WO2024066848A1 - 一种高分子量且窄分布phs树脂及其制备方法与应用 - Google Patents

一种高分子量且窄分布phs树脂及其制备方法与应用 Download PDF

Info

Publication number
WO2024066848A1
WO2024066848A1 PCT/CN2023/115150 CN2023115150W WO2024066848A1 WO 2024066848 A1 WO2024066848 A1 WO 2024066848A1 CN 2023115150 W CN2023115150 W CN 2023115150W WO 2024066848 A1 WO2024066848 A1 WO 2024066848A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
preparation
phs resin
formula
phs
Prior art date
Application number
PCT/CN2023/115150
Other languages
English (en)
French (fr)
Inventor
杨美跃
Original Assignee
上海八亿时空先进材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海八亿时空先进材料有限公司 filed Critical 上海八亿时空先进材料有限公司
Publication of WO2024066848A1 publication Critical patent/WO2024066848A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F112/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the invention relates to a controllable and easily mass-producible high-molecular-weight and narrow-distribution PHS resin and a preparation method and application thereof, belonging to the field of polymer materials.
  • high molecular weight polymers it is a mixture composed of various molecular weights, and its molecular weight is usually expressed by the average molecular weight.
  • the average molecular weight can be divided into number average molecular weight Mn, weight average molecular weight Mw, etc.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • the quality of high molecular weight polymers is mainly evaluated by the width of its molecular weight distribution, and the molecular weight distribution is expressed by Mw/Mn. The wider the molecular weight distribution, the worse its quality (similar to the low purity of a compound), and conversely, the narrower the molecular weight distribution, the better its quality.
  • the existing industrial preparation method of PHS resin mainly uses acetoxystyrene, methoxystyrene, tert-butoxystyrene and the like as polymerization monomers, and synthesizes PHS resin by free radical polymerization or polycondensation polymerization. Since the heat released during the reaction is very large, the reaction process is difficult to be reasonably controlled, so the obtained polymer is a polydisperse polymer with poor quality; the resist further prepared therefrom also has the defects of relatively low resolution and unsatisfactory development effect.
  • the purpose of the present invention is to provide a new type of PHS that is controllable and easy to mass produce, has a high molecular weight and a narrow dispersion (called monodispersity), and a preparation method and application thereof.
  • the new type of PHS resin obtained by the present invention can significantly improve the development effect and resolution of the resist; at the same time, the preparation method of the new type of PHS resin provided by the present invention is not only suitable for the preparation of small batch samples in the laboratory, but also can be extended to the production of mass production products, and has industrial operability.
  • the present invention provides the following technical solutions:
  • the present invention provides a novel PHS resin having a molecular weight of more than 20,000 and a dispersion Mw/Mn of 1.01 to 1.10, and having a narrower molecular weight distribution, wherein Mw is the weight average molecular weight of the polymer and Mn is the number average molecular weight of the polymer.
  • the PHS resin has a repeating unit represented by formula (II):
  • the novel PHS resin proposed by the present invention has a higher molecular weight and a narrower molecular weight distribution, and thus has a higher quality, and belongs to a novel monodisperse PHS resin.
  • the research results show that using this new PHS resin as the base polymer of the resist can significantly improve the resolution and display performance of the resist.
  • the imaging effect is improved, thus solving the problem that the existing PHS resin has low resolution and poor developing effect of the resist due to its wide molecular weight distribution, making it difficult to meet the requirements of high-resolution lithography or large-scale integrated circuit processing.
  • the present invention provides a method for preparing the novel PHS resin, comprising the following steps:
  • the compound monomer represented by formula (I) is added dropwise into the reaction system to carry out living anionic polymerization reaction, and then undergoes a deprotection reaction to obtain a PHS resin;
  • the compound of formula (I) has the following structure:
  • R1 represents a C1-5 alkyl group, a C1-5 alkoxy group or a C1-5 alkylsilyl group.
  • Anionic polymerization, free radical polymerization, and condensation polymerization are all common types of polymerization reactions.
  • anionic polymerization is too fast and releases too much heat, it is easy to cause explosion when implemented on an industrial production scale and the reaction conditions are harsh. Based on these factors, the synthesis of PHS resin by anionic polymerization has not yet been scaled up and mass-produced. This is also the main reason why the industry has been using free radical polymerization or condensation polymerization to prepare industrial PHS resin.
  • the present invention proposes for the first time a technical route of controlling the speed of anionic polymerization reaction by dripping the compound represented by formula (I).
  • the dripping feeding method helps to better control the reaction temperature within a certain range, making the polymerization reaction more stable, thereby obtaining a new monodisperse PHS resin with a higher molecular weight and narrower distribution. Compared with the existing polydisperse PHS resin, it has higher quality.
  • the preparation method of the dripping method for controlling the anionic polymerization reaction of the present invention also has high production efficiency, and is not only suitable for the preparation of small batch samples in the laboratory, but can also be extended to the production of mass production-level products, and is more industrially operable.
  • the present invention further defines the dripping speed of the compound shown in formula (I).
  • the dripping speed of the compound shown in formula (I) is 0.1g-100g/min; the dripping time is controlled within the range of 1-24h.
  • the scale-up experiment can be scaled up in equal proportion on this basis.
  • the temperature of the polymerization reaction is maintained to fluctuate within a smaller temperature range by regulating the dripping speed. For example, when the reaction temperature begins to rise, the dripping speed of the monomer is reduced; when the reaction temperature begins to drop, the dripping speed of the monomer is slightly increased to maintain a small temperature fluctuation range.
