CN110867500B - 一种高转换效率的Si/ZnO异质结太阳电池的制备方法 - Google Patents

一种高转换效率的Si/ZnO异质结太阳电池的制备方法 Download PDF

Info

Publication number
CN110867500B
CN110867500B CN201910994256.1A CN201910994256A CN110867500B CN 110867500 B CN110867500 B CN 110867500B CN 201910994256 A CN201910994256 A CN 201910994256A CN 110867500 B CN110867500 B CN 110867500B
Authority
CN
China
Prior art keywords
solar cell
preparing
zno
conversion efficiency
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910994256.1A
Other languages
English (en)
Other versions
CN110867500A (zh
Inventor
杨平
刘志响
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201910994256.1A priority Critical patent/CN110867500B/zh
Publication of CN110867500A publication Critical patent/CN110867500A/zh
Application granted granted Critical
Publication of CN110867500B publication Critical patent/CN110867500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明提供了一种高转换效率的Si/ZnO异质结太阳电池的制备方法,依次包括以下步骤:1)清洗硅片;2)制备中间层薄膜;3)氧化退火;4)制备AZO薄膜;5)制备背电极;6)安装掩模板;7)制备前电极;8)移除掩模板;9)还原退火,形成太阳能电池,p‑Si/n‑ZnO结构的太阳能电池以硅片作为衬底,中间层薄膜,正面N型AZO薄膜,前电极和背电极,各太阳能电池结构均采用磁控溅射技术,工艺简单,成本低,操作方便;采用的界面修饰方法简单,工艺过程及手段,操作方便,成本低;采用该界面修饰方法后能提高Si/ZnO异质结太阳电池转换效率。

Description

一种高转换效率的Si/ZnO异质结太阳电池的制备方法
技术领域
本发明涉及太阳能技术领域,具体涉及一种高转换效率的Si/ZnO异质结太阳电池的制备方法。
背景技术
Si/ZnO异质结具有原材料丰富、低成本、工艺简单和绿色和拓宽光谱等优点,非常适合太阳电池领域,此外,Si/ZnO异质结构还广泛其他领域,比如光电二极管、UV探测器、卷积器、声学材料、油墨印制光电器件、气敏传感器和锂离子电池等。Si/ZnO异质结构的广泛应用,促使ZnO与先进成熟Si技术集成在一起。Si/ZnO异质结是电子电路的基本和核心构件,是微/纳光/电子器件关键核心部件,器件性主要受Si/ZnO异质结的影响。美国学者Kozarsky E制备Si/ZnO异质结太阳电池,开路电压Voc=360mV,短路电流密度Jsc=28.26mA/cm2,效率η=5.91%。俄罗斯学者Untila G制备Si/ZnO异质结太阳电池,效率η=8.3%。目前Si/ZnO太阳电池转换效率偏低,主要受Si/ZnO界面影响,影响其进一步应用。
发明内容
本发明的目的在于针对现有技术的不足之处,提供一种高转换效率的Si/ZnO异质结太阳电池的制备方法,提高了Si/ZnO异质结太阳电池转换效率。
本发明解决上述问题的技术方案为:一种高转换效率的Si/ZnO异质结太阳电池的制备方法,依次包括以下步骤:
第一步:清洗硅片:取硅片,进行清洗;
第二步:制备中间层薄膜:在清洗好的硅片的一侧,采用磁控溅射技术,使用本征氧化锌混合制备中间层薄膜;
第三步:制备AZO薄膜:在中间层薄膜远离硅片的一侧,使用Al2O3掺杂ZnO靶材,采用磁控溅射技术,沉积AZO薄膜;
第四步:制备背电极:在硅片远离中间层薄膜的一侧,采用磁控溅射技术,制备背电极;
第五步:安装掩模板:在AZO薄膜远离中间层薄膜的一侧,安装掩模板;
第六步:制备前电极:采用磁控溅射技术,基于掩模板在AZO薄膜表面上制备前电极;
第七步:移除掩模板:待前电极制备完成之后,将掩模板移除,得到异质结太阳电池半成品;
第八步:还原退火:将太阳电池半成品进行还原退火形成异质结太阳电池。
进一步的,在第二步中采用磁控溅射制备AZO薄膜时,衬底温度是50-300℃。
进一步的,在进行制备AZO薄膜之前将制备好的中间层薄膜进行氧化退火。
进一步的,第三步氧化退火时,退火温度是300~600℃,保温时间20~60min,然后随炉冷却。
进一步的,在第四步中采用磁控溅射制备AZO薄膜时,衬底温度是50-300℃。
进一步的,在第五步中采用磁控溅射制备背电极时,衬底温度是50-300℃。
进一步的,在第七步中采用磁控溅射制备前电极时,衬底温度是50-300℃。
进一步的,所述前电极是“山”字形状。
进一步的,在第七步还原退火中,退火温度是300-600℃,保温时间20-60min,然后随炉冷。
进一步的,所述硅片厚度是180-300μm,所述中间层薄膜厚度为10~200nm,所述AZO薄膜厚度是150~400nm,所述背电极厚度是50-300nm,所述前电极厚度是40-200nm;
进一步的,在第三步制备AZO薄膜时采用的ZnO的质量占ZnO和Al2O3质量总和的98%。
本发明具有有益效果:
本发明提供了一种高转换效率的Si/ZnO异质结太阳电池的制备方法,各太阳电池结构均采用磁控溅射技术,工艺简单,成本低,操作方便;采用的界面修饰方法简单,工艺过程及手段,操作方便,成本低;Si表面沉积ZnO薄膜形成中间层薄膜,这样Si表面与ZnO薄膜就会形成接触密集区I和空白区II,接触密集区I能防止Si的表面完全被氧化,避免Si表面完全被氧化和AZO薄膜有较大的晶格失配和热失配,从而提高转换效率;在空白区II内氧浓度很高,经过氧化退火之后,空白区II的Si表面可以被充分氧化,II区空白区内被硅氧化合物填充,大幅度降低Si/ZnO界面相互扩散,能抑制Si/ZnO界面相互作用,从而大大提高转换效率。
附图说明
图1是本发明中实施例2中Si/ZnO异质结太阳电池的制备方法流程图。
图2是Si/ZnO异质结太阳电池剖面图。
图3是中间层薄膜退火还原之前的结构示意图。
图4是中间层薄膜退火还原之后的结构示意图。
图5是不同还原退火温度下AZO薄膜的透光度对比图。
图6是玻璃衬底上ZnO薄膜和AZO薄膜的透射性能对比图。
图7是ZnO薄膜和AZO薄膜的光学带隙对比图。
图中:1-前电极,2-AZO薄膜,3-中间层薄膜,4-P型Si(100)晶片,5-背电极。
具体实施方式
下面结合附图及具体实施方式对本发明作进一步的说明。
实施例1:
一种高转换效率的Si/ZnO异质结太阳电池的制备方法:如图2所示,该Si/ZnO异质结太阳电池以P型Si(100)晶片作为衬底4,中间层薄膜3,正面N型AZO薄膜2,前电极1和背电极5,制备方法依次包括以下步骤:
第一步:取P型Si(100)晶片,分别采用丙酮、无水乙醇和去离子水各清洗20分钟,P型Si(100)晶片厚度是240μm;
第二步:将清洗好的P型Si(100)晶片放入镀膜腔室内,衬底温度为100℃,在P型Si(100)晶片的一侧,采用磁控溅射技术,使用本征氧化锌制备中间层薄膜,中间层薄膜厚度为30nm;
