WO2023246178A1 - 一种原纤化网状电极、固态电解质膜、储能装置及车辆 - Google Patents

一种原纤化网状电极、固态电解质膜、储能装置及车辆 Download PDF

Info

Publication number
WO2023246178A1
WO2023246178A1 PCT/CN2023/080216 CN2023080216W WO2023246178A1 WO 2023246178 A1 WO2023246178 A1 WO 2023246178A1 CN 2023080216 W CN2023080216 W CN 2023080216W WO 2023246178 A1 WO2023246178 A1 WO 2023246178A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrillated
active material
energy storage
particles
electrode
Prior art date
Application number
PCT/CN2023/080216
Other languages
English (en)
French (fr)
Inventor
荣常如
孙焕丽
张兴瑞
陈书礼
李子玉
杨庆敖
马腾翔
胡景博
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023246178A1 publication Critical patent/WO2023246178A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • New energy vehicles are one of the key ways to achieve the development goal of "carbon peaking/carbon neutrality".
  • power batteries Low-carbon and zero-carbonization are important prerequisites for achieving zero emissions from new energy vehicles.
  • the carbon emissions of power batteries are mainly concentrated in the charging and discharging, battery design, manufacturing, and recycling of electric vehicles.
  • monomer production and key material production have the largest carbon emissions.
  • Carbon emissions at the monomer production end mainly include the electrode process, assembly process and chemical formation process. Among them, the power consumption is relatively large during the baking after coating, drying after liquid injection, and chemical formation stages.
  • green and low-carbonization is extremely urgent.
  • the patent of CN 105489392 A discloses a graphene pole piece and its preparation method. Porous graphene particles and binders are gathered into a sheet film. The sheet film is rolled to support the graphene pole sheet, which can be used in a variety of chemical or Physical power source.
  • the patent of CN 109841796 A discloses an electrode preparation method and a battery.
  • the positive electrode of the battery is made of active material, conductive agent and binder.
  • the active material layer is adhered to the current collector, which increases the surface density of the electrode sheet. Improve electrode capacity and pole piece stability, and reduce internal resistance.
  • a fibrillated mesh electrode includes a fibrillated mesh active material layer, a current collector and an ion conductor, the fibrillated mesh active material layer and ions
  • the conductor and the current collector are interactively combined, the ion conductor array is arranged and attached to the surface of the current collector, and the fibrillated network active material layer includes binder fibers of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer.
  • Net, active material particles and conductive agent particles, the binder particles of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer are fiberized in situ and interactively networked to connect the active material particles and conductive agent particles.
  • the mass fraction of the tetrafluoroethylene copolymer is 3 to 30%, for example, 3%, 3.5%, 3.8%, 5%, 8%, 12%, 17%, 25% or 30%.
  • the mentioned tetrafluoroethylene copolymer does not limit the type of core-shell structure binder, but means that there is at least one mentioned binder that can achieve the electrode preparation method and electrochemical stability of the present application; Further, the tetrafluoroethylene copolymer can achieve auxiliary internal lubrication for the electrode preparation method of the present application; further, the tetrafluoroethylene copolymer can include tetrafluoroethylene and alkane copolymer, tetrafluoroethylene copolymers with perfluoroalkyl vinyl ether, further, the tetrafluoroethylene copolymer also includes copolymers of tetrafluoroethylene monomer and perfluorosulfonic acid monomer, for example, perfluorosulfonic acid polytetrafluoroethylene Ethylene.
  • the optional molecular weight of the tetrafluoroethylene copolymer is 200,000 to 3 million, for example, 200,000, 700,000, 1.1 million, 1.5 million, 2 million, 2.6 million, 2.9 million or 3 million.
  • the core-shell structure binder of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer also includes external lubricating additives, including fatty acid amide, organic silicon, stearic acid, oleamide, and polyol. ester, At least one of montan wax and paraffin wax; at least one of positive electrode core-shell structure binder and negative electrode core-shell binder, including the external lubricating assistant.
  • the mass fraction of the lubricating aid is 0.3% to 1%, for example, 0.3%, 0.5%, 0.8%, or 1%.
  • the external lubricating additive can be present in the fibrillated mesh electrode, for example, ethylene bisstearamide with a higher thermal characteristic temperature; it can also escape in the form of gas synchronously during the electrode preparation process and be passed through the device. Recycling and reuse, for example, during the screw solid phase extrusion fibrillation process, paraffin escapes in the form of gas in the set temperature section and enters the condenser for recycling and reuse.
  • the mass fraction of the binder is 0.5-6%, for example: 0.5%, 1%, 2%, 3%, 4%, 5% or 6%.
  • the ion conductor includes a binder fiber mesh of tetrafluoroethylene homopolymer and tetrafluoroethylene copolymer and electrolyte material particles.
  • the mass fraction of the ion conductor is 0.1 to 10%, for example: 0.1%, 0.5%, 1%, 3% , 5%, 8% or 10%, etc.
  • the diameter of the core-shell structure binder particles of the tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer is not a limitation on the size and shape of the core-shell structure binder particles, but indicates that there is at least One of the mentioned sizes and shapes can realize the electrode preparation method of the present application; further, the core-shell structure binder particles of the tetrafluoroethylene copolymer and the tetrafluoroethylene homopolymer can also have a certain length. particles with a diameter ratio; further, they can also be irregular particles, for example, the particle size D50 is 5 ⁇ m.
  • the "fibrillated mesh electrode” refers to the electrode based on the energy storage and conversion device described in this application. After the binder undergoes several solvent-free processes throughout the process, the original The structural form of the fiber network formed by binding the active material and the conductive agent is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the electrode and the battery to which the electrode is applied must have specific characteristics. The fibrillated network structure and manufacturing process are therefore not to be construed as limitations of this application.
  • this application provides a solvent-free preparation method for the entire process of fibrillated mesh electrodes as described in the first aspect.
  • the preparation method includes the following steps:
  • the electrode mixture is adhered to the surface of the current collector, and rolled at a gradient temperature to form a pole piece including a fibrillated network active material layer, a current collector, and an ion conductor.
  • the method of uniformly dispersing the binder particles, active material particles and conductive agent particles in step (1) to form a spherical electrode mixture includes the following steps:
  • the active material premix and the binder particles are fibrillated and dispersed without solvent, and the obtained fibrillated premix is spherical to form a spherical electrode mixture.
  • step (3) the method of adhering the electrode mixture to the surface of the current collector, rolling it with gradient heating, and producing a pole piece including a fibrillated network active material layer, a current collector, and an ion conductor includes the following steps: Steps:
  • M3 Gradient heating roller pressing to produce a pole piece including a fibrillated network active material layer, current collector and ion conductor.
  • the gradient heating temperature range is 25 to 130°C, such as: 25°C, 30°C, 50°C, 100°C or 130°C.
  • the pretreated active material surface includes carbon coating, organic compound coating, and inorganic oxide coating; the coating method includes at least one of in-situ synthesis, chemical modification, and physical blending.
  • the pretreatment of the active material surface does not limit the electrode preparation process, but means that there is at least one mentioned process that can reduce the frictional resistance of the rolling process and achieve fibrillation in this application.
  • Preparation methods of network formability can improve the interface performance between electrodes and electrolytes, for example, lithium acetate coating lithium iron manganese oxide; further, inorganic coating can be synthesized in situ during the preparation process of active materials, such as niobium in situ Synthesis of coated lithium nickel cobalt manganese oxide; further, safety can be further improved, for example, nitrogen-containing hyperbranched polymers are physically blended with coated lithium nickel cobalt manganese oxide, and the chains of nitrogen-containing hyperbranched polymers When the temperature of the segments is 90 to 160°C, chemical reactions occur with each other, blocking the transmission of the isolator and improving the safety of the energy storage device.
  • the core-shell structure binder particles and electrolyte particles of the metered proportion of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer are evenly dispersed to form an ion conductive mixture, including the electrolyte particles and the core-shell structure binder particles.
  • the binder particles are fibrillated and dispersed without solvent to form an ion conductive mixture.
  • the array arrangement topology of the ion conductors on the surface of the current collector does not limit the physical existence of the ion conductors in the electrodes of the energy storage and conversion device described in this application, but represents the existence of at least one method.
  • the ion conductor of the present application and the arrangement method that meet the electrode porosity requirements can be realized.
  • the array arrangement topology can be an ordered lattice, an ordered line segment, an ordered pattern, and further, the ions
  • the arrangement topology of the conductor on the surface of the current collector maps to the ion transmission channel and the electron transmission channel in the energy storage and conversion device; the topology of the arrangement of the ion conductor on the current collector surface is consistent with the arrangement topology of the energy storage and conversion device.
  • the rate performance, interface performance, and cycle performance correspond to each other, and the arrangement topology of the ion conductor on the current collector surface matches the fibrillation mesh electrode process, prelithiation process, and recycling process; the described
  • the arrangement topology of the ion conductor on the surface of the current collector is related to the mass, volume and penetration degree of the ion conductor in the fibrillated mesh electrode active material layer.
