CN115181995A - 一种硒化锑薄膜光阴极及其制备方法 - Google Patents

一种硒化锑薄膜光阴极及其制备方法 Download PDF

Info

Publication number
CN115181995A
CN115181995A CN202210710027.4A CN202210710027A CN115181995A CN 115181995 A CN115181995 A CN 115181995A CN 202210710027 A CN202210710027 A CN 202210710027A CN 115181995 A CN115181995 A CN 115181995A
Authority
CN
China
Prior art keywords
film
buffer layer
cds buffer
photocathode
antimony selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210710027.4A
Other languages
English (en)
Inventor
陈烁
骆平
刘天祥
李志东
梁广兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202210710027.4A priority Critical patent/CN115181995A/zh
Publication of CN115181995A publication Critical patent/CN115181995A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/001General methods for coating; Devices therefor
    • C03C17/002General methods for coating; Devices therefor for flat glass, e.g. float glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3615Coatings of the type glass/metal/other inorganic layers, at least one layer being non-metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3628Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a sulfide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3631Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a selenide or telluride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/111Deposition methods from solutions or suspensions by dipping, immersion
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/15Deposition methods from the vapour phase
    • C03C2218/154Deposition methods from the vapour phase by sputtering
    • C03C2218/156Deposition methods from the vapour phase by sputtering by magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Formation Of Various Coating Films On Cathode Ray Tubes And Lamps (AREA)

Abstract

本发明公开了一种硒化锑薄膜光阴极及其制备方法,方法包括步骤:提供镀钼玻璃衬底;在镀钼玻璃衬底上磁控溅射Sb薄膜,对Sb薄膜进行硒化,得到Sb2Se3薄膜;采用化学水浴法在Sb2Se3薄膜上沉积CdS缓冲层;采用溶液旋涂和热处理向CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;采用原子层沉积法在In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到硒化锑薄膜光阴极。本发明采用磁控溅射法和硒化法自组装生长Sb2Se3薄膜,能够钝化体内深能级缺陷,制备出微米级晶粒紧密堆积、[hk1]择优取向生长、元素组分符合化学计量比的Sb2Se3薄膜,In3+掺杂能降低界面缺陷,优化界面能带匹配,二者协同调控增强光阴极的载流子产生、分离及传输效率,降低缺陷诱发的复合损失,获得基于Sb2Se3光阴极的最高HC‑STH转换效率。

Description

一种硒化锑薄膜光阴极及其制备方法
技术领域
本发明涉及能源材料技术领域,尤其涉及一种硒化锑薄膜光阴极及其制备方法。
背景技术
能源是人类社会耐以生存和发展的重要物质基础,是现代化城市功能正常运转的基本保障。开发利用可再生能源是贯彻落实二氧化碳的排放不再增长达到峰值,之后逐步回落,企业、团体或个人测算在一定时间内直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,以抵消自身产生的二氧化碳排放量,实现二氧化碳“零排放”的重要举措。在多元化的能源结构中,氢能作为绿色能源具有清洁无污染,能量转换密度高,燃烧热值高等优势,在能源动力、航空航天及电气装备等领域展现应用价值。光电化学水分解(PEC)可基于光电化学反应利用太阳能分解水制氢,将太阳能转变为氢气形式的化学能,成为一个极具挑战性和吸引力的研究课题。作为PEC系统的关键组件,理想的光电极需高效完成光吸收、电荷分离、电荷传输及诱发界面氧化还原反应等任务。目前,基于TiO2、Fe2O3、BiVO4等金属氧化物半导体的光阳极研究已有较完善的研究体系。因此,筛选合适的光阴极材料,对提高PEC分解水制氢性能至关重要。代表性的Si,Ⅲ-Ⅴ族化合物(InP,GaP,GaInN等),氧硫族化合物(Cu2O,CZTS,CIGS,CdTe,Sb2Se3等)已经引起关注。其中,V-VI族二元半导体硒化锑(Sb2Se3)原材料丰富、价格低廉、绿色低毒、光电性能优异且稳定,是极具发展前景的光电化学光阴极材料。
自2017年首次报道以来,Sb2Se3光阴极的PEC分解水制氢不断取得新的研究进展,单光阴极的半电池太阳能-氢能(HC-STH)转化效率稳步提升至4.7%。统计分析关键性能参数,基于Sb2Se3吸收层薄膜表面修复可获得35mA cm-2的最大光电流密度,此外,基于CdS缓冲层掺杂可将起始电势提升至0.8VRHE。但是,如何协同调控吸收层生长和异质结界面能带匹配,在Sb2Se3光阴极中同时获得高光电流密度和高起始电势仍旧存在挑战,直接制约HC-STH转换效率的进一步提升。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种硒化锑薄膜光阴极及其制备方法,旨在解决现有Sb2Se3光阴极无法同时获得高光电流密度和高起始电势的问题。
本发明为解决上述技术问题所采用的技术方案如下:
一种硒化锑薄膜光阴极的制备方法,其中,包括步骤:
提供镀钼玻璃衬底;
在所述镀钼玻璃衬底上磁控溅射Sb薄膜,对所述Sb薄膜进行硒化处理,得到Sb2Se3薄膜;
采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层;
采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;
采用原子层沉积法在所述In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到所述硒化锑薄膜光阴极。
所述的硒化锑薄膜光阴极的制备方法,其中,所述磁控溅射的参数包括:溅射功率30~40W,溅射气压1~2Pa,溅射时间30~40min。
所述的硒化锑薄膜光阴极的制备方法,其中,所述Sb薄膜的厚度为350~400nm,所述硒化处理的温度为380~420℃,所述硒化处理的时间为15~20min。
所述的硒化锑薄膜光阴极的制备方法,其中,所述采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层的步骤,具体包括:
将InCl3粉末溶解于乙二醇甲醚中,配置前驱体溶液;
将所述前驱体溶液旋涂于所述CdS缓冲层表面,热处理,得到In3+掺杂的CdS缓冲层。
所述的硒化锑薄膜光阴极的制备方法,其中,所述热处理的温度为260~300℃,所述热处理的时间为5~10min。
所述的硒化锑薄膜光阴极的制备方法,其中,所述采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层的步骤具体为:在所述Sb2Se3薄膜上加入镉盐、硫脲和氨水的混合溶液,置于恒温水浴槽中搅拌均匀,得到CdS缓冲层。
所述的硒化锑薄膜光阴极的制备方法,其中,所述恒温水浴槽的温度为70~90℃,所述搅拌的时间为8~10min。
所述的硒化锑薄膜光阴极的制备方法,其中,所述TiO2保护层的沉积温度为160~180℃,所述TiO2保护层的厚度为10~15nm。
所述的硒化锑薄膜光阴极的制备方法,其中,在所述采用原子层沉积法在所述CdS缓冲层上沉积TiO2保护层的步骤后,还包括步骤:在所述TiO2保护层上磁控溅射Pt。
一种硒化锑薄膜光阴极,其中,采用如本发明上述方案所述的制备方法制得,所述硒化锑薄膜光阴极的结构依次包括镀钼玻璃衬底、Sb2Se3薄膜、In3+掺杂的CdS缓冲层、TiO2保护层。