  • the reaction temperature of the living anionic polymerization reaction is -80°C to 0°C, preferably -70°C to -80°C. Studies have shown that controlling the temperature within this range can avoid the occurrence of initiator side reactions, thereby increasing the degree of polymerization of the resin.
  • the compound represented by formula (I) is added dropwise.
  • the reaction system is first cooled to -50°C to -40°C, the initiator is added, and then the temperature is further cooled to the reaction temperature.
  • the timing of adding the initiator By further controlling the timing of adding the initiator, the occurrence of initiator side reactions can be further avoided.
  • the compound represented by formula (I) is p-methoxystyrene, p-tert-butoxystyrene, p-acetoxystyrene, p-tert-butyldimethylsiloxystyrene, etc. Studies have shown that compared with other substituent groups, the above preferred groups can better protect the phenolic hydroxyl group, and the reaction speed is relatively slow, and a large amount of reaction heat will not be generated.
  • the water content of the compound represented by formula (I) is controlled to be less than 100 ppm, preferably less than 50 ppm, and more preferably less than 10 ppm.
  • the water content in the monomer it is helpful to control the PDI of the resin. If the water content is too high, the added initiator and active center will be quenched, thereby affecting the molecular weight distribution of the resin.
  • the oxygen content of the compound of formula (I) is controlled to be less than 100 ppm, preferably less than 50 ppm, and more preferably less than 10 ppm.
  • the oxygen content in the monomer it is helpful to control the PDI of the resin. If the oxygen content is too high, the added initiator will be deactivated, thereby affecting the molar ratio of the monomer and the initiator, and further affecting the product quality.
  • the polymerization reaction is carried out under nitrogen or high vacuum environment.
  • the initiator used in the polymerization reaction is an organic metal compound; preferably n-butyl lithium, sec-butyl lithium, tert-butyl lithium, sodium naphthalene, ⁇ - One or more of tetrasodium methyl styrene and cumyl potassium; further preferably n-butyl lithium and/or sec-butyl lithium; more preferably n-butyl lithium.
  • the solvent used in the polymerization reaction is an ether-containing solvent, such as aromatic hydrocarbons, cyclic ethers, aliphatic hydrocarbons, etc.; preferably one or more of benzene, toluene, tetrahydrofuran, dioxane, tetrahydropyran and n-hexane, and more preferably tetrahydrofuran.
  • ether-containing solvent such as aromatic hydrocarbons, cyclic ethers, aliphatic hydrocarbons, etc.
  • a terminator such as methanol, water, etc., is added to the reaction system to stop the reaction.
  • the product obtained by the polymerization reaction has a repeating unit represented by formula (III):
  • the deprotection reagent used in the deprotection reaction is a halogen acid, which eliminates the protecting group R 1 of the obtained formula (III) to obtain a PHS resin.
  • a halogen acid which eliminates the protecting group R 1 of the obtained formula (III) to obtain a PHS resin.
  • hydrobromic acid, hydrochloric acid, etc. can be used to deprotect the polymer.
  • reaction polymer can also be obtained by precipitation by adding an appropriate solvent such as methanol or water.
  • the present invention further provides an anti-corrosion agent comprising the above-mentioned PHS resin.
  • the present invention uses styrene containing R 1 substitution as a monomer, and obtains a novel monodisperse PHS resin by first performing living anionic polymerization and then deprotection.
  • the resin has a higher molecular weight and a narrower molecular weight distribution, and thus has a higher quality.
  • Using the novel PHS resin as the base polymer of the resist can significantly improve the resolution and development effect of the resist.
  • the present invention makes the reaction process more stable and significantly improves production efficiency by strictly controlling the monomer addition method (drip addition), dripping speed, monomer water content and oxygen content, reaction temperature, and matching of initiator and solvent during the reaction process. It is not only suitable for the preparation of small batch samples in the laboratory, but also can be extended to the production of mass production-level products, and has more industrial operability.
  • FIG. 1 is a GPC spectrum of the polymer of Example 1.
  • FIG. 2 is a GPC spectrum of the polymer of Example 2.
  • FIG. 3 is a GPC spectrum of the polymer of Example 3.
  • FIG. 4 is a GPC spectrum of the polymer of Example 4.
  • FIG5 is a GPC spectrum of the polymer of Comparative Example 1.
  • FIG6 is a GPC spectrum of the polymer of Comparative Example 2.
  • Weight average molecular weight calculated by weight and the number of moles of the initiator, or easily obtained by using a light scattering method.
  • This embodiment provides a novel PHS resin and a preparation method thereof.
  • Polymerization monomer 4-tert-butoxystyrene.
  • Figure 1 is a GPC spectrum of the polymer of Example 1.
  • the Mw molecular weight of the obtained monodisperse PHS resin is 34,300, and the molecular weight distribution is 1.1.
  • This embodiment provides a novel PHS resin and a preparation method thereof.
  • Example 2 The difference from Example 1 is that the monomer is p-tert-butyldimethylsiloxystyrene and the initiator is sec-butyllithium.
  • Figure 2 is the GPC spectrum of the polymer of Example 2.
  • the Mw molecular weight of the obtained monodisperse PHS resin is 42,600, and the molecular weight distribution is 1.04.
  • This embodiment provides a novel PHS resin and a preparation method thereof.
