CN113036096B - 具有双功能保护层的水系锌锰电池纤维及其制备方法 - Google Patents

具有双功能保护层的水系锌锰电池纤维及其制备方法 Download PDF

Info

Publication number
CN113036096B
CN113036096B CN202110137526.4A CN202110137526A CN113036096B CN 113036096 B CN113036096 B CN 113036096B CN 202110137526 A CN202110137526 A CN 202110137526A CN 113036096 B CN113036096 B CN 113036096B
Authority
CN
China
Prior art keywords
fiber
carbon nanotube
zinc
manganese dioxide
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110137526.4A
Other languages
English (en)
Other versions
CN113036096A (zh
Inventor
彭慧胜
王佳玮
李鹏洲
廖萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202110137526.4A priority Critical patent/CN113036096B/zh
Publication of CN113036096A publication Critical patent/CN113036096A/zh
Application granted granted Critical
Publication of CN113036096B publication Critical patent/CN113036096B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0088Fabrics having an electronic function
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/48Oxides or hydroxides of chromium, molybdenum or tungsten; Chromates; Dichromates; Molybdates; Tungstates
    • D06M11/485Oxides or hydroxides of manganese; Manganates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/63Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing sulfur in the main chain, e.g. polysulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种具有双功能保护层的水系锌锰电池纤维及其制备方法。本发明的纤维电池由负载二氧化锰/碳纳米管薄膜/3,4‑聚乙烯二氧噻吩复合材料的碳纳米管纤维作为正极,沉积锌的碳纳米管纤维作为负极,两根电极相互缠绕形成缠绕结构注入液态电解质并经封装得到;制备步骤包括:PEDOT/CNT/二氧化锰/集流体正极的制备,柔性锌负极的制备,纤维锌‑二氧化锰全电池的组装。其中,碳纳米管薄膜为充放电过程中的电子输送提供连续的导电通道,并增强电池纤维的机械稳定性,PEDOT可增强碳管薄膜和二氧化锰的接触,减少活性物质的不良溶解从而提高电导率。将该纤维电池编入到织物中可以制备性能优异的柔性可穿戴电子设备。

Description

具有双功能保护层的水系锌锰电池纤维及其制备方法
技术领域
本发明属于锌离子电池技术领域,具体涉及一种水系可充锌锰电池纤维及其制备方法。
背景技术
随着社会经济的飞速发展和人类生活水平的提高,人们对便携式、智能化电子设备提出了新的迫切需求,开发高性能、低成本、集成化的新型柔性可穿戴电子器件已成为近年来的研究热点[1]。这些可穿戴电子设备依赖于不可或缺的高性能电源系统,这些电源系统不仅需要小体积和优异的柔性,并且需要能够适应使用过程中的频繁弯曲和变形。然而,传统的储能系统,如超级电容器、锂离子电池等,通常都是大体积和刚性的,难以有效满足上述要求。
制备具有一维结构的纤维状储能系统是解决传统储能器件限制的一种有效策略[2]。一方面,这些直径从几十微米到几百微米的纤维状储能器件能够适应各种变形,在与人体密切接触的情况下稳定运行,并且可以与纺织工艺结合进一步编织成具有透气性的纺织品;另一方面,一维储能器件在可穿戴电子器件上表现出了匹配的电化学性能。
纤维器件作为一种需要贴身使用的电子器件,其安全性必须要得到保障,实现低成本、安全的高能量密度电池是大规模储能应用的前景。现在广泛使用的锂离子电池作为研究最广泛的电池体系一直主导着储能领域。然而,其存在价格昂贵、电解质有毒且易燃等固有安全问题,已严重阻碍了其进一步的大规模应用。而采用水溶液作为电解质的可充电电池因具有成本低、组装方便、安全性高、离子导电性(10-1 - 6 S cm-1)优于有机电解质(10-3-10-2S cm-1)等优势而在可穿戴领域得到了广泛的发展和应用[3]。在本研究领域中,以温和水溶液电解质为材料的锂离子和钠离子电池因其固有的安全性和环境友好性而被重点研究,不幸的是,锂和钠离子电池的电极通常比容量很低(<150 mAh/g),因此它们的应用受到限制。
具有多价离子的水系电池(锌离子电池、镁离子电池和铝离子电池等)由于在充放电反应过程中采用了多电子转移,因而有望实现高能量和高功率密度[4]。其中由于金属锌负极具有-0.76 V的低氧化还原电位(相对于标准氢电极)、820 mAh/g的高理论比容量以及在温和水电解质中Zn/Zn2+的可逆性,同时它成本低、毒性小、储量丰富、环境友好、安全性高[5],是目前水系电池中最优的负极选择。目前最常见的水系锌离子电池正极材料是二氧化锰[6],它具有晶型丰富、理论比容量高(308 mAh/g)、可以和锌负极形成良好的搭配,具备较高且稳定的放电电压平台,因而具有较高的能量密度,同时二氧化锰这种材料制备方法简单、成本低廉、储量丰富,有利于快速实现工业化。
但是锌-二氧化锰水系可充电池体系也存在着一些缺点,首先二氧化锰作为一种金属氧化物,其导电性较差(一般为10-5-10-6 S cm-1),使得电极过程动力学缓慢、电极材料利用率低,造成电池的倍率性能差、比容量低;其次二氧化锰在充放电过程中随着大体积锌离子的嵌入和脱出,二氧化锰晶格会不断发生变化,导致活性材料容易解体脱落并溶解到电解液中。特别是对于纤维状电池来说,由于在使用过程中电池会发生较大程度的形变,所以二氧化锰的脱落会加剧使电池循环寿命降低,不利于构建稳定的纤维电池。
发明内容
本发明的目的在于针对现有二氧化锰-锌离子电池存在的不足,提供一种倍率性能优异、循环稳定性延长的水系可充锌锰电池纤维及其制备方法。
本发明提供的水系锌锰电池纤维,由两根碳纳米管(CNT)纤维电极相互缠绕形成缠绕结构并注入液态电解质经封装组成;其中,作为正极的一根碳纳米管纤维均匀负载有二氧化锰/碳纳米管薄膜/PEDOT复合材料,作为负极的一根碳纳米管纤维均匀沉积有锌的碳纳米管纤维;所述碳纳米管薄膜为充放电过程中的电子输送提供连续的导电通道,并增强电池纤维的机械稳定性,原位合成的PEDOT(高分子聚(3,4-乙烯二氧噻吩)可增强碳管薄膜和二氧化锰的接触,减少活性物质的不良溶解,从而提高电导率。
本发明提供的水系可充锌锰电池纤维的制备方法,具体步骤为:
(1)二氧化锰/集流体正极(CM))的制备:在柔性碳纳米管纤维衬底上电沉积纳米结构的二氧化锰,制备CM纤维电极。电沉积在室温下含有0.1-0.3 mol/L 醋酸锰和0.1-0.2mol/L 硫酸钠溶液中进行,其中铂电极作为对电极,银/氯化银电极为参比电极。采用阶跃电压法电沉积模式(如,在1.5 V沉积 1-2 s, 在0.7 V 沉积10-15 s),通过Mn2+ + 2H2O =MnO2+ 4H+ + 2e-反应,生成二氧化锰。所得样品用去离子水洗涤并在空气中干燥,控制测量二氧化锰的质量为1-2 mg/cm2
(2)CNT/二氧化锰/集流体正极(CMC)的制备:以铁(1.0-1.4 nm)/氧化铝(2-4 nm)为催化剂,采用化学气相沉积法在硅衬底上制备宽度为0.5-2 cm的可纺碳纳米管阵列;分别以乙烯(80-100 sccm)作为碳源、氩气(350-450 sccm)作为载气、氢气(20-40 sccm)作为还原气,在700-760℃的化学气相沉积炉中反应10-15分钟;将CM纤维的两端用两个夹子连接在电机上,将制备好的可纺碳纳米管阵列固定在一个精确机动的平移台上。从可纺碳纳米管阵列中抽出一层厚度为16-20 nm、宽度为0.5-2 cm的连续、取向的碳纳米管薄膜,并以10-30°的角度附着在CM纤维上。排列整齐的碳纳米管薄膜缠绕层数为3~8层,均匀覆盖整个CM纤维,采用纺丝机对取向碳纳米管薄膜进行包裹。
(3)PEDOT/CNT/二氧化锰/集流体正极(CMCP)的制备:在含有0.02-0.04 mol/L3,4-乙烯二氧噻吩, 0.1-0.2 mol/L高氯酸锂和0.05-0.08 mol/L十二烷基硫酸钠的水溶液中,在1.0 V电位下相对于饱和甘汞电极作用10-15 s,然后进一步在CMC纤维电极上电沉积PEDOT,制备得到CMCP纤维电极。
(4)柔性锌负极的制备:采用简单的电沉积方法在纤维上制备柔性锌负极;具体做法是,采用典型的双电极设置,其中锌棒作为对电极和参比电极。在1-2 mol/L硫酸锌和1-2mol/L氯化钾的溶液中,在-0.8 V电位下对锌棒进行电沉积,电沉积时间为800-1500 s。得到的纤维柔性锌负极用去离子水洗涤,在室温下真空干燥。
(5)纤维锌-二氧化锰全电池的组装:将CMCP正极与纤维锌负极匹配,在1~ 3mL的2-4 M ZnSO4和0.1-0.4 M MnSO4水溶液的电解液中组装纤维锌-二氧化锰电池,然后用商用EVA热缩管包装。纤维电池两端用UV固化胶密封,避免电解液的泄漏。
本发明中,所述碳纳米管纤维基底可采用如下方法制备:以乙醇(> 95 wt %)、氩气(150-250 sccm)和氢气(1800-2300 sccm)分别作为碳源、载气和还原气体,以噻吩(1-2wt %)和二茂铁(1-2 wt %)作为催化剂,通过浮动催化化学气相沉积法合成浮动碳纳米管纤维,并将多股直径约为100-250 μm的碳纳米管纤维直接加捻成柔性碳纳米管纤维,该纤维可同时作为纤维电池的基底和集流体。
本发明所述的纤维状水系可充锌离子电池可用于编织储能织物,具体步骤是:直接将电池纤维编入普通织物的经向或纬向织线中,经过编织得到储能复合织物。该种织物可以用于制备性能优异的柔性可穿戴电子设备。
本发明的优越性在于,采用取向碳纳米管薄膜和导电高分子聚(3,4-乙烯二氧噻吩)(PEDOT)组成保护层。其中,具有高导电性的取向碳纳米管薄膜支架为充放电过程中的电子输送提供了连续路径,同时起到物理屏蔽支撑的作用,包裹住正极材料上,可防止其脱落,增强水系锌离子电池纤维的机械完整性,将碳纳米管薄膜缠绕在二氧化锰正极表面,可以增加远离导电基底的那部分正极材料的利用率,提高电池的容量。通过温和的电沉积方法再在电极表面原位聚合一层PEDOT,并将其引入取向碳纳米管支架的微通道中,可以进一步提高导电性,增强碳管膜和二氧化锰的接触,更好的保护正极材料,同时这层导电高分子也可以进一步加快电极反应过程,使电化学性能得到提高。
双功能性保护层,使得水系锌-二氧化锰纤维电池在100 mA/g的高电流密度下表现出了337 mAh/g的优异倍率性能,当电流密度增大50倍(5000 mA/g)时仍然可以维持163mAh/g的高放电容量。这种无缝的分层保护层进一步证明了抑制正极二氧化锰溶解的能力,有助于提高电池的长期循环稳定性,在2900次长期充放电循环测试之后,仍然可以实现92%的容量保持率。
附图说明
图1为具有双功能性保护层的水系锌锰电池纤维的制备方法及其结构示意图。
图2为具有双功能性保护层的水系锌锰电池纤维的扫描电子显微镜图像。
图3为具有双功能性保护层的水系锌锰电池纤维的光学照片。
图4为实施例1制备的水系锌锰电池纤维的循环测试曲线。
具体实施方式
下面通过具体实施例,进一步介绍本发明。
实施例1
(1)制备碳纳米管纤维基底:以乙醇(> 97 wt %)、氩气(200 sccm)和氢气(2000sccm)分别作为碳源、载气和还原气体,以噻吩(2 wt %)和二茂铁(2 wt %)作为催化剂,通过浮动催化化学气相沉积法合成浮动碳纳米管纤维,并将多股直径约为200 μm的碳纳米管纤维直接加捻成柔性碳纳米管纤维。
(2)制备CM:在柔性CNT纤维衬底上电沉积纳米结构的二氧化锰,制备CM纤维电极。电沉积在室温下含有0.1 mol/L 醋酸锰和0.1 mol/L 硫酸钠溶液中进行,其中铂电极作为对电极,银/氯化银电极作为参比电极。采用阶跃电压法电沉积模式(1.5 V 1 s, 0.7 V 10s),通过Mn2+ + 2H2O = MnO2+ 4H+ + 2e-反应生成二氧化锰。所得样品用去离子水洗涤并在空气中干燥,用电子天平测量二氧化锰的质量约为1 mg/cm2
(3)制备CMC:以铁(1.2 nm)/氧化铝(3 nm)为催化剂,采用化学气相沉积法在硅衬底上制备宽度为1 cm的可纺CNT阵列。分别以流动乙烯(90 sccm)、氩气(400 sccm)和氢气(30 sccm)作为碳源、载气和还原气。在740℃的化学气相沉积炉中反应10分钟。将CM纤维的两端用两个夹子连接在电机上,将制备好的可纺碳纳米管阵列固定在一个精确机动的平移台上。从可纺碳纳米管阵列中抽出一层厚度约为18 nm、宽度约为1 cm的连续、取向的碳纳米管薄膜,并以20°的角度附着在CM纤维上。排列整齐的碳纳米管薄膜缠绕层数为3~5层,均匀覆盖整个CM纤维,采用纺丝机对取向碳纳米管薄膜进行包裹。
(4)制备CMCP:在含有0.03 mol/L的3,4-乙烯二氧噻吩, 0.1 mol/L高氯酸锂和0.07 mol/L十二烷基硫酸钠水溶液中,在1.0 V电位下相对于饱和甘汞电极作用约10 s后,进一步在CMC纤维电极上电沉积PEDOT制备得到CMCP纤维电极。
(5)制备柔性锌负极:采用简单的电沉积方法在纤维上制备柔性锌负极,采用典型的双电极设置,其中锌棒作为对电极和参比电极,在1 mol/L硫酸锌和1 mol/L氯化钾的溶液中,在-0.8 V电位下对锌棒进行电沉积,电沉积时间为1000 s。得到的纤维负极用去离子水洗涤,在室温下真空干燥。
(6)组装纤维状锌-二氧化锰全电池:将CMCP正极与纤维锌负极匹配,在2mL的2 MZnSO4和0.2 M MnSO4水溶液的电解液中组装纤维锌-二氧化锰电池,然后用商用EVA热缩管包装,纤维电池两端用UV固化胶密封,避免电解液的泄漏。
(7)对制备的纤维电池进行性能测试:此纤维器件容量为337毫安时每克,在循环2900圈之后容量仍能保持在最初的92%以上。
实施例2
(1)制备碳纳米管纤维基底:以乙醇(> 96 wt %)、氩气(200 sccm)和氢气(2100sccm)分别作为碳源、载气和还原气体,以噻吩(1 wt %)和二茂铁(2 wt %)作为催化剂,通过浮动催化化学气相沉积法合成浮动碳纳米管纤维,并将多股直径约为150 μm的碳纳米管纤维直接加捻成柔性碳纳米管纤维。
(2)CM的制备:在柔性CNT纤维衬底上电沉积纳米结构的二氧化锰,制备CM纤维电极。电沉积在室温下含有0.2 mol/L醋酸锰和0.2 mol/L 硫酸钠溶液中进行,其中铂电极作为对电极,银/氯化银电极为参比电极。采用阶跃电压法电沉积模式(1.5 V 2 s, 0.7 V 12s),通过Mn2+ + 2H2O = MnO2+ 4H+ + 2e-反应生成二氧化锰。所得样品用去离子水洗涤并在空气中干燥,用电子天平测量二氧化锰的质量约为1 mg/cm2
(3)CMC的制备:以铁(1.2 nm)/氧化铝(3 nm)为催化剂,采用化学气相沉积法在硅衬底上制备宽度为0.5 cm的可纺CNT阵列。分别以流动乙烯(80 sccm)、氩气(350 sccm)和氢气(20 sccm)作为碳源、载气和还原气。在720 ℃的化学气相沉积炉中反应12分钟。将CM纤维的两端用两个夹子连接在电机上,将制备好的可纺碳纳米管阵列固定在一个精确机动的平移台上。从可纺碳纳米管阵列中抽出一层厚度约为17 nm、宽度约为0.5 cm的连续、取向的碳纳米管薄膜,并以15°的角度附着在CM纤维上。排列整齐的碳纳米管薄膜缠绕层数为6层,均匀覆盖整个CM纤维,采用纺丝机对取向碳纳米管薄膜进行包裹。
(4)制备CMCP:在含有0.02 mol/L的3,4-乙烯二氧噻吩, 0.2 mol/L高氯酸锂和0.05 mol/L十二烷基硫酸钠水溶液中,在1.0 V电位下相对于饱和甘汞电极作用约12 s后,进一步在CMC纤维电极上电沉积PEDOT制备得到CMCP纤维电极。
(5)柔性锌负极的制备:采用简单的电沉积方法在纤维上制备了柔性锌负极,采用典型的双电极设置,其中锌棒作为对电极和参比电极,在1 mol/L硫酸锌和2 mol/L氯化钾的溶液中,在-0.8 V电位下对锌棒进行电沉积,电沉积时间为900 s,得到的纤维负极用去离子水洗涤,在室温下真空干燥。
(6)纤维锌-二氧化锰全电池的组装:将CMCP正极与纤维锌负极匹配,在1 mL的3 MZnSO4和0.3 M MnSO4水溶液的电解液中组装纤维锌-二氧化锰电池,然后用商用EVA热缩管包装。纤维电池两端用UV固化胶密封,避免电解液的泄漏。
(7)对制备的纤维电池进行性能测试:此纤维器件容量为321毫安时每克,在循环2300圈之后容量仍能保持在最初的94%以上。
实施例3
(1)制备碳纳米管纤维基底:以乙醇(> 97 wt %)、氩气(150 sccm)和氢气(1800sccm)分别作为碳源、载气和还原气体,以噻吩(1 wt %)和二茂铁(1 wt %)作为催化剂,通过浮动催化化学气相沉积法合成浮动碳纳米管纤维,并将多股直径约为100 μm的碳纳米管纤维直接加捻成柔性碳纳米管纤维。
(2)CM的制备:在柔性CNT纤维衬底上电沉积纳米结构的二氧化锰,制备CM纤维电极。电沉积在室温下含有0.1 mol/L 醋酸锰和0.2 mol/L 硫酸钠溶液中进行,其中铂电极作为对电极,银/氯化银电极为参比电极。采用阶跃电压法电沉积模式(1.5 V 1 s, 0.7 V15 s),通过Mn2+ + 2H2O = MnO2+ 4H+ + 2e-反应生成二氧化锰。所得样品用去离子水洗涤并在空气中干燥,用电子天平测量二氧化锰的质量约为1 mg/cm2
(3)CMC的制备:以铁(1.3 nm)/氧化铝(4 nm)为催化剂,采用化学气相沉积法在硅衬底上制备宽度为0.5-2 cm的可纺CNT阵列。分别以流动乙烯(100 sccm)、氩气(400 sccm)和氢气(40 sccm)作为碳源、载气和还原气。750℃的化学气相沉积炉中反应15分钟。将CM纤维的两端用两个夹子连接在电机上,将制备好的可纺碳纳米管阵列固定在一个精确机动的平移台上。从可纺碳纳米管阵列中抽出一层厚度约为20 nm、宽度约为2 cm的连续、取向的碳纳米管薄膜,并以30°的角度附着在CM纤维上。排列整齐的碳纳米管薄膜缠绕层数为8层,均匀覆盖整个CM纤维,采用纺丝机对取向碳纳米管薄膜进行包裹。
(4)制备CMCP:在含有0.04 mol/L的3,4-乙烯二氧噻吩, 0.2 mol/L高氯酸锂和0.08 mol/L十二烷基硫酸钠水溶液中,在1.0 V电位下相对于饱和甘汞电极作用约10-15 s后,进一步在CMC纤维电极上电沉积PEDOT制备得到CMCP纤维电极。
(5)柔性锌负极的制备:采用简单的电沉积方法在纤维上制备了柔性锌负极,采用典型的双电极设置,其中锌棒作为对电极和参比电极。在2 mol/L硫酸锌和1 mol/L氯化钾的溶液中,在-0.8 V电位下对锌棒进行电沉积,电沉积时间为1500 s。得到的纤维负极用去离子水洗涤,在室温下真空干燥。
(6)纤维锌-二氧化锰全电池的组装:将CMCP正极与纤维锌负极匹配,在3mL的3 MZnSO4和0.4 M MnSO4水溶液的电解液中组装纤维锌-二氧化锰电池,然后用商用EVA热缩管包装,纤维电池两端用UV固化胶密封,避免电解液的泄漏。
(7)对制备的纤维电池进行性能测试:此纤维器件容量为306毫安时每克,在循环2600圈之后容量仍能保持在最初的96%以上。
参考文献
1.Sun, H; Zhang, Y.; Zhang, J.; Sun, X.; Peng, H., Energy harvestingand storage in 1D devices. Nat. Rev. Mater. 2017, 2, 17023.
2.Wang, L; Fu, X.; He, J.; Shi, X; Chen, T.; Chen, P.; Wang, B.;Peng, H., Application Challenges in Fiber and Textile Electronics. Adv. Mater.2019, 1901971.
3.Liao, M.; Wang, J.; Ye, L.; Sun, H.; Wen, Y.; Wang, C.; Sun, X.;Wang, B.; Peng, H., A Deep-Cycle Aqueous Zinc-Ion Battery Containing anOxygen-Deficient Vanadium Oxide Cathode. Angew Chem Int Ed Engl 2020,59 (6),2273-2278.
4.Liang, Y.; Dong, H; Aurbach, D; Yao, Y, Current status and futuredirections of multivalent metal-ion batteries. Nature Energy2020, 1-11.
5.Tang, B.; Shan, L.; Liang, S.; Zhou, J, Energy Issues andopportunities facing aqueous zinc-ion batteries. Environ. Sci.2019, 12, 3288-3304.
6.Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y.,Polyaniline-intercalated manganese dioxide nanolayers as a high-performancecathode material for an aqueous zinc-ion battery. Nat Commun. 2018,9 (1),2906。

Claims (5)

1.一种具有双功能保护层的水系锌锰电池纤维的制备方法,其特征在于,该电池纤维由两根碳纳米管纤维电极相互缠绕形成缠绕结构并注入液态电解质经封装组成;其中,作为正极的一根碳纳米管纤维均匀负载有二氧化锰/碳纳米管薄膜/PEDOT复合材料,作为负极的一根碳纳米管纤维均匀沉积有锌的碳纳米管纤维;所述碳纳米管薄膜为充放电过程中的电子输送提供连续的导电通道,并增强电池纤维的机械稳定性,原位合成的PEDOT用于增强碳管薄膜和二氧化锰的接触,减少活性物质的不良溶解,从而提高电导率;
该方法具体步骤为:
(1)CM的制备:在柔性碳纳米管纤维衬底上电沉积纳米结构的二氧化锰,制备CM纤维电极;控制二氧化锰的负载量为1-2 mg/cm2
(2)CMC的制备:以铁/氧化铝为催化剂,采用化学气相沉积法在硅衬底上制备宽度为0.5-2 cm的可纺碳纳米管阵列;将步骤(1)制备的CM纤维的两端连接在电机上,将制备好的可纺碳纳米管阵列固定在一个精确机动的平移台上;从可纺碳纳米管阵列中抽出一层厚度为16-20 nm、宽度为0.5-2 cm的连续、取向的碳纳米管薄膜,并以10-30°的角度附着在CM纤维上;排列整齐的碳纳米管薄膜缠绕层数为3~8层,均匀覆盖整个CM纤维,采用纺丝机对取向碳纳米管薄膜进行包裹;
(3)CMCP的制备:在含有0.02-0.04 mol/L3,4-乙烯二氧噻吩、0.1-0.2 mol/L高氯酸锂和0.05-0.08 mol/L十二烷基硫酸钠的水溶液中,在1.0 V电位下相对于饱和甘汞电极作用10-15 s,然后在CMC纤维电极上电沉积PEDOT,得到CMCP纤维电极;
(4)柔性锌负极的制备:采用电沉积方法在柔性碳纳米管纤维上制备柔性锌负极;
(5)纤维锌-二氧化锰全电池的组装:将CMCP纤维正极与纤维锌负极匹配,在1~ 3mL的2-4 M ZnSO4和0.1-0.4 M MnSO4水溶液的电解液中组装纤维锌-二氧化锰电池,然后用EVA热缩管包装。
2. 根据权利要求1所述的制备方法,其特征在于,步骤(1)中所述在柔性碳纳米管纤维衬底上电沉积纳米结构的二氧化锰,是在室温下、在含有0.1-0.3 mol/L 醋酸锰和0.1-0.2mol/L 硫酸钠溶液中进行电沉积,其中铂电极作为对电极,银/氯化银电极为参比电极;采用阶跃电压法电沉积模式,通过Mn2+ + 2H2O = MnO2+ 4H+ + 2e-反应,生成二氧化锰。
3. 根据权利要求1所述的制备方法,其特征在于,步骤(2)中所述采用化学气相沉积法在硅衬底上制备宽度为0.5-2 cm的可纺碳纳米管阵列,具体做法为,分别以乙烯作为碳源、氩气作为载气、氢气作为还原气,在700-760℃的化学气相沉积炉中反应10-15分钟;其中,控制乙烯流量为80-100 sccm,氩气流量为350-450 sccm,氢气流量为20-40 sccm。
4. 根据权利要求1所述的制备方法,其特征在于,步骤(4)中所述制备柔性锌负极,具体做法是,采用双电极设置,其中以锌棒作为对电极和参比电极;在1-2 mol/L硫酸锌和1-2mol/L氯化钾的溶液中,在-0.8 V电位下对锌棒进行电沉积,电沉积时间为800-1500 s。
5. 根据权利要求1所述的制备方法,其特征在于,所述碳纳米管纤维基底采用如下方法制备:以乙醇作为碳源,氩气作为载气,氢气作为还原气体,以噻吩和二茂铁作为催化剂,通过浮动催化化学气相沉积法合成浮动碳纳米管纤维,并将多股直径为100-250 μm的碳纳米管纤维直接加捻成柔性碳纳米管纤维;其中,乙醇浓度> 95 wt %,氩气流量为150-250sccm,氢气流量为1800-2300 sccm;噻吩浓度为1-2 wt %,二茂铁浓度为1-2 wt %。
CN202110137526.4A 2021-02-01 2021-02-01 具有双功能保护层的水系锌锰电池纤维及其制备方法 Active CN113036096B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110137526.4A CN113036096B (zh) 2021-02-01 2021-02-01 具有双功能保护层的水系锌锰电池纤维及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110137526.4A CN113036096B (zh) 2021-02-01 2021-02-01 具有双功能保护层的水系锌锰电池纤维及其制备方法

Publications (2)

Publication Number Publication Date
CN113036096A CN113036096A (zh) 2021-06-25
CN113036096B true CN113036096B (zh) 2022-05-20

Family

ID=76459646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110137526.4A Active CN113036096B (zh) 2021-02-01 2021-02-01 具有双功能保护层的水系锌锰电池纤维及其制备方法

Country Status (1)

Country Link
CN (1) CN113036096B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745476A (zh) * 2021-08-24 2021-12-03 西安交通大学 一种锰基锌离子电池正极材料及其制备方法和应用
CN114122416A (zh) * 2021-11-29 2022-03-01 东莞理工学院 一种三维多孔氮化钴-聚(3,4-乙烯二氧噻吩)柔性复合电极及其制备方法
CN114628622A (zh) * 2022-03-15 2022-06-14 中国科学院苏州纳米技术与纳米仿生研究所 铝离子电池及其应用
CN114899409B (zh) * 2022-05-18 2023-12-05 上海瑞浦青创新能源有限公司 一种碳纳米管纤维集流体的制备方法
CN115084546A (zh) * 2022-07-04 2022-09-20 上海交通大学 高度合金化的低铂Pt-Co纳米颗粒催化剂及其制备方法和应用
CN115863530B (zh) * 2022-11-28 2024-10-18 武汉理工大学 一种微型电池及其制备方法与应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571461A (zh) * 2016-09-29 2017-04-19 中山大学 一种长寿命、可充放的Zn‑MnO2电池及其应用
CN110729518A (zh) * 2019-09-08 2020-01-24 复旦大学 基于二氧化锰/石墨烯的水系锌离子电池及制备方法
WO2020081167A2 (en) * 2018-09-06 2020-04-23 Virginia Tech Intellectual Properties Inc. Porous carbon fiber electrodes, methods of making thereof, and uses thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106571461A (zh) * 2016-09-29 2017-04-19 中山大学 一种长寿命、可充放的Zn‑MnO2电池及其应用
WO2020081167A2 (en) * 2018-09-06 2020-04-23 Virginia Tech Intellectual Properties Inc. Porous carbon fiber electrodes, methods of making thereof, and uses thereof
CN110729518A (zh) * 2019-09-08 2020-01-24 复旦大学 基于二氧化锰/石墨烯的水系锌离子电池及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《3D CNTs Networks Enable MnO2 Cathodes with High Capacity and Superior Rate Capability for Flexible Rechargeable Zn-MnO2 Batteries》;Xiyue Zhang, et al.;《Small Methods》;20190903;第3卷(第12期);正文第2-8页 *

Also Published As

Publication number Publication date
CN113036096A (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN113036096B (zh) 具有双功能保护层的水系锌锰电池纤维及其制备方法
Lv et al. Wearable fiber-shaped energy conversion and storage devices based on aligned carbon nanotubes
Fakharuddin et al. Fiber‐shaped electronic devices
Qiu et al. Fiber‐shaped perovskite solar cells with high power conversion efficiency
Chen et al. Designing aligned inorganic nanotubes at the electrode interface: towards highly efficient photovoltaic wires
Sun et al. Quasi-solid-state, coaxial, fiber-shaped dye-sensitized solar cells
CN109950639B (zh) 一种金属离子电池及其制备方法
Wang et al. Recent progress of flexible aqueous multivalent ion batteries
CN102522216B (zh) 一种高性能线状染料敏化太阳能电池的制备方法
Cai et al. All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire
CN103904366B (zh) 一种柔性线状锂离子电池及其制备方法
CN103904357A (zh) 一种可拉伸的线状锂离子电池及其制备方法
CN103578798B (zh) 一种太阳能电池与超级电容器的集成器件及其制备方法
CN105070511A (zh) 一种纤维状超级电容器及其制备方法
Wu et al. Performance of V2O3@ C composites via a sol–gel precursor assisted by soluble starch as Pt-free counter electrodes for dye sensitized solar cells
Cao et al. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors and batteries
Xi et al. Recent progress in flexible fibrous batteries
CN108987118A (zh) 太阳能电池与超级电容器集成器件及其制作方法
CN109326453A (zh) 一种基于静电纺纳米纤维成纱技术的聚吡咯超级电容器复合电极材料及其制备方法
CN105047999B (zh) 具有高能量密度和高功率密度的纤维状杂化储能器件及其制备方法
CN112216518B (zh) 一种柔性锌离子混合电容器及其制备方法和应用
CN108899518A (zh) 一种壳核结构的柔性硬脂酸锂包覆纳米