CN104332515B - 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法 - Google Patents

一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法 Download PDF

Info

Publication number
CN104332515B
CN104332515B CN201410609550.3A CN201410609550A CN104332515B CN 104332515 B CN104332515 B CN 104332515B CN 201410609550 A CN201410609550 A CN 201410609550A CN 104332515 B CN104332515 B CN 104332515B
Authority
CN
China
Prior art keywords
graphene
thin film
type
solar cell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410609550.3A
Other languages
English (en)
Other versions
CN104332515A (zh
Inventor
罗云荣
李春龙
伍德亮
陈冬妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Normal University
Original Assignee
Hunan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Normal University filed Critical Hunan Normal University
Priority to CN201410609550.3A priority Critical patent/CN104332515B/zh
Publication of CN104332515A publication Critical patent/CN104332515A/zh
Application granted granted Critical
Publication of CN104332515B publication Critical patent/CN104332515B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法。以p型重掺杂石墨烯作为衬底,通过离子束溅射法在p型重掺杂石墨烯上制备p型铜铟硒薄膜,通过蒸发法在p型铜铟硒薄膜表面沉积n型硫化镉薄膜,采用化学气相沉积法在n型硫化镉薄膜表面制备本征石墨烯过渡层,再在本征石墨烯过渡层上通过等离子增强化学气相沉积法依次制备p型与n型纳米晶硅薄膜,接着在n型纳米晶硅薄膜上通过化学气相沉积法制备n型重掺杂石墨烯薄膜,最后在n型重掺杂石墨烯薄膜表面以及p型重掺杂石墨烯衬底表面通过蒸发法制备金属电极。本发明的优点在于制作工艺简单,成本低廉,不仅扩展了传统铜铟硒薄膜太阳电池的光波吸收范围,而且充分发挥了石墨烯高导电性,高透光率以及良好的光照热稳定性的优势,提高了太阳电池的转换效率和使用寿命。