  • the array arrangement topology is only for the convenience of describing the present application. The simplified description does not indicate or imply that the ion conductor and the array arrangement topology of the ion conductor on the current collector surface must have a specific structure and manufacturing process, and therefore cannot be understood as a limitation of the present application.
  • the arrangement of the ion conductor array can be changed to be arranged along the current density distribution curve, or can also be changed to be arranged along the temperature distribution curve of thermal, electrical and force multi-physical field coupling.
  • the attachment of the ion conductor to the surface of the current collector does not limit the interactive combination of the fibrillated network active material layer with the ion conductor and the current collector described in this application, but indicates that there is at least one of the mentioned achievable methods.
  • the active material layer of the present application is combined with the current collector, for example, the ion conductor penetrates the electrode active material layer, and the ion conductor with the same electrolyte and binder is interfaced with the solid electrolyte membrane, and further, the The penetrating electrode active material layer also includes an electrode active material layer penetrating both sides of the current collector and combined with the solid electrolyte membrane interface; it also includes the ion conductor not penetrating The electrode active material layer and the ion conductor are not interfaced with the solid electrolyte membrane. Furthermore, the ion conductor is attached to the surface of the current collector, including 3D printing array bonding, electrode mixture extrusion bonding, and electrode mixture molding into array arrangement bonding.
  • the ion conductor attached to the surface of the current collector includes the ion conductor attached to at least one of the positive electrode current collector and the negative electrode current collector.
  • the ion conductor can be the same type or another type.
  • the pretreatment of attaching an electronic conductive material to the surface of the current collector includes etching and carbonizing the surface of the current collector.
  • the etching and carbonization pretreatment of the current collector surface is not a limitation on the pretreatment method for the electron conductive material attached to the current collector surface, but indicates that there is at least one of the mentioned methods that can realize the electronic conductivity attached to the current collector surface of the present application.
  • the method of material pretreatment also includes other pretreatments for attaching electronically conductive substances to the surface of the current collector, for example, 3D printing and attaching electronically conductive substances to the surface of the current collector.
  • the active materials include lithium nickel cobalt oxide, lithium manganese oxide, lithium nickel cobalt manganese oxide, lithium nickel cobalt aluminum oxide, lithium nickel cobalt aluminum magnesium oxide, lithium vanadium oxide, lithium Cobalt oxide, nickel manganese oxide, nickel cobalt manganese oxide, lithium iron oxide, lithium iron manganese oxide, graphite, silicon, lithium titanium oxide, activated carbon, carbon fiber, lead oxide, nickel oxide, platinum, lithium Metal, graphene.
  • the full-process solvent-free electrode preparation method also includes adhering a high-porosity electrode active material layer to the surface of the active material layer to form an electrode with a porosity gradient distribution; it may also include adhering the active material layer to the surface Security layer.
  • the entire process is solvent-free
  • each step of the entire process is in the solid phase and/or Or completed in a gas phase medium, which is different from the liquid phase process using organic solvents and/or water as the medium that exists in the wet method.
  • It can also be called the "dry method”, which is only for the convenience of describing this application and simplifying the description, rather than It indicates or implies that the fibrillated mesh electrode and the electrode preparation process must have a specific solvent-free process and that a specific solvent is not used in the solvent-free process, and therefore cannot be understood as a limitation of the present application.
  • the present application provides a solid electrolyte membrane.
  • the solid electrolyte membrane includes a binder for fibrillating the network active material layer and an electrolyte substance for an ion conductor.
  • the solid electrolyte membrane is The mass fraction of the binder is 0.5-10% based on 100% mass, for example, 0.5%, 1%, 3%, 5%, 7%, 9% or 10%.
  • the electrolyte material includes polymer electrolyte and/or inorganic electrolyte.
  • the polymer electrolyte includes high molecular polymer and electrolyte salt.
  • the high molecular polymers include polymethyl methacrylate, polyethylene oxide, polyvinyl chloride, polyacrylonitrile, polyphenylene sulfide, polyacrylic acid, polyethylene glycol dimethyl ether, and polyetherimide. , at least one of polysiloxane, polyvinylene carbonate, polypropylene oxide, polyvinylidene fluoride or polyvinylidene fluoride-hexafluoropropylene; the electrolyte salt includes lithium salt, sodium salt, zinc At least one of salt, potassium salt and ammonium salt.
  • the inorganic electrolytes include Li 3 PS 4 , Li 6 PS 5 Cl, Li 3.3 La 0.56 TiO 3 , Li 7 La 3 Zr 2 O 12 , Li 1.3 Al 0.3 Ti 1.7 (PO4) 3 , Li14ZnGe 4 O 16 , At least one of Li 6 PS 5 Br, Li 7 P 3 S 11 , Li 10 GeP 2 S 12 and Li 2 P 2 S 6 .
  • this application provides a method for preparing a solid electrolyte membrane as described in the third aspect.
  • the method for preparing a solid electrolyte membrane includes the following steps:
  • A1 Based on the requirements of the energy storage and conversion device and the solid electrolyte membrane process, provide the metering ratio of the core-shell structure binder particles and electrolyte particles of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer;
  • A2 The electrolyte particles and the core-shell structure binder particles are fibrillated and dispersed without solvent, and the obtained fibrillated electrolyte premix is spherical to form a spherical electrolyte mixture;
  • A3 The spherical electrolyte mixture is metered and fed, and rolled with gradient temperature to form a fibrillated network solid electrolyte membrane.
  • the gradient heating temperature range is 25 to 150°C, such as: 25°C, 30°C, 50°C, 100°C, 130°C or 150°C.
  • the "solid electrolyte membrane” with a fibrillated network morphology is the electrolyte and binder used in the preparation process of the electrolyte membrane based on the energy storage and conversion device described in this application.
  • the entire process of solid-phase and/or gas-phase dispersion fibrillation to form a film is only for the convenience of describing the present application and simplifying the description, and does not indicate or imply that the solid-state electrolyte membrane and the preparation process of the solid-state electrolyte membrane must have specific requirements.
  • the solvent process and specific solvents are not used in the solvent-free process and therefore should not be construed as limiting the application.
  • an energy storage device includes at least one of the fibrillated mesh electrode as described in the first aspect and the solid electrolyte membrane as described in the third aspect;
  • the fibrillated mesh electrode includes at least one of a fibrillated mesh positive electrode and a fibrillated mesh negative electrode;
  • the energy storage device further includes a shell, and the shell includes any one or a combination of at least two of a square shell, a cylindrical shell or a soft shell.
  • the method for preparing an integrated core of an energy storage device including a fibrillated mesh electrode and a solid electrolyte membrane includes the following steps:
  • the core-shell structure binder particles, active material particles and conductive agent particles of the metered proportion of tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer are evenly dispersed to form a spherical electrode mixture.
  • the metered proportion of tetrafluoroethylene The core-shell structure binder particles and electrolyte particles of the copolymer and the tetrafluoroethylene homopolymer are evenly dispersed to form an ion conductive mixture; the metered proportion of the tetrafluoroethylene copolymer is bonded to the core-shell structure of the tetrafluoroethylene homopolymer.
  • the agent particles and electrolyte particles are evenly dispersed to form an electrolyte mixture;
  • the metered ion conductive mixture is arranged in an array and adheres to the surface of the current collector to form an ion conductor;
  • the metered-in electrode mixture adheres to the surface of the current collector to form a pole piece including a fibrillated network active material layer and an ion conductor.
  • the metered-in electrolyte mixture is fibrillated into a film, and is rolled with a gradient temperature.
  • the integrated core of fibrillated mesh electrode and solid electrolyte membrane is made.
  • the energy storage device described in this application includes lithium-ion batteries, solid-state batteries, bipolar batteries, sodium-ion batteries, nickel-hydrogen batteries, lead-carbon batteries, zinc-ion batteries, aluminum-ion batteries, magnesium-ion batteries, organic Batteries, supercapacitors, fluoride-ion batteries, dual-ion batteries, flow batteries.
  • the energy storage device described does not limit the form of energy storage and conversion, but means that there is at least one mentioned working mechanism that can realize the energy storage device of this application. Further, it also includes A device that converts chemical energy into electrical energy without relying on charging for energy storage, e.g., fuel cell cells and metal-air batteries.
  • this application provides a vehicle, including the energy storage device and management system described in the fifth aspect integrated into the chassis, where the management system includes a collection unit, a control unit and an execution unit.
  • the described collection unit includes a temperature collection module, a voltage collection module, a current collection module, a pressure collection module, a harmful gas collection module and a smoke collection module;
  • the execution unit includes an energy storage device, a series-parallel high-voltage circuit on-off relay, and a safety warning display and sound module;
  • the control unit includes a charging control module, a discharge control module and a safety monitoring module;
  • the temperature acquisition module includes sensors arranged according to the temperature distribution curve and a battery temperature estimation model embedded with a control unit;
  • the harmful gas collection module includes a sensitive sensor for fluorine-containing gas or fluorine-containing solid matter.
  • the functions of the charging control module include energy storage device, fibrillated mesh electrode ion conductor and charging rate control determined by porosity;