有益效果:本发明公开了一种硒化锑薄膜光阴极及其制备方法,通过采用磁控溅射法和硒化法自组装生长Sb2Se3薄膜,能够钝化体内深能级缺陷,制备出微米级晶粒紧密堆积、[hk1]择优取向生长、元素组分符合化学计量比的Sb2Se3薄膜,同时In3+掺杂能有效调控CdS缓冲层的光学及电学性能,表现在提高其透光性、拓宽带隙宽度;增加n型电子掺杂浓度,提高电导率;降低缺陷密度,提高晶体质量,二者协同调控能够增强光阴极的载流子产生、分离及传输效率,同时降低缺陷诱发的复合损失,最终获得基于Sb2Se3薄膜的光阴极的最高HC-STH转换效率。
附图说明
图1为本发明实施例提供的硒化锑薄膜光阴极的制备方法的具体实施方式的流程图。
图2为本发明实施例磁控溅射结合后硒化处理制备Sb2Se3薄膜的过程示意图。
图3为本发明实施例Sb2Se3薄膜表面和截面SEM图。
图4为本发明实施例CdS缓冲层的In3+离子掺杂过程示意图。
图5为本发明实施例Sb2Se3薄膜光阴极结构示意图。
图6为本发明实施例1制得的Sb2Se3薄膜光阴极的J-V曲线图。
图7为本发明实施例1制得的Sb2Se3薄膜光阴极界面能带匹配和载流子输运示意图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
Sb2Se3光阴极的HC-STH转换效率实质上由吸收层薄膜质量和器件界面性能共同决定。目前Sb2Se3吸收层制备方法主要可分为溶液法和真空法两类。其中,化学溶液法主要是溶液旋涂结合热处理工艺,虽存在操作方法简单,成本低等优势,但所得Sb2Se3多为1维纳米结构,相应薄膜致密度和均匀性较低,在大规模制备上也存在挑战,限制其进一步应用。真空法主要包括近空间升华法(CSS)、热蒸发法(TE)、气相传输沉积法(VTD)和磁控溅射法(MSD)等。其中CSS、TE和VTD技术均基于真空热蒸发原理,在有限的成膜空间内,源温度和基片温度极易出现串扰,原位沉积薄膜容易出现反蒸发或热分解导致化学成分偏析,形成VSe、SbSe和OSe等有害的表面缺陷或体缺陷,进一步诱发严重的电子-空穴复合,降低光阴极的转换效率。相比之下,磁控溅射是一种成熟的真空物理气相沉积工艺,生产化兼容性较高、拥有精确的成分控制、优异的大面积均匀性和具有竞争力的工业放大等优点。
基于此,本发明提供一种硒化锑薄膜光阴极的制备方法,参见图1,其包括步骤:
S10、提供镀钼玻璃衬底;
S20、在所述镀钼玻璃衬底上磁控溅射结合Sb薄膜,对所述Sb薄膜进行硒化处理,得到Sb2Se3薄膜;
S30、采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层;
S40、采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;
S50、采用原子层沉积法在所述In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到所述硒化锑薄膜光阴极。
具体地,本发明通过采用磁控溅射法和硒化法自组装生长Sb2Se3薄膜,能够钝化体内深能级缺陷,制备出微米级晶粒紧密堆积、[hk1]择优取向生长、元素组分符合化学计量比的Sb2Se3薄膜,同时In3+掺杂能有效调控CdS缓冲层的光学及电学性能,表现在提高其透光性、拓宽带隙宽度;增加n型电子掺杂浓度,提高电导率;降低缺陷密度,提高晶体质量,二者协同调控能够增强光阴极的载流子产生、分离及传输效率,同时降低缺陷诱发的复合损失,最终获得基于Sb2Se3薄膜的光阴极的最高HC-STH转换效率。
在一些实施方式中,所述磁控溅射的参数包括:溅射功率30~40W,溅射气压1~2Pa,溅射时间30~40min;溅射功率设定在30~40W可调控薄膜的沉积速率;溅射气压设定在1~2Pa能平衡薄膜的附着力和致密度;溅射时间设定为30~40min以控制薄膜厚度。
在一些实施方式中,所述Sb薄膜的厚度为350~400nm,所述硒化处理的温度为380~420℃,硒化时间为15~20min,对所述Sb薄膜进行硒化处理时,通过发生化合反应会在所述镀钼玻璃衬底表面自组装生长Sb2Se3薄膜,具体生长过程及得到的Sb2Se3薄膜表面和截面SEM图如图2和图3所示,由图中可以看出制备出的Sb2Se3薄膜具有微米级晶粒紧密堆积、[hk1]择优取向生长、元素组分符合化学计量比等特点,合适的硒化温度和硒化时间能获得微米级晶粒紧密堆积的高质量晶态薄膜。
在一些实施方式中,所述采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层的步骤,具体包括:
将InCl3粉末溶解于乙二醇甲醚中,配置前驱体溶液;
将所述前驱体溶液旋涂于所述CdS缓冲层表面,热处理,得到In3+掺杂的CdS缓冲层。