  • Example 1 The difference from Example 1 is that the reaction scale is enlarged 10 times.
  • reaction bottle was dried in advance, and dry N 2 was continuously introduced. Stirring was started, and 2 kg of dry tetrahydrofuran solvent was added to the reaction bottle using a peristaltic pump. The reaction bottle was then cooled using a liquid nitrogen/ethanol bath;
  • Figure 3 is a GPC spectrum of the polymer of Example 3.
  • the Mw molecular weight of the obtained monodisperse PHS resin is 36,700, and the molecular weight distribution is 1.02.
  • This embodiment provides a novel PHS resin and a preparation method thereof.
  • Example 1 The difference from Example 1 is that the reaction scale is magnified 100 times.
  • a 50L borosilicate glass reactor was dried in advance, and dry N 2 was continuously introduced. Stirring was started, and 20 kg of dry tetrahydrofuran solvent was added to the reaction bottle using a peristaltic pump. Then the temperature control device began to cool down.
  • Figure 4 is a GPC spectrum of the polymer of Example 4.
  • the Mw molecular weight of the obtained monodisperse PHS resin is 39,100, and the molecular weight distribution is 1.02.
  • This comparative example provides a PHS resin and a preparation method thereof.
  • a 500 mL four-necked reaction bottle was dried in advance, and dry N 2 was continuously introduced. Stirring was started, and 200 g of dry tetrahydrofuran solvent and monomer p-tert-butyloxystyrene (PTBOS, 50 g, 0.28 mol) were added to the reaction bottle using a peristaltic pump. The reaction bottle was then cooled using a liquid nitrogen/ethanol bath;
  • PTBOS dry tetrahydrofuran solvent and monomer p-tert-butyloxystyrene
  • Example 1 The differences from Example 1 are: (1) feeding method: adding all at once; (2) feeding timing: adding the monomers to the reaction system first, and then directly cooling the reaction system to the reaction temperature.
  • Figure 5 is the GPC spectrum of the polymer of Comparative Example 1.
  • the Mw molecular weight of the obtained PHS resin is 37,400, and the molecular weight distribution is 1.30.
  • This comparative example provides a PHS resin and a preparation method thereof.
  • Example 1 The differences from Example 1 are: (1) feeding method: the monomers are added to the reaction system all at once; (2) feeding timing: the reaction system is pre-cooled and then the monomers are quickly injected, and then the temperature is continued to be cooled to the reaction temperature.
  • Figure 6 is the GPC spectrum of the polymer of Comparative Example 2.
  • the Mw molecular weight of the obtained PHS resin is 21,300, and the molecular weight distribution is 1.42.
  • Example 3 By comparing the test results of Example 3 and Example 4 with Example 1, it can be seen that when the reaction scale is enlarged by 10 times and 100 times, a PHS resin with a narrow molecular weight distribution and high quality can still be obtained through anionic polymerization. This shows that the living anionic polymerization method of the present invention has the advantages of being controllable and easy to industrialize.
  • the dropping method used in the present invention to synthesize the PHS resin has mild reaction conditions and small reaction temperature fluctuations, which is more effective in controlling the distribution of molecular weight.
  • the prepared resin has a very small PDI, a regular molecular weight distribution, and no obvious tailing, and can stably produce PHS resin on a large scale.
  • the temperature fluctuation range of the reaction system of Examples 1-4 is small, indicating that the reaction process is very stable.
  • the temperature fluctuation of the reaction system of Comparative Examples 1-2 is large, and the reaction process is uncontrollable and unstable, so the molecular weight distribution of the obtained polymer is relatively wide, and the reaction is too rapid, which is prone to uncontrollable production risks such as implosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明公开一种可控且易于量产化的高分子量且窄分布PHS树脂及其制备方法与应用。本发明提供的PHS树脂的制备方法,包括如下步骤:将式(I)所示化合物单体滴加至反应体系中进行活性阴离子聚合反应,再经脱保护反应,得到PHS树脂。本发明还提供由所述制备方法得到的PHS树脂。本发明还提供一种抗蚀剂,包括基础聚合物;所述基础聚合物包括所述的PHS树脂。本发明采取活性阴离子聚合方式,并采取滴加方式投加单体,因而反应过程可控,易于工业化生产,同时所得PHS树脂的分子量分布更窄。

Description

一种高分子量且窄分布PHS树脂及其制备方法与应用
交叉引用
本申请要求2022年9月30日提交的专利名称为“一种高分子量且窄分布PHS树脂及其制备方法与应用”的第202211205713.2号中国专利申请的优先权,其全部公开内容通过引用整体并入本文。
技术领域
本发明涉及一种可控且易于量产化的高分子量且窄分布PHS树脂及其制备方法与应用,属于高分子材料领域。
背景技术
近年来,功能性高分子作为高分辨率光刻或大规模集成电路(LSI)的抗蚀剂材料的基础聚合物已被广泛使用;同时随着LSI的高密度化,以往一直使用酚醛树脂已无法满足更高分辨率光刻胶树脂的需求,因此亟需开发更多高分辨和高质量的抗蚀剂材料和功能性高分子。
作为酚醛树脂的替代品,现有技术对各种化学放大型抗蚀剂材料进行了研究。在现有已知的化学放大型抗蚀剂材料中,那些具有容易被酸解的官能团,并且在该官能团解离前后具有不同溶解度的材料因具有更好的可加工性而受到格外重视,其中具有优异的耐等离子体性的聚4-羟基苯乙烯(PHS)是特别合适的。
对于高分子聚合物来讲,其是一种由各个分子量组成的混合物,通常是以平均分子量来表示其分子量大小。平均分子量可分为数均分子量Mn、重均分子量Mw等。通常来讲,评价高分子聚合物的质量好坏,主要是以其分子量分布宽窄作为标准,分子量分布用Mw/Mn表示。分子量分布越宽,说明其质量越差(类似于化合物的纯度较低),反之分子量分布越窄,说明其质量越好。
而现有PHS树脂的工业制备方法主要是以乙酰氧基苯乙烯、甲氧基苯乙烯、叔丁氧基苯乙烯等为聚合单体,通过自由基聚合法或者缩聚聚合法合成得到PHS树脂。由于反应过程中放热量非常大,反应过程难以得到合理控制,故而得到的聚合物为多分散聚合物,质量不佳;由其进一步制得的抗蚀剂也存在分辨率相对较低、显影效果不够理想的缺陷。
发明内容
本发明的目的是提供一种可控且易于量产化的,且具有高分子量且窄分散度(称为单分散性)的新型PHS及其制备方法与应用。本发明所得新型PHS树脂可使抗蚀剂的显影效果和分辨率得到显著提升;同时,本发明提供的新型PHS树脂的制备方法不仅能够适用于实验室小批量样品的制备,而且能够推广至量产级产品的生产,具有工业可操作性。
为实现上述目的,本发明提供如下技术方案:
第一方面,本发明提供一种新型PHS树脂,其分子量达到20000以上,且分散度Mw/Mn为1.01~1.10,具有更窄的分子量分布。其中,Mw是聚合物的重均分子量,Mn是聚合物的数均分子量。
所述PHS树脂,具有式(II)所示的重复单元:
本发明提出的新型PHS树脂,具有较高的分子量且分子量分布更窄,因而质量更高,属于新型单分散PHS树脂。
研究结果表明,以该新型PHS树脂作为抗蚀剂的基础聚合物,可以显著提高抗蚀剂的分辨率和显 影效果,从而解决了现有PHS树脂因分子量分布较宽而导致抗蚀剂分辨率低、显影效果差,难以达到高分辨率光刻或大规模集成电路加工需求的问题。
第二方面,本发明提供上述新型PHS树脂的制备方法,包括如下步骤:
式(I)所示化合物单体采用滴加方式加入反应体系中进行活性阴离子聚合反应,再经脱保护反应,得到PHS树脂;
所述式(I)化合物具有如下结构:
式中:R1代表C1-5的烷基、C1-5的烷氧基或C1-5的烷硅基。
本发明的发明构思如下:
阴离子聚合与自由基聚合、缩聚等均为常见聚合反应类型,但由于阴离子聚合速度过快,放热量过大,以工业生产规模实施时很容易发生爆聚且反应条件苛刻,基于这些因素,采用阴离子聚合方式合成PHS树脂还尚未形成规模化、量产化,这也是目前行业内一直采用自由基聚合或缩聚方式制备工业化PHS树脂的主要原因。
本发明通过对PHS树脂的制备方法潜心研究后,首次提出将式(I)所示化合物通过滴加法实现对阴离子聚合反应速度的控制的技术路线。利用滴加投料方式,有助于更好的控制反应温度在一定范围内,使聚合反应进行的更加稳定,从而获得分子量较高且分布更窄的新型单分散PHS树脂。相比现有的多分散PHS树脂,其品质更高。
研究结果表明,以该新型PHS树脂作为抗蚀剂的基础聚合物,可以显著提高抗蚀剂的分辨率和显影效果,从而解决了现有PHS树脂因分子量分布较宽而导致抗蚀剂分辨率低、显影效果差,难以达到高分辨率光刻或大规模集成电路加工需求的问题。
同时,本发明所述的滴加法控制阴离子聚合反应的制备方法还具有较高的生产效率,不仅能够适用于实验室小批量样品的制备,而且能够推广至量产级产品的生产,更具有工业可操作性。
本发明还进一步限定了式(I)所示化合物的滴加速度。以500ml反应体系计,所述式(I)所示化合物的滴加速度为0.1g-100g/min;滴加时间控制在1-24h范围内。放大实验在此基础上进行等比例放大即可。通过调控滴加速度以维持所述聚合反应的温度在较小温度范围内波动。例如,当反应温度开始升高时,降低单体的滴加速度;当反应温度开始下降时,稍微加快单体的滴加速度,以维持温度小幅度波动范围。
所述活性阴离子聚合反应的反应温度为-80℃~0℃;优选-70℃~-80℃。研究表明,将温度控制在此范围内,可以避免引发剂副反应的发生,进而提高树脂的聚合程度。
优选地,当所述反应体系降温至所述反应温度时,滴加所述式(I)所示化合物。
优选地,所述反应体系先降温至-50℃~-40℃加入引发剂后,再继续降温至所述反应温度。通过进一步控制引发剂的加入时机,可进一步避免引发剂副反应的发生。
所述式(I)所示化合物为对甲氧基苯乙烯、对叔丁氧基苯乙烯、对乙酰氧基苯乙烯、对叔丁基二甲基硅氧基苯乙烯等。研究表明,相比其它取代基团,上述优选基团可以更好地保护酚羟基,同时反应速度相对缓慢,不会产生大量反应热。
本发明中,控制所述式(I)所示化合物的含水量小于100ppm,优选小于50ppm,进一步优选小于10ppm。通过控制单体中含水量,有助于控制树脂的PDI,水含量过高,会使加入的引发剂以及活性中心猝灭,从而影响到树脂的分子量分布。
本发明中,控制所述式(I)化合物的氧气含量小于100ppm,优选小于50ppm,进一步优选小于10ppm。通过控制单体中含氧量,有助于控制树脂的PDI,氧含量过高,会使加入的引发剂失活,从而影响到单体和引发剂的摩尔配比,进而影响产品质量。
所述聚合反应在氮气或高真空环境下进行。
所述聚合反应采用的引发剂为有机金属化合物;优选为正丁基锂、仲丁基锂、叔丁基锂、萘钠、α- 甲基苯乙烯四钠和枯基钾等中的一种或多种;进一步优选为正丁基锂和/或仲丁基锂;更优选为正丁基锂。
所述聚合反应采用的溶剂为含有醚基的溶剂,如芳香族烃、环状醚、脂肪族烃等;优选为苯、甲苯、四氢呋喃、二氧六环、四氢吡喃和正己烷中的一种或多种,进一步优选为四氢呋喃。
所述聚合反应结束后,向反应体系中加入终止剂,如甲醇、水等,使反应停止。
所述聚合反应得到的产物,具有式(III)所示的重复单元:
所述脱保护反应采用的脱保护试剂是指卤素酸,消除所得式(III)的保护基R1,得到PHS树脂。具体地,可选用氢溴酸、盐酸等对聚合物脱保护。
此外,还可通过添加适当的溶剂,例如甲醇或水,沉淀获得反应聚合物。
第三方面,本发明还提供一种抗蚀剂,包括上述PHS树脂。
相比现有技术,本发明所取得的有益效果如下:
1、本发明以含R1取代的苯乙烯为单体,通过先活性阴离子聚合再脱保护得到新型单分散PHS树脂。该树脂具有较高的分子量且分子量分布更窄,因而质量更高。以该新型PHS树脂作为抗蚀剂的基础聚合物,可以显著提高抗蚀剂的分辨率和显影效果。
2、本发明通过严格控制反应过程中单体的投加方式(滴加)、滴加速度、单体的含水率及含氧量、反应温度,以及引发剂及溶剂的匹配性,使反应过程更加稳定,显著提高生产效率,不仅能够适用于实验室小批量样品的制备,而且能够推广至量产级产品的生产,更具有工业可操作性。
附图说明
图1为实施例1聚合物GPC谱图。
图2为实施例2聚合物GPC谱图。
图3为实施例3聚合物GPC谱图。
图4为实施例4聚合物GPC谱图。
图5为对比例1聚合物GPC谱图。
图6为对比例2聚合物GPC谱图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
在本发明中:
(1)重均分子量:通过重量和引发剂的摩尔数计算,或者通过使用光散射法容易获得。
(2)数均分子量:使用膜渗透压剂测量。
(3)分子量分布的评价:通过凝胶渗透色谱法(GPC)进行。
实施例1
本实施例提供一种新型PHS树脂及其制备方法。
聚合单体:对叔丁氧基苯乙烯。
具体操作步骤如下:
(1)500mL四口反应瓶,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵,将干燥的四氢呋喃溶剂200g加入到反应瓶中,然后利用液氮/乙醇浴给反应瓶降温;
(2)当温度降至-40℃时,利用注射器,取0.9mL正丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,继续降温至-78℃,利用蠕动泵,以直径为10mm的加料管按照60滴/min开始滴加单体对叔丁 氧基苯乙烯(PTBOS,50g,0.28mol);维持温度稳定在-70℃~-80℃;滴加完成后,继续反应1h后,加入已除氧气的甲醇终止反应。
(3)利用甲醇沉淀,获得聚合物聚对叔丁氧基苯乙烯固体样;然后利用丙酮为溶剂,利用氢溴酸对聚合物脱保护;完成后,利用水进行沉淀,过滤,烘干,得到单分散PHS树脂。
检测结果:图1为实施例1聚合物GPC谱图。所得单分散PHS树脂的Mw分子量为3.43万,分子量分布为1.1。
实施例2
本实施例提供一种新型PHS树脂及其制备方法。
与实施例1的区别在于:单体为对叔丁基二甲基硅氧基苯乙烯,引发剂为仲丁基锂。
具体操作步骤如下:
(1)500mL四口反应瓶,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵,将干燥的四氢呋喃溶剂200g加入到反应瓶中,然后利用液氮/乙醇浴给反应瓶降温;
(2)当温度降至-40℃时,利用注射器,取0.9mL仲丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,继续降温至-78℃,利用蠕动泵开始滴加单体对叔丁基二甲基硅氧基苯乙烯(TBDMSOS,50g,0.28mol)通过滴加速度的控制,维持温度稳定在-70℃~-80℃;滴加完成后,继续反应1h后,加入已除氧气的水终止。
(3)继续加入催化量的稀盐酸,常温搅拌8h;完成后,利用水进行沉淀,过滤,烘干,得到单分散PHS树脂。
检测结果:图2为实施例2聚合物GPC谱图。所得单分散PHS树脂的Mw分子量为4.26万,分子量分布为1.04。
实施例3
本实施例提供一种新型PHS树脂及其制备方法。
与实施例1的区别在于:反应规模放大10倍。
具体操作步骤如下:
(1)5L四口反应瓶,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵,将干燥的四氢呋喃溶剂2kg加入到反应瓶中,然后利用液氮/乙醇浴给反应瓶降温;
(2)当温度降至-40℃时,利用注射器,取9mL正丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,继续降温至-78℃,利用蠕动泵开始滴加单体对叔丁氧基苯乙烯(PTBOS,500g,2.8mol)通过滴加速度的控制(等比例放大),维持温度稳定在-70℃~-80℃;滴加完成后,继续反应1h后,加入已除氧气水终止。
(3)利用甲醇沉淀,获得聚合物聚对叔丁氧基苯乙烯固体样;然后利用丙酮为溶剂,利用氢溴酸对聚合物脱保护;完成后,利用水进行沉淀,过滤,烘干,得到单分散PHS树脂。
检测结果:图3为实施例3聚合物GPC谱图。所得单分散PHS树脂的Mw分子量为3.67万,分子量分布为1.02。
实施例4
本实施例提供一种新型PHS树脂及其制备方法。
与实施例1的区别在于:反应规模放大100倍。
具体操作步骤如下:
(1)50L高硼硅玻璃反应釜,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵,将干燥的四氢呋喃溶剂20kg加入到反应瓶中,然后温控设备开始降温;
(2)当温度降至-40℃时,利用注射器,取90mL正丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,继续降温至-78℃,利用蠕动泵开始滴加单体对叔丁氧基苯乙烯(PTBOS,5kg,28mol)通过滴加速度的控制(等比例放大),维持温度稳定在-70℃~-80℃;滴加完成后,继续反应1h后,加入已除氧气的甲醇终止;
(3)利用甲醇沉淀,获得聚合物聚对叔丁氧基苯乙烯固体样;然后利用丙酮为溶剂,利用氢溴酸对聚合物脱保护,完成后,利用水进行沉淀,过滤,烘干,得到单分散PHS树脂。
检测结果:图4为实施例4聚合物GPC谱图。所得单分散PHS树脂的Mw分子量为3.91万,分子量分布为1.02。
对比例1
本对比例提供一种PHS树脂及其制备方法。
具体操作步骤如下:
(1)500mL四口反应瓶,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵将干燥的四氢呋喃溶剂200g和单体对叔丁氧基苯乙烯(PTBOS,50g,0.28mol)加入到反应瓶中,然后利用液氮/乙醇浴给反应瓶降温;
(2)当温度降至-78℃时,利用注射器,取0.9mL正丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,反应温度急剧升高,由-78℃瞬间升高至50℃,反应剧烈,不易控制。继续反应1h后,加入已除氧气的甲醇终止反应。
(3)利用甲醇沉淀,获得聚合物聚对叔丁氧基苯乙烯固体样;利用丙酮为溶剂,利用氢溴酸对聚合物脱保护;完成后,利用水进行沉淀,过滤,烘干,得到PHS树脂。
与实施例1的区别在于:(1)投料方式:一次性加入;(2)投料时机:单体先加入反应体系,再将反应体系直接降温至反应温度。
检测结果:图5为对比例1聚合物GPC谱图。所得PHS树脂的Mw分子量为3.74万,分子量分布为1.30。
对比例2
本对比例提供一种PHS树脂及其制备方法。
具体操作步骤如下:
(1)500mL四口反应瓶,预先干燥处理,持续通入干燥的N2,开启搅拌,利用蠕动泵,将干燥的四氢呋喃溶剂200g加入到反应瓶中,然后利用液氮/乙醇浴给反应瓶降温;
(2)当温度降至-40℃时,利用注射器,取0.9mL正丁基锂的己烷溶液(浓度为1.3M)加入到反应瓶中,继续降温至-78℃,利用蠕动泵将单体对叔丁氧基苯乙烯(PTBOS,50g,0.28mol)在30s内加入到反应瓶中;温度急剧升高,由-78℃瞬间升高至45℃,继续反应1h后,加入已除氧气的甲醇终止反应。
(3)利用甲醇沉淀获得聚合物聚对叔丁氧基苯乙烯固体样,然后利用丙酮为溶剂,利用氢溴酸对聚合物脱保护;完成后,利用水进行沉淀,过滤,烘干,得到单分散PHS树脂。
与实施例1的区别在于:(1)投料方式:单体一次性加入反应体系;(2)投料时机:将反应体系预降温后迅速注入单体,再继续降温至反应温度。
检测结果:图6为对比例2聚合物GPC谱图。所得PHS树脂的Mw分子量为2.13万,分子量分布为1.42。
效果验证
1、分子量分布
表1实施例1-4及对比例1-2所得PHS树脂的分子量分布
由表1可知如下结论:
(1)通过比较实施例1-4及对比例1-2的测试结果可知,实施例1-4所得PHS树脂的分子量分布显著小于对比例1-2;说明本发明通过滴加方式能够有效控制反应体系的温度,实现活性阴离子聚合反应稳定进行,从而获得分子量分布更窄、质量更高的PHS树脂。
(2)通过比较实施例1与实施例2的测试结果可知,采用叔丁氧基苯乙烯、叔丁基二甲基硅氧基苯乙烯均能够通过阴离子聚合获得分子量分布窄、质量高的PHS树脂。
(3)通过比较实施例3、实施例4与实施例1的测试结果可知,当反应规模放大10倍、100倍时,仍然能够通过阴离子聚合获得分子量分布窄、质量高的PHS树脂。说明本发明所述的活性阴离子聚合方法具有可控且易于工业化产生的优点。
(4)通过比较对比例1与对比例2的测试结果可知,无论是提前加入单体一锅法合成,亦或是采用快速加入单体的合成方法,均会导致反应放出大量反应热,温度迅速从-78℃升温至40℃以上,反应中心温度相应也更高。而根据本领域常识可知,反应温度越高,引发剂越容易产生副反应,从而阻断聚合反应继续进行;如体系温度升温至0℃以上时,引发剂则会和溶剂四氢呋喃发生反应并中止聚合反应的进 行,从而导致反应配比失衡,所得树脂的分子量分布变宽,这对合成和制备光刻胶树脂是非常不利的,也是目前制备PHS树脂的难点。
