WO2023168879A1 - 氧化镁纤维制备装置及制备方法 - Google Patents

氧化镁纤维制备装置及制备方法 Download PDF

Info

Publication number
WO2023168879A1
WO2023168879A1 PCT/CN2022/106194 CN2022106194W WO2023168879A1 WO 2023168879 A1 WO2023168879 A1 WO 2023168879A1 CN 2022106194 W CN2022106194 W CN 2022106194W WO 2023168879 A1 WO2023168879 A1 WO 2023168879A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
magnesium oxide
roller
magnesium
driving device
Prior art date
Application number
PCT/CN2022/106194
Other languages
English (en)
French (fr)
Inventor
梁靓
王一桐
王翊钧
董明明
赵高亮
么杰
李燕南
Original Assignee
唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 filed Critical 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心
Priority to GB2214731.8A priority Critical patent/GB2610492B/en
Publication of WO2023168879A1 publication Critical patent/WO2023168879A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/18Alkaline earth metal compounds or magnesium compounds
    • C25B1/20Hydroxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties

Definitions

  • the present invention relates to the technical field of magnesium oxide preparation, and in particular to a magnesium oxide fiber preparation device and a preparation method.
  • Flame-retardant fiber refers to a fiber that only smolders in a flame and does not produce flames. It smolders and extinguishes itself when leaving the flame. Flame-retardant fabrics prepared from flame-retardant fibers are widely used in many fields such as clothing and furniture. Since magnesium oxide has good fire-resistant insulation properties, it is usually prepared into powdered nano-magnesium oxide and used as an additive together with other materials to prepare flame-retardant fibers. However, the production process of this kind of flame-retardant fiber is complicated and the production cost is high.
  • the object of the present invention is to provide a magnesium oxide fiber preparation device and a preparation method, which are used to directly prepare magnesium metal fibers to obtain magnesium oxide fibers as flame-retardant fibers to prepare flame-retardant fabrics.
  • the present invention provides the following solutions:
  • the invention discloses a magnesium oxide fiber preparation device, which includes:
  • Fiber release device for releasing magnesium metal fibers
  • An electrochemical reaction device for oxidizing the magnesium metal fibers released by the fiber release device into magnesium hydroxide fibers including a solution storage part, a negative electrode and a positive electrode; a neutral electrolyte is stored in the solution storage part to Soak the magnesium metal fiber released by the fiber release device; the first end of the negative electrode is used for electrical connection with the magnesium metal fiber, and the first end of the positive electrode is used for electrical connection with the neutral electrolyte , the second end of the negative electrode and the second end of the positive electrode are used to output electrical energy;
  • a fiber storage device is used to store the magnesium oxide fiber obtained after heating by the heating device.
  • the solution storage member is a water-absorbent member.
  • the electrochemical reaction device further includes a liquid adding device for adding neutral electrolyte to the water-absorbing member.
  • the liquid adding device is an electrolyte tank used to accommodate the neutral electrolyte, and the water absorbing member is used to partially immerse the neutral electrolyte in the electrolyte tank.
  • the electrochemical reaction device further includes a first roller assembly and a second roller assembly, the first roller assembly and the second roller assembly are respectively located on both sides of the magnesium metal fiber;
  • the first roller assembly and the second roller assembly each include a roller and a roller driving device.
  • the roller driving device is connected to the roller to drive the roller to rotate around its own axis; the water absorption device The part is annularly wrapped on the roller, so that the water-absorbing part can maintain contact with the magnesium metal fiber when the roller rotates; a catalyst is provided on the part of the roller that is in contact with the water-absorbing part.
  • the catalyst layer is used to catalyze the process in which the magnesium metal fiber is oxidized into the magnesium hydroxide fiber;
  • the electrolyte tank is installed at the lower end of the roller;
  • the positive electrode is installed on the roller On the driving device, the first end of the positive electrode is slidingly and electrically connected to the roller, so as to be electrically connected to the neutral electrolyte through the roller and the catalyst layer.
  • the water-absorbing member on the first roller assembly and the water-absorbing member on the second roller assembly clamp the magnesium metal fiber from both sides respectively.
  • a first position adjustment device is further included, and the first position adjustment device is simultaneously connected to the roller driving device of the first roller assembly and the roller driving device of the second roller assembly. , to realize the clamping and releasing of the magnesium metal fiber by the water-absorbing member on the first roller assembly and the water-absorbing member on the second roller assembly.
  • the first position adjustment device includes a first bracket, a first linear motor and a second linear motor; the roller driving device of the first roller assembly is installed on the first linear motor. , the roller driving device of the second roller assembly is installed on the second linear motor; both the first linear motor and the second linear motor are slidably installed on the first bracket along a straight line superior.
  • the first bracket is provided with a first strip groove
  • the first strip groove is provided with a telescopic first wire
  • the second end of the positive electrode is slidably mounted on the first strip.
  • the second end of the positive electrode is electrically connected to the first wire.
  • the fiber releasing device includes a unwinding spool driving device and a unwinding spool, the unwinding spool is used to wind the magnesium metal fiber, and the unwinding spool driving device is connected to the unwinding spool to The unwinding spool is driven to rotate around its own axis; the negative electrode is installed on the unwinding spool driving device, and the first end of the negative electrode is slidingly and electrically connected to the unwinding spool, so as to be connected to the unwinding spool through the unwinding spool.
  • the magnesium metal fibers are electrically connected.
  • the fiber storage device includes a winding spool driving device and a winding spool, the winding spool is used to wind the magnesium oxide fiber, and the winding spool driving device is connected to the winding spool to The winding spool is driven to rotate around its own axis.
  • it also includes a second position adjustment device, which is connected to the unwinding spool driving device and the winding spool driving device at the same time to adjust the unwinding spool and the winding spool. Pitch.
  • the second position adjustment device includes a second bracket, a third linear motor and a fourth linear motor; the unwinding spool driving device is installed on the third linear motor, and the winding spool driving device is installed on the third linear motor.
  • the fourth linear motor On the fourth linear motor; the third linear motor and the fourth linear motor are both slidably installed on the second bracket along a straight line.
  • the second bracket is provided with a second strip groove
  • the second strip groove is provided with a telescopic second wire
  • the second end of the negative electrode is slidably mounted on the second strip groove.
  • the second end of the negative electrode is electrically connected to the second conductor.
  • the invention also discloses a method for preparing magnesium oxide fiber, which includes the following steps:
  • the released magnesium metal fiber is subjected to a primary cell reaction through an electrochemical reaction device.
  • the magnesium metal fiber serves as an anode and forms magnesium hydroxide fiber;
  • the magnesium hydroxide fiber is converted into magnesium oxide fiber after being heated by a heating device;
  • the magnesium oxide fibers are stored by a fiber storage device.
  • the fibrous magnesium oxide prepared by the invention can be directly used as a flame-retardant fiber, which is convenient for later mechanized textile high-temperature functional fabrics. There is no need to synthesize magnesium oxide with other materials. The process is simple, the cost is low, and the processing efficiency is high. high. Moreover, the electrochemical reaction device can output electric energy during operation, which plays a role in energy conservation and environmental protection.
  • FIG 1 is an isometric view of the magnesium oxide fiber preparation device of this embodiment
  • Figure 2 is a schematic diagram of the positional relationship between the first roller assembly, the second roller assembly and the first position adjustment device
  • Figure 3 is a partial structural diagram of the electrochemical reaction device
  • Figure 4 is a schematic diagram of the positional relationship between the fiber release device, the fiber storage device and the second position adjustment device;
  • Figure 5 is a schematic diagram of the positional relationship between the unwinding spool, the adjacent transmission shaft and the first base;
  • 100-magnesium oxide fiber preparation device 110-fiber release device; 111-unwinding spool driving device; 1111-first base; 112-unwinding spool; 120-electrochemical reaction device; 121-solution storage parts; 122-negative electrode; 123-positive electrode; 124-liquid adding device; 125-roller; 126-roller driving device; 130-heating device; 140-fiber storage device; 141-winding spool driving device; 142-winding Reel reel; 150-first position adjustment device; 151-first bracket; 1511-first strip groove; 160-second position adjustment device; 161-first installation block; 162-second installation block.
  • the object of the present invention is to provide a magnesium oxide fiber preparation device and a preparation method, which are used to directly prepare magnesium metal fibers to obtain magnesium oxide fibers as flame-retardant fibers to prepare flame-retardant fabrics.
  • this embodiment provides a magnesium oxide fiber preparation device 100 , including a fiber release device 110 , an electrochemical reaction device 120 , a heating device 130 and a fiber storage device 140 .
  • the fiber releasing device 110 is used to release magnesium metal fibers.
  • the electrochemical reaction device 120 is used to oxidize the magnesium metal fibers released by the fiber release device 110 into magnesium hydroxide fibers.
  • the electrochemical reaction device 120 includes a solution storage member 121 , a negative electrode 122 and a positive electrode 123 .
  • Neutral electrolyte is stored in the solution storage part 121 to soak the magnesium metal fibers released by the fiber releasing device 110 .
  • the first end of the negative electrode 122 is used for electrical connection with the magnesium metal fiber
  • the first end of the positive electrode 123 is used for electrical connection with the neutral electrolyte
  • the second ends of the negative electrode 122 and the second end of the positive electrode 123 are used for outputting electrical energy.
  • the heating device 130 is used to heat the magnesium hydroxide fiber prepared by the electrochemical reaction device 120 to obtain magnesium oxide fiber.
  • the fiber storage device 140 is used to store the magnesium oxide fibers heated by the heating device 130 .
  • the heating device 130 may be a resistance wire or other device capable of generating heat.
  • the heating temperature can be 360°C or other temperatures, as long as magnesium hydroxide can be heated to obtain magnesium oxide.
  • the magnesium metal fibers are first released by the fiber release device 110, and then the magnesium metal fibers undergo a galvanic reaction at the electrochemical reaction device 120 and are oxidized into magnesium hydroxide fibers. Then, the magnesium hydroxide fibers are heated at the heating device 130 to obtain magnesium oxide fibers, and finally the magnesium oxide fibers are stored by the fiber storage device 140 .
  • the prepared fibrous magnesium oxide can be directly used as a flame-retardant fiber to facilitate later mechanized textile high-temperature functional fabrics. There is no need to synthesize magnesium oxide with other materials. The process is simple, the cost is low, and the processing efficiency is high.
  • the electrochemical reaction device 120 can output electric energy when working, and the output electric energy can be used by the magnesium oxide fiber preparation device 100, which plays a role in energy conservation and environmental protection.
  • the electric energy output by the electrochemical reaction device can also be stored in an electric energy storage device, such as a battery; or it can be directly used by other electrical appliances.
  • the solution storage member 121 is preferably a water-absorbent member, and further preferably a sponge or water-absorbent fabric. Sponges or absorbent fabrics have good water storage capacity, can store more neutral electrolyte, and are easy to deform, allowing the neutral electrolyte to better wrap the magnesium metal fiber and make the reaction more complete. Depending on actual needs, those skilled in the art can also choose water-absorbing parts such as silica gel and resin that have relatively weak water storage and deformation capabilities.
  • the neutral electrolyte is preferably a sodium chloride solution with a mass concentration of 10%.
  • neutral electrolytes such as an electrolyte obtained by mixing sodium citrate and citric acid in a one-to-one molar ratio, or potassium chloride solution, magnesium chloride solution, etc.
  • the electrochemical reaction device 120 further includes a liquid adding device 124 for adding neutral electrolyte to the water-absorbing member.
  • the liquid adding device 124 is an electrolyte tank used to accommodate neutral electrolyte, and the water-absorbing member is used to partially immerse in the neutral electrolyte in the electrolyte tank.
  • a spraying device or a dripping device can also select a spraying device or a dripping device to replenish the water-absorbing member with neutral electrolyte by spraying or dripping.
  • the electrochemical reaction device 120 further includes a first roller assembly and a second roller assembly.
  • the first roller assembly and the second roller assembly are respectively located on both sides of the magnesium metal fiber.
  • the first roller assembly and the second roller assembly each include a roller 125 and a roller driving device 126 .
  • the roller driving device 126 is connected with the roller 125 to drive the roller 125 to rotate around the axis of the roller 125 .
  • the water-absorbing member is annularly wrapped on the roller 125 so that the water-absorbing member can maintain contact with the magnesium metal fiber when the roller 125 rotates.
  • the part of the roller 125 that is in contact with the water-absorbing member is provided with a catalyst layer, and the catalyst layer is used to catalyze the process of oxidizing magnesium metal fibers into magnesium hydroxide fibers.
  • the electrolyte tank is installed at the lower end of the roller 125.
  • the positive electrode 123 is installed on the roller driving device 126, and the first end of the positive electrode 123 is slidingly and electrically connected to the roller 125, so as to be electrically connected to the neutral electrolyte through the roller 125.
  • the distance between the roller 125 and the magnesium metal fiber can be made smaller than the thickness of the water-absorbing member, so that the water-absorbing member is extruded and deformed to increase the contact area between the water-absorbing member and the magnesium metal fiber.
  • the catalyst layer is preferably a composite catalyst of graphene and carbon microspheres.
  • the function of the electrolyte tank can also receive the neutral electrolyte that flows out when the water-absorbing part is extruded and deformed to avoid waste of neutral electrolyte.
  • the water-absorbing member on the first roller assembly and the water-absorbing member on the second roller assembly clamp the magnesium metal fiber from both sides respectively.
  • Magnesium metal fibers will not bend or deform when they cancel each other out.
  • those skilled in the art can also stagger the water-absorbing parts on the first roller assembly and the water-absorbing parts on the second roller assembly in the extension direction of the magnesium metal fibers, so that the magnesium metal fibers can move between the water-absorbing parts. It shows an S-shaped distribution under the pressure.
  • the magnesium oxide fiber preparation device 100 of this embodiment also includes a first position adjustment device 150.
  • the first position adjustment device 150 simultaneously communicates with the roller driving device 126 of the first roller assembly and the second roller.
  • the roller driving device 126 of the assembly is connected to realize the clamping and releasing of the magnesium metal fiber by the water-absorbing member on the first roller assembly and the water-absorbing member on the second roller assembly.
  • the first position adjustment device 150 includes a first bracket 151, a first linear motor and a second linear motor.
  • the roller driving device 126 of the first roller assembly is installed on the first linear motor
  • the roller driving device 126 of the second roller assembly is installed on the second linear motor.
  • the first linear motor and the second linear motor are both slidably installed on the first bracket 151 along a straight line.
  • the first linear motor slides along a straight line on the first bracket 151 to adjust the distance between the first roller assembly and the magnesium metal fiber.
  • the second linear motor is working, it slides along a straight line on the first bracket 151 to adjust the distance between the second roller assembly and the magnesium metal fiber.
  • the water-absorbing part on the first roller assembly and the water-absorbing part on the second roller assembly should be kept at a certain distance to put magnesium metal fibers between them, and then start the first
  • the linear motor and the second linear motor enable the water-absorbing part on the first roller assembly and the water-absorbing part on the second roller assembly to clamp the magnesium metal fiber.
  • first position adjustment devices 150 such as replacing the first linear motor with a first cylinder and the second linear motor with a second cylinder.
  • the positive electrode 123 Since the positive electrode 123 is installed on the roller driving device 126, when the first position adjusting device 150 moves the roller driving device 126, the positive electrode 123 also moves accordingly.
  • the first bracket 151 is provided with a first strip groove 1511 , and a telescopic first conductor, such as a spiral first conductor, is disposed in the first strip groove 1511 .
  • the second end of the positive electrode 123 is slidably installed in the first strip groove 1511, and the second end of the positive electrode 123 is electrically connected to the first wire.
  • the first wire serves as an intermediate structure between the positive electrode 123 and the electrical appliance, which can prevent the positive electrode 123 from being unable to maintain a stable electrical connection with the electrical appliance due to movement.
  • the first conductor is placed in the first strip groove 1511 and is telescopic, which can prevent the first conductor from being entangled and knotted.
  • the fiber releasing device 110 includes a unwinding spool driving device 111 and a unwinding spool 112.
  • the unwinding spool 112 is used to wind magnesium metal fiber, and the unwinding spool driving device 111 It is connected with the unwinding spool 112 to drive the unwinding spool 112 to rotate around the axis of the unwinding spool 112 .
  • the negative electrode 122 is installed on the unwinding spool driving device 111, and the first end of the negative electrode 122 is slidingly and electrically connected to the unwinding spool 112, so as to be electrically connected to the magnesium metal fiber through the unwinding spool 112.
  • the first end of the negative electrode 122 and the first end of the positive electrode 123 are both slidingly electrically connected, thereby conducting current between the relatively rotating components.
  • the fiber storage device 140 includes a winding spool driving device 141 and a winding spool 142.
  • the winding spool 142 is used to wind magnesium oxide fiber.
  • the winding spool driving device 141 and the winding spool The spool 142 is connected to drive the take-up spool 142 to rotate around the axis of the take-up spool 142 .
  • the fiber release device 110 may include a cylindrical barrel, a limiting ring and a fabric layer.
  • the cylindrical barrel is used to place annularly wound magnesium metal fibers.
  • the winding center of the magnesium metal fibers is the axis of the cylindrical barrel.
  • the limiting ring provides magnesium metal fibers.
  • the fibers pass through, and the fabric layer is installed on the limiting ring to reduce the friction between the magnesium metal fiber and the limiting ring.
  • the fiber storage device 140 may include a square trough and a cylinder.
  • the piston rod of the cylinder is connected to the square trough and is used to drive the square trough to reciprocate in a straight line, so that the magnesium oxide fibers swing and collect in the square trough.
  • the magnesium oxide fiber preparation device 100 of this embodiment also includes a second position adjustment device 160.
  • the second position adjustment device 160 is simultaneously connected to the unwinding spool driving device 111 and the winding spool driving device 141, so as to Adjust the distance between the unwinding spool 112 and the winding spool 142 to adjust the tension of the magnesium metal fiber.
  • the second position adjustment device 160 includes a second bracket, a third linear motor and a fourth linear motor.
  • the unwinding spool driving device 111 is installed on the third linear motor
  • the winding spool driving device 141 is installed on the fourth linear motor.
  • Both the third linear motor and the fourth linear motor are slidably installed on the second bracket along a straight line.
  • those skilled in the art may also select other types of second position adjustment devices 160 , such as replacing the third linear motor with a third cylinder and the fourth linear motor with a fourth cylinder.
  • the negative electrode 122 Since the negative electrode 122 is installed on the unwinding spool driving device 111, when the second position adjusting device 160 moves the unwinding spool driving device 111, the negative electrode 122 also moves accordingly.
  • the second bracket is provided with a second strip groove, and a telescopic second conductor, such as a spiral second conductor, is disposed in the second strip groove.
  • the second end of the negative electrode 122 is slidably mounted on the second strip groove. In the two strip grooves, the second end of the negative electrode 122 is electrically connected to the second conductor.
  • the second wire serves as an intermediate structure between the negative electrode 122 and the electrical appliance, which can prevent the negative electrode 122 from being unable to maintain a stable electrical connection with the electrical appliance due to movement.
  • the second conductor is placed in the second strip groove and is telescopic, which can prevent the second conductor from being entangled and knotted.
  • the second bracket includes a first bracket 151, a first mounting block 161 and a second mounting block 162.
  • the first mounting block 161 and the second mounting block 162 are respectively detachable. is installed on both sides of the first bracket 151, the third linear motor is slidably installed on the first mounting block 161 along a straight line, the second strip slot is located on the first mounting block 161, and the fourth linear motor is slidably mounted on the first mounting block 161 along a straight line. 2.
  • the roller driving device 126, the unwinding spool driving device 111 and the winding spool driving device 141 all include a reduction motor, a motor cover and a transmission shaft, and the reduction motor is installed in the motor cover.
  • the output shaft of the reduction motor is connected to the transmission shaft, and power is output through the transmission shaft.
  • the roller driving device 126 of the first roller assembly its motor cover is installed on the first linear motor.
  • the roller driving device 126 of the second roller assembly its motor cover is installed on the second linear motor.
  • the unwinding spool driving device 111 its motor cover is installed on the third linear motor.
  • the winding spool driving device 141 its motor cover is installed on the fourth linear motor.
  • the unwinding spool driving device 111 also includes a first base 1111.
  • the first base 1111 is detachably installed on the transmission shaft of the unwinding spool driving device 111 to control the unwinding spool driving device 111.
  • the unwinding spool 112 is limited along the axial direction to prevent it from falling off.
  • the unwinding spool 112 is sleeved on the outside of the transmission shaft of the unwinding spool driving device 111 and is threadedly connected to the transmission shaft. Limiting baffles are provided at both ends of the unwinding spool 112 to prevent the magnesium metal fibers from falling off.
  • the winding spool driving device 141 also includes a second base.
  • the second base is detachably installed on the transmission shaft of the winding spool driving device 141 to align the winding spool 142 along the Axial limiter to prevent it from falling off.
  • the winding spool 142 is sleeved on the outside of the transmission shaft of the winding spool driving device 141 and is threadedly connected to the transmission shaft.
  • Limiting baffles are provided at both ends of the winding spool 142 to prevent the magnesium oxide fibers from falling off.
  • multiple unwinding spools 112 can be mounted on the transmission shaft of the unwinding spool driving device 111, and the transmission shaft of the winding spool driving device 141 can be sleeved with and unwinding.
  • the spools 112 have the same number of winding spools 142 to realize simultaneous unwinding and winding of multiple magnesium metal fibers.
  • reaction formula of the process in which magnesium metal fibers are oxidized into magnesium hydroxide fibers is as follows:
  • reaction formula of the process in which magnesium hydroxide fibers are heated to obtain magnesium oxide fibers is as follows:
  • the conversion rate of magnesium metal to magnesium oxide can reach 99.5%.
  • This embodiment also provides a method for preparing magnesium oxide fibers, which can use the above-mentioned magnesium oxide fiber preparation device 100, including the following steps:
  • the magnesium metal fibers are released through the fiber releasing device 110 .
  • the released magnesium metal fibers are passed through the electrochemical reaction device 120 to perform a galvanic cell reaction.
  • the magnesium metal fibers serve as anodes 122 and form magnesium hydroxide fibers.
  • the magnesium hydroxide fibers are heated by the heating device 130 and then converted into magnesium oxide fibers.
  • the magnesium oxide fibers are stored by the fiber storage device 140 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种氧化镁纤维制备装置及制备方法,其中氧化镁纤维制备装置包括纤维释放装置、电化学反应装置、加热装置和纤维收纳装置。纤维释放装置用于释放镁金属纤维。电化学反应装置用于将纤维释放装置释放的镁金属纤维氧化为氢氧化镁纤维,包括溶液存储件、负极和正极。溶液存储件中存储有中性电解液,以浸泡纤维释放装置释放的镁金属纤维。加热装置用于加热电化学反应装置制备的氢氧化镁纤维,以得到氧化镁纤维。纤维收纳装置用于对加热装置加热后得到的氧化镁纤维进行收纳。相比于现有技术,本发明的氧化镁纤维制备装置及制备方法能够直接将镁金属纤维制备得到氧化镁纤维,以作为阻燃纤维制备阻燃织物。

Description

氧化镁纤维制备装置及制备方法 技术领域
本发明涉及氧化镁的制备技术领域,特别是涉及一种氧化镁纤维制备装置及制备方法。
背景技术
阻燃纤维是指在火焰中仅阴燃,本身不发生火焰,离开火焰,阴燃自行熄灭的纤维,由阻燃纤维制备得到的阻燃织物广泛应用于服装、家具等多个领域。由于氧化镁具有良好的耐火绝缘性能,通常被制备成粉末状态的纳米氧化镁,并作为添加剂与其他材料共同制备阻燃纤维。但是,这种阻燃纤维的制作工艺较为复杂,生产成本较高。
发明内容
本发明的目的是提供一种氧化镁纤维制备装置及制备方法,用于直接将镁金属纤维制备得到氧化镁纤维,以作为阻燃纤维制备阻燃织物。
为实现上述目的,本发明提供了如下方案:
本发明公开了一种氧化镁纤维制备装置,包括:
纤维释放装置,用于释放镁金属纤维;
电化学反应装置,用于将所述纤维释放装置释放的所述镁金属纤维氧化为氢氧化镁纤维,包括溶液存储件、负极和正极;所述溶液存储件中存储有中性电解液,以浸泡所述纤维释放装置释放的所述镁金属纤维;所述负极的第一端用于与所述镁金属纤维电连接,所述正极的第一端用于与所述中性电解液电连接,所述负极的第二端和所述正极的第二端用于输出电能;
加热装置,用于加热所述电化学反应装置制备的所述氢氧化镁纤维,以得到氧化镁纤维;
纤维收纳装置,用于对所述加热装置加热后得到的所述氧化镁纤维进行收纳。
优选地,所述溶液存储件为吸水件。
优选地,所述电化学反应装置还包括用于向所述吸水件中添加中性电解液的加液装置。
优选地,所述加液装置为用于容纳所述中性电解液的电解液槽,所述吸水件用于部分浸入所述电解液槽内的所述中性电解液。
优选地,所述电化学反应装置还包括第一辊轮组件和第二辊轮组件,所述第一辊轮组件和所述第二辊轮组件分别位于所述镁金属纤维两侧;所述第一辊轮组件和所述第二辊轮组件均包括辊轮和辊轮驱动装置,所述辊轮驱动装置与所述辊轮相连,以驱动所述辊轮绕自身轴线旋转;所述吸水件呈环形包覆于所述辊轮上,以在所述辊轮旋转时所述吸水件能够与所述镁金属纤维保持接触;所述辊轮上与所述吸水件接触的部分设有催化剂层,所述催化剂层用于对所述镁金属纤维氧化为所述氢氧化镁纤维的过程进行催化;所述电解液槽安装于所述辊轮的下端;所述正极安装于所述辊轮驱动装置上,所述正极的第一端与所述辊轮滑动电连接,以通过所述辊轮和所述催化剂层与所述中性电解液电连接。
优选地,所述第一辊轮组件上的所述吸水件和所述第二辊轮组件上的所述吸水件分别从两侧将所述镁金属纤维夹紧。
优选地,还包括第一位置调节装置,所述第一位置调节装置同时与所述第一辊轮组件的所述辊轮驱动装置和所述第二辊轮组件的所述辊轮驱动装置相连,以实现所述第一辊轮组件上的所述吸水件和所述第二辊轮组件上的所述吸水件对所述镁金属纤维的夹紧和放开。
优选地,所述第一位置调节装置包括第一支架、第一直线电机和第二直线电机;所述第一辊轮组件的所述辊轮驱动装置安装于所述第一直线电机上,所述第二辊轮组件的所述辊轮驱动装置安装于所述第二直线电机上;所述第一直线电机和所述第二直线电机均沿直线滑动安装于所述第一支架上。
优选地,所述第一支架上设有第一条形槽,所述第一条形槽内设有能够伸缩的第一导线,所述正极的第二端滑动安装于所述第一条形槽内,所述正极的第二端与所述第一导线电连接。
优选地,所述纤维释放装置包括放卷线轴驱动装置和放卷线轴,所述放卷线轴用于卷绕所述镁金属纤维,所述放卷线轴驱动装置与所述放卷线轴相连,以驱动所述放卷线轴绕自身轴线旋转;所述负极安装于所述放卷线轴驱动装置上,所述负极的第一端与所述放卷线轴滑动电连接,以通过所述放卷线轴与所述镁金属纤维电连接。
优选地,所述纤维收纳装置包括收卷线轴驱动装置和收卷线轴,所述收卷线轴用于卷绕所述氧化镁纤维,所述收卷线轴驱动装置与所述收卷线轴相连,以驱动所述收卷线轴绕自身轴线旋转。
优选地,还包括第二位置调节装置,所述第二位置调节装置同时与所述放卷线轴驱动装置、所述收卷线轴驱动装置相连,以调整所述放卷线轴与所述收卷线轴的间距。
优选地,所述第二位置调节装置包括第二支架、第三直线电机和第四直线电机;所述放卷线轴驱动装置安装于所述第三直线电机上,所述收卷线轴驱动装置安装于所述第四直线电机上;所述第三直线电机和所述第四直线电机均沿直线滑动安装于所述第二支架上。
优选地,所述第二支架上设有第二条形槽,所述第二条形槽内设有能够伸缩的第二导线,所述负极的第二端滑动安装于所述第二条形槽内,所述负极的第二端与所述第二导线电连接。
本发明还公开了一种氧化镁纤维制备方法,包括如下步骤:
通过纤维释放装置释放镁金属纤维;
并且,使释放的所述镁金属纤维经过电化学反应装置进行原电池反应,在所述原电池反应中,所述镁金属纤维作为阳极并形成氢氧化镁纤维;
使所述氢氧化镁纤维经过加热装置进行加热后转化为氧化镁纤维;
通过纤维收纳装置将所述氧化镁纤维进行收纳。
本发明相对于现有技术取得了以下技术效果:
本发明制备得到的纤维状氧化镁可直接作为阻燃纤维使用,便于后期的机械化纺织耐高温功能面料,并不需要将氧化镁与其它材料进行合成加工,其工艺简单,成本较低,加工效率高。并且,电化学反应装置在工作 时能够输出电能,起到节能环保的作用。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本实施例氧化镁纤维制备装置的轴测图;
图2为第一辊轮组件、第二辊轮组件与第一位置调节装置的位置关系示意图;
图3为电化学反应装置的部分结构示意图;
图4为纤维释放装置、纤维收纳装置、第二位置调节装置的位置关系示意图;
图5为放卷线轴与相邻的传动轴、第一底座的位置关系示意图;
附图标记说明:100-氧化镁纤维制备装置;110-纤维释放装置;111-放卷线轴驱动装置;1111-第一底座;112-放卷线轴;120-电化学反应装置;121-溶液存储件;122-负极;123-正极;124-加液装置;125-辊轮;126-辊轮驱动装置;130-加热装置;140-纤维收纳装置;141-收卷线轴驱动装置;142-收卷线轴;150-第一位置调节装置;151-第一支架;1511-第一条形槽;160-第二位置调节装置;161-第一安装块;162-第二安装块。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种氧化镁纤维制备装置及制备方法,用于直接将镁金属纤维制备得到氧化镁纤维,以作为阻燃纤维制备阻燃织物。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
参照图1~图5,本实施例提供一种氧化镁纤维制备装置100,包括纤维释放装置110、电化学反应装置120、加热装置130和纤维收纳装置140。
其中,纤维释放装置110用于释放镁金属纤维。电化学反应装置120用于将纤维释放装置110释放的镁金属纤维氧化为氢氧化镁纤维,电化学反应装置120包括溶液存储件121、负极122和正极123。溶液存储件121中存储有中性电解液,以浸泡纤维释放装置110释放的镁金属纤维。负极122的第一端用于与镁金属纤维电连接,正极123的第一端用于与中性电解液电连接,负极122的第二端和正极123的第二端用于输出电能。加热装置130用于加热电化学反应装置120制备的氢氧化镁纤维,以得到氧化镁纤维。纤维收纳装置140用于对加热装置130加热后得到的氧化镁纤维进行收纳。加热装置130可以是电阻丝,也可以是能够产生热量的其它装置。加热温度可以是360℃,也可以是其它温度,只要能够将氢氧化镁加热得到氧化镁即可。
本实施例的氧化镁纤维制备装置100在使用时,先由纤维释放装置110将镁金属纤维释放,之后镁金属纤维在电化学反应装置120处发生原电池反应,被氧化为氢氧化镁纤维,然后氢氧化镁纤维在加热装置130处被加热,得到氧化镁纤维,最后由纤维收纳装置140对氧化镁纤维进行收纳。制备得到的纤维状氧化镁可直接作为阻燃纤维使用,便于后期的机械化纺织耐高温功能面料,并不需要将氧化镁与其它材料进行合成加工,其工艺简单,成本较低,加工效率高。并且,电化学反应装置120在工作时能够输出电能,输出的电能可供该氧化镁纤维制备装置100自用,起到节能环保的作用。当然,电化学反应装置所输出的电能也可以储存在电能存储装置中,如电池;或者直接供其它用电器使用。
参照图2~图3,溶液存储件121的类型有多种,只要能够存储中性电解液,以浸泡镁金属纤维即可。本实施例中,溶液存储件121优选为吸水件,并进一步优选为海绵或吸水织物。海绵或吸水织物具有良好的储水能力,能够储存较多的中性电解液,并易于变形,能够使中性电解液更好地包裹镁金属纤维,使反应更充分。根据实际需要的不同,本领域技术人员也可选择硅胶、树脂等储水、变形能力相对较弱的吸水件。本实施例中,中性电解液优选为质量浓度为10%的氯化钠溶液。根据实际需要的不 同,本领域技术人员也可以选择其它类型的中性电解液,例如将柠檬酸钠与柠檬酸一比一摩尔配比得到的电解液,或者氯化钾溶液、氯化镁溶液等。
参照图1~图3,为了向溶液储存件持续补充中性电解液,本实施例中,电化学反应装置120还包括用于向吸水件中添加中性电解液的加液装置124。
参照图3,本实施例中,加液装置124为用于容纳中性电解液的电解液槽,吸水件用于部分浸入电解液槽内的中性电解液中。根据实际需要的不同,本领域技术人员也可选择喷洒装置或滴加装置,以通过喷洒或滴加的方式为吸水件补充中性电解液。
参照图1~图3,本实施例中,电化学反应装置120还包括第一辊轮组件和第二辊轮组件,第一辊轮组件和第二辊轮组件分别位于镁金属纤维两侧。第一辊轮组件和第二辊轮组件均包括辊轮125和辊轮驱动装置126,辊轮驱动装置126与辊轮125相连,以驱动辊轮125绕辊轮125的轴线旋转。吸水件呈环形包覆于辊轮125上,以在辊轮125旋转时吸水件能够与镁金属纤维保持接触。辊轮125上与吸水件接触的部分设有催化剂层,催化剂层用于对镁金属纤维氧化为氢氧化镁纤维的过程进行催化。电解液槽安装于辊轮125的下端。正极123安装于辊轮驱动装置126上,正极123的第一端与辊轮125滑动电连接,以通过辊轮125与中性电解液电连接。使用时,可使辊轮125与镁金属纤维的距离小于吸水件的厚度,从而使吸水件被挤压变形,以增大吸水件与镁金属纤维的接触面积。当辊轮125旋转时,吸水件随辊轮125旋转,吸水件圆周方向上不同位置的中性电解液均能够被挤出吸水件并浸泡镁金属纤维。当吸水件圆周方向上某个位置被挤压时,其它位置恢复原状并吸取电解液槽内的中性电解液,保证吸水件圆周方向上各个位置的中性电解液均储存充足,保证电化学反应过程持续稳定进行。本实施例中,催化剂层优选为石墨烯和碳微球复合式催化剂。根据实际需要的不同,本领域技术人员也可选择其它类型的催化剂,例如Pt基催化剂。电解液槽的功能除了提供中性电解液外,还能够对吸水件被挤压变形时流出的中性电解液进行承接,避免中性电解液浪费。
参照图1,本实施例中,第一辊轮组件上的吸水件和第二辊轮组件上 的吸水件分别从两侧将镁金属纤维夹紧,当这两者对镁金属纤维施加的压力相互抵消时,镁金属纤维不会弯曲变形。根据实际需要的不同,本领域技术人员也可以使第一辊轮组件上的吸水件和第二辊轮组件上的吸水件在镁金属纤维的延伸方向上相互错开,使镁金属纤维在吸水件的压力作用下呈S型分布。
参照图1~图2,本实施例的氧化镁纤维制备装置100还包括第一位置调节装置150,第一位置调节装置150同时与第一辊轮组件的辊轮驱动装置126和第二辊轮组件的辊轮驱动装置126相连,以实现第一辊轮组件上的吸水件和第二辊轮组件上的吸水件对镁金属纤维的夹紧和放开。
参照图1~图2,本实施例中,第一位置调节装置150包括第一支架151、第一直线电机和第二直线电机。第一辊轮组件的辊轮驱动装置126安装于第一直线电机上,第二辊轮组件的辊轮驱动装置126安装于第二直线电机上。第一直线电机和第二直线电机均沿直线滑动安装于第一支架151上。第一直线电机工作时在第一支架151上沿直线滑动,从而调整第一辊轮组件与镁金属纤维的间距。第二直线电机工作时在第一支架151上沿直线滑动,从而调整第二辊轮组件与镁金属纤维的间距。在电化学反应开始前,应先使第一辊轮组件上的吸水件和第二辊轮组件上的吸水件保持一定距离,以在这两者之间放入镁金属纤维,之后启动第一直线电机和第二直线电机,使第一辊轮组件上的吸水件和第二辊轮组件上的吸水件将镁金属纤维夹紧。根据实际需要的不同,本领域技术人员也可选择其它类型的第一位置调节装置150,例如将第一直线电机替换为第一气缸,将第二直线电机替换为第二气缸。
由于正极123安装于辊轮驱动装置126上,当第一位置调节装置150移动辊轮驱动装置126时,正极123也随之移动。参照图1~图2,本实施例中,第一支架151上设有第一条形槽1511,第一条形槽1511内设有能够伸缩的第一导线,例如螺旋状的第一导线。正极123的第二端滑动安装于第一条形槽1511内,正极123的第二端与第一导线电连接。第一导线作为正极123与用电器的中间结构,能够避免正极123因为移动而无法与用电器保持稳定的电连接。第一导线放置于第一条形槽1511内并且能够伸缩,能够避免第一导线缠绕打结。
参照图1、图4~图5,本实施例中,纤维释放装置110包括放卷线轴驱动装置111和放卷线轴112,放卷线轴112用于卷绕镁金属纤维,放卷线轴驱动装置111与放卷线轴112相连,以驱动放卷线轴112绕放卷线轴112的轴线旋转。负极122安装于放卷线轴驱动装置111上,负极122的第一端与放卷线轴112滑动电连接,以通过放卷线轴112与镁金属纤维电连接。本实施例中,负极122的第一端和正极123的第一端均为滑动电连接,从而在相对旋转的部件之间传导电流。
参照图1、图4,本实施例中,纤维收纳装置140包括收卷线轴驱动装置141和收卷线轴142,收卷线轴142用于卷绕氧化镁纤维,收卷线轴驱动装置141与收卷线轴142相连,以驱动收卷线轴142绕收卷线轴142的轴线旋转。
可以理解的是,本领域技术人员也可采用其它类型的纤维释放装置110和纤维收纳装置140,只要能够实现镁金属纤维的释放和氧化镁纤维的收纳即可。例如,纤维释放装置110可以包括圆柱筒、限位环和织物层,圆柱筒内用于放置呈环形缠绕的镁金属纤维,镁金属纤维的缠绕中心为圆柱筒的轴线,限位环供镁金属纤维穿过,织物层安装于限位环上,用于减小镁金属纤维与限位环之间的摩擦。又例如,纤维收纳装置140可以包括方槽和气缸,气缸的活塞杆与方槽相连,用于驱动方槽沿直线往复运动,使氧化镁纤维在方槽内摆动收集。
参照图1、图4,本实施例的氧化镁纤维制备装置100还包括第二位置调节装置160,第二位置调节装置160同时与放卷线轴驱动装置111、收卷线轴驱动装置141相连,以调整放卷线轴112与收卷线轴142的间距,从而调整镁金属纤维的张紧程度。
参照图1、图4,本实施例中,第二位置调节装置160包括第二支架、第三直线电机和第四直线电机。放卷线轴驱动装置111安装于第三直线电机上,收卷线轴驱动装置141安装于第四直线电机上。第三直线电机和第四直线电机均沿直线滑动安装于第二支架上。根据实际需要的不同,本领域技术人员也可选择其它类型的第二位置调节装置160,例如将第三直线电机替换为第三气缸,将第四直线电机替换为第四气缸。
由于负极122安装于放卷线轴驱动装置111上,当第二位置调节装 置160移动放卷线轴驱动装置111时,负极122也随之移动。本实施例中,第二支架上设有第二条形槽,第二条形槽内设有能够伸缩的第二导线,例如螺旋状的第二导线,负极122的第二端滑动安装于第二条形槽内,负极122的第二端与第二导线电连接。第二导线作为负极122与用电器的中间结构,能够避免负极122因为移动而无法与用电器保持稳定的电连接。第二导线放置于第二条形槽内并且能够伸缩,能够避免第二导线缠绕打结。
参照图1~图2、图4,本实施例中,第二支架包括第一支架151、第一安装块161和第二安装块162,第一安装块161和第二安装块162分别可拆卸式安装于第一支架151的两侧,第三直线电机沿直线滑动安装于第一安装块161上,第二条形槽位于第一安装块161上,第四直线电机沿直线滑动安装于第二安装块162上。
参照图1~图5,本实施例中,辊轮驱动装置126、放卷线轴驱动装置111和收卷线轴驱动装置141均包括减速电机、电机罩和传动轴,减速电机安装于电机罩内,减速电机的输出轴与传动轴相连,通过传动轴向外输出动力。对于第一辊轮组件的辊轮驱动装置126,其电机罩安装于第一直线电机上。对于第二辊轮组件的辊轮驱动装置126,其电机罩安装于第二直线电机上。对于放卷线轴驱动装置111,其电机罩安装于第三直线电机上。对于收卷线轴驱动装置141,其电机罩安装于第四直线电机上。
参照图1、图4~图5,本实施例中,放卷线轴驱动装置111还包括第一底座1111,第一底座1111可拆卸式安装于放卷线轴驱动装置111的传动轴上,以对放卷线轴112沿轴向限位,防止其脱落。放卷线轴112套设于放卷线轴驱动装置111的传动轴外侧且与该传动轴螺纹连接,放卷线轴112的两端均设有限位挡板,以防止镁金属纤维脱落。
参照图1、图4,本实施例中,收卷线轴驱动装置141还包括第二底座,第二底座可拆卸式安装于收卷线轴驱动装置141的传动轴上,以对收卷线轴142沿轴向限位,防止其脱落。收卷线轴142套设于收卷线轴驱动装置141的传动轴外侧且与该传动轴螺纹连接,收卷线轴142的两端均设有限位挡板,以防止氧化镁纤维脱落。
需要说明的是,为了提高氧化镁纤维的制备效率,放卷线轴驱动装置 111的传动轴上可套设多个放卷线轴112,收卷线轴驱动装置141的传动轴上可套设与放卷线轴112数量相同的收卷线轴142,以实现多条镁金属纤维的同时放卷和收卷。
本实施例中,镁金属纤维被氧化为氢氧化镁纤维过程的反应式如下:
Figure PCTCN2022106194-appb-000001
本实施例中,氢氧化镁纤维被加热得到氧化镁纤维过程的反应式如下:
Figure PCTCN2022106194-appb-000002
实验证明,使用本实施例的氧化镁纤维制备装置100,镁金属向氧化镁的转化率可达到99.5%。
本实施例还提供一种氧化镁纤维制备方法,可以使用上述的氧化镁纤维制备装置100,包括如下步骤:
通过纤维释放装置110释放镁金属纤维。
并且,使释放的镁金属纤维经过电化学反应装置120进行原电池反应,在原电池反应中,镁金属纤维作为阳极122并形成氢氧化镁纤维。
使氢氧化镁纤维经过加热装置130进行加热后转化为氧化镁纤维。
通过纤维收纳装置140将氧化镁纤维进行收纳。
本说明书中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种氧化镁纤维制备装置,其特征在于,包括:
    纤维释放装置(110),用于释放镁金属纤维;
    电化学反应装置(120),用于将所述纤维释放装置(110)释放的所述镁金属纤维氧化为氢氧化镁纤维,包括溶液存储件(121)、负极(122)和正极(123);所述溶液存储件(121)中存储有中性电解液,以浸泡所述纤维释放装置(110)释放的所述镁金属纤维;所述负极(122)的第一端用于与所述镁金属纤维电连接,所述正极(123)的第一端用于与所述中性电解液电连接,所述负极(122)的第二端和所述正极(123)的第二端用于输出电能;
    加热装置(130),用于加热所述电化学反应装置(120)制备的所述氢氧化镁纤维,以得到氧化镁纤维;
    纤维收纳装置(140),用于对所述加热装置(130)加热后得到的所述氧化镁纤维进行收纳。
  2. 根据权利要求1所述的氧化镁纤维制备装置,其特征在于,所述溶液存储件(121)为吸水件。
  3. 根据权利要求2所述的氧化镁纤维制备装置,其特征在于,所述电化学反应装置(120)还包括用于向所述吸水件中添加中性电解液的加液装置(124)。
  4. 根据权利要求3所述的氧化镁纤维制备装置,其特征在于,所述加液装置(124)为用于容纳所述中性电解液的电解液槽,所述吸水件用于部分浸入所述电解液槽内的所述中性电解液。
  5. 根据权利要求4所述的氧化镁纤维制备装置,其特征在于,所述电化学反应装置(120)还包括第一辊轮组件和第二辊轮组件,所述第一辊轮组件和所述第二辊轮组件分别位于所述镁金属纤维两侧;所述第一辊轮组件和所述第二辊轮组件均包括辊轮(125)和辊轮驱动装置(126),所述辊轮驱动装置(126)与所述辊轮(125)相连,以驱动所述辊轮(125)绕自身轴线旋转;所述吸水件呈环形包覆于所述辊轮(125)上,以在所述辊轮(125)旋转时所述吸水件能够与所述镁金属纤维保持接触;所述 辊轮(125)上与所述吸水件接触的部分设有催化剂层,所述催化剂层用于对所述镁金属纤维氧化为所述氢氧化镁纤维的过程进行催化;所述电解液槽安装于所述辊轮(125)的下端;所述正极(123)安装于所述辊轮驱动装置(126)上,所述正极(123)的第一端与所述辊轮(125)滑动电连接,以通过所述辊轮(125)和所述催化剂层与所述中性电解液电连接。
  6. 根据权利要求5所述的氧化镁纤维制备装置,其特征在于,所述第一辊轮组件上的所述吸水件和所述第二辊轮组件上的所述吸水件分别从两侧将所述镁金属纤维夹紧。
  7. 根据权利要求6所述的氧化镁纤维制备装置,其特征在于,还包括第一位置调节装置(150),所述第一位置调节装置(150)同时与所述第一辊轮组件的所述辊轮驱动装置(126)和所述第二辊轮组件的所述辊轮驱动装置(126)相连,以实现所述第一辊轮组件上的所述吸水件和所述第二辊轮组件上的所述吸水件对所述镁金属纤维的夹紧和放开。
  8. 根据权利要求7所述的氧化镁纤维制备装置,其特征在于,所述第一位置调节装置(150)包括第一支架(151)、第一直线电机和第二直线电机;所述第一辊轮组件的所述辊轮驱动装置(126)安装于所述第一直线电机上,所述第二辊轮组件的所述辊轮驱动装置(126)安装于所述第二直线电机上;所述第一直线电机和所述第二直线电机均沿直线滑动安装于所述第一支架(151)上。
  9. 根据权利要求8所述的氧化镁纤维制备装置,其特征在于,所述第一支架(151)上设有第一条形槽(1511),所述第一条形槽(1511)内设有能够伸缩的第一导线,所述正极(123)的第二端滑动安装于所述第一条形槽(1511)内,所述正极(123)的第二端与所述第一导线电连接。
  10. 根据权利要求1-9任意一项所述的氧化镁纤维制备装置,其特征在于,所述纤维释放装置(110)包括放卷线轴驱动装置(111)和放卷线轴(112),所述放卷线轴(112)用于卷绕所述镁金属纤维,所述放卷线轴驱动装置(111)与所述放卷线轴(112)相连,以驱动所述放卷线 轴(112)绕自身轴线旋转;所述负极(122)安装于所述放卷线轴驱动装置(111)上,所述负极(122)的第一端与所述放卷线轴(112)滑动电连接,以通过所述放卷线轴(112)与所述镁金属纤维电连接。
  11. 根据权利要求10所述的氧化镁纤维制备装置,其特征在于,所述纤维收纳装置(140)包括收卷线轴驱动装置(141)和收卷线轴(142),所述收卷线轴(142)用于卷绕所述氧化镁纤维,所述收卷线轴驱动装置(141)与所述收卷线轴(142)相连,以驱动所述收卷线轴(142)绕自身轴线旋转。
  12. 根据权利要求11所述的氧化镁纤维制备装置,其特征在于,还包括第二位置调节装置(160),所述第二位置调节装置(160)同时与所述放卷线轴驱动装置(111)、所述收卷线轴驱动装置(141)相连,以调整所述放卷线轴(112)与所述收卷线轴(142)的间距。
  13. 根据权利要求12所述的氧化镁纤维制备装置,其特征在于,所述第二位置调节装置(160)包括第二支架、第三直线电机和第四直线电机;所述放卷线轴驱动装置(111)安装于所述第三直线电机上,所述收卷线轴驱动装置(141)安装于所述第四直线电机上;所述第三直线电机和所述第四直线电机均沿直线滑动安装于所述第二支架上。
  14. 根据权利要求13所述的氧化镁纤维制备装置,其特征在于,所述第二支架上设有第二条形槽,所述第二条形槽内设有能够伸缩的第二导线,所述负极(122)的第二端滑动安装于所述第二条形槽内,所述负极(122)的第二端与所述第二导线电连接。
  15. 一种氧化镁纤维制备方法,其特征在于,包括如下步骤:
    通过纤维释放装置(110)释放镁金属纤维;
    并且,使释放的所述镁金属纤维经过电化学反应装置(120)进行原电池反应,在所述原电池反应中,所述镁金属纤维作为阳极并形成氢氧化镁纤维;
    使所述氢氧化镁纤维经过加热装置(130)进行加热后转化为氧化镁纤维;
    通过纤维收纳装置(140)将所述氧化镁纤维进行收纳。
PCT/CN2022/106194 2022-03-11 2022-07-18 氧化镁纤维制备装置及制备方法 WO2023168879A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2214731.8A GB2610492B (en) 2022-03-11 2022-07-18 Preparation device for magnesium oxide fiber and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210235066.3A CN114622399A (zh) 2022-03-11 2022-03-11 氧化镁纤维制备装置及制备方法
CN202210235066.3 2022-03-11

Publications (1)

Publication Number Publication Date
WO2023168879A1 true WO2023168879A1 (zh) 2023-09-14

Family

ID=81899325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106194 WO2023168879A1 (zh) 2022-03-11 2022-07-18 氧化镁纤维制备装置及制备方法

Country Status (2)

Country Link
CN (1) CN114622399A (zh)
WO (1) WO2023168879A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622399A (zh) * 2022-03-11 2022-06-14 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 氧化镁纤维制备装置及制备方法
GB2610492B (en) * 2022-03-11 2024-01-03 Tangshan Weimei New Material Tech Co Ltd Preparation device for magnesium oxide fiber and preparation method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433712A (en) * 1974-06-06 1976-04-28 Hercules Inc Electrolytic treatment of graphite fibres
US4246254A (en) * 1978-02-22 1981-01-20 Kyowa Chemical Industry Co., Ltd. Fibrous magnesium hydroxide and process for production thereof
US4986873A (en) * 1988-01-30 1991-01-22 Somar Corporation Thin-film coating apparatus
CN101086135A (zh) * 2007-06-12 2007-12-12 东华大学 一种片状氢氧化镁晶体薄膜有机耐高温纤维及制备
CN201842924U (zh) * 2010-11-03 2011-05-25 舟山市岱山飞舟新材料有限公司 碳纤维丝的扩丝装置
US20140370359A1 (en) * 2013-06-12 2014-12-18 Konica Minolta, Inc. Magnesium cell and magnesium cell system
JP2015043281A (ja) * 2013-08-26 2015-03-05 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド マグネシウム空気電池及び電子機器
CN106882824A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种纳米氢氧化镁制备方法及纳米氢氧化镁
CN112807799A (zh) * 2021-01-25 2021-05-18 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 一种高纯氢氧化镁生产池自动过滤压缩装置
CN113445097A (zh) * 2021-07-23 2021-09-28 中国科学院青海盐湖研究所 一种纤维网状氧化镁薄膜及其制备方法与应用
CN114622399A (zh) * 2022-03-11 2022-06-14 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 氧化镁纤维制备装置及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104313730A (zh) * 2014-11-03 2015-01-28 镇江奥立特机械制造有限公司 一种纳米碳纤维的拉伸装置
CN105797809B (zh) * 2016-03-29 2018-06-22 中国矿业大学 一种破碎机辊缝间隙自适应调整的装置及方法
CN212916224U (zh) * 2020-06-02 2021-04-09 浙江惠尔涂装环保设备有限公司 一种工件旋转喷涂夹紧装置
CN112058583A (zh) * 2020-07-29 2020-12-11 海宁杰特玻纤布业有限公司 一种产业用玻璃纤维织物涂覆装置
CN214320711U (zh) * 2020-12-10 2021-10-01 广东友华新材料科技有限公司 辊间间距微调装置
CN113523748B (zh) * 2021-07-02 2022-11-08 中冶宝钢技术服务有限公司 一种挤干辊自动装配装置及工艺

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1433712A (en) * 1974-06-06 1976-04-28 Hercules Inc Electrolytic treatment of graphite fibres
US4246254A (en) * 1978-02-22 1981-01-20 Kyowa Chemical Industry Co., Ltd. Fibrous magnesium hydroxide and process for production thereof
US4986873A (en) * 1988-01-30 1991-01-22 Somar Corporation Thin-film coating apparatus
CN101086135A (zh) * 2007-06-12 2007-12-12 东华大学 一种片状氢氧化镁晶体薄膜有机耐高温纤维及制备
CN201842924U (zh) * 2010-11-03 2011-05-25 舟山市岱山飞舟新材料有限公司 碳纤维丝的扩丝装置
US20140370359A1 (en) * 2013-06-12 2014-12-18 Konica Minolta, Inc. Magnesium cell and magnesium cell system
JP2015043281A (ja) * 2013-08-26 2015-03-05 ワイティーエス・サイエンス・プロパティーズ・プライベート・リミテッド マグネシウム空気電池及び電子機器
CN106882824A (zh) * 2015-12-16 2017-06-23 中国科学院大连化学物理研究所 一种纳米氢氧化镁制备方法及纳米氢氧化镁
CN112807799A (zh) * 2021-01-25 2021-05-18 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 一种高纯氢氧化镁生产池自动过滤压缩装置
CN113445097A (zh) * 2021-07-23 2021-09-28 中国科学院青海盐湖研究所 一种纤维网状氧化镁薄膜及其制备方法与应用
CN114622399A (zh) * 2022-03-11 2022-06-14 唐山海港经济开发区北京理工大学机械与车辆学院转化研究中心 氧化镁纤维制备装置及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"New Clean Energy Technologies: New Technologies for Chemical and Solar Cells", 31 January 2019, INTELLECTUAL PROPERTY PUBLISHING HOUSE, CN, ISBN: 978-7-5130-5941-1, article CHEN, YUHUA: "Magnesium Air Cell", pages: 104 - 109, XP009549450 *

Also Published As

Publication number Publication date
CN114622399A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023168879A1 (zh) 氧化镁纤维制备装置及制备方法
CN110323460A (zh) 催化剂浆料、制备方法及燃料电池
JP2020507191A (ja) 複合電解質膜、その製造方法及び用途
CN110336049A (zh) 一种氮钴掺杂的中空碳纳米纤维及其制备方法和应用以及一种金属空气电池
CN107640757A (zh) 一种复合碳微球的制备方法及复合碳微球及其制备得到的锂离子电容器
CN109921041B (zh) 一种非贵金属氮掺杂空心碳纳米管电催化剂的制备及应用
CN103066344B (zh) 一种可更换电极的卷绕式锂空气固态电池
CN104701572A (zh) 钠二次电池
CN104241661A (zh) 一种全钒液流电池用复合电极的制备方法
CN105702483A (zh) 一种纸基聚吡咯复合膜及其制备方法
CN113036096B (zh) 具有双功能保护层的水系锌锰电池纤维及其制备方法
CN103904357A (zh) 一种可拉伸的线状锂离子电池及其制备方法
CN102263269A (zh) 锌镍电池负极活性材料、斜拉网负极基体、负极及其制备方法
CN104289249A (zh) 一种可用于聚合物燃料电池阴极催化剂的Fe、N共掺杂多孔碳纳米纤维的制备方法
CN213111945U (zh) 一种电线电缆缠绕装置
CN103700868A (zh) 一种镁铝合金空气电池及其催化层的制备方法
CN108774810A (zh) 一种氮、氟双掺杂微孔碳纳米纤维的制备方法
GB2610492A (en) Preparation device for magnesium oxide fiber and preparation method thereof
CN204179149U (zh) 二次电池正极极片及二次铝电池
CN209675000U (zh) 一种线缆绝缘层裹附装置
CN103000948A (zh) 电化学元件用非水电解液以及电化学元件
CN104072767A (zh) 一种比容量高、低漏电流的碳纳米纤维氮化型导电高分子复合材料的制备方法
CN104332638B (zh) 全钒液流电池用钨基催化剂/纳米碳纤维复合电极的制备方法
JP2004047450A (ja) プロトン伝導性膜用補強材およびそれを用いたプロトン伝導性膜、ならびにそれを用いた燃料電池
CN110415993A (zh) 一种Mn-Co-S/Co-MOF纳米材料的制备方法及其应用

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17912987

Country of ref document: US

ENP Entry into the national phase

Ref document number: 202214731

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220718

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930508

Country of ref document: EP

Kind code of ref document: A1