Description

一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法
技术领域
一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法。
背景技术
目前典型的铜铟硒(CuInSe2)单结薄膜太阳电池是以玻璃或氧化铝作为衬底,以钼(Mo)薄膜作为导电层,以厚度约为2μm的n型硫化镉(CdS)薄膜作为窗口层,和p型铜铟硒(CuInSe2)薄膜材料组成。该电池结构转换效率高、制造成本低、性能稳定,但也有缺点与不足。首先CuInSe2薄膜的禁带宽度为1.04eV,距离太阳电池材料的最佳禁带宽度1.45eV相差较大,影响其光电转化效率的进一步提高。其次,目前应用于铜铟硒(CuInSe2)薄膜太阳电池的导电材料主要为钼(Mo)薄膜与掺氟二氧化锡薄膜(FTO)或掺铟二氧化锡薄膜(ITO)。但是金属钼(Mo)储量有限,成本较高。掺铟二氧化锡薄膜(ITO) 里的金属离子容易自发扩散,削弱其导电能力,而掺氟二氧化锡薄膜(FTO)对红外光谱有较强的吸收性以及较差的热稳定性。上述缺点制约了传统的铜铟硒(CuInSe2)薄膜太阳电池的发展,人们急需一种更好的铜铟硒(CuInSe2)薄膜太阳电池以推动太阳电池的发展。
目前制备CuInSe2薄膜的常规方法有真空蒸发法,电沉积法和溅射合金层硒化法。无论采用以上三种方法中的任何一种方法,在电池的制备过程中都需要多次进出真空室,而不能在不破坏真空的条件下一次完成铜铟硒(CuInSe2)薄膜电池器件的制备。例如,铜铟合金层需要进行硒化处理,硫化镉(CdS)薄膜需采用化学水浴法制备等。由此导致了该薄膜太阳电池制备工艺繁琐,生产成本较高,严重制约了铜铟硒(CuInSe2)薄膜太阳电池向具有复杂结构,高光电转化效率的多结薄膜太阳电池方向的发展。因此,如何使铜铟硒(CuInSe2)薄膜电池器件的制备工艺简单化,为开发低成本新式结构的铜铟硒(CuInSe2)薄膜太阳电池开辟道路成为了当下该薄膜太阳电池发展的当务之急。
发明内容
为了消除上述不足或缺陷,本发明改进了铜铟硒(CuInSe2)薄膜电池器件的制备工艺,从而提供了一种新式铜铟硒(CuInSe2)双结薄膜太阳电池结构及其制备方法。采用双结薄膜电池结构,扩展铜铟硒(CuInSe2)太阳电池光谱吸收范围。采用石墨烯作为导电材料,发挥其高导电性,高透光率,良好的光照热稳定性等优势。利用离子束溅射技艺制备铜铟硒(CuInSe2)薄膜,使得制备过程中真空室不被破坏,简化电池制作工艺。
为了达到上述目的,本发明技术方案是这样实现的:
一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池,其结构从上至下依次为:金属正面电极、n型重掺杂石墨烯薄膜、n型纳米晶硅薄膜、p型纳米晶硅薄膜、本征石墨烯过渡层、n型硫化镉薄膜、p型铜铟硒薄膜、p型重掺杂石墨烯衬底、金属背面电极。该结构的优点是:所述n型纳米晶硅薄膜,p型纳米晶硅薄膜形成第一结电池,其禁带宽度控制在1.4-1.7eV。所述n型硫化镉薄膜,p型铜铟硒薄膜形成第二结电池,其禁带宽度控制在1.0-1.2eV。不同禁带宽度的材料相结合,几乎可以吸收所有波段的太阳光。正面的n型重掺杂石墨烯薄膜与背面的p型重掺杂石墨烯衬底作为太阳电池的导电膜,中间的本征石墨烯过渡层起到串联两结电池和钝化的作用。以石墨烯作为太阳电池的导电材料,可以充分发挥石墨烯低成本,高导电性,高透光率以及良好的光照热稳定性的优势,使得制备的太阳电池性能更加稳定,光电转换效率进一步提高。
本发明技术方案所提供的一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池的制备方法包括如下步骤:
将p型重掺杂石墨烯衬底采用超声波化学清洗,放入超高真空双离子束溅射仪中备用,采用不同面积的三个高纯铜/铟/硒靶材复合成为溅射靶在衬底上沉积p型铜铟硒薄膜,沉积时的本底真空为2.0×10-4-6.0×10-4Pa ,工作真空为4.0×10-4-4.0 ×10-2Pa,衬底温度200℃-300℃,沉积时间50-90分钟,厚度1—2μm;然后将衬底温度控制在100℃-160℃,在p型铜铟硒薄膜上蒸镀纯度为80%-98%含有氯化镉杂质的硫化镉粉末,蒸镀时间控制在10-20分钟, 厚度为50-200nm;接着将样品加热到200℃-450℃,在常压氩气和氢气气氛中通入甲烷,在n型硫化镉薄膜上,通过化学气相沉积法沉积厚度为10nm-30nm的多原子层本征石墨烯过渡层;下一步控制样品温度在200℃-300℃,在本底真空小于等于1×10-3Pa的条件下,分别以混有1%-5%体积分数硼烷和混有1%-5%体积分数磷烷的高氢稀释硅烷作为载气,采用等离子增强化学气相沉积法在本征石墨烯过渡层表面依次制备p型与n型纳米晶硅薄膜,厚度均不超过100nm;接下来将样品加热到550℃-600℃,通过化学气相沉积法在氩气和氢气气氛中通入甲烷制备厚度为10nm-30nm的多原子层石墨烯,并采用氨气分子吸附,获得n型重掺杂石墨烯薄膜;最后分别在n型重掺杂石墨烯薄膜表面以及p型重掺杂石墨烯衬底表面通过蒸发法制备10nm-20nm金属钛以及30nm-50nm金属金作为电极,便获得了以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池。本制备方法采用离子束溅射三元复合靶,省略硒化工艺的方式制备铜铟硒(CuInSe2)薄膜以及采用蒸发法制备n型硫化镉(CdS)薄膜,可在真空室内不破坏真空的条件下完成铜铟硒(CuInSe2)薄膜电池器件的制备。随后采用化学气相沉积法,等离子增强化学气相沉积法,蒸发法分别完成对石墨烯导电膜,纳米晶硅薄膜,金属电极的制备。使得该双结薄膜太阳电池的制备可以一次性完成,简化了制作工艺,消减了制作成本,为一种双结铜铟硒(CuInSe2)薄膜太阳电池的应用提供了可能。
附图说明:
附图是本发明提供的一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池的层结构示意图。
附图标号说明:
1——是金属正面电极;
2——是n型重掺杂石墨烯薄膜;
3——是n型纳米晶硅薄膜;
4——是p型纳米晶硅薄膜;
5——是本征石墨烯过渡层;
6——是n型硫化镉(CdS)薄膜;
7——是p型铜铟硒(CuInSe2)薄膜;
8——是p型重掺杂石墨烯衬底;
9——是金属背面电极。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,但本发明内容不仅限于实施例中涉及的内容。
本发明按附图所示结构,它包括从上至下依次分布的金属正面电极1、n型重掺杂石墨烯薄膜2、n型纳米晶硅薄膜3、p型纳米晶硅薄膜4、本征石墨烯过渡层5、n型硫化镉(CdS)薄膜6、p型铜铟硒(CuInSe2)薄膜7、p型重掺杂石墨烯衬底8、金属背面电极9。
实施例1:一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池的制备方法,按照以下步骤操作:
本实施例首先将p型重掺杂石墨烯衬底采用超声波化学清洗,放入超高真空双离子束溅射仪中备用,采用不同面积的三个高纯铜(Cu)/铟(In)/硒(Se)靶材复合成为溅射靶在衬底上沉积p型CuInSe2薄膜,沉积时的本底真空为4. 5×10-4Pa ,工作真空为 4. 0 ×10-2Pa,衬底温度200℃,沉积时间90分钟。然后将衬底温度控制在150℃,在p型CuInSe2薄膜上蒸镀纯度约为85.0%含有氯化镉(CdCl2)杂质的CdS粉末,蒸镀时间20分钟。接着将样品加热到450℃,在n型CdS薄膜上,常压氩气(Ar)和氢气(H2)气氛中通入甲烷(CH4),沉积厚度15nm的多原子层石墨烯。下一步控制样品温度在300℃,在本底真空小于等于1×10-3Pa的条件下,分别以混有5%体积分数硼烷(B2H6)和混有2.5%体积分数磷烷(PH3)的高氢稀释硅烷(SiH4)作为载气,在本征石墨烯过渡层表面制备出p型与n型纳米晶硅薄膜,其禁带宽度约为1.65eV。接下来将样品加热到550℃,在氩气和氢气气氛中通入甲烷制备出厚度约30nm的多原子层石墨烯,并采用氨气(NH3)分子吸附,获得重掺杂n型石墨烯。最后分别在n型重掺杂石墨烯薄膜表面以及p型重掺杂石墨烯衬底表面通过蒸发法制备15nm金属钛(Ti)以及50nm金属金(Au)作为电极,便获得了以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池。
实施例二:
本实施例制作一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池,与实施例一相似,不同点是所述本征石墨烯过渡层的制备采用铜作为生长基底,将基底温度控制在450℃,在常压氩气(Ar)和氢气(H2)气氛中通入甲烷(CH4),生长出厚度约15nm的多原子层石墨烯。再采用石墨烯薄膜转移技术将本征石墨烯薄膜转移至n型CdS薄膜上。
实施例三:
本实施例制作一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池,与实施例一相似,不同点是所述n型重掺杂石墨烯薄膜的制备采用铜作为生长基底,先将基底温度控制在在500℃,在氩气和氢气气氛中通入甲烷制备出厚度约30nm的多原子层石墨烯,再采用氨气(NH3)分子吸附,获得重掺杂n型石墨烯薄膜。最后采用石墨烯薄膜转移技术将n型重掺杂石墨烯薄膜转移至n型纳米晶硅薄膜上。
实施例四:
本实施例制作一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池,与实施例一相似,不同点是所述金属正面电极与金属背面电极采用印刷法制备。在n型重掺杂石墨烯表面印刷银(Ag)及铝(Al)浆料并烘干,在p型重掺杂石墨烯衬底表面印刷Ag浆料并烘干,然后放入带式烧结炉烧结,烧结温度为850℃,时间3分钟,正面与背面金属电极便制作完成。

Claims (1)

1.一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池的制备方法,其特征在于,将p型重掺杂石墨烯衬底采用超声波化学清洗,放入超高真空双离子束溅射仪中备用,采用不同面积的三个高纯铜/铟/硒靶材复合成为溅射靶在衬底上沉积p型铜铟硒薄膜,沉积时的本底真空为2.0×10-4-6.0×10-4Pa ,工作真空为4.0×10-4-4.0 ×10-2Pa,衬底温度200℃-300℃,沉积时间50-90分钟,厚度为1-2μm;然后将衬底温度控制在100℃-160℃,在p型铜铟硒薄膜上蒸镀纯度为80%-98%含有氯化镉杂质的硫化镉粉末,蒸镀时间控制在10-20分钟,厚度为50-200nm;接着将样品加热到200℃-450℃,在常压氩气和氢气气氛中通入甲烷,在n型硫化镉薄膜上,通过化学气相沉积法沉积厚度为10nm-30nm的多原子层本征石墨烯过渡层;下一步控制样品温度在200℃-300℃,在本底真空小于等于1×10-3Pa的条件下,分别以混有1%-5%体积分数硼烷和混有1%-5%体积分数磷烷的高氢稀释硅烷作为载气,采用等离子增强化学气相沉积法在本征石墨烯过渡层表面依次制备p型与n型纳米晶硅薄膜,厚度均不超过100nm;接下来将样品加热到550℃-600℃,通过化学气相沉积法在氩气和氢气气氛中通入甲烷制备厚度为10nm-30nm的多原子层石墨烯,并采用氨气分子吸附,获得n型重掺杂石墨烯薄膜;最后分别在n型重掺杂石墨烯薄膜表面以及p型重掺杂石墨烯衬底表面通过蒸发法制备10nm-20nm金属钛以及30nm-50nm金属金作为电极,便获得了以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池。
CN201410609550.3A 2014-11-04 2014-11-04 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法 Active CN104332515B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410609550.3A CN104332515B (zh) 2014-11-04 2014-11-04 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410609550.3A CN104332515B (zh) 2014-11-04 2014-11-04 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN104332515A CN104332515A (zh) 2015-02-04
CN104332515B true CN104332515B (zh) 2017-01-11

Family

ID=52407207

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410609550.3A Active CN104332515B (zh) 2014-11-04 2014-11-04 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN104332515B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104733547B (zh) * 2015-03-27 2017-01-25 西交利物浦大学 基于石墨烯的柔性碲化镉薄膜太阳能电池及其制备方法
CN106706710A (zh) * 2015-11-11 2017-05-24 中国科学院上海微系统与信息技术研究所 基于硫掺杂石墨烯的氮氧化物气体传感器及其制备方法
CN106684179A (zh) * 2016-09-09 2017-05-17 湖南师范大学 一种硒化锑双结薄膜太阳能电池及其制备方法
CN106505124A (zh) * 2016-11-28 2017-03-15 戚明海 一种石墨烯硅基太阳能电池及其制造方法
CN107086085B (zh) * 2017-05-22 2018-12-14 青岛元盛光电科技股份有限公司 一种等离子石墨烯纳米银导电膜及其制作工艺
CN107871820A (zh) * 2017-12-11 2018-04-03 湖南师范大学 一种以硫化镉作为窗口材料的钙钛矿薄膜太阳能电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140190550A1 (en) * 2011-08-11 2014-07-10 National University Of Singapore Tandem solar cell with graphene interlayer and method of making
CN102931249B (zh) * 2012-11-26 2016-12-21 西南交通大学 具有石墨烯的硒化镉透明薄膜太阳电池
CN204179091U (zh) * 2014-11-04 2015-02-25 湖南师范大学 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池

Also Published As

Publication number Publication date
CN104332515A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
Li et al. Perovskite tandem solar cells: from fundamentals to commercial deployment
CN104332515B (zh) 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池及其制备方法
US7632701B2 (en) Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
CN102569442B (zh) 薄膜太阳能电池及其制作方法
Jang et al. Monolithic tandem solar cells comprising electrodeposited CuInSe 2 and perovskite solar cells with a nanoparticulate ZnO buffer layer
US20110259395A1 (en) Single Junction CIGS/CIS Solar Module
US20080251120A1 (en) Thin Film Solar Cell and Manufacturing Method
JP5928612B2 (ja) 化合物半導体太陽電池
AU2011226881B2 (en) Photovoltaic device and method for making
EP2383363B1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and method of their manufacture
CN104078525B (zh) 薄膜太阳能电池和制备其的方法
US20120052620A1 (en) Multi-layer n-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
US20140291147A1 (en) Target materials for fabricating solar cells
CN106684179A (zh) 一种硒化锑双结薄膜太阳能电池及其制备方法
EP2383792A2 (en) Cadmium Sulfide Layers for Use in Cadmium Telluride Based Thin Film Photovoltaic Devices and Methods of their Manufacture
CN106653946B (zh) 一种碲化镉薄膜太阳能电池吸收层的沉积方法
CN102628161A (zh) 用于制造半导体膜和光伏装置的方法
US8241930B2 (en) Methods of forming a window layer in a cadmium telluride based thin film photovoltaic device
CN204179091U (zh) 一种以石墨烯作为导电材料的铜铟硒纳米晶硅薄膜太阳电池
CN105355674B (zh) 具有石墨烯插入层的柔性碲化镉太阳电池
CN114335348A (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
Petti et al. Thin Films in Photovoltaics
US20120080306A1 (en) Photovoltaic device and method for making
KR101281330B1 (ko) 태양전지 및 이의 제조방법
TWI443840B (zh) 四元化合物薄膜及其製作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20150204

Assignee: Hunan Jinyang alkene carbon new material Co.,Ltd.

Assignor: HUNAN NORMAL University

Contract record no.: X2023980035687

Denomination of invention: A copper indium selenium nanocrystalline silicon thin film solar cell using graphene as a conductive material and its preparation method

Granted publication date: 20170111

License type: Common License

Record date: 20230518