另外,根据各聚合物GPC谱图可知,本发明所采用的滴加法合成PHS树脂,反应条件温和,反应温度波动较小,对控制分子量的分布更加有效,所制备的树脂PDI很小,分子量分布规整,没有明显的拖尾,可稳定的规模化生产PHS树脂。
2、聚合反应的温度波动范围比较
表2.实施例1-4与对比例1-2反应过程温度波动范围比较
由上表可知,实施例1-4的反应体系温度波动范围较小,说明其反应过程非常稳定。而对比例1-2的反应体系温度波动较大,反应过程不可控、不稳定,因而所得聚合物的分子量分布相对较宽,同时反应过于迅速,容易产生爆聚等不可控生产风险。
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (10)

  1. 一种PHS树脂,具有式(II)所示的重复单元:
    所述PHS树脂的分子量≥2000,Mw/Mn在1.01~1.10之间。
  2. 权利要求1所述PHS树脂的制备方法,包括如下步骤:
    式(I)所示化合物单体通过滴加方式加入反应体系中进行活性阴离子聚合反应,再经脱保护反应,得到PHS树脂;
    式中:R1代表C1-5的烷基、C1-5的烷氧基或C1-5的烷硅基。
  3. 根据权利要求2所述的制备方法,其特征在于:以500ml反应体系计,所述式(I)所示化合物的滴加速度为0.1g-100g/min。
  4. 根据权利要求2或3所述的制备方法,其特征在于:所述活性阴离子聚合反应的反应温度为-80℃~0℃;当所述反应体系降温至所述反应温度时,滴加所述式(I)所示化合物。
  5. 根据权利要求4所述的制备方法,其特征在于:所述反应体系先预降温至-50℃~-40℃时加入引发剂,再继续降温至所述反应温度。
  6. 根据权利要求5所述的制备方法,其特征在于:所述式(I)所示化合物为对甲氧基苯乙烯、对叔丁氧基苯乙烯、对乙酰氧基苯乙烯或对叔丁基二甲基硅氧基苯乙烯。
  7. 根据权利要求6所述的制备方法,其特征在于:控制式(I)所示化合物的含水量小于100ppm。
  8. 根据权利要求7所述的制备方法,其特征在于:控制式(I)所示化合物的氧气含量小于100ppm。
  9. 根据权利要求8所述的制备方法,其特征在于:所述聚合反应采用的引发剂为正丁基锂、仲丁基锂、叔丁基锂、萘钠、α-甲基苯乙烯四钠和枯基钾中的一种或多种;
    所述聚合反应采用的溶剂为苯、甲苯、四氢呋喃、二氧六环、四氢吡喃和正己烷中的一种或多种;
    所述脱保护反应采用的脱保护试剂为氢溴酸和/或盐酸。
  10. 一种抗蚀剂,包括基础聚合物;所述基础聚合物包括权利要求1所述的PHS树脂。
PCT/CN2023/115150 2022-09-30 2023-08-28 一种高分子量且窄分布phs树脂及其制备方法与应用 WO2024066848A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211205713.2A CN115260348B (zh) 2022-09-30 2022-09-30 一种高分子量且窄分布phs树脂及其制备方法与应用
CN202211205713.2 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066848A1 true WO2024066848A1 (zh) 2024-04-04

Family

ID=83758100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115150 WO2024066848A1 (zh) 2022-09-30 2023-08-28 一种高分子量且窄分布phs树脂及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN115260348B (zh)
WO (1) WO2024066848A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356505A (ja) * 1991-01-31 1992-12-10 Shin Etsu Chem Co Ltd ポリヒドロキシスチレンの製造方法
JPH0632818A (ja) * 1992-07-14 1994-02-08 Shin Etsu Chem Co Ltd ポリ(p−ヒドロキシスチレン)の製造方法
JPH0641222A (ja) * 1992-07-22 1994-02-15 Shin Etsu Chem Co Ltd ポリ(m−ヒドロキシスチレン)及びその製造方法
JPH11255820A (ja) * 1998-03-12 1999-09-21 Mitsui Chem Inc 狭分散性のポリ(p−ヒドロキシスチレン)の製造方法
JP2000026535A (ja) * 1998-07-09 2000-01-25 Sumitomo Chem Co Ltd 狭分散性重合体の製造方法、狭分散性重合体及びそれのレジストへの適用
JP2001316418A (ja) * 2000-05-11 2001-11-13 Jsr Corp 部分保護ポリヒドロキシスチレンの製造法
CN105924553A (zh) * 2016-05-16 2016-09-07 张智斌 一种分子量窄分布的聚羟基苯乙烯类聚合物的制备方法
CN115210208A (zh) * 2020-06-18 2022-10-18 丸善石油化学株式会社 高纯度4-羟基苯乙烯溶液、其制造方法、及4-羟基苯乙烯系聚合物的制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04359906A (ja) * 1991-06-07 1992-12-14 Shin Etsu Chem Co Ltd ポリ(パラ−t−ブトキシカルボニルオキシスチレン)及びその製造方法
TW553955B (en) * 1999-09-06 2003-09-21 Sumitomo Chemical Co A method for producing poly(p-t-butoxystyrene)
FR2852960B1 (fr) * 2003-03-31 2006-06-23 Commissariat Energie Atomique Procede de preparation de poly(alpha-methylstyrene);
CN102712719A (zh) * 2010-01-18 2012-10-03 日本曹达株式会社 苯乙烯系聚合物及其制造方法
WO2018120526A1 (zh) * 2016-12-30 2018-07-05 常州大学 乳液聚合室温制备超高分子量聚合物的方法
CN109553714B (zh) * 2018-12-05 2022-01-11 江苏麒祥高新材料有限公司 一种用于提高橡胶抗湿滑性能的低聚物的制备方法
CN109942845A (zh) * 2019-02-22 2019-06-28 江苏南大光电材料股份有限公司 一种光刻胶树脂的制备方法
CN114395068B (zh) * 2021-12-28 2023-11-03 宁波南大光电材料有限公司 一种窄分布的193nm深紫外光刻胶用BARC树脂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04356505A (ja) * 1991-01-31 1992-12-10 Shin Etsu Chem Co Ltd ポリヒドロキシスチレンの製造方法
JPH0632818A (ja) * 1992-07-14 1994-02-08 Shin Etsu Chem Co Ltd ポリ(p−ヒドロキシスチレン)の製造方法
JPH0641222A (ja) * 1992-07-22 1994-02-15 Shin Etsu Chem Co Ltd ポリ(m−ヒドロキシスチレン)及びその製造方法
JPH11255820A (ja) * 1998-03-12 1999-09-21 Mitsui Chem Inc 狭分散性のポリ(p−ヒドロキシスチレン)の製造方法
JP2000026535A (ja) * 1998-07-09 2000-01-25 Sumitomo Chem Co Ltd 狭分散性重合体の製造方法、狭分散性重合体及びそれのレジストへの適用
JP2001316418A (ja) * 2000-05-11 2001-11-13 Jsr Corp 部分保護ポリヒドロキシスチレンの製造法
CN105924553A (zh) * 2016-05-16 2016-09-07 张智斌 一种分子量窄分布的聚羟基苯乙烯类聚合物的制备方法
CN115210208A (zh) * 2020-06-18 2022-10-18 丸善石油化学株式会社 高纯度4-羟基苯乙烯溶液、其制造方法、及4-羟基苯乙烯系聚合物的制造方法

Also Published As

Publication number Publication date
CN115260348A (zh) 2022-11-01
CN115260348B (zh) 2023-08-15

Similar Documents

Publication Publication Date Title
KR101512496B1 (ko) Aba형 삼중블록 공중합체 및 그 제조방법
JPH0665333A (ja) 単分散性共重合体及びその製造方法
Foss et al. A new difunctional anionic initiator
Gervais et al. Linear High Molar Mass Polyglycidol and Its Direct α‐Azido Functionalization
WO2024066848A1 (zh) 一种高分子量且窄分布phs树脂及其制备方法与应用
JP5770625B2 (ja) ビニルエーテル系星型ポリマーおよびその製造方法
Theodosopoulos et al. Trifunctional organolithium initiator for living anionic polymerization in hydrocarbon solvents in the absence of polar additives
Quirk et al. Adducts of Polymeric Organolithiums with 1, 1‐Diphenylethylene. Rates of Formation and Crossover to Styrene and Diene Monomers
US7179870B2 (en) Method for the preparation of poly sg(a)-methylstyrene
JPWO2011070880A1 (ja) ビニルエーテル系星型ポリマーの製造方法
US5412050A (en) Polymer having a narrow dispersion of molecular weight and a manufacturing process thereof
CN105754024B (zh) 一种高异戊二烯含量丁基橡胶的合成方法
KR100528719B1 (ko) 양친매성 코일-막대 타입의 2-비닐피리딘과n-헥실이소시아네이트 블록공중합체 및 이의 중합방법
KR20020091280A (ko) 캡슐 입자 형태의, 음이온 중합된 내충격성 폴리스티렌
Saito et al. Pseudo‐Living Anionic Telomerization of Buta‐1, 3‐diene
Wesslén et al. Anionic polymerization of vinyl chloride
Zhu et al. Synthesis of monodisperse hydroxyl‐containing polystyrene via chemical modification
JPH1180220A (ja) 共役ジエン系重合体の製造方法
JPH0665332A (ja) 単分散性共重合体及びその製造方法
CN117777387A (zh) 一种光刻胶用窄分子量分布嵌段树脂及其制备方法
JPH0665324A (ja) 単分散性共重合体及びその製造方法
JPH0641245A (ja) 単分散性共重合体及びその製造方法
JPH0641240A (ja) 単分散性共重合体及びその製造方法
JPH05148324A (ja) 共重合体及びその製造方法
JPH0632818A (ja) ポリ(p−ヒドロキシスチレン)の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870091

Country of ref document: EP

Kind code of ref document: A1