具体地,如图4所示,在沉积CdS缓冲层后,采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,所述热处理的温度为260~300℃,热处理的时间为5~10min,合适的热处理温度和时间能够有效控制In3+在CdS缓冲层中的掺杂浓度和深度分布,In3+作为阳离子掺杂剂能有效调控CdS缓冲层的光学及电学性能,表现在提高其透光性、拓宽带隙宽度,增加n型电子掺杂浓度,提高电导率,降低缺陷密度,提高晶体质量;基于此,Sb2Se3/CdS(In)光阴极的光吸收增强,界面能带排列优化,载流子输运能力提升,载流子分离效率提高,能够有效改善Sb2Se3薄膜光阴极的PEC分解水制氢性能。
可选地,所述InCl3粉末溶解于乙二醇甲醚的浓度为0.05~0.08mol/L。
在一些实施方式中,所述采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层的步骤具体为:在所述Sb2Se3薄膜上加入镉盐、硫脲和氨水的混合溶液,置于恒温水浴槽中均匀搅拌,实现CdS缓冲层的沉积。
具体地,采用化学水浴法制备硫化镉缓冲层,采用镉盐作为镉源,本实施例中所述镉盐为硫酸镉,采用硫脲作为硫源,将硫酸镉、硫脲和氨水的混合溶液加入到Sb2Se3薄膜上,并将混合溶液置于恒温水浴槽中并进行均与搅拌,即可制得所述CdS缓冲层。
在一些实施方式中,所述恒温水浴槽的温度为70~90℃,所述搅拌的时间为8~10min,通过对恒温水浴槽的温度以及沉积时间的控制可以获得合适厚度的CdS缓冲层薄膜。
在一些实施方式中,所述TiO2保护层的沉积温度为160~180℃,所述TiO2保护层的厚度为10~15nm,合适沉积温度及厚度的TiO2在光阴极结构中能起到保护作用,同时不影响吸光及载流子输运,可选地,循环周期为143次。
在一些实施方式中,在所述采用原子层沉积法在所述CdS缓冲层上沉积TiO2保护层的步骤后,还包括步骤:在所述TiO2保护层上磁控溅射Pt。
具体地,通过在TiO2保护层上磁控溅射Pt作为助催化剂,可以借助Pt助催化剂的优良性能,大大增加了光阴极材料的光电流效率,从而提升其PEC光解水制氢的性能。
在一些实施方式中,所述磁控溅射Pt的溅射时间为50s,溅射电流为0.02A。
通过上述方法,本发明最终制备了Glass/Mo/Sb2Se3/CdS(In)/TiO2/Pt平面结薄膜光阴极。
本发明还提供一种如本发明上述方案所述的制备方法制得的硒化锑薄膜光阴极,如图5所示,所述硒化锑薄膜光阴极的结构由下到上依次包括镀钼玻璃衬底、Sb2Se3薄膜、In3+掺杂的CdS缓冲层、二TiO2保护层。
其中,图5中的Ag作为电极接触使用,在镀钼玻璃衬底上点涂Ag电极,测试过程中与外部电极接触连接以满足测试条件;选择镀钼玻璃衬底时,钼层起背接触作用。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例,仅在于说明本发明而决不限制本发明。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
一种Sb2Se3薄膜光阴极的制备方法,其包括步骤:
S10、提供镀钼玻璃衬底;
S20、控制溅射功率为30W,溅射气压为1.5Pa,溅射时间为30min在所述镀钼玻璃衬底上磁控溅射结合Sb薄膜,对所述Sb薄膜在400℃下硒化处理15min,得到Sb2Se3薄膜;
S30、在所述Sb2Se3薄膜上加入镉盐、硫脲和氨水的混合溶液,置于80℃恒温水浴槽中均匀搅拌,沉积9min得到CdS缓冲层;
S40、采用溶液旋涂并在280℃热处理5min向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;
S50、采用原子层沉积法在170℃在所述In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到所述Sb2Se3薄膜光阴极。
本发明针对实施例1制得的Sb2Se3薄膜光阴极的性能进行了测试,如图6所示,可以看出制得的Sb2Se3薄膜光阴极的PEC分解水制氢性能,器件能同时获得高光电流密度(35.7mA cm-2,也是目前Sb2Se3光阴极的最高值)和高起始电势(0.54VRHE),得到的HC-STH转换效率高达5.6%。
图7为本发明实施例1制得的Sb2Se3薄膜光阴极界面能带匹配和载流子输运示意图,从图7中可以看出,本发明提出的Sb2Se3生长工程能够钝化体内深能级缺陷,CdS缓冲层的掺杂工程能够降低界面缺陷,优化界面能带匹配,二者协同调控能够增强光阴极的载流子产生、分离及传输效率,同时降低缺陷诱发的复合损失,最终获得基于Sb2Se3光阴极的最高HC-STH转换效率。
综上所述,本发明公开了一种硒化锑薄膜光阴极及其制备方法,其中,方法包括步骤:提供镀钼玻璃衬底;在所述镀钼玻璃衬底上磁控溅射Sb薄膜,对所述Sb薄膜进行硒化处理,得到Sb2Se3薄膜;采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层;采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;采用原子层沉积法在所述In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到所述硒化锑薄膜光阴极。本发明通过采用磁控溅射法和硒化法自组装生长Sb2Se3薄膜,能够钝化体内深能级缺陷,制备出微米级晶粒紧密堆积、[hk1]择优取向生长、元素组分符合化学计量比的Sb2Se3薄膜,同时In3+离子掺杂能有效调控CdS缓冲层的光学及电学性能,表现在提高其透光性、拓宽带隙宽度;增加n型电子掺杂浓度,提高电导率;降低缺陷密度,提高晶体质量,二者协同调控能够增强光阴极的载流子产生、分离及传输效率,同时降低缺陷诱发的复合损失,最终获得基于Sb2Se3薄膜的光阴极的最高HC-STH转换效率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种硒化锑薄膜光阴极的制备方法,其特征在于,包括步骤:
提供镀钼玻璃衬底;
在所述镀钼玻璃衬底上磁控溅射Sb薄膜,对所述Sb薄膜进行硒化处理,得到Sb2Se3薄膜;
采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层;
采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层;
采用原子层沉积法在所述In3+掺杂的CdS缓冲层上沉积TiO2保护层,得到所述硒化锑薄膜光阴极。
2.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述磁控溅射的参数包括:溅射功率30~40W,溅射气压1~2Pa,溅射时间30~40min。
3.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述Sb薄膜的厚度为350~400nm,所述硒化处理的温度为380~420℃,所述硒化处理的时间为15~20min。
4.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述采用溶液旋涂和热处理向所述CdS缓冲层中引入In3+,得到In3+掺杂的CdS缓冲层的步骤,具体包括:
将InCl3粉末溶解于乙二醇甲醚中,配置前驱体溶液;
将所述前驱体溶液旋涂于所述CdS缓冲层表面,热处理,得到In3+掺杂的CdS缓冲层。
5.根据权利要求4所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述热处理的温度为260~300℃,所述热处理的时间为5~10min。
6.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述采用化学水浴法在所述Sb2Se3薄膜上沉积CdS缓冲层的步骤具体为:在所述Sb2Se3薄膜上加入镉盐、硫脲和氨水的混合溶液,置于恒温水浴槽中搅拌均匀,得到CdS缓冲层。
7.根据权利要求6所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述恒温水浴槽的温度为70~90℃,所述搅拌的时间为8~10min。
8.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,所述TiO2保护层的沉积温度为160~180℃,所述TiO2保护层的厚度为10~15nm。
9.根据权利要求1所述的硒化锑薄膜光阴极的制备方法,其特征在于,在所述采用原子层沉积法在所述CdS缓冲层上沉积TiO2保护层的步骤后,还包括步骤:在所述TiO2保护层上磁控溅射Pt。
10.一种硒化锑薄膜光阴极,其特征在于,采用如权利要求1-9任一所述的制备方法制得,所述硒化锑薄膜光阴极的结构依次包括镀钼玻璃衬底、Sb2Se3薄膜、In3+掺杂的CdS缓冲层、TiO2保护层。
CN202210710027.4A 2022-06-22 2022-06-22 一种硒化锑薄膜光阴极及其制备方法 Pending CN115181995A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210710027.4A CN115181995A (zh) 2022-06-22 2022-06-22 一种硒化锑薄膜光阴极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210710027.4A CN115181995A (zh) 2022-06-22 2022-06-22 一种硒化锑薄膜光阴极及其制备方法

Publications (1)

Publication Number Publication Date
CN115181995A true CN115181995A (zh) 2022-10-14

Family

ID=83514396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210710027.4A Pending CN115181995A (zh) 2022-06-22 2022-06-22 一种硒化锑薄膜光阴极及其制备方法

Country Status (1)

Country Link
CN (1) CN115181995A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637430A (zh) * 2022-10-26 2023-01-24 深圳大学 一种高性能硫系化合物基光电阴极及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115637430A (zh) * 2022-10-26 2023-01-24 深圳大学 一种高性能硫系化合物基光电阴极及其制备方法
CN117727815A (zh) * 2024-02-18 2024-03-19 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法
CN117727815B (zh) * 2024-02-18 2024-04-23 河北大学 一种自陷光结构硒化锑太阳电池及其制备方法

Similar Documents

Publication Publication Date Title
Kondrotas et al. Sb2S3 solar cells
McGott et al. 3D/2D passivation as a secret to success for polycrystalline thin-film solar cells
CN115181995A (zh) 一种硒化锑薄膜光阴极及其制备方法
CN101364482B (zh) 一种可见光铟镓氮基光电化学电池制备方法
JP2010512647A (ja) Ibiiiavia族化合物層のためのドーピング技術
TWI684288B (zh) 包括經由原子層沉積形成的多重緩衝層的太陽能電池及其製造方法
CN104851931B (zh) 具有梯度结构的碲化镉薄膜太阳能电池及其制造方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
Pawar et al. Effect of annealing atmosphere on the properties of electrochemically deposited Cu2ZnSnS4 (CZTS) thin films
JP2008235794A (ja) 光電変換材およびその製造方法、半導体素子、並びに太陽電池
WO2012161402A1 (en) Method of manufacturing cis-based thin film having high density
CN114335348A (zh) 一种pn异质结硒化锑/钙钛矿太阳能电池及其制备方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN110165020B (zh) 一种基于CdS/SnO2混合N型层的高效Sb2Se3薄膜电池及其制备方法
KR20110037714A (ko) 박막 태양전지 및 그의 제조방법
CN114262911B (zh) 一种用于光解水的全空间梯度掺杂光电极及制备方法
Chander et al. Nontoxic and earth-abundant Cu2ZnSnS4 (CZTS) thin film solar cells: A review on high throughput processed methods
Peksu et al. Synthesis of ZnO Nanowires and Their Photovoltaic Application: ZnO Nanowires/AgGaSe2 Thin Film Core‐Shell Solar Cell
CN112563118B (zh) In掺杂CdS薄膜、制备方法及制备的CIGS电池
CN102024858B (zh) 油墨、薄膜太阳能电池及其制造方法
CN102148279A (zh) 基于ⅱ-ⅵ族化合物半导体/硅纳米孔柱阵列的太阳能电池及其制备方法
CN103094372B (zh) 太阳能电池及其制造方法
CN104821344B (zh) 具有量子阱结构的铜铟镓硒薄膜太阳能电池及其制造方法
Ho et al. Modulation and Direct Mapping of the Interfacial Band Alignment of an Eco-Friendly Zinc-Tin-Oxide Buffer Layer in SnS Solar Cells
KR102568691B1 (ko) 광전기화학반응에 의하여 수소를 생성하는 광음극구조층 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination