CN105144402A - 具有梯度粒度和S:Se比例的光伏器件 - Google Patents

具有梯度粒度和S:Se比例的光伏器件 Download PDF

Info

Publication number
CN105144402A
CN105144402A CN201480015130.0A CN201480015130A CN105144402A CN 105144402 A CN105144402 A CN 105144402A CN 201480015130 A CN201480015130 A CN 201480015130A CN 105144402 A CN105144402 A CN 105144402A
Authority
CN
China
Prior art keywords
substrate
described substrate
particle
liu district
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201480015130.0A
Other languages
English (en)
Inventor
斯蒂芬·怀特莱格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoco Technologies Ltd
Original Assignee
Nanoco Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoco Technologies Ltd filed Critical Nanoco Technologies Ltd
Publication of CN105144402A publication Critical patent/CN105144402A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02474Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02469Group 12/16 materials
    • H01L21/02477Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02485Other chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02557Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/0256Selenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Photovoltaic Devices (AREA)

Abstract

在本文中所公开的是置于基板上的CIGS系光子吸收层。所述光子吸收层可用于光伏器件中。所述光子吸收层由具有经验式AB1-xB’xC2-yC’y的半导体材料制成,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C和C’独立地为S或Se,并且其中0≤x≤1;且0≤y≤2。所述半导体材料的粒度和所述半导体材料的组成二者均作为沿着所述层的深度的函数而变化。在本文中所描述的层展现出改善的光伏性能,包括增加的分流电阻和减小的背面电荷载流子复合。

Description

具有梯度粒度和S:Se比例的光伏器件
发明领域
本发明涉及用于制造CIGS光伏(PV)器件的方法。
背景
世界对电力的需求现在超过了15TW,并且该需求的绝大多数是通过消耗油(5.3TW)、煤(4.2TW)和天然气(3.5TW)的形式的化石燃料满足的。目前,太阳能仅提供0.004TW,但是地球每天从太阳接收超过120,000TW的电力,这意味着通过用效率仅为10%的太阳能电池覆盖地球表面的0.125%就可以满足地球的电力需求。
对于普遍接受来说,光伏电池(“PV电池”,亦称作太阳能电池)通常需要以与化石燃料竞争的成本发电。为了降低这些成本,太阳能电池优选具有低材料成本和制造成本,连同增加的光电转化效率。
在作为在下一代太阳能电池中用作吸收剂的潜在候选物而研究的各种材料中,黄铜矿系材料(Cu(In&/或Ga)(Se&、任选的S)2,在本文中统称为“CIGS”)已经显示出巨大前景并且已经吸引了相当大的兴趣。CuInS2(1.5eV)和CuInSe2(1.1eV)的带隙与太阳光谱良好地匹配,因此基于这些材料的光伏器件可以是高效的。
当前CIGS薄膜太阳能电池的制造方法包括昂贵的蒸镀技术,阻碍了它们的大规模市场采用。随着对更清洁的能源的需求增加,当务之急是寻找新形式的低成本太阳能。为了满足该需求并且解决目前在太阳能电池的生产中使用的气相沉积的高能量和高成本,已经开发了一系列新型的含有铜、铟、镓和硒(CIS、CGS和CIGS)的不同组成的纳米粒子,其可以用于制造具有良好效率的低成本太阳能电池。
对于那些常规技术来说更低成本的方案是通过下列方式形成薄膜:使用溶液相沉积技术将CIGS材料的粒子沉积至基板上,并且之后将所述粒子熔化或熔合至薄膜中,以使粒子聚结形成大型砂目化薄膜。为了使用CIGS型粒子(即,CIGS或类似的材料)形成薄半导体膜,CIGS型粒子优选具有允许它们形成大型砂目化薄膜的某些性能。粒子优选是小的。较小的粒子通常封装得更紧密,这促进了粒子在熔化时的聚结(coalescence)。此外,窄的尺寸分布是重要的。粒子的熔点与粒径有关,并且窄的尺寸分布促进均匀的熔化温度,得到均匀、高质量(均匀分布、良好的电性能)的膜。
对于在CIGS半导体层的基于溶液的合成中使用来说,CIGS系纳米粒子是有前景的候选物。这种纳米粒子通常尺寸为数纳米的量级并且可以以高单分散度制造。
这些CIGS纳米粒子可以以所需的元素比例或化学计量从“头”开始合成以满足特定的需求。可以使用大范围的充分理解的打印技术或辊对辊工艺(roll-to-rollprocesses)将纳米粒子印制至基板上。在一些情况下,需要用有机配体(在本文中被称为封端剂)将半导体纳米粒子的表面改性,以使它们与用于将粒子沉积在基板上的溶剂或墨水相容。一旦印刷,即将纳米粒子加热以移除有机封端剂,这破坏了与纳米粒子相关的量子限制并且使得p型半导体膜拥有所需的晶体结构。
然而,存在改进用于使用CIGS系纳米粒子形成用于PV用途的吸收剂层的方法和材料的空间。例如,背面复合(backsiderecombination)降低了短路电流密度(Jsc)和开路电压(Voc)。此外,薄PV膜可以展现出低分流电阻,引起Voc的抑制。尽管在CIGS层的情况下大多数光子吸收在前1um中发生,当前的膜需要厚的吸收剂层(>2um)和过量的材料以克服这些不足。因此需要提高使用CIGS系纳米粒子制造的PV膜的性能的方法。
概述
本公开提供了克服以上讨论的一种或多种不足的CIGS系吸收剂层。在本文中所公开的是置于基板如钼基板上的CIGS系光子吸收层。所述光子吸收层由具有经验式AB1-xB’xC2-yC’y的半导体材料制成,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C和C’独立地为S或Se,并且其中0≤x≤1;且0≤y≤2。光子吸收层包括至少一个富硫区和至少一个贫硫区。通常,吸收剂层的最靠近基板的区域富含硫,而其他区域也可以富含硫。例如,S∶Se比例可以作为沿着吸收剂层的深度的函数而增加,在最远离基板的表面处具有最小的S∶Se并且在靠近基板处具有最大的S∶Se。备选地,S∶Se比例可以在最远离基板的表面处大,在吸收剂层的中间最小并且在靠近基板处也是大的。
此外,在远离基板的表面附近的半导体材料的颗粒大于在靠近基板的表面附近的颗粒。通常,远离基板的颗粒为靠近基板的颗粒的尺寸的至少十倍。
还公开了制造这种吸收剂层的方法。所公开的吸收剂层具有改善的光伏性能,包括增加的分流电阻(rsh)和最小的背面电荷载流子复合。
附图描述
图1示出了PV器件的组件。
图2示出了单梯度吸收剂层中的Se∶S浓度梯度。
图3示出了按照本文中描述制备的单梯度吸收剂层中的粒度梯度。
图4示出了双梯度PV器件中的Se∶S浓度梯度。
图5示出了按照本文中描述制备的双梯度吸收剂层中的粒度梯度。
图6是CuInSSePV器件的SEM显微照片。CuInSSe层显示出在顶层中的大晶体和在底层中的小晶体。
图7示出了按照本文中描述制备的梯度PV电池的电流-电压特征。
描述
如在本文中所使用的,“CIGS”和“CIGS型”可互换地使用并且每一个均是指由式AB1-xB’xC2-yC’y表示的材料,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C和C’独立地为S、Se或Te,0≤x≤1;且0≤y≤2。实例材料包括CuInSe2;CuInxGa1-xSe2;CuGaSe2;ZnInSe2;ZnInxGa1-xSe2;ZnGa2Se2;AgInSe2;AgInxGa1-xSe2;AgGaSe2;CuInSe2-ySy;CuInxGa1-xSe2-ySy;CuGaSe2-ySy;ZnInSe2-ySy;ZnInxGa1-xSe2-ySy;ZnGaSe2-ySy;AgInSe2-ySy;AgInxGa1-xSe2-ySy;和AgGaSe2-ySy,其中≤x≤1;且0≤y≤2。
图1是基于CIGS吸收层的示例性PV器件100的各层的示意图。示例性的层置于载体101上。这些层是:基底层102(通常为钼)、CIGS吸收层103、硫化镉层104、氧化铝锌层105和铝接触层106。本领域技术人员将会理解,CIGS系PV器件可以包括比图1中所示的更多或更少的层。
载体101基本上可以是任何类型的能够支持层102-106的刚性或半刚性材料。实例包括玻璃、硅和可卷曲(rollable)材料如塑料。基底层102置于载体层101上,从而为PV器件提供电接触并且促进CIGS吸收层103与载体层的粘合。已经发现钼尤其适合作为基底层102。
通常使用溅射技术,例如,用氩离子轰击钼源以将钼溅射至靶(如载体101),制备钼基板。可以通过增加或减少Ar溅射气体的加工压力来调节所得到的钼膜的密度。在较高的Ar压力(>10毫托)下,溅射的Mo原子与工艺气体的碰撞降低了Mo原子的能量,从而增加了平均自由行程并且增加了Mo原子冲击靶的角度。这导致张力的积累,增加了所得到的Mo膜的孔隙和晶间间距。降低Ar压力使得所得到的Mo膜变得孔更少并且更紧密地封装。随着Ar压力进一步降低,在抗张应力达到最大之后,压缩力占据上风。已经观察到以这种方式制备的高密度膜具有低电阻率(<1x10-4Ω-cm),但是膜中的应变(strain)导致它们具有与载体/靶差的粘合。
CIGS吸收层103可以包括一个或多个Cu、In和/或Ga、Se和/或S的层。CIGS吸收层可以是在整个层中均匀化学计量的,或者备选地,Cu、In和/或Ga、Se和/或S的化学计量在整个层中可以变化。根据一个实施方案,In与Ga的比率可以作为层内的深度的函数而变化。同样地,在层内Se与S的比率可以变化。
根据图1中所示的实施方案,CIGS吸收层103是p-型半导体。因此,可以有利地在PV电池100内包括n-型半导体层104。适合的n-型半导体的实例包括CdS。
顶部电极105优选为透明导体,如氧化铟锡(ITO)或氧化铝锌(AZO)。可以通过金属触点106提供与顶部电极105的接触,例如,所述金属触点106基本上可以是任何金属,例如,如铝、镍或其合金。
在2008年11月26日提交的并且作为公开号US2009/0139574公开的美国专利申请号12/324,354中以及在2013年10月22日授权的专利号8,563,348中描述了在基板上沉积CIGS层的方法,二者的全部内容通过引用结合在本文中。简而言之,可以通过下列方式在基板上形成CIGS层:将CIGS型纳米粒子分散在墨水组合物中,并且使用墨水组合物在基板上形成膜。在墨水组合物中使用的CIGS材料通常是由式AB1-xB’xSe2-yCy表示的纳米粒子,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C是S或Te,0≤x≤1;并且0≤y≤2(注意,如果>0,则B’B)。通常,A是Cu,B和B’是In或Ga,并且C是S。
在沉积一个或多个CIGS膜层之后,然后将膜退火以得到CIGS材料层。美国专利公开号2009/0139574描述了在静态和动态惰性气氛如氮二者下的退火。然而,反应性气氛也可以用于CIGS膜的退火。例如,Se倾向于在退火期间从膜中喷射出。因此含Se的膜可以在含Se的气氛如H2Se下退火以维持或调节膜中Se的浓度。此外,在通过在含Se气氛下将含S的膜退火的退火期间,Se可以代替膜中的S。换句话说,墨水中的纳米粒子属于具有式AB1-xB’xSe2-yCy的第一材料,并且利用反应性退火来处理得到的层,以将该层转化为具有根据AB1-xB’xSe2-yCy的不同式的不同材料。例如,纳米粒子可以具有式CuInS2,并且可以用气态Se处理所得到的CuInS2层以用硒代替一些硫,得到CuInSe2-ySy层。已经发现,因为当Se代替S原子时膜的体积膨胀,使用含Se气氛将含S的膜退火有助于膜中大颗粒的形成。体积膨胀的程度为约14%。
在CuIn[Ga]S纳米粒子膜中通过在富硒气氛中加热以用Se代替S得到了作为膜内深度的函数的Se∶S比例。作为深度(即,朝向Mo电极)的函数,相对S浓度增加并且Se浓度降低,原因在于,在退火期间Se必须通过膜扩散以便代替S。这种梯度在图2中示出。具有如在图2中示出的梯度的吸收剂膜,即其中Se的相对量作为深度的函数而降低,被称为单梯度结构。注意,仅出于图示目的而将图2绘制为线性函数;该函数并非必须是线性的。已经发现,在作为深度的函数的Se∶S比例中引入单梯度关系减少了该吸收剂层内的背面复合。这部分是因为组成梯度在材料的带隙中引入了梯度。富S材料具有较高的带隙;因此膜的带隙朝向Mo电极增加。在Mo电极附近的增加的带隙可以被认为“反射”将另外有助于背面复合的电子。
由于用Se代替S引起晶体的晶胞中的膨胀,在Se气氛的存在下烧结含硫材料也可以引起晶体生长和致密化。因此,如在图3中示出的,粒度也作为深度的函数而降低。通常,使晶粒生长最大化被认为是合乎需要的,因为这样做使晶界最小化。晶界通常妨碍材料中的载流子迁移(carriermobility)。然而,已经发现,在Mo电极附近的较小导电晶体增加了电池的分流电阻(rsh),增加了电池的填充因数(FF)。
Se∶S梯度和粒度梯度二者均可以受退火时间、退火温度、前体粒子化学计量和退火气体组成(即,退火气氛可以使Se富集)控制。如在本文中所描述的,对晶体尺寸和带隙二者的控制,作为CIGS吸收剂层内的深度的函数,是用于制造高效太阳能电池的有力工具。在本文中所公开的方法使得器件在整个吸收剂层的体积中具有大的颗粒,这提供了较少的晶界,以及因此高的载流子迁移率。然而,在Mo电极附近较小、较密集填充的颗粒提供了增加的rsh。此外,在Mo附近的较高带隙材料(即,富S材料)导致减少的背面复合。那些因素中的每一个均有助于提高太阳能电池的性能。
通常,整个电池中的粒度分布与反应性退火之后的Se浓度相关。图6示出了按照以下实施例中描述制备的吸收剂层的SEM图像。简而言之,将使用CuInS2纳米晶体制备的膜在富Se气氛中退火。在退火后得到的膜具有:拥有非常大的颗粒的区域601,以及拥有小颗粒的区域602。区域601和区域602分别与高Se浓度区域和低Se浓度区域对应。根据某些实施方案,大颗粒区域中的颗粒可以为小颗粒区域中颗粒尺寸的五或十倍。粒度差异甚至可以大于十倍。
如在图4中示出的,通过使用Se和S两种退火气氛并且在退火过程期间控制相对大气含量,可以在Se/S廓线中得到凹口形(notched)的梯度。例如,可以首先将膜在富Se气氛中退火并且之后进一步在富S气氛中退火。
具有图4中示出的Se∶S廓线的膜被称为双梯度结构,并且由于在吸收剂层的两个边缘处存在较高带隙材料,具有减少的背面复合和增加的Voc。由于在吸收剂层的底部(Mo电极界面)存在较小的、不易导电的晶体,这种结构还具有较高的rsh。稍微意外的是,在整个吸收剂层中的晶体尺寸分布仍然与对于单梯度结构所观察的晶体尺寸分布相似(比较图5与图3)。
在以下实施例中进一步例示出了在本文中所描述的方法。
实施例
按照以下所述制备如在图1中所示的PV器件。
Mo玻璃基板制备。使用涂钼的钠钙玻璃(2.5x2.5cm)作为基板。在Mo沉积前,使用洗涤剂如清洗玻璃基板,随后用水漂洗,并且用丙酮和异丙醇进一步清洗,接下来进行UV臭氧处理。在4mT的压力下,在Ar中,用40W的功率,通过RF溅射,涂布1000um钼。
CuInS2纳米粒子层的涂布。基本上按照以上提到的申请人的共同拥有的专利申请公开号2009/0139574中的描述制备CuInS2纳米粒子。通过在手套箱中利用干燥氮气氛旋涂,将CuInS2的薄膜流延至基板上。使用多层技术在基板上沉积CuInS2膜。使用总计11个CuInS2纳米粒子层制造1um厚的纳米粒子层。使用在甲苯中100mg/ml的溶液将第一层流延至基板上;使用200mg/ml溶液流延所有随后的层。
对于每个层来说,在经由0.2μmPTFE过滤器固定的同时,将CuInS2纳米粒子墨水珠沉积至基板上。之后以3000rpm将基板旋转40秒。之后将样品转移至260℃的热板5分钟,之后转移至400℃的热板5分钟;之后转移至冷板>1分钟。对每个CuInS2层重复该过程。
反应性退火CuInS纳米粒子层。使用管式炉将1umCuInS2纳米粒子膜在含有H2Se:N2的气氛(~5重量%H2Se)中退火。加热廓线以10℃/分钟上升,停留在500℃60分钟;使用空气辅助冷却以~5℃/分钟冷却。H2Se流在400℃打开和关闭。当H2Se关闭时,管式炉中的气氛为100%N2。将膜在KCN溶液(10重量%)中蚀刻3分钟。将基板在空气中使用180℃的热板焙烧10分钟。图6示出了得到的器件的SEM显微照片。CuInSSe层显示出在顶层中的大晶体和在底层中的小晶体。使用二次离子质谱法(SIMS)的PV器件的深度廓线表明,硒的浓度作为深度的函数降低,并且硫的浓度作为深度的函数增加。大颗粒区域601和小颗粒区域602之间的边界603对应于使硫浓度增加和使硒浓度降低的拐点。铜和铟的浓度在整个膜中基本上是均匀的。
额外器件层的沉积。通过化学浴法在吸收剂层的顶部上沉积硫化镉缓冲层(大约70nm厚度)。在硫化镉缓冲层的顶部上溅射涂布厚度为600nm的铝掺杂的氧化锌(2重量%Al)的导电窗口层。之后使用遮光板将ZnO:Al层图案化,之后使用遮光板和真空蒸镀在ZnO:Al窗口的顶部上沉积导电铝网格。最终PV器件的有效面积是0.2cm2
得到的太阳能电池具有在本身负载在钠玻璃衬底基板上的1um的钼层上的~1um的p-型CuInSSe层。在CIGS层的顶部上设置薄的70nm的n-型CdS层,在其上已经沉积了600nm的具有设置在其上的200nmAl触点的ZnO:Al层(2重量%)7。
器件性能。在暗条件和光条件下测量按照以上所述制造的太阳能电池的电流/电压特征。对于光条件,与AM1.5G滤光器一起使用Newport太阳模拟器。将输出校准为1030W/m2。结果在图7中示出。

Claims (15)

1.一种光伏器件组件,所述光伏器件组件包括:
基板,以及
光子吸收层,所述光子吸收层置于所述基板上,并且具有靠近所述基板的表面和远离所述基板的表面,所述光子吸收层包括具有经验式AB1-xB’xC2-yC’y的半导体材料的颗粒,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C和C’独立地为S或Se,并且其中0≤x≤1;且0≤y≤2,其中所述光子吸收层包括至少一个富硫区和至少一个贫硫区,并且其中在远离所述基板的所述表面附近的所述半导体材料的颗粒大于在靠近所述基板的所述表面附近的颗粒。
2.根据权利要求1所述的组件,其中至少一个富硫区比任何贫硫区更靠近所述基板。
3.根据权利要求1所述的组件,其中所述光子吸收层包括在靠近所述基板的所述表面附近的第一富硫区,在远离所述基板的所述表面附近的第二富硫区,以及在所述第一富硫区和第二富硫区之间的贫硫区。
4.根据权利要求1所述的组件,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒具有比靠近所述基板的半导体颗粒的尺寸大至少十倍的尺寸。
5.根据权利要求1所述的组件,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒具有比靠近所述基板的半导体颗粒的尺寸大至少五倍的尺寸。
6.根据权利要求1所述的组件,其中在靠近所述基板的所述表面附近的所述半导体材料具有比远离所述基板的所述表面附近的半导体材料大的带隙。
7.根据权利要求1所述的组件,其中所述基板包括钼。
8.根据权利要求1所述的组件,所述组件还包括选自由氧化铟锡和氧化铝锌组成的组的材料的透明电极。
9.根据权利要求1所述的组件,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒尺寸为至少200nm。
10.根据权利要求1所述的组件,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒尺寸为至少600nm。
11.一种制造光子吸收层的方法,所述方法包括:
提供基板和一个或多个墨水组合物,所述墨水组合物包括具有经验式AB1-xB’xC2-yC’y的半导体材料的纳米粒子,其中A是Cu、Zn、Ag或Cd;B和B’独立地为Al、In或Ga;C和C’独立地为S或Se,并且其中0≤x≤1;且0≤y≤2;
将一个或多个所述墨水组合物层印制到所述基板上;
将所述基板和所述墨水组合物层在包含硒的气氛中退火,以形成具有靠近所述基板的表面和远离所述基板的表面并且包括所述半导体材料的颗粒的半导体层,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒大于在靠近所述基板的所述表面附近的颗粒,并且其中所述半导体层包括至少一个富硫区和至少一个贫硫区。
12.根据权利要求11所述的方法,其中至少一个富硫区比任何贫硫区更靠近所述基板。
13.根据权利要求11所述的方法,所述方法还包括将所述半导体层在包含硫的气氛中退火,以得到在靠近所述基板的所述表面附近的第一富硫区,在远离所述基板的所述表面附近的第二富硫区,以及在所述第一富硫区和第二富硫区之间的贫硫区。
14.根据权利要求11所述的方法,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒具有比靠近所述基板的半导体颗粒的尺寸大至少十倍的尺寸。
15.根据权利要求11所述的方法,其中在远离所述基板的所述表面附近的所述半导体材料的颗粒具有比靠近所述基板的半导体颗粒的尺寸大至少五倍的尺寸。
CN201480015130.0A 2013-03-15 2014-03-14 具有梯度粒度和S:Se比例的光伏器件 Pending CN105144402A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361798068P 2013-03-15 2013-03-15
US61/798,068 2013-03-15
PCT/IB2014/001132 WO2014140897A2 (en) 2013-03-15 2014-03-14 Pv device with graded grain size and s:se ratio

Publications (1)

Publication Number Publication Date
CN105144402A true CN105144402A (zh) 2015-12-09

Family

ID=51176412

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480015130.0A Pending CN105144402A (zh) 2013-03-15 2014-03-14 具有梯度粒度和S:Se比例的光伏器件

Country Status (7)

Country Link
US (1) US20140261651A1 (zh)
EP (1) EP2973732A2 (zh)
JP (2) JP2016510179A (zh)
KR (1) KR101807118B1 (zh)
CN (1) CN105144402A (zh)
HK (1) HK1212815A1 (zh)
WO (1) WO2014140897A2 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111495A1 (ja) * 2012-01-27 2013-08-01 京セラ株式会社 光電変換装置
CN111640820B (zh) * 2020-06-02 2023-06-13 东北师范大学 一种简便的用于改善铜锌锡硫硒薄膜光伏器件背接触的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material
CN102099929A (zh) * 2008-05-19 2011-06-15 法国圣戈班玻璃厂有限公司 用于太阳能电池的层系统
CN102318077A (zh) * 2009-09-29 2012-01-11 京瓷株式会社 光电转换装置
US20120168910A1 (en) * 2011-01-05 2012-07-05 Jackrel David B Multi-nary group ib and via based semiconductor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563348B2 (en) 2007-04-18 2013-10-22 Nanoco Technologies Ltd. Fabrication of electrically active films based on multiple layers
KR20100073717A (ko) * 2008-12-23 2010-07-01 삼성전자주식회사 태양전지 및 그 제조 방법
JP2012515708A (ja) * 2009-01-21 2012-07-12 パデュー リサーチ ファンデーション CuInS2ナノ粒子を含む前駆体層のセレン化
JP5673236B2 (ja) * 2010-03-17 2015-02-18 株式会社リコー 薄膜太陽電池及びその製造方法
EP2565934B1 (en) 2010-04-27 2018-11-07 Kyocera Corporation Photoelectric conversion device
CN102870223B (zh) 2010-06-30 2015-06-10 京瓷株式会社 光电转换装置
JPWO2012043242A1 (ja) 2010-09-29 2014-02-06 京セラ株式会社 光電変換装置および光電変換装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090139574A1 (en) * 2007-11-30 2009-06-04 Nanoco Technologies Limited Preparation of nanoparticle material
CN102099929A (zh) * 2008-05-19 2011-06-15 法国圣戈班玻璃厂有限公司 用于太阳能电池的层系统
CN102318077A (zh) * 2009-09-29 2012-01-11 京瓷株式会社 光电转换装置
US20120168910A1 (en) * 2011-01-05 2012-07-05 Jackrel David B Multi-nary group ib and via based semiconductor

Also Published As

Publication number Publication date
WO2014140897A3 (en) 2014-12-04
KR20150123856A (ko) 2015-11-04
JP2016510179A (ja) 2016-04-04
EP2973732A2 (en) 2016-01-20
HK1212815A1 (zh) 2016-06-17
US20140261651A1 (en) 2014-09-18
WO2014140897A2 (en) 2014-09-18
KR101807118B1 (ko) 2017-12-08
JP2018110242A (ja) 2018-07-12

Similar Documents

Publication Publication Date Title
Efaz et al. A review of primary technologies of thin-film solar cells
Cao et al. Towards high efficiency inverted Sb2Se3 thin film solar cells
Yuan et al. Efficient planar antimony sulfide thin film photovoltaics with large grain and preferential growth
Zhang et al. High efficiency solution-processed thin-film Cu (In, Ga)(Se, S) 2 solar cells
Minnam Reddy et al. Perspectives on SnSe-based thin film solar cells: a comprehensive review
US8373060B2 (en) Semiconductor grain microstructures for photovoltaic cells
US8426722B2 (en) Semiconductor grain and oxide layer for photovoltaic cells
CN102201479B (zh) 薄膜光伏电池
US20110048524A1 (en) Thin film solar cell and method of manufacturing the same
CN104813482B (zh) 用于cigs光伏器件的钼基材
KR20130016528A (ko) 태양전지용 CZT(S,Se)계 박막의 제조방법 및 그 방법에 의해 제조된 CZT(S,Se)계 박막
Cho et al. Carbon layer reduction via a hybrid ink of binary nanoparticles in non-vacuum-processed CuInSe2 thin films
KR100809427B1 (ko) 광전 변환 소자 및 이의 제조 방법
US20120180858A1 (en) Method for making semiconducting film and photovoltaic device
CN104810429A (zh) 制造包括具有表面层的吸收层的光伏器件的方法
CN105144402A (zh) 具有梯度粒度和S:Se比例的光伏器件
Yang et al. Role of zinc tin oxide passivation layer at back electrode interface in improving efficiency of Cu2ZnSn (S, Se) 4 solar cells
KR101708282B1 (ko) CZTSe계 박막을 이용한 태양전지 및 이의 제조 방법
Yoshioka et al. The effect of TiO2 microstructure and introduction of silver nanoparticles on conversion efficiency of Sb2S3 sensitized semiconductor solar cells
KR102015985B1 (ko) 태양전지용 cigs 박막의 제조방법
KR102057234B1 (ko) Cigs 박막 태양전지의 제조방법 및 이의 방법으로 제조된 cigs 박막 태양전지
Alkhayat et al. Study of Degradation of Cu (In, Ga) Se 2 Solar Cell Parameters due to Temperature
KR101131008B1 (ko) Se 또는 S계 박막태양전지 및 그 제조방법
KR20090065894A (ko) 탠덤 구조 cigs 태양전지 및 그 제조방법
Basak et al. Antimony Chalcogenides Based Thin-Film Solar Cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151209

RJ01 Rejection of invention patent application after publication