第三步:将中间层薄膜放入镀膜腔室内,衬底温度是100℃,在中间层薄膜远离P型Si(100)晶片的一侧,使用Al2O3掺杂ZnO靶材,采用磁控溅射技术,沉积形成AZO薄膜,AZO薄膜厚度是200nm,其中ZnO的质量占ZnO和Al2O3质量总和的98%;
第四步:在P型Si(100)晶片远离中间层薄膜的一侧,采用磁控溅射技术,衬底温度是100℃,使用铝制备背电极,背电极厚度是80nm;
第五步:在AZO薄膜远离中间层薄膜的一侧,安装掩模板,所需的掩模版的图案设计基于前电极所需图案的要求;
第六步:采用磁控溅射技术,衬底温度是100℃,基于掩模板使用铬和Al掺杂ZnO制备前电极,前电极是“山”字形状,前电极厚度是70nm;
第七步:前电极制备完成之后,将掩模板移除,得到太阳电池半成品;
第八步:将太阳电池半成品进行还原退火,退火温度是500℃,保温时间30min,然后随炉冷却形成的Si/ZnO异质结构太阳电池。
采用中国科学院苏州纳米技术与纳米仿生研究所光伏测试平台,测试条件为:光源的辐照度1000W/m2,标准的AM1.5太阳光谱分布,测试温度25±2℃;
本实施例制备的Si/ZnO异质结太阳电池的开路电压Voc=179.1mV,短路电流密度Isc=17.3mA·cm-2,转换效率是η=13.15%。
实施例2:
一种高转换效率的Si/ZnO异质结太阳电池的制备方法,如图1所示,依次包括以下步骤:
第一步:取P型Si(100)晶片,分别采用丙酮、无水乙醇和去离子水各清洗20分钟,P型Si(100)晶片厚度是240μm;
第二步:将清洗好的P型Si(100)晶片放入镀膜腔室内,衬底温度为100℃,在P型Si(100)晶片的一侧,采用磁控溅射技术,使用本征氧化锌制备中间层薄膜,中间层薄膜厚度为30nm;
第三步:将制备好的中间层薄膜进行氧化退火,退火温度是500℃,保温时间30min,然后随炉冷却;
第四步:将中间层薄膜放入镀膜腔室内,衬底温度是50-300℃,在中间层薄膜远离P型Si(100)晶片的一侧,使用Al2O3掺杂ZnO靶材,采用磁控溅射技术,沉积形成AZO薄膜,AZO薄膜厚度是200nm,其中ZnO的质量占ZnO和Al2O3质量总和的98%;
第五步:在P型Si(100)晶片远离中间层薄膜的一侧,采用磁控溅射技术,衬底温度是100℃,使用铝制备背电极,背电极厚度是80nm;
第六步:在AZO薄膜远离中间层薄膜的一侧,安装掩模板,所需的掩模版的图案设计基于前电极所需图案的要求;
第七步:采用磁控溅射技术,衬底温度是100℃,基于掩模板内使用铬和Al掺杂ZnO制备前电极,前电极是“山”字形状,前电极厚度是70nm;
第八步:前电极制备完成之后,将掩模板移除,得到太阳电池半成品;
第九步:将太阳电池半成品进行还原退火,退火温度是分别选400℃、500℃和600℃,保温时间30min,然后随炉冷却形成Si/ZnO结构的太阳电池。
采用中国科学院苏州纳米技术与纳米仿生研究所光伏测试平台,测试条件为:光源的辐照度1000W/m2,标准的AM1.5太阳光谱分布,测试温度25±2℃;
本实施例制备的Si/ZnO异质结太阳电池的开路电压Voc=393.2mV,短路电流密度Isc=20.2mA·cm-2,转换效率是η=18.86%。
采用该制备方法后,Si/ZnO异质结太阳电池转换效率有显著提高,氧化退火之前的中间层薄膜结构如图3所示,Si表面沉积ZnO薄膜形成中间层薄膜,这样Si表面与ZnO薄膜就会形成接触密集区I和空白区II,接触密集区I能防止Si的表面完全被氧化,避免Si表面完全被氧化和AZO薄膜有较大的晶格失配和热失配,从而提高转换效率;在空白区II内氧浓度很高,经过氧化退火之后,空白区II的Si表面可以被充分氧化,II区空白区内被硅氧化合物填充,大幅度降低Si/ZnO界面相互扩散,能抑制Si/ZnO界面相互作用,从而大大提高转换效率。
衬底温度是100℃,使用Al掺杂ZnO,采用磁控溅射技术,沉积形成AZO薄膜,并将AZO薄膜在不同温度下进行还原退火进行性能测试,图5是不同还原退火温度下Al掺杂ZnO薄膜的FTIR图,500℃还原退火后Al已置换Zn位置存在于ZnO中,且Si与ZnO界面相互作用比较弱,透光性能更好。
衬底温度100℃,还原退火温度是500℃,采用磁控溅射技术,制备Si基ZnO薄膜和Si基AZO薄膜,表1是Si基ZnO薄膜和Si基AZO薄膜的霍尔参数对比表。
表1 Si基薄膜的霍尔参数
Figure BDA0002239256820000051
图6是玻璃衬底上ZnO薄膜和AZO薄膜的透射性能对比图,可以看出200-700nm波长范围内,AZO薄膜的透射性能显著提高,尤其是在400-700nm范围内,AZO薄膜的透射率大于90%,图7是ZnO薄膜和AZO薄膜的光学带隙对比图,ZnO带隙是3.37eV,AZO带隙是3.36eV,相比ZnO带隙,有所减小,这是因为Al掺杂使ZnO导带底向费米能级移动,Al的掺入极大降低了ZnO薄膜的电阻率,载流子浓度和霍尔迁移率都显著升高,说明Al掺杂可以大大改善ZnO薄膜的电学性质。
综上,制备衬底温度100℃,还原退火温度是500℃,可以得到高质量AZO薄膜。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (10)