  • the functions of the discharge control module include energy storage device, fibrillated mesh electrode ion conductor and discharge rate control determined by porosity.
  • the functions of the safety monitoring module include energy storage device voltage, current, temperature, pressure and smoke concentration limit monitoring, energy storage device thermal runaway monitoring, energy storage device collision monitoring, energy storage device insulation monitoring, and energy storage device injection.
  • Hazardous gas monitoring unexpected disconnection monitoring of energy storage series and parallel high-voltage circuits, energy storage device series and parallel high-voltage circuit on-off monitoring and management system power supply monitoring, and energy storage device cloud monitoring;
  • the voltage, current, temperature, pressure and smoke concentration limit monitoring of the energy storage device is closely related to the thermal runaway monitoring of the energy storage device, the collision monitoring of the energy storage device, the insulation monitoring of the energy storage device, and the injection of harmful gases from the energy storage device.
  • At least one of the body monitoring devices is connected in series and parallel with the energy storage device to monitor the high-voltage circuit on and off, forming a functional safety monitoring functional link.
  • monitoring described does not limit the control function of the control unit, but means that there is at least one mentioned working mechanism that can implement the control unit of this application. Further, it can be understood that monitoring includes monitoring, control and execution.
  • the energy storage device and management system are integrated into the chassis.
  • the energy storage device is first integrated into the module, the module is then integrated into the energy storage system, and the energy storage system is integrated with the chassis. It also includes the energy storage device being directly integrated into the energy storage system, and the energy storage system is integrated into the chassis.
  • the energy system is integrated with the chassis; it also includes an integrated energy storage system directly integrating the energy storage device with the chassis.
  • the binder particles with a core-shell structure described in this application solve the problem of microfibrillation caused by friction between the binder particles caused by micro-oscillation during transportation, and reduce the difficulty in secondary fibrillation caused by frictional microfibrillation.
  • the internal lubrication and external lubrication additives of the outer layer of tetrafluoroethylene copolymer can reduce the frictional resistance of fibrillation dispersion and improve the rheology and dispersion of the electrode mixture; at the same time, the tetrafluoroethylene copolymer and tetrafluoroethylene homopolymer
  • the composite binder improves the electrochemical stability of the positive and negative electrodes.
  • the main manufacturing process of the fibrillated mesh electrode described in this application reduces the steps of self-supporting continuous film formation, improves manufacturing efficiency, and reduces the cost of solvent-free electrodes.
  • the micro-scale distribution of the particle size of the fibrillated material of the spherical block electrode is reformed, further improving the tensile strength of the fibrillated network, increasing the film-forming rate during production, and reducing the accuracy of the electrode sheet thickness and density detection equipment. rely.
  • the preparation method of fibrillated mesh electrodes described in this application is suitable for a variety of existing and future energy storage devices. It is a key common technology for green and low-carbonization and can realize the collinear production of different energy storage products with one set of equipment. demand, with the advantages of short process time, low cost and flexible customization.
  • Figure 1 is a scanning electron microscope image of the lithium iron phosphate fibrillated network structure electrode described in Example 1 of the present application.
  • Figure 2 is a diagram of the active material layer of the fibrillated network structure of lithium iron phosphate described in Example 2 of the present application.
  • Figure 3 is a diagram of the solid electrolyte membrane described in Example 2 of the present application.
  • Figure 6 is a schematic structural diagram of the electrode described in Example 3 of the present application applied to lithium ion batteries and then to vehicles: 1-lithium ion battery, 1.1-fibrillated mesh positive electrode, 1.2-solid electrolyte membrane, 1.3-fibrils Mesh negative electrode, 2-battery management system, 2.1-acquisition unit, 2.2-control unit, 2.3-execution unit, 3-battery system, 4-vehicle.
  • Carbon-coated lithium iron phosphate particles and graphite conductive agent particles are mixed by high-speed ball milling for 1 hour.
  • the obtained active material premix and binder are mixed in a V-shaped mixer without shearing for 2 hours, and then placed in 85°C air Impact at medium-high speed for 1 minute, and the obtained fibrillated premix is kneaded by twin-screws for 10 minutes to make a spherical cathode mixture.
  • the mass fraction of the ion conductor in the fibrillated mesh electrode active material layer is 1%.
  • the spherical cathode mixture in step (1) passes through the metering feeder and is scattered onto the rolling surface of the pair of rollers. It is rolled once at 25°C, twice at 60°C, three times at 95°C, and four times at 110°C.
  • the aluminum foil current collector with ion conductor attached to the surface is laminated on one side/double side and rolled five times at 110°C to produce an active material layer of lithium iron phosphate particles coated with fibrillated network carbon, aluminum foil current collector and ion conductor.
  • the fibrillated mesh cathode sheet is shown in Figure 1, the SEM photo of the fibrillated mesh cathode.
  • core-shell structure binder particles of 3% tetrafluoroethylene and perfluoroalkyl vinyl ether copolymer and 97% polytetrafluoroethylene are combined with graphite
  • the active material particles and graphite conductive agent particles are weighed according to the metering ratio of 3%:94%:2%.
  • Carbon-coated nickel manganese oxide NCM811 particles and graphite conductive agent particles are mixed by high-speed ball milling for 1 hour, and the obtained active material premix and binder are heated in twin-screw solid phase extruders at 45°C, 65°C, and 85°C. , the obtained fibrillated premix was mixed and dispersed for 30 minutes to prepare a spherical positive electrode mixture.
  • the core-shell structure binder particles with a mass fraction of 0.3% paraffin, 3% tetrafluoroethylene-ethylene copolymer and 96.7% polytetrafluoroethylene, and polyethylene oxide Li 7 La 3 Zr 2 O 12 ( Based on 100% of the polymer electrolyte, the mass fraction of Li 7 La 3 Zr 2 O 12 is 20%)
  • the electrolyte particles are proportioned according to 8%:92%, and the twin-screw solid phase is heated in stages at 45°C, 80°C, and 60°C. Extrusion, and then kneaded by twin screws for 5 minutes to prepare an ion conductive mixture/electrolyte mixture.
  • the mass fraction of the ion conductor in the fibrillated mesh electrode active material layer is 1%.
  • the spherical cathode mixture in step (1) passes through the metering feeder and is scattered onto the rolling surface of the pair of rollers. It is rolled once at 25°C, twice at 60°C, and three times at 85°C, and is made as shown in Figure 2 Fibrillated network positive active material layer; active material layer and aluminum foil current collector with ion conductor attached to the surface, rolled at 85°C single side/double The surface is composited to produce a fibrillated mesh positive electrode sheet including a fibrillated mesh carbon-coated nickel manganese oxide NCM811 particle active material layer, an aluminum foil current collector and an ion conductor.
  • the electrolyte mixture in step (2) passes through the metering feeder and is scattered onto the rolling surface of the pair of rollers. It is rolled once at 25°C, twice at 60°C, three times at 60°C, and four times at 60°C.
  • core-shell structure binder particles of 3% tetrafluoroethylene and perfluoroalkyl vinyl ether copolymer and 97% polytetrafluoroethylene are combined with graphite
  • the active material particles and graphite conductive agent particles are weighed according to the metering ratio of 3%:95%:2%.
  • the spherical negative electrode mixture in step (5) passes through the metering feeder and is scattered onto the rolling surface of the pair of rollers. It is rolled once at 85°C, twice at 85°C, and three times at 95°C with the copper with the ion conductor attached to the surface.
  • the foil current collector is composited on one side/double side to produce a fibrillated mesh negative electrode sheet including a fibrillated mesh graphite particle active material layer, a copper foil current collector and an ion conductor.
  • the positive electrode sheet, electrolyte membrane and negative electrode sheet obtained in steps (3), (4) and (6) are cut, rolled into cores, and put into a shell to form a battery cell as shown in Figure 4.
  • the mass fraction is 0.3% ethylene bisstearamide, 3% tetrafluoroethylene-ethylene copolymer and 96.7% polytetrafluoroethylene core-shell structure
  • the binder particles, carbon-coated lithium iron manganese phosphate particles and graphite conductive agent particles are weighed in a metering ratio of 5%:92%:2%.
  • Carbon-coated lithium iron manganese phosphate particles and graphite conductive agent particles are mixed by high-speed ball milling for 1 hour.
  • the obtained active material premix and binder are mixed in a V-shaped mixer without shearing for 2 hours, and then placed at 85°C.
  • the resulting fibrillated premix was subjected to high-speed impact in the air for 1 minute and kneaded with twin screws for 10 minutes to form a spherical positive electrode mixture.
  • Graphite active material particles and graphite conductive agent particles were mixed by high-speed ball milling for 30 minutes to obtain active material particles.
  • the premix of the physical substance and the binder are mixed in a V-shaped mixer without shearing for 1 hour, and then impacted at high speed in the air at 65°C for 1 minute.
  • the resulting fibrillated premix is kneaded with twin screws for 5 minutes to form a ball. type negative electrode mixture.
  • step (2) The electrolyte mixture in step (2) passes through the metering feeder and is scattered onto the rolling surface of the pair of rollers. It is rolled once at 25°C, twice at 60°C, three times at 85°C, and four times at 85°C.
  • the sulfide Li 3 PS 4 solid electrolyte membrane is made and enters the integrated core composite roller.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本申请公开了一种原纤化网状电极、固态电解质膜、储能装置及车辆,所述原纤化网状电极包括原纤化网状活性物质层、集流体和离子传导体,原纤化网状活性物质层包括粘结剂、活性物质颗粒和导电剂颗粒,粘结剂原位纤维化交互网连活性物质颗粒和导电剂颗粒。原纤化网状电极装配的储能装置和管理系统集成于底盘,所述的管理系统监控原纤化网状电极储能装置的充放电。本申请所述实现了电极全制程无溶剂,避免了现有湿法涂布工艺的干燥能耗,降低制造成本,减少制造碳排放,全制程无溶剂绿色低碳,环境友好。

Description

一种原纤化网状电极、固态电解质膜、储能装置及车辆 技术领域
本申请属于新能源汽车技术领域,具体涉及一种原纤化网状电极、固态电解质膜、储能装置及车辆。
背景技术
新能源汽车是实现“碳达峰/碳中和”发展目标的关键途径之一,但由于动力电池制造过程消耗的电力能源很大一部分来源于化石能源,从而间接产生碳排放,因此,动力电池的低碳和零碳化是实现新能源汽车零排放的重要前提。追溯动力电池全生命周期的碳足迹,可以发现,动力电池碳排放主要集中在电动车辆使用过程中充放电、电池设计制造和回收利用几个环节。对于动力电池设计制造,单体生产和关键材料生产碳排放最大。单体生产端的碳排放主要包括电极工序、组装工序和化成工序。其中,涂布后的烘烤、注液后的干燥及化成等阶段,电力能耗消耗较大。针对动力电池耗能最大的制造工序,绿色低碳化极其紧迫。
CN 113130845 A的专利公开了一种全制程无溶剂电极、电池和车辆,所述电极提升现有材料体系的电池能量密度的同时降低生产能耗,厚度可调控,重构适应离子传输和电子传导体系的面密度和孔隙率。
CN 105489392 A的专利公开了一种石墨烯极片及其制备方法,多孔石墨烯颗粒和粘结剂聚集成片状膜,片状膜经过辊压支撑石墨烯极片,可用于多种化学或物理电源。
CN 109841796 A的专利公开了一种电极制备方法及电池,电池正极由活性物质、导电剂和粘结剂制成活性物质层粘附于集流体制成,提高了极片面密度, 提升电极容量和极片稳定性,降低内阻。
在降低碳排放的同时,为了电动汽车续驶里程需求,增加电极厚度,然而,充放电过程中,电解质离子从一个电极转移到另一个电极,在较高的充放电倍率下,离子较强的扩散阻力会引起严重的浓差极化,导致容量衰减,进而降低电池的能量密度和功率密度。因此。有必要在不改变材料组成的情况下设计离子和电子输运通道,以提高充放电性能,适用于现有及未来多种能量存储与转化装置。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请针对上述问题,提供一种适用于现有及未来多种能量存储与转化装置的原纤化网状电极及固态电解质膜,以具有温度和力场耦合作用下可形成原纤化网状结构的微球型粘合剂,与表面预处理的电极活性物质、导电剂和离子传导体,经全制程无溶剂工序制备电极和固态电解质膜,组装电池,以及对应电池原纤化网状电极的离子和电子输运特性的管理系统。
在本申请的描述中,需要说明的是,“第一方面”、“第二方面”、“第三方面”、“第四方面”仅用于描述目的,而不能理解为指示或暗示相对重要性,对于本领域的技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要说明的是,“包括”仅用于描述目的,而不能理解为限制于所列的包含内容,对于本领域的技术人员而言,可以具体情况理解上述术语在本申请中的具体含义,可理解为“包含但不限于”。
本申请技术方案:
第一方面,一种原纤化网状电极,所述原纤化网状电极包括原纤化网状活性物质层、集流体和离子传导体,所述原纤化网状活性物质层与离子传导体和集流体交互结合,所述离子传导体阵列排布附着在所述集流体表面,原纤化网状活性物质层包括四氟乙烯共聚物与四氟乙烯均聚物的粘结剂纤维网、活性物质颗粒和导电剂颗粒,四氟乙烯共聚物与四氟乙烯均聚物的粘结剂颗粒原位纤维化交互网连活性物质颗粒和导电剂颗粒。
可选地,所述四氟乙烯均聚物的可选分子量为600~1500万,例如,600万、700万、800万、900万、1000万、1100万、1200万、1300万、1400万或1500万。
可选地,以所述粘结剂的质量为100%计,所述四氟乙烯共聚物的质量分数为3~30%,例如,3%、3.5%、3.8%、5%、8%、12%、17%、25%或30%。
所述的四氟乙烯共聚物,并不是对核壳结构粘结剂种类的限制,而是表示至少存在一种提及到的粘结剂可实现本申请的电极制备方法和电化学稳定性;进一步地,所述的四氟乙烯共聚物可实现本申请的电极制备方法的辅助内润滑;更进一步地,所述的四氟乙烯共聚物,可以包括四氟乙烯与烷烃共聚物、四氟乙烯与全氟烷基乙烯基醚共聚物,进一步地,所述的四氟乙烯共聚物,还包括四氟乙烯单体与全氟磺酸单体的共聚物,例如,全氟磺酸聚四氟乙烯。
可选地,所述四氟乙烯共聚物的可选分子量为20~300万,例如,20万、70万、110万、150万、200万、260万、290或300万。
本申请中,所述的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂,还包括外润滑助剂,包括脂肪酸酰胺、有机硅、硬脂酸、油酰胺、多元醇酯、 蒙旦蜡、石蜡中的至少一种;正极核壳结构粘结剂、负极核壳粘结剂中的至少一种,包括所述的外润滑助剂。
以所述粘结剂的质量为100%计,所述润滑助剂的质量分数为0.3%~1%,例如,0.3%、0.5%、0.8%、或1%。
所述的外润滑助剂,可以存在于原纤化网状电极中,例如,具有较高热特性温度的乙撑双硬脂酰胺;还可以在电极制备过程中同步以气体形式逸出,经装置回收再利用,例如,螺杆固相挤出原纤化过程中石蜡在设置的温度段以气体形式逸出进入到冷凝器,回收再利用。
可选地,以所述原纤化网状活性物质层的质量为100%计,所述粘结剂的质量分数为0.5~6%,例如:0.5%、1%、2%、3%、4%、5%或6%。
可选地,所述离子传导体包括四氟乙烯均聚物与四氟乙烯共聚物的粘结剂纤维网和电解质物质颗粒。
可选地,以所述原纤化网状电极活性物质层的质量为100%计,所述离子传导体的质量分数为0.1~10%,例如:0.1%、0.5%、1%、3%、5%、8%或10%等。
可选地,所述的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒直径为1~30μm,例如1μm、3μm、5μm、8μm、11μm、13μm、16μm、22μm、25μm、27μm或30μm。
本申请中,所述的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒直径,并不是对核壳结构粘结剂颗粒尺寸和形状的限制,而是表示至少存在一种提及到的尺寸和形状可实现本申请的电极制备方法;进一步地,所述的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒还可以为具有一定长径比的颗粒;更进一步地,还可以为非规则的颗粒,例如,颗粒粒度D50为5μm。
在本申请的描述中,需要说明的是,“原纤化网状电极”为基于本申请所述的能量存储与转化装置的电极中,粘结剂经过全制程无溶剂的若干工序后,原位形成的纤维网粘合活性物质和导电剂的一种结构形态,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的电极及所述电极应用的电池必须具有特定的原纤化网状结构和制造工序,因此不能理解为对本申请的限制。
第二方面,本申请提供如第一方面所述原纤化网状电极的全制程无溶剂制备方法,所述制备方法包括如下步骤:
(1)将粘结剂颗粒、活性物质颗粒和导电剂颗粒均匀分散制成球型电极混合物,将粘结剂颗粒与电解质颗粒均匀分散制成离子传导混合物;
(2)将离子传导混合物按阵列排布粘附于集流体表面,制成离子传导体;
(3)将电极混合物粘附集流体表面,梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片。
可选地,步骤(1)所述粘结剂颗粒、活性物质颗粒和导电剂颗粒均匀分散制成球型电极混合物的方法包括如下步骤:
S1:根据能量存储与转化装置的需求和电极工艺,给出粘结剂颗粒、活性物质颗粒和导电剂颗粒的计量配比;
S2:根据电极工艺需求,预处理活性物质表面,表面预处理的活性物质与导电剂颗粒固相均匀分散,得到活性物质预混物;
S3:活性物质预混物与粘结剂颗粒无溶剂原纤化分散,得到的原纤化预混物球形化,制成球型电极混合物。
可选地,步骤(3)所述将电极混合物粘附集流体表面,梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片的方法包括如下步 骤:
M1:根据能量存储与转化装置的设计参数和电极工艺,给出电极混合物的进料量;
M2:计量进料的电极混合物粘附集流体表面,制成原纤化网状活性物质层;
M3:梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片。
可选地,所述的梯度升温温度区间为25~130℃,例如:25℃、30℃、50℃、100℃或130℃。
所述的预处理活性物质表面,包括碳包覆、有机化合物包覆、无机氧化物包覆;所述的包覆方法包括原位合成、化学改性、物理共混中的至少一种。
本申请中,所述的预处理活性物质表面,并不是对电极制备工序的限制,而是表示至少存在一种提及到的过程可实现本申请的减少辊压过程摩擦阻抗,实现原纤化网状的成型性的制备方法,改善电极与电解质界面性能,例如,醋酸锂包覆锂铁锰氧化物;进一步地,可以在活性物质制备过程中原位合成无机物包覆,例如,铌原位合成包覆锂镍钴锰氧化物;更进一步地,还可以进一步提高安全性,例如,含氮超支化聚合物物理共混包覆锂镍钴锰氧化物,含氮超支化化聚合物的链段在温度为90~160℃时,相互之间发生化学反应,阻隔离子的传输,提高储能装置的安全性。
所述粘结剂颗粒原位形成纤维网粘合活性物质和导电剂;活性物质、核壳结构粘结剂和导电剂均匀分散形成的球型电极混合物,均匀分散方法包括气相分散,固相分散中的至少一种。
在本申请的描述中,需要说明的是,“原纤化分散”为本申请所述的电极 活性物质、导电剂和核壳结构粘结剂颗粒同步均匀分散的同时,发生纤维化的粘结剂原位粘合电极活性物质和导电剂,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的混合必须具有特定的设备和制造工序,进一步地,可以通过机械剪切达到原纤化分散目的,包括螺杆固相挤出、密炼固相混合、注塑固相冲压;还可以通过气固流化达到原纤化分散目的,因此不能理解为对本申请的限制。所述的包括螺杆固相挤出、密炼固相混合、注塑固相冲压、气固流化,可以采用其中的一种,还可以采用多种;进一步地,所述的气体介质,包括干燥空气、干燥氮气、干燥氩气,还可以包括加热到一定温度的空气、氮气、氩气,所述温度区间为25~120℃,例如,95℃空气、65℃氮气、80℃氩气;核壳结构粘结剂颗粒表面不存在水分子膜,与活性物质颗粒和导电剂颗粒在气体介质中充分混合分散;进一步地,在剪切力和温度作用下,纤维化的粘结剂分散粘附于导电剂颗粒表面,沿着活性物质颗粒表面形成电子传导通道,保持充放电过程中颗粒之间的电接触。
本申请中,所述的电极混合物粘附集流体表面,包括电极混合物直接散落集流体表面,梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片;还包括电极混合物,梯度升温辊压,然后与集流体复合,制成包括原纤化网状活性物质层、集流体和离子传导体的极片。
本申请中,所述的计量配比的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒、电解质颗粒均匀分散制成离子传导混合物,包括电解质颗粒与核壳结构粘结剂颗粒无溶剂原纤化分散,制成离子传导混合物。所述的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒中的内润滑和或外润滑助剂,进一步地,作为离子传输途径,例如,全氟磺酸聚四氟乙烯的磺酸基团的 微相分离的离子传输通道,石蜡以气体形式逸出后形成的孔隙。
所述的离子传导体在集流体表面的阵列排布拓扑,并不是对本申请所述的能量存储与转化装置的电极中离子传导体中的物理存在形态的限制,而是表示至少存在一种提及到的可以实现本申请的离子传导体和符合电极孔隙率要求的排布方法,例如,阵列排布拓扑可以是有序点阵、有序线段、有序图案,进一步地,所述的离子传导体在集流体表面的排布拓扑与能量存储与转化装置中离子的传输通道、电子传输通道相映射;所述的离子传导体在集流体表面的排布拓扑与与能量存储与转化装置的倍率性能、界面性能、循环性能相对应,所述的离子传导体在集流体表面的排布拓扑与与原纤化网状电极工艺、预锂化工艺、回收再利用工艺相匹配;所述的离子传导体在集流体表面的排布拓扑与与离子传导体的质量、体积、在原纤化网状电极活性物质层的贯通程度相关联,所述的阵列排布拓扑仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的离子传导体及所述的离子传导体在集流体表面的阵列排布拓扑必须具有特定的结构和制程工序,因此不能理解为对本申请的限制。更进一步地,所述的离子传导体阵列排布方式,可变换为沿着电流密度分布曲线排布,还可以变化为沿着热、电和力多物理场耦合的温度分布曲线排布。
所述的集流体表面附着离子传导体,并不是对本申请所述原纤化网状活性物质层与离子传导体和集流体交互结合的限制,而是表示至少存在一种提及到的可实现本申请的活性物质层结合到集流体的方式,例如,所述的离子传导体贯通电极活性物质层,具有相同电解质和粘结剂的离子传导体与固态电解质膜界面结合,进一步地,所述的贯通电极活性物质层,还包括贯穿集流体两面的电极活性物质层,与固态电解质膜界面结合;还包括所述的离子传导体未贯通 电极活性物质层,离子传导体未与固态电解质膜界面结合。更进一步地,集流体表面附着离子传导体,包括3D打印阵列粘结、电极混合物挤出粘结、电极混合物模压成阵列排布粘结。
所述的离子导体附着在集流体表面,包括离子导体附着在正极集流体和负极集流体中的至少一种,离子传导体可以是同一种,也可以是另外的一种。
可选地,所述的集流体表面附着电子传导物质预处理,包括集流体表面刻蚀碳化预处理。
所述的集流体表面刻蚀碳化预处理,并不是对集流体表面附着电子传导物质预处理方式的限制,而是表示至少存在一种提及到的可实现本申请的集流体表面附着电子传导物质预处理的方式,还包括其他集流体表面附着电子传导物质预处理,例如,在集流体表面3D打印附着电子传导物质。
本申请中,所述的活性物质,包括锂镍钴氧化物、锂锰氧化物、锂镍钴锰氧化物、锂镍钴铝氧化物、锂镍钴铝镁氧化物、锂钒氧化物、锂钴氧化物、镍锰氧化物、镍钴锰氧化物、锂铁氧化物、锂铁锰氧化物、石墨、硅、锂钛氧化物、活性炭、碳纤维、铅氧化物、镍氧化物、铂、锂金属、石墨烯。
所述的计量进料的电极混合物粘附集流体表面,还包括一面是锂镍钴铝氧化物,一面是硅;更进一步地,也即是同一集流体的双面粘附的是正负极二种不同的活性物质,若干个这样的极片组合在一起,装配得到双极性电池。
本申请中,所述的一种全制程无溶剂电极制备方法,还包括活性物质层表面粘附高孔隙率电极活性物质层,形成孔隙率梯度分布的电极;还可以包括活性物质层表面粘附安全保护层。
所述的高孔隙率电极活性物质层,可以与活性物质层相同的活性物质制成 的高孔隙率电极活性物质层,例如,活性物质层的活性物质为磷酸铁锂,高孔隙率电极活性物质层的活性物质也为磷酸铁锂;还可以与活性物质层不同的活性物质制成的高孔隙率电极活性物质层,例如活性物质层的活性物质为锂镍钴锰氧化物,高孔隙率电极活性物质层的活性物质为磷酸铁锂。
所述的安全保护层,包括耐高温聚合物多孔层、陶瓷层,还包括四氟乙烯均聚物与四氟乙烯共聚物的粘结剂纤维网和电解质颗粒组成的防滴落阻燃层。
在本申请的描述中,需要说明的是,“全制程无溶剂”为基于本申请所述的能量存储与转化装置的原纤化网状电极制备过程中,全制程各个工序在固相和/或气相介质中完成,区别于湿法存在的以有机溶剂和/或水为介质的液相制程工序,也可称之为“干法”,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的原纤化网状电极及所述电极制备过程必须具有特定的无溶剂工序及特定的溶剂没有用于无溶剂工序,因此不能理解为对本申请的限制。
第三方面,本申请提供一种固态电解质膜,所述固态电解质膜包括用于原纤化网状活性物质层的粘结剂、用于离子传导体的电解质物质,以所述固态电解质膜的质量为100%计,所述粘结剂的质量分数为0.5~10%,例如,0.5%、1%、3%、5%、7%、9%或10%。
本申请中,所述的电解质物质包括聚合物电解质和/或无机电解质。
所述的聚合物电解质包括高分子聚合物和电解质盐。
所述高分子聚合物,包括聚甲基丙烯酸甲酯、聚环氧乙烷、聚氯乙烯、聚丙烯腈、聚苯硫醚、聚丙烯酸、聚乙二醇二甲醚、聚醚酰亚胺、聚硅氧烷、聚碳酸亚乙烯酯、聚环氧丙烷、聚偏氟乙烯或聚偏氟乙烯-六氟丙烯中的至少一种;所述的电解质盐,包括锂盐、钠盐、锌盐、钾盐和铵盐中的至少一种。
所述的无机电解质,包括Li3PS4、Li6PS5Cl、Li3.3La0.56TiO3、Li7La3Zr2O12、Li1.3Al0.3Ti1.7(PO4)3、Li14ZnGe4O16、Li6PS5Br、Li7P3S11、Li10GeP2S12和Li2P2S6中的至少一种。
可选地,本申请所述固态电解质膜包括全固态和半固态。
第四方面,本申请提供如第三方面所述固态电解质膜的制备方法,固态电解质膜的制备方法包括如下步骤:
A1:根据能量存储与转化装置的需求和固态电解质膜工艺,给出四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒和电解质颗粒的计量配比;
A2:电解质颗粒与核壳结构粘结剂颗粒无溶剂原纤化分散,得到的原纤化电解质预混物球形化,制成球型电解质混合物;
A3:计量进料的球型电解质混合物,梯度升温辊压,制成原纤化网状固态电解质膜。
可选地,所述的梯度升温温度区间为25~150℃,例如:25℃、30℃、50℃、100℃、130℃或150℃。
在本申请的描述中,需要说明的是,具有原纤化网状形态的“固态电解质膜”为基于本申请所述的能量存储与转化装置的电解质膜的制备过程中,电解质与粘合剂全制程固相和/或气相分散原纤化成膜,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的固态电解质膜及所述固态电解质膜制备过程必须具有特定的无溶剂工序及特定的溶剂没有用于无溶剂工序,因此不能理解为对本申请的限制。
第五方面,一种储能装置,包括如第一方面所述的原纤化网状电极、第三方面所述的固态电解质膜中的至少一种;
所述的原纤化网状电极,包括原纤化网状正极和原纤化网状负极中的至少一种;
所述的储能装置还包括壳体,所述的壳体包括方型壳体、圆柱型壳体或软包壳体中的任意一种或至少两种的组合。
可选地,所述的包括原纤化网状电极、固态电解质膜的储能装置一体化芯体制备方法,包括如下步骤:
B1:计量配比的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒、活性物质颗粒和导电剂颗粒均匀分散制成球型电极混合物,计量配比的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒、电解质颗粒均匀分散制成离子传导混合物;计量配比的四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒、电解质颗粒均匀分散制成电解质混合物;
B2:计量进料的离子传导混合物按阵列排布粘附于集流体表面,制成离子传导体;
B3:计量进料的电极混合物粘附集流体表面,制成包括原纤化网状活性物质层和离子传导体的极片,计量进料的电解质混合物原纤化成膜,梯度升温辊压,制成原纤化网状电极、固态电解质膜一体化芯体。
可选地,本申请所述的储能装置包括锂离子电池、固态电池、双极性电池、钠离子电池、镍氢电池、铅炭电池、锌离子电池、铝离子电池、镁离子电池、有机电池、超级电容器、氟离子电池、双离子电池、液流电池。
本申请中,所述的储能装置,并不是对能量存储和转化形式的限制,而是表示至少存在一种提及到的可实现本申请的储能装置的工作机制,进一步地,还包括不依赖于充电实现能量存储的化学能转化为电能的装置,例如,燃料电 池和金属空气电池。
第六方面,本申请提供了一种车辆,包括如第五方面所述的储能装置和管理系统集成于底盘,所述的管理系统包括,采集单元、控制单元和执行单元。
所述的采集单元,包括温度采集模块、电压采集模块、电流采集模块、压力采集模块、有害气体采集模块和烟雾采集模块;
所述的执行单元,包括储能装置串并联高压回路通断继电器和安全示警显示和发声模块;
所述的控制单元,包括充电控制模块、放电控制模块和安全监控模块;
所述的温度采集模块,包括依据温度分布曲线布置的传感器和内嵌与控制单元的电池温度估算模型;
所述的有害气体采集模块,包括含氟气体或含氟固体物质敏感传感器。
所述的充电控制模块,其功能包括储能装置原纤化网状电极离子传导体和孔隙率决定的充电倍率控制;
所述的放电控制模块,其功能包括储能装置原纤化网状电极离子传导体和孔隙率决定的放电倍率控制。
所述的安全监控模块,其功能包括储能装置电压、电流、温度、压力和烟雾浓度限值监控、储能装置热失控监控、储能装置碰撞监控、储能装置绝缘监控、储能装置喷射有害气体监控、储能串并联高压回路非预期断开监控、储能装置串并联高压回路通断监控和管理系统供电监控、储能装置云端监控;
所述的储能装置电压、电流、温度、压力和烟雾浓度限值监控,与储能装置热失控监控、储能装置碰撞监控、储能装置绝缘监控、储能装置喷射有害气 体监控中的至少一种,与储能装置串并联高压回路通断监控,构成功能安全监控功能链路。
本申请中,所述的监控并不是对控制单元控制功能的限制,而是表示至少存在一种提及到的可实现本申请的控制单元的工作机制,进一步地,可理解为监控包括监测、控制和执行。
所述的储能装置和管理系统集成于底盘,包括储能装置先集成模组,模组再集成成储能系统,储能系统与底盘集成;还包括储能装置直接集成储能系统,储能系统与底盘集成;还包括储能装置直接与底盘集成一体化储能系统。
本申请具有以下有益效果:
(1)本申请所述具有核壳结构粘结剂颗粒,解决运输过程微震荡引起的粘结剂颗粒之间的摩擦的微纤化问题,减少摩擦微纤化引起的难以二次原纤化,外层的四氟乙烯共聚物的内润滑与外润滑助剂可以降低原纤化分散的摩擦阻抗,提高电极混合物流变性和分散性;同时,四氟乙烯共聚物与四氟乙烯均聚物组成的复合粘结剂提高了正负极电化学稳定性。
(2)本申请所述活性物质预处理,一方面改善了原纤化网状电极的成型性,另一方面改善电极活性物质表面浸润性,增加了原纤化网状电极结构与电解质离子空间存储和传输的适配性,提升储能效率。
(3)本申请所述原纤化网状电极的主要制程工序,减少了自支撑连续成膜步骤,提高制造效率,降低无溶剂电极成本。辊压过程球块型电极原纤化料粒度微尺度分布重整,进一步提高原纤化网状的拉伸强度,提升生产时走料成膜速率,减少对极片厚度和密度检测设备精度的依赖。
(4)本申请的主要性能指标与现有湿法涂布工艺极片相当,制程工序较现 有湿法涂布工艺缩减;实现了电极全制程无溶剂,避免了现有湿法涂布工艺的干燥能耗,降低制造成本,减少制造碳排放,全制程无溶剂绿色制造,环境友好。
(5)本申请所述原纤化网状电极制备方法,适用于现有及未来多种储能装置,是绿色低碳化的关键共性技术,可实现一套装备共线生产不同储能产品的需求,具有制程时间短、成本低和柔性定制的优点。
(6)本申请所述独特的原纤化网状结构和离子传导体,有利于离子传递,降低阻抗;此外,网状结构可以减小能量储放过程中电极膨胀或收缩引起的应力变化导致的寿命衰减;离子传导体可以作为预锂化的锂源;四氟乙烯共聚物与四氟乙烯均聚物热解产生的含氟气体或固体还可作为安全监控的采集单元监控物质;原纤化网状结构和离子传导体还有利于退役动力电池的回收利用。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1是本申请实施例1所述的磷酸铁锂原纤化网状结构电极的扫描电镜图。
图2是本申请实施例2所述的磷酸铁锂原纤化网状结构活性物质层图。
图3是本申请实施例2所述的固态电解质膜图。
图4是本申请实施例2所述的包含原纤化网状电极和固态电解质膜的储能装置示意图。
111-正极电极活性物质层,112-离子传导体,113-正极集流体表面电子传导物质层,114-正极集流体,121-负极电极活性物质层,122-负极集流体表面电子传导物质层,123-负极集流体,133-固态电解质膜。
图5是本申请实施例3所述的包含原纤化网状电极和固态电解质膜的储能装置一体化芯体制备示意图,100为原纤化网状正极:110-计量进料器,120-一次成膜辊,130-二次辊压辊,140-三次辊压辊,150-3D打印机,160-附着离子传导体的铝箔,170-一次复合辊,180-二次复合辊,190-原纤化网状正极;200为原纤化网状负极:210-计量进料器,220-一次成膜辊,230-3D打印机,240-附着离子传导体的铜箔,250-一次复合辊,260-二次复合辊,270-原纤化网状负极;300为原纤化网状电解质膜:310-计量进料器,320-一次成膜辊,330-二次成膜辊,340-三次成膜辊,350-四次成膜辊,360-原纤化网状电解质膜。
图6是本申请实施例3所述的电极应用于锂离子电池进而应用于车辆的结构示意图:1-锂离子电池,1.1-原纤化网状正极,1.2-固态电解质膜,1.3-原纤化网状负极,2-电池管理系统,2.1-采集单元,2.2-控制单元,2.3-执行单元,3-电池系统,4-车辆。
具体实施方式
下面通过具体实施方式来进一步说明本申请的技术方案。本领域技术人员应该明了,所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
(1)正极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,质量分数为0.3%的乙撑双硬脂酰胺、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结 剂颗粒,与碳包覆的磷酸铁锂颗粒和石墨导电剂颗粒,按照5%:92%:2%计量配比称取。
碳包覆的磷酸铁锂颗粒与石墨导电剂颗粒,经1h高速球磨混合,得到的活性物质预混物与粘结剂置于V型混合器中无剪切混合2h,然后置于85℃空气中高速冲击1min,得到的原纤化预混物经双螺杆捏合10min,制成球型正极混合物。
(2)离子传导体制备
质量分数为0.3%的乙撑双硬脂酰胺、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结剂颗粒,与硫化物Li3PS4按照8%:92%计量配比,置于V型混合器中无剪切混合2h,然后置于65℃空气中高速冲击1min,再经双螺杆捏合5min,制成离子传导混合物/电解质混合物。
以离子传导体占原纤化网状电极活性物质层的质量分数为1%称取步骤(2)的离子传导体混合物,按照点阵式排布于铝箔集流体表面,经过3D打印机90℃激光熔融制成粘附于铝箔集流体表面的离子传导体。
(3)原纤化网状正极极片制备
步骤(1)的球型正极混合物通过计量进料器,散落到对辊辊压面,经25℃一次辊压,60℃二次辊压,95℃三次辊压,110℃四次辊压与表面附着离子传导体的铝箔集流体单面/双面复合,110℃五次辊压,制成包括原纤化网状碳包覆的磷酸铁锂颗粒活性物质层、铝箔集流体和离子传导体的原纤化网状正极极片,如图1所示原纤化网状正极的SEM照片。
(4)原纤化网状固态电解质膜制备
步骤(2)的电解质混合物通过计量进料器,散落到对辊辊压面,经25℃一 次辊压,60℃二次辊压,85℃三次辊压,85℃四次辊压,制成硫化物Li3PS4固态电解质膜。
(5)负极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,3%的四氟乙烯与全氟烷基乙烯基醚共聚物和97%的聚四氟乙烯的核壳结构粘结剂颗粒,与石墨活性物质颗粒和石墨导电剂颗粒,按照3%:94%:2%计量配比称取。
石墨活性物质颗粒与石墨导电剂颗粒,经30min高速球磨混合,得到的活性物质预混物与粘结剂置于V型混合器中无剪切混合1h,然后置于65℃空气中高速冲击1min,得到的原纤化预混物经双螺杆捏合5min,制成球型负极混合物。
(6)离子传导混合物制备
以离子传导体占原纤化网状电极活性物质层的质量分数为1%称取步骤(2)的离子传导体混合物,按照点阵式排布于铜箔集流体表面,经过3D打印机90℃激光熔融制成粘附于铜箔集流体表面的离子传导体。
(7)原纤化网状负极极片制备
步骤(5)的球型负极混合物通过计量进料器,散落到对辊辊压面,经85℃一次辊压,85℃二次辊压,95℃三次辊压与表面附着离子传导体的铜箔集流体单面/双面复合,制成包括原纤化网状石墨颗粒活性物质层、铜箔集流体和离子传导体的原纤化网状负极极片。
(8)电池单体制备
步骤(3)、(4)和(7)得到的正极极片、电解质膜和负极极片裁切,卷芯,入壳制成电池单体,化成。
实施例2
(1)正极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,质量分数为0.3%的石蜡、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结剂颗粒,与碳包覆的镍锰氧化物NCM811颗粒和石墨导电剂颗粒,按照5%:92%:2%计量配比称取。
碳包覆的镍锰氧化物NCM811颗粒与石墨导电剂颗粒,经1h高速球磨混合,得到的活性物质预混物与粘结剂45℃、65℃、85℃分段加热双螺杆固相挤出,得到的原纤化预混物经混合分散30min,制成球型正极混合物。
(2)离子传导体制备
质量分数为0.3%的石蜡、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结剂颗粒,与聚环氧乙烷Li7La3Zr2O12(以聚合物电解质100%计,Li7La3Zr2O12的质量分数为20%)电解质颗粒按照8%:92%计量配比,45℃、80℃、60℃分段加热双螺杆固相挤出,再经双螺杆捏合5min,制成离子传导混合物/电解质混合物。
以离子传导体占原纤化网状电极活性物质层的质量分数为1%称取步骤(2)的离子传导体混合物,按照点阵式排布于铝箔集流体表面,经过3D打印机90℃激光熔融制成粘附于铝箔集流体表面的离子传导体。
(3)原纤化网状正极极片制备
步骤(1)的球型正极混合物通过计量进料器,散落到对辊辊压面,经25℃一次辊压,60℃二次辊压,85℃三次辊压,制成如图2所示原纤化网状正极活性物质层;活性物质层与表面附着离子传导体的铝箔集流体,85℃辊压单面/双 面复合,制成包括原纤化网状碳包覆的镍锰氧化物NCM811颗粒活性物质层、铝箔集流体和离子传导体的原纤化网状正极极片。
(4)原纤化网状固态电解质膜制备
步骤(2)的电解质混合物通过计量进料器,散落到对辊辊压面,经25℃一次辊压,60℃二次辊压,60℃三次辊压,60℃四次辊压,制成聚环氧乙烷Li7La3Zr2O12固态电解质膜,如图3所示电解质膜照片。
(5)负极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,3%的四氟乙烯与全氟烷基乙烯基醚共聚物和97%的聚四氟乙烯的核壳结构粘结剂颗粒,与石墨活性物质颗粒和石墨导电剂颗粒,按照3%:95%:2%计量配比称取。
石墨活性物质颗粒与石墨导电剂颗粒,经30min高速球磨混合,得到的活性物质预混物与粘结剂置于V型混合器中无剪切混合1h,然后置于65℃空气中高速冲击1min,得到的原纤化预混物经双螺杆捏合5min,制成球型负极混合物。
(6)原纤化网状负极极片制备
步骤(5)的球型负极混合物通过计量进料器,散落到对辊辊压面,经85℃一次辊压,85℃二次辊压,95℃三次辊压与表面附着离子传导体的铜箔集流体单面/双面复合,制成包括原纤化网状石墨颗粒活性物质层、铜箔集流体和离子传导体的原纤化网状负极极片。
(7)电池单体制备
步骤(3)、(4)和(6)得到的正极极片、电解质膜和负极极片裁切,卷芯,入壳制成如图4所示电池单体,化成,其中,111-正极电极活性物质层,112-离子传导体,113-正极集流体表面电子传导物质层,114-正极集流体,121-负极 电极活性物质层,122-负极集流体表面电子传导物质层,123-负极集流体,133-固态电解质膜。
实施例3
(1)正极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,质量分数为0.3%的乙撑双硬脂酰胺、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结剂颗粒,与碳包覆的磷酸锰铁锂颗粒和石墨导电剂颗粒,按照5%:92%:2%计量配比称取。
碳包覆的磷酸锰铁锂颗粒与石墨导电剂颗粒,经1h高速球磨混合,得到的活性物质预混物与粘结剂置于V型混合器中无剪切混合2h,然后置于85℃空气中高速冲击1min,得到的原纤化预混物经双螺杆捏合10min,制成球型正极混合物。
(2)离子传导混合物/电解质混合物制备
质量分数为0.3%的乙撑双硬脂酰胺、3%的四氟乙烯-乙烯共聚物和96.7%的聚四氟乙烯的核壳结构粘结剂颗粒,与硫化物Li3PS4按照8%:92%计量配比,置于V型混合器中无剪切混合2h,然后置于65℃空气中高速冲击1min,再经双螺杆捏合5min,制成离子传导混合物/电解质混合物。
(3)负极球型电极混合物制备
按照电池容量需求和原纤化网状无溶剂电极工艺,3%的四氟乙烯与全氟烷基乙烯基醚共聚物和97%的聚四氟乙烯的核壳结构粘结剂颗粒,与石墨活性物质颗粒和石墨导电剂颗粒,按照3%:94%:2%计量配比称取。
石墨活性物质颗粒与石墨导电剂颗粒,经30min高速球磨混合,得到的活 性物质预混物与粘结剂置于V型混合器中无剪切混合1h,然后置于65℃空气中高速冲击1min,得到的原纤化预混物经双螺杆捏合5min,制成球型负极混合物。
(4)一体化芯体制备
1)以离子传导体占原纤化网状电极活性物质层的质量分数为1%称取步骤(2)的离子传导体混合物,按照点阵式排布于铝箔集流体表面,经过3D打印机90℃激光熔融制成粘附于铝箔集流体表面的离子传导体。
2)步骤(1)的球型正极混合物通过计量进料器,散落到对辊辊压面,经25℃一次辊压,60℃二次辊压,95℃三次辊压,110℃四次辊压与表面附着离子传导体的铝箔集流体单面/双面复合,110℃五次辊压,制成包括原纤化网状碳包覆的磷酸铁锂颗粒活性物质层、铝箔集流体和离子传导体的原纤化网状正极极片,进入一体化芯体复合辊。
3)步骤(2)的电解质混合物通过计量进料器,散落到对辊辊压面,经25℃一次辊压,60℃二次辊压,85℃三次辊压,85℃四次辊压,制成硫化物Li3PS4固态电解质膜,进入一体化芯体复合辊。
4)步骤(3)的球型负极混合物通过计量进料器,散落到对辊辊压面,经85℃一次辊压,85℃二次辊压,95℃三次辊压与表面附着离子传导体的铜箔集流体单面/双面复合,制成包括原纤化网状石墨颗粒活性物质层、铜箔集流体和离子传导体的原纤化网状负极极片,进入一体化芯体复合辊。
5)步骤2)、3)和4),进入一体化芯体复合辊的正极极片、电解质膜和负极极片一体化复合,如图5所示,其中100为原纤化网状正极:110-计量进料器,120-一次成膜辊,130-二次辊压辊,140-三次辊压辊,150-3D打印机,160-附着离子传导体的铝箔,170-一次复合辊,180-二次复合辊,190-原纤化网状正 极;200为原纤化网状负极:210-计量进料器,220-一次成膜辊,230-3D打印机,240-附着离子传导体的铜箔,250-一次复合辊,260-二次复合辊,270-原纤化网状负极;300为原纤化网状电解质膜:310-计量进料器,320-一次成膜辊,330-二次成膜辊,340-三次成膜辊,350-四次成膜辊,360-原纤化网状电解质膜;裁切,卷芯,入壳制成电池单体,化成;得到的电池单体和管理系统集成于底盘,作为车辆的动力电源,如图6所示,其中,1-锂离子电池,1.1-原纤化网状正极,1.2-固态电解质膜,1.3-原纤化网状负极,2-电池管理系统,2.1-采集单元,2.2-控制单元,2.3-执行单元,3-电池系统,4-车辆。
申请人声明,以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,所属技术领域的技术人员应该明了,任何属于本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,均落在本申请的保护范围和公开范围之内。

Claims (10)

  1. 一种原纤化网状电极,所述原纤化网状电极包括原纤化网状活性物质层、集流体和离子传导体,所述原纤化网状活性物质层与离子传导体和集流体交互结合,所述离子传导体阵列排布附着在所述集流体表面,原纤化网状活性物质层包括四氟乙烯共聚物与四氟乙烯均聚物的粘结剂纤维网、活性物质颗粒和导电剂颗粒,四氟乙烯共聚物与四氟乙烯均聚物的粘结剂颗粒原位纤维化交互网连活性物质颗粒和导电剂颗粒。
  2. 根据权利要求1所述的一种原纤化网状电极,其中,以粘结剂的质量为100%计,所述四氟乙烯共聚物的质量分数为3~30%。
  3. 根据权利要求1或2所述的原纤化网状电极,其中,以所述原纤化网状电极的质量为100%计,所述粘结剂的质量分数为0.5~6%。
  4. 根据权利要求1-3任一项所述的原纤化网状电极,其中,所述离子传导体包括四氟乙烯均聚物与四氟乙烯共聚物的粘结剂纤维网和电解质物质颗粒;
    可选地,以所述原纤化网状活性物质层的质量为100%计,所述离子传导体的质量分数为0.1~10%。
  5. 一种如权利要求1-4任一项所述原纤化网状电极制备方法,所述制备方法包括如下步骤:
    (1)将粘结剂颗粒、活性物质颗粒和导电剂颗粒均匀分散制成球型电极混合物,将粘结剂颗粒与电解质颗粒均匀分散制成离子传导混合物;
    (2)将离子传导混合物按阵列排布粘附于集流体表面,制成离子传导体;
    (3)将电极混合物粘附集流体表面,梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片。
  6. 根据权利要求5所述的制备方法,其中,步骤(1)所述粘结剂颗粒、 活性物质颗粒和导电剂颗粒均匀分散制成球型电极混合物的方法包括如下步骤:
    S1:根据能量存储与转化装置的需求和电极工艺,给出粘结剂颗粒、活性物质颗粒和导电剂颗粒的计量配比;
    S2:根据电极工艺需求,预处理活性物质表面,表面预处理的活性物质与导电剂颗粒固相均匀分散,得到活性物质预混物;
    S3:活性物质预混物与粘结剂颗粒无溶剂原纤化分散,得到的原纤化预混物球形化,制成球型电极混合物。
    可选地,步骤(3)所述将电极混合物粘附集流体表面,梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片的方法包括如下步骤:
    M1:根据能量存储与转化装置的设计参数和电极工艺,给出电极混合物的进料量;
    M2:计量进料的电极混合物粘附集流体表面,制成原纤化网状活性物质层;
    M3:梯度升温辊压,制成包括原纤化网状活性物质层、集流体和离子传导体的极片。
    可选地,所述的梯度升温温度区间为25~130℃。
  7. 一种固态电解质膜,所述固态电解质膜包括用于原纤化网状活性物质层的粘结剂、用于离子传导体的电解质物质,以所述固态电解质膜的质量为100%计,所述粘结剂的质量分数为0.5~10%。
  8. 一种如权利要求7所述固态电解质膜的制备方法,所述固态电解质膜的 制备方法包括如下步骤:
    A1:根据能量存储与转化装置的需求和固态电解质膜工艺,给出四氟乙烯共聚物与四氟乙烯均聚物的核壳结构粘结剂颗粒和电解质颗粒的计量配比;
    A2:电解质颗粒与核壳结构粘结剂颗粒无溶剂原纤化分散,得到的原纤化电解质预混物球形化,制成球型电解质混合物;
    A3:计量进料的球型电解质混合物,梯度升温辊压,制成原纤化网状固态电解质膜。
  9. 一种储能装置,所述储能装置包括如权利要求1-4任一项所述的原纤化网状电极和/或权利要求7所述的固态电解质膜。
  10. 一种车辆,所述车辆包括权利要求9所述的储能装置和管理系统集成于底盘,所述的管理系统包括,采集单元、控制单元和执行单元;
    所述的采集单元,包括温度采集模块、电压采集模块、电流采集模块、压力采集模块、有害气体采集模块和烟雾采集模块。
    所述的控制单元,包括充电控制模块、放电控制模块和安全监控模块;
    所述的充电控制模块,其功能包括储能装置原纤化网状电极离子传导体和孔隙率决定的充电倍率控制。
    所述的放电控制模块,其功能包括储能装置原纤化网状电极离子传导体和孔隙率决定的放电倍率控制。
    所述的安全监控模块,其功能包括储能装置电压、电流、温度、压力和烟雾浓度限值监控、储能装置热失控监控、储能装置碰撞监控、储能装置绝缘监控、储能装置喷射有害气体监控、储能串并联高压回路非预期断开监控、储能 装置串并联高压回路通断监控和管理系统供电监控、储能装置云端监控。
PCT/CN2023/080216 2022-06-23 2023-03-08 一种原纤化网状电极、固态电解质膜、储能装置及车辆 WO2023246178A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210718521.5A CN114976014B (zh) 2022-06-23 2022-06-23 一种原纤化网状电极、固态电解质膜、储能装置及车辆
CN202210718521.5 2022-06-23

Publications (1)

Publication Number Publication Date
WO2023246178A1 true WO2023246178A1 (zh) 2023-12-28

Family

ID=82965309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080216 WO2023246178A1 (zh) 2022-06-23 2023-03-08 一种原纤化网状电极、固态电解质膜、储能装置及车辆

Country Status (2)

Country Link
CN (1) CN114976014B (zh)
WO (1) WO2023246178A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114976014B (zh) * 2022-06-23 2023-04-28 中国第一汽车股份有限公司 一种原纤化网状电极、固态电解质膜、储能装置及车辆
CN115395090A (zh) * 2022-10-10 2022-11-25 蜂巢能源科技(无锡)有限公司 一种固态电解质膜及其制备方法和应用
CN116014084B (zh) * 2023-01-16 2023-09-26 江苏大学 碳基固态锂电池干法电极片、制备方法及电芯
CN117577788A (zh) * 2024-01-15 2024-02-20 西北工业大学 一种基于干法制备高负载预锂化负极的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200220151A1 (en) * 2017-08-02 2020-07-09 Robert Bosch Gmbh Electrode production method by binder fibrillation using a particulate fibrillation auxiliary agent
CN112151744A (zh) * 2020-10-28 2020-12-29 蜂巢能源科技有限公司 全固态电池用正极材料层、其制备方法、正极片和全固态电池
CN112701252A (zh) * 2019-10-23 2021-04-23 南京鼎腾石墨烯研究院有限公司 柔性电池极片及其制备方法和含有该电池极片的电池
CN113675362A (zh) * 2021-08-18 2021-11-19 蜂巢能源科技有限公司 干法制备电极片的方法、系统及应用
CN113839085A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 一种固态电池的电解质层及其制备方法和应用
CN113871566A (zh) * 2021-09-18 2021-12-31 苏州清陶新能源科技有限公司 一种干法电极膜、其制备方法和应用
CN114050225A (zh) * 2021-09-28 2022-02-15 安普瑞斯(无锡)有限公司 一种电极极片及含有该电极极片的锂离子电池
CN114243104A (zh) * 2021-12-20 2022-03-25 惠州亿纬锂能股份有限公司 一种柔性电解质膜、电池及制备方法
CN114400370A (zh) * 2022-01-21 2022-04-26 浙江大学山东工业技术研究院 一种织物增强硫化物固态电解质及其干法制备方法和应用
CN114976014A (zh) * 2022-06-23 2022-08-30 中国第一汽车股份有限公司 一种原纤化网状电极、固态电解质膜、储能装置及车辆

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1279633C (zh) * 2000-12-21 2006-10-11 分子技术股份有限公司 电化学电池用的锂阳极
CN105702913A (zh) * 2014-11-27 2016-06-22 比亚迪股份有限公司 一种正极及其制备方法和一种锂二次电池
CN112852080B (zh) * 2016-07-01 2022-04-29 浙江新安化工集团股份有限公司 包覆型氟聚合物颗粒及聚合物共混物和聚合物组合物
CN110937601A (zh) * 2019-12-09 2020-03-31 天津大学 核桃壳基活性炭、制备方法及其应用
WO2022018710A1 (en) * 2020-07-21 2022-01-27 Savari Rathinam Sahaya Prabaharan Monolithic protected lithium cassette anode
CN113451543A (zh) * 2021-06-30 2021-09-28 中汽创智科技有限公司 一种固态锂离子电池预锂化电极及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200220151A1 (en) * 2017-08-02 2020-07-09 Robert Bosch Gmbh Electrode production method by binder fibrillation using a particulate fibrillation auxiliary agent
CN112701252A (zh) * 2019-10-23 2021-04-23 南京鼎腾石墨烯研究院有限公司 柔性电池极片及其制备方法和含有该电池极片的电池
CN112151744A (zh) * 2020-10-28 2020-12-29 蜂巢能源科技有限公司 全固态电池用正极材料层、其制备方法、正极片和全固态电池
CN113675362A (zh) * 2021-08-18 2021-11-19 蜂巢能源科技有限公司 干法制备电极片的方法、系统及应用
CN113839085A (zh) * 2021-08-31 2021-12-24 蜂巢能源科技有限公司 一种固态电池的电解质层及其制备方法和应用
CN113871566A (zh) * 2021-09-18 2021-12-31 苏州清陶新能源科技有限公司 一种干法电极膜、其制备方法和应用
CN114050225A (zh) * 2021-09-28 2022-02-15 安普瑞斯(无锡)有限公司 一种电极极片及含有该电极极片的锂离子电池
CN114243104A (zh) * 2021-12-20 2022-03-25 惠州亿纬锂能股份有限公司 一种柔性电解质膜、电池及制备方法
CN114400370A (zh) * 2022-01-21 2022-04-26 浙江大学山东工业技术研究院 一种织物增强硫化物固态电解质及其干法制备方法和应用
CN114976014A (zh) * 2022-06-23 2022-08-30 中国第一汽车股份有限公司 一种原纤化网状电极、固态电解质膜、储能装置及车辆

Also Published As

Publication number Publication date
CN114976014A (zh) 2022-08-30
CN114976014B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
WO2023246178A1 (zh) 一种原纤化网状电极、固态电解质膜、储能装置及车辆
CN107978732B (zh) 极片及电池
CN113178542B (zh) 一种防过充倍率型正极极片及其制造方法和基于其的锂离子电池
US20230115744A1 (en) Lithium iron phosphate positive electrode sheet, preparation method therefor, and lithium iron phosphate lithium-ion battery
CN112467308B (zh) 一种隔膜及其制备方法、锂离子电池
CN111697230B (zh) 一种高安全复合正极片及其制备方法和应用的锂离子电池
CN113937289A (zh) 基于石墨烯的干法电池极片、电池及其制造方法
CN111564661A (zh) 一种高安全性的锂离子电池
CN113178557A (zh) 电池材料、电池极片及其制备方法和电池
CN112072109A (zh) 锂离子电池及其制备方法
CN113871567A (zh) 一种电池极片、其制备方法和用途
CN218274694U (zh) 一种干法复合电极极片和锂电池
CN114784223A (zh) 一种正极片及其制备方法与应用
CN113130845B (zh) 一种自支撑膜电极、电池及车辆
CN103964821A (zh) 氧化铝固体隔膜及其制备方法、电化学电池或电容器
CN113540393A (zh) 固态复合正极及其制备方法和电池
CN116314623B (zh) 一种复合正极极片、其制备方法及二次电池
JP6212305B2 (ja) 複合集電体、およびそれを用いた電極と二次電池
CN117457903A (zh) 负极活性材料、负极片及其应用
CN113328063A (zh) 锂电池极片及其制备方法与应用
CN112786890A (zh) 一种低界面阻抗的固态电池及其制备方法
CN116376280A (zh) 聚对苯撑苯并二噁唑多孔膜及其制备方法和应用、复合隔膜及电池
CN111554938A (zh) 一种高安全性电池
CN111463433A (zh) 一种超高倍率磷酸铁锂电池及其制备方法
CN115483431B (zh) 无隔膜固态锂离子电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825836

Country of ref document: EP

Kind code of ref document: A1