发展空间。
CdTe太阳能电池,是一种以p型碲化镉(CdTe)和n型硫化镉(CdS)的异质结为基础的太阳能电池。一般CdTe太阳能电池包括:透光支撑衬底,主要对CdTe太阳能电池起支架、防止污染和入射太阳光的作用;透明导电氧化层,主要起透光和导电的作用;CdS窗口层,提供n型半导体,以与p型CdTe组成p-n结;CdTe吸收层,作为主体吸光层,并与n型的CdS窗口层形成p-n结;背电极,引出电流。在CdTe太阳能电池中,光需要通过透光支撑衬底(如玻璃)及一系列膜层后,到达CdTe吸收层,进而光被吸收,并转化成电能。
目前,CdTe太阳能电池中的背电极多为钼(Mo)金属背电极,而Mo金属背电极的厚度通常在微米级以上,因此,现有的Mo金属背电极是一种不透光的材料层,从而CdTe太阳能电池中的CdTe吸收层无法从背面吸收太阳光,这就降低了CdTe太阳能电池的光能利用率、光电转化率及发电量,尤其是在反射比较强的地区,如沙漠、戈壁等。
因此,开发一种双面透光碲化镉太阳能电池及其制备方法,以提高碲化镉太阳能电池的光能利用率、光电转化率及发电量,实属必要。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种双面透光碲化镉太阳能电池及其制备方法,用于解决现有技术中碲化镉太阳能电池仅能单面透光,碲化镉太阳能电池的光能利用率、光电转化率及发电量较低的问题。
为实现上述目的及其他相关目的,本发明提供一种双面透光碲化镉太阳能电池,所述双面透光碲化镉太阳能电池包括:
FTO透明导电玻璃;
CdS窗口层,位于所述FTO透明导电玻璃的表面上;
CdTe吸收层,位于所述CdS窗口层的表面上;
NTO透明导电层,位于所述CdTe吸收层的表面上;
玻璃盖板,位于所述NTO透明导电层的表面上。
可选地,所述FTO透明导电玻璃包括浮法玻璃及镀在所述浮法玻璃表面上的FTO透明导电层,所述FTO透明导电层为氟掺杂氧化锡的薄膜,且氟元素取代氧化锡中的部分氧元素形成n型半导体;所述NTO透明导电层为氮掺杂氧化锡的薄膜,且氮元素取代氧化锡中的部分氧元素形成p型半导体。
可选地,所述FTO透明导电玻璃中的FTO透明导电层为四方相金红石结构的晶体膜层;所述NTO透明导电层为四方相金红石结构的晶体膜层。
可选地,所述FTO透明导电玻璃的厚度范围包括0.5mm~10mm;所述CdS窗口层的厚度范围包括50nm~300nm;所述CdTe吸收层的厚度范围包括1μm~5μm;所述NTO透明导电层的厚度范围包括50nm~500nm;所述玻璃盖板的厚度范围包括0.5mm~10mm。
本发明还提供一种双面透光碲化镉太阳能电池的制备方法,包括以下步骤:
提供FTO透明导电玻璃;
于所述FTO透明导电玻璃的表面上,形成CdS窗口层;
于所述CdS窗口层的表面上,形成CdTe吸收层;
于所述CdTe吸收层的表面上,通过磁控溅射法,形成NTO透明导电层;
于所述NTO透明导电层的表面上,封装玻璃盖板。
可选地,所述磁控溅射法所采用的靶材包括氧化锡陶瓷靶或锡金属靶。
可选地,所述磁控溅射法所采用的气氛包括氮气、氮气与氩气的混合气体、氮气与氧气的混合气体、或氮气与氩气及氧气的混合气体中的一种。
可选地,所述磁控溅射法所采用的温度范围包括200℃~700℃。
可选地,所述磁控溅射法采用射频电源。
可选地,提供的所述FTO透明导电玻璃中的FTO透明导电层为四方相金红石结构的晶体膜层;形成的所述NTO透明导电层为四方相金红石结构的晶体膜层;提供的所述FTO透明导电玻璃的厚度范围包括0.5mm~10mm;形成的所述CdS窗口层的厚度范围包括50nm~300nm;形成的所述CdTe吸收层的厚度范围包括1μm~5μm;形成的所述NTO透明导电层的厚度范围包括50nm~500nm;形成的所述玻璃盖板的厚度范围包括0.5mm~10mm。
如上所述,本发明的双面透光碲化镉太阳能电池及其制备方法,通过FTO透明导电玻璃及NTO透明导电层,可实现CdTe太阳能电池的双面透光,从而可提高CdTe太阳能电池的光能利用率、光电转化率及发电量;进一步的,FTO透明导电层中氟元素取代氧化锡中的氧元素后,会提供电子,形成n型半导体,NTO透明导电层中氮元素取代氧化锡中的氧元素后,会提供空穴,形成p型半导体,从而通过对氧化锡的掺杂,可以增加相应的载流子浓度,进而提高氧化锡的导电性能;NTO透明导电层采用磁控溅射法制备,方法简单,且只需对现有的生产金属电极的设备进行简单的改造即可实现,从而具有较强的适用性。
附图说明
图1显示为本发明中的双面透光碲化镉太阳能电池的结构示意图。
图2显示为本发明中制备双面透光碲化镉太阳能电池的工艺流程示意图。
元件标号说明
1                      FTO透明导电玻璃
2                      CdS窗口层
3                      CdTe吸收层
4                      NTO透明导电层
5                      玻璃盖板
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图1及图2。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
参阅图1,本实施例提供一种双面透光CdTe太阳能电池,所述双面透光CdTe太阳能电池包括:FTO透明导电玻璃1、CdS窗口层2、CdTe吸收层3、NTO透明导电层4及玻璃盖板5;其中,所述CdS窗口层2位于所述FTO透明导电玻璃1的表面上,所述CdTe吸收层 3位于所述CdS窗口层2的表面上,所述NTO透明导电层4位于所述CdTe吸收层3的表面上,所述玻璃盖板5位于所述NTO透明导电层4的表面上。
本实施例的所述双面透光CdTe太阳能电池,通过所述FTO透明导电玻璃1及NTO透明导电层4,可实现CdTe太阳能电池的双面透光,从而可提高CdTe太阳能电池的光能利用率、光电转化率及发电量。
作为示例,所述FTO透明导电玻璃1包括浮法玻璃及镀在所述浮法玻璃表面上的FTO透明导电层,所述FTO透明导电层为氟掺杂氧化锡的薄膜,且氟元素取代氧化锡中的部分氧元素形成n型半导体;所述NTO透明导电层4为氮掺杂氧化锡的薄膜,且氮元素取代氧化锡中的部分氧元素形成p型半导体。
具体的,在所述FTO透明导电玻璃1中,当采用所述FTO透明导电层时,所述FTO透明导电层中的氟元素可取代氧化锡中的氧元素,从而提供电子,以形成n型半导体;在所述NTO透明导电层4中,氮元素可取代氧化锡中的氧元素,从而会提供空穴,以形成p型半导体,从而分别通过氟元素及氮元素对氧化锡的掺杂,可以增加相应的载流子浓度,进而可提高氧化锡的导电性能,以进一步的提高CdTe太阳能电池的光电转化率及发电量。
作为示例,所述FTO透明导电玻璃1中的FTO透明导电层为四方相金红石结构的晶体膜层;所述NTO透明导电层4为四方相金红石结构的晶体膜层;以进一步的提高所述FTO透明导电玻璃1及NTO透明导电层4中的载流子浓度,从而可进一步的提高导电性能。
作为示例,所述FTO透明导电玻璃1的厚度范围包括0.5mm~10mm;所述CdS窗口层2的厚度范围包括50nm~300nm;所述CdTe吸收层3的厚度范围包括1μm~5μm;所述NTO透明导电层4的厚度范围包括50nm~500nm;所述玻璃盖板5的厚度范围包括0.5mm~10mm。
具体的,在所述FTO透明导电玻璃1中,所述FTO透明导电层可起到透光、导电子阻空穴的作用,所述浮法玻璃可起到支撑、防止污染及透光的作用;所述CdS窗口层2可起到透光、形成p‐n结且传输电子的作用;所述CdTe吸收层3作为主体吸光层,可起到吸光、形成p‐n结且传输空穴的作用;所述NTO透明导电层4可起到透光、导空穴阻电子的作用;所述玻璃盖板5可起到透光及封装保护作用。本发明通过纳米级厚度的所述NTO透明导电层4取代传统的微米级厚度的金属背电极。其中,所述FTO透明导电玻璃1的厚度可包括1mm、5mm、8mm等,所述CdS窗口层2的厚度可包括100nm、150mm、200nm、300nm等,所述CdTe吸收层3的厚度可括2μm、2.5μm、3μm等;所述NTO透明导电层4的厚度可包括100nm、250nm、300nm、500nm等;所述玻璃盖板5的厚度可包括0.5mm、1mm、5mm、10mm等。
参阅图2,本实施例还提供一种双面透光CdTe太阳能电池的制备方法,包括以下步骤:
提供FTO透明导电玻璃1;
于所述FTO透明导电玻璃1的表面上,形成CdS窗口层2;
于所述CdS窗口层2的表面上,形成CdTe吸收层3;
于所述CdTe吸收层3的表面上,通过磁控溅射法,形成NTO透明导电层4;
于所述NTO透明导电层4的表面上,封装玻璃盖板5。
具体的,该方法所制备的双面透光CdTe太阳能电池可包括上述的双面透光CdTe太阳能电池,但并非局限于此,且上述的双面透光CdTe太阳能电池的制备方法,也并非仅局限于此。
本实施例中的所述双面透光CdTe太阳能电池,在制备所述NTO透明导电层4时,采用磁控溅射法制备,该方法简单,且只需对现有的生产金属电极的设备进行简单的改造即可实现,如可将钼金属靶材更换成氧化锡陶瓷靶或锡金属靶,将腔室内的氩气更换成含有氮气的混合气体,将直流电源改为射频电源,增设加热装置即可,从而具有较强的适用性。
作为示例,所述磁控溅射法所采用的靶材可包括氧化锡陶瓷靶或锡金属靶;所述磁控溅射法所采用的气氛包括氮气、氮气与氩气的混合气体、氮气与氧气的混合气体、或氮气与氩气及氧气的混合气体中的一种;所述磁控溅射法所采用的温度范围包括200℃~700℃;所述磁控溅射法采用射频电源。
作为示例,提供的所述FTO透明导电玻璃1中的FTO透明导电层为四方相金红石结构的晶体膜层;形成的所述NTO透明导电层4为四方相金红石结构的晶体膜层;提供的所述FTO透明导电玻璃1的厚度范围包括0.5mm~10mm;形成的所述CdS窗口层2的厚度范围包括50nm~300nm;形成的所述CdTe吸收层3的厚度范围包括1μm~5μm;形成的所述NTO透明导电层4的厚度范围包括50nm~500nm;形成的所述玻璃盖板5的厚度范围包括0.5mm~10mm。
下面将结合具体的实施例,对本发明的所述双面透光CdTe太阳能电池及其制备方法进行进一步说明,但关于所述双面透光CdTe太阳能电池及其制备方法,并非局限于以下实施例。
实施例一
本实施例为双面透光CdTe太阳能电池,如图1所示,自下而上依次包括:FTO透明导电玻璃1、CdS窗口层2、CdTe吸收层3、NTO透明导电层4及玻璃盖板5。
制备工序如下:
a)提供3.2mm厚的所述FTO透明导电玻璃1,在去离子水中利用毛刷清洗干净,并用 风刀吹干;
b)在清洗干净的所述FTO透明导电玻璃1的上表面,通过近空间升华法,在沉积温度为250℃的条件下,沉积50nm厚的CdS窗口层2,并在沉积温度为500℃的条件下,沉积2μm厚的CdTe吸收层3。
c)将工序b)中的样品取出,利用磁控溅射法,进行所述NTO透明导电层4的沉积,其制备工艺参数及过程如下:
1)镀膜前,利用机械泵和分子泵将镀膜腔室抽真空至1×10 -3Pa以下。
2)选用氧化锡陶瓷靶、溅射气体采用比例为7:3的Ar和N 2,并选用射频电源。
3)通入Ar和N 2混合气体,调节气压为10Pa。
4)调节靶距为5cm。
5)启动加热装置,升温至400℃。
6)开启射频电源,溅射功率为100W,预溅射10min。
7)镀膜20min后取出样品。
d)采用POE封装材料,将工序c)中的样品与玻璃盖板5进行层压封装,完成本实施例的所述双面透光CdTe太阳能电池的制备,获得所述双面透光CdTe太阳能电池。
实施例二
本实施例提供另一种双面透光CdTe太阳能电池的制备方法,如图1所示,自下而上依次包括:FTO透明导电玻璃1、CdS窗口层2、CdTe吸收层3、NTO透明导电层4及玻璃盖板5。
制备工序如下:
a)提供2.5mm厚的所述FTO透明导电玻璃1,在无水酒精中超声处理10min,并用氮气吹干;
b)在清洗干净的所述FTO透明导电玻璃1的表面上,通过气相输运法,在沉积温度为300℃的条件下,沉积100nm厚的CdS窗口层2,并在沉积温度为400℃的条件下,沉积2μm厚的CdTe吸收层3。
c)将工序b)中的样品取出,利用磁控溅射法,进行所述NTO透明导电层4的沉积,其制备工艺参数及过程如下:
1)镀膜前,利用机械泵和分子泵将镀膜腔室抽真空至1×10 -3Pa以下。
2)选用锡金属靶、溅射气体采用比例为5:3:2的Ar、O 2和N 2,并选用射频电源。
3)通入Ar、O 2和N 2的混合气体,调节气压为8Pa。
4)启动加热装置,升温至500℃。
5)调节靶距为3cm。
6)开启射频电源,溅射功率为150W,预溅射10min。
7)镀膜15min后取出样品。
d)采用EVA封装材料,将工序c)中的样品与玻璃盖板5进行层压封装,完成本实施例的所述双面透光CdTe太阳能电池的制备,获得所述双面透光CdTe太阳能电池。
上述实施例中,采用纳米级厚度的所述NTO透明导电层4作为CdTe太阳能电池的背电极,可实现CdTe电池的双面透光的作用,有利于提高CdTe太阳能电池的光能利用率、光电转化率及发电量,制备方法简单、易于操作、完全重复可控。
综上所述,本发明的双面透光碲化镉太阳能电池及其制备方法,通过FTO透明导电玻璃及NTO透明导电层,可实现CdTe太阳能电池的双面透光,从而可提高CdTe太阳能电池的光能利用率、光电转化率及发电量;进一步的,FTO透明导电层中氟元素取代氧化锡中的部分氧元素后,会提供电子,形成n型半导体,NTO透明导电层中氮元素取代氧化锡中的部分氧元素后,会提供空穴,形成p型半导体,从而通过对氧化锡的掺杂,可以增加相应的载流子浓度,进而提高氧化锡的导电性能;NTO透明导电层采用磁控溅射法制备,方法简单,且只需对现有的生产金属电极的设备进行简单的改造即可实现,从而具有较强的适用性。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

  1. 一种双面透光碲化镉太阳能电池,其特征在于,所述双面透光碲化镉太阳能电池包括:
    FTO透明导电玻璃;
    CdS窗口层,位于所述FTO透明导电玻璃的表面上;
    CdTe吸收层,位于所述CdS窗口层的表面上;
    NTO透明导电层,位于所述CdTe吸收层的表面上;
    玻璃盖板,位于所述NTO透明导电层的表面上。
  2. 根据权利要求1所述的双面透光碲化镉太阳能电池,其特征在于:所述FTO透明导电玻璃包括浮法玻璃及镀在所述浮法玻璃表面上的FTO透明导电层,所述FTO透明导电层为氟掺杂氧化锡的薄膜,且氟元素取代氧化锡中的部分氧元素形成n型半导体;所述NTO透明导电层为氮掺杂氧化锡的薄膜,且氮元素取代氧化锡中的部分氧元素形成p型半导体。
  3. 根据权利要求1所述的双面透光碲化镉太阳能电池,其特征在于:所述FTO透明导电玻璃中的FTO透明导电层为四方相金红石结构的晶体膜层;所述NTO透明导电层为四方相金红石结构的晶体膜层。
  4. 根据权利要求1所述的双面透光碲化镉太阳能电池,其特征在于:所述FTO透明导电玻璃的厚度范围包括0.5mm~10mm;所述CdS窗口层的厚度范围包括50nm~300nm;所述CdTe吸收层的厚度范围包括1μm~5μm;所述NTO透明导电层的厚度范围包括50nm~500nm;所述玻璃盖板的厚度范围包括0.5mm~10mm。
  5. 一种双面透光碲化镉太阳能电池的制备方法,其特征在于,包括以下步骤:
    提供FTO透明导电玻璃;
    于所述FTO透明导电玻璃的表面上,形成CdS窗口层;
    于所述CdS窗口层的表面上,形成CdTe吸收层;
    于所述CdTe吸收层的表面上,通过磁控溅射法,形成NTO透明导电层;
    于所述NTO透明导电层的表面上,封装玻璃盖板。
  6. 根据权利要求5所述的双面透光碲化镉太阳能电池的制备方法,其特征在于:所述磁控溅射法所采用的靶材包括氧化锡陶瓷靶或锡金属靶。
  7. 根据权利要求5所述的双面透光碲化镉太阳能电池的制备方法,其特征在于:所述磁控溅射法所采用的气氛包括氮气、氮气与氩气的混合气体、氮气与氧气的混合气体、或氮气与氩气及氧气的混合气体中的一种。
  8. 根据权利要求5所述的双面透光碲化镉太阳能电池的制备方法,其特征在于:所述磁控溅射法所采用的温度范围包括200℃~700℃。
  9. 根据权利要求5所述的双面透光碲化镉太阳能电池的制备方法,其特征在于:所述磁控溅射法采用射频电源。
  10. 根据权利要求5所述的双面透光碲化镉太阳能电池的制备方法,其特征在于:提供的所述FTO透明导电玻璃中的FTO透明导电层为四方相金红石结构的晶体膜层;形成的所述NTO透明导电层为四方相金红石结构的晶体膜层;提供的所述FTO透明导电玻璃的厚度范围包括0.5mm~10mm;形成的所述CdS窗口层的厚度范围包括50nm~300nm;形成的所述CdTe吸收层的厚度范围包括1μm~5μm;形成的所述NTO透明导电层的厚度范围包括50nm~500nm;形成的所述玻璃盖板的厚度范围包括0.5mm~10mm。
PCT/CN2020/136395 2020-05-25 2020-12-15 双面透光碲化镉太阳能电池及其制备方法 WO2021238175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010451054.5 2020-05-25
CN202010451054.5A CN111697085A (zh) 2020-05-25 2020-05-25 双面透光碲化镉太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
WO2021238175A1 true WO2021238175A1 (zh) 2021-12-02

Family

ID=72478243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136395 WO2021238175A1 (zh) 2020-05-25 2020-12-15 双面透光碲化镉太阳能电池及其制备方法

Country Status (2)

Country Link
CN (1) CN111697085A (zh)
WO (1) WO2021238175A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111697085A (zh) * 2020-05-25 2020-09-22 中国建材国际工程集团有限公司 双面透光碲化镉太阳能电池及其制备方法
CN114361293B (zh) * 2021-12-29 2024-01-26 中国建材国际工程集团有限公司 一种双面发电CdTe太阳电池及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060910A1 (en) * 2010-09-13 2012-03-15 University Of Central Florida Electrode structure, method and applications
CN206532786U (zh) * 2016-10-27 2017-09-29 惠州比亚迪实业有限公司 一种太阳能电池
CN111129174A (zh) * 2019-12-17 2020-05-08 中国建材国际工程集团有限公司 Nto透明导电基板及其制备方法
CN111697085A (zh) * 2020-05-25 2020-09-22 中国建材国际工程集团有限公司 双面透光碲化镉太阳能电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205881920U (zh) * 2016-07-14 2017-01-11 盐城普兰特新能源有限公司 一种碲化镉薄膜太阳能电池及其模块
CN107180880B (zh) * 2017-05-23 2019-08-27 北京大学深圳研究生院 一种超薄半透明薄膜太阳能电池及其制备方法
CN108172640B (zh) * 2017-12-28 2021-01-22 成都中建材光电材料有限公司 一种双面发电的碲化镉薄膜太阳能电池及其制备方法
CN110544729A (zh) * 2019-08-09 2019-12-06 中山瑞科新能源有限公司 一种CdTe双面太阳能电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120060910A1 (en) * 2010-09-13 2012-03-15 University Of Central Florida Electrode structure, method and applications
CN206532786U (zh) * 2016-10-27 2017-09-29 惠州比亚迪实业有限公司 一种太阳能电池
CN111129174A (zh) * 2019-12-17 2020-05-08 中国建材国际工程集团有限公司 Nto透明导电基板及其制备方法
CN111697085A (zh) * 2020-05-25 2020-09-22 中国建材国际工程集团有限公司 双面透光碲化镉太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN111697085A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
Wang et al. 27%‐Efficiency four‐terminal perovskite/silicon tandem solar cells by sandwiched gold nanomesh
CN207320169U (zh) 一种渐变带隙的钙钛矿电池
CN106558650A (zh) 一种柔性铜铟镓硒/钙钛矿叠层太阳能电池的制备方法
CN106340570B (zh) 一种用于制作透明导电氧化物薄膜的镀膜设备及镀膜方法
CN110335945B (zh) 一种双电子传输层无机钙钛矿太阳能电池及其制法和应用
CN104993059A (zh) 一种硅基钙钛矿异质结太阳电池及其制备方法
WO2021238175A1 (zh) 双面透光碲化镉太阳能电池及其制备方法
CN111403519A (zh) 一种自封装叠层光电器件及其制备方法
CN106229411A (zh) 一种背光基底的钙钛矿太阳电池及其制备方法
CN110416328A (zh) 一种hjt电池及其制备方法
Xu et al. Top transparent electrodes for fabricating semitransparent organic and perovskite solar cells
Waleed et al. Performance improvement of solution-processed CdS/CdTe solar cells with a thin compact TiO 2 buffer layer
CN107394044B (zh) 一种导电电极和电子传输层的钙钛矿太阳电池及制备方法
CN209963073U (zh) 一种新型高效率双面入光CdTe钙钛矿叠层光伏电池
CN110416413B (zh) 一种高性能梯度电子传输层的钙钛矿太阳电池及其制备方法
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法
CN111668340B (zh) 一种Cd3Cl2O2薄膜及其制备方法和薄膜太阳能电池
CN115188891A (zh) 一种钙钛矿太阳能电池及其制备方法
CN104600146A (zh) 一种双面薄膜太阳能电池
CN111326659B (zh) 一种金属透明电极及有机太阳能电池
CN112420929A (zh) 一种以掺杂铯的二氧化锡薄膜为电子传输层的钙钛矿太阳能电池及其制备方法
CN208570618U (zh) 一种太阳能电池
CN108538937B (zh) 一种太阳电池及其制备方法
CN111211231A (zh) 一种基于半透明量子点太阳能电池及其制备方法
CN112234106A (zh) 金属tco叠层薄膜及其制备方法和hit太阳能电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937880

Country of ref document: EP

Kind code of ref document: A1