1.一种高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:依次包括以下步骤:
第一步:清洗硅片:取硅片,进行清洗;
第二步:制备中间层薄膜:在清洗好的硅片的一侧,采用磁控溅射技术,使用本征氧化锌制备中间层薄膜;
第三步:制备AZO薄膜:在中间层薄膜远离硅片的一侧,使用Al2O3掺杂ZnO靶材,采用磁控溅射技术,沉积AZO薄膜;
第四步:制备背电极:在硅片远离中间层薄膜的一侧,采用磁控溅射技术,制备背电极;
第五步:安装掩模板:在AZO薄膜远离中间层薄膜的一侧,安装掩模板;
第六步:制备前电极:采用磁控溅射技术,基于掩模板在AZO薄膜表面上制备前电极;
第七步:移除掩模板:待前电极制备完成之后,将掩模板移除,得到异质结太阳电池半成品;
第八步:还原退火:将太阳电池半成品进行还原退火形成异质结太阳电池;
其中,在第二步制备中间层薄膜后,Si表面与ZnO薄膜就会形成接触密集区I和空白区II,接触密集区I用于防止Si的表面完全被氧化,空白区II内氧浓度很高,经过氧化退火之后,空白区II的Si表面可以被充分氧化,II区空白区内被硅氧化合物填充。
2.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:所述前电极是“山”字形状。
3.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:在进行制备AZO薄膜之前将制备好的中间层薄膜进行氧化退火。
4.如权利要求3所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:对中间层薄膜进行氧化退火时,退火温度是300~600℃,保温时间20~60min,然后随炉冷却。
5.如权利要求4所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:对中间层薄膜进行氧化退火时,退火温度是500℃。
6.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:在第七步还原退火中,退火温度是300-600℃,保温时间20-60min,然后随炉冷却。
7.如权利要求6所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:在第七步还原退火中,退火温度是500℃。
8.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:在各步骤采用磁控溅射技术时,衬底温度是50-300℃。
9.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:所述硅片厚度是180-300μm,所述中间层薄膜厚度为10~200nm,所述AZO薄膜厚度是150~400nm,所述背电极厚度是50-300nm,所述前电极厚度是40-200nm。
10.如权利要求1所述的高转换效率的Si/ZnO异质结太阳电池的制备方法,其特征在于:在第三步制备AZO薄膜时采用的ZnO的质量占ZnO和Al2O3质量总和的98%。
CN201910994256.1A 2019-10-18 2019-10-18 一种高转换效率的Si/ZnO异质结太阳电池的制备方法 Active CN110867500B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910994256.1A CN110867500B (zh) 2019-10-18 2019-10-18 一种高转换效率的Si/ZnO异质结太阳电池的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910994256.1A CN110867500B (zh) 2019-10-18 2019-10-18 一种高转换效率的Si/ZnO异质结太阳电池的制备方法

Publications (2)

Publication Number Publication Date
CN110867500A CN110867500A (zh) 2020-03-06
CN110867500B true CN110867500B (zh) 2022-05-20

Family

ID=69652635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910994256.1A Active CN110867500B (zh) 2019-10-18 2019-10-18 一种高转换效率的Si/ZnO异质结太阳电池的制备方法

Country Status (1)

Country Link
CN (1) CN110867500B (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020036125A (ko) * 2000-11-08 2002-05-16 박호군 ZnO/Si 이종접합 광다이오드 및 그 제조방법
CN101694853B (zh) * 2009-10-21 2012-11-07 中国科学技术大学 ZnO/SiC/Si异质结太阳能电池及其制备方法
CN102368506A (zh) * 2011-09-26 2012-03-07 浙江大学 一种n-氧化锌/p-硅纳米线三维异质结太阳能转换装置
CN204230251U (zh) * 2014-11-27 2015-03-25 浙江昱辉阳光能源江苏有限公司 一种异质结太阳能电池
CN107516691A (zh) * 2017-07-12 2017-12-26 三峡大学 一种非晶碳薄膜/单晶硅异质结太阳能电池及其制备方法
CN109360862B (zh) * 2018-10-26 2020-09-01 中国石油大学(华东) 基于ZnO纳米棒/Si异质结的自驱动光电探测器及制备方法

Also Published As

Publication number Publication date
CN110867500A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN102522434B (zh) 铜铟镓硒薄膜光伏电池装置及其制备方法
CN102625953B (zh) 太阳能电池前接触件掺杂
CN104659123A (zh) 化合物薄膜太阳能电池及其制备方法
KR20110107760A (ko) 박막 광기전 전지
KR101747395B1 (ko) Cigs 광전변환 소자의 몰리브데넘 기판
CN105609643A (zh) 一种钙钛矿型太阳能电池及制备方法
US20120067392A1 (en) Photovoltaic device containing an n-type dopant source
KR20150142094A (ko) 원자층 증착법으로 형성된 버퍼층을 포함하는 태양전지 및 이의 제조방법
CN110085683A (zh) 无掺杂晶体硅异质结太阳能电池及其制备方法
Chu et al. Semi-transparent thin film solar cells by a solution process
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法
CN106229362B (zh) 一种铜铟镓硒薄膜制备方法及铜铟镓硒薄膜
AU2011202979A8 (en) Apparatus and methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
KR101734362B1 (ko) Acigs 박막의 저온 형성방법과 이를 이용한 태양전지의 제조방법
CN110867500B (zh) 一种高转换效率的Si/ZnO异质结太阳电池的制备方法
CN104022179B (zh) 形成太阳能电池的缓冲层的方法和由此形成的太阳能电池
US8809105B2 (en) Method of processing a semiconductor assembly
Petti et al. Thin Films in Photovoltaics
WO2020020217A1 (zh) 铜铟镓硒薄膜太阳能电池芯片的缓冲层及其制备方法、铜铟镓硒薄膜太阳能电池芯片
WO2015046876A2 (ko) 3차원 p-n접합구조 태양전지 및 이의 제조방법
WO2015017629A1 (en) Finger structures protruding from absorber layer for improved solar cell back contact
CN108987501A (zh) 一种新型无掺杂的单晶硅异质结太阳能电池及其制备方法
Liao et al. Effect of surface passivation by a low pressure and temperature environment-grown thermal oxide layer for multi-crystalline silicon solar cells
KR101924538B1 (ko) 투명 전도성 산화물 후면전극을 가지는 칼코게나이드계 태양전지 및 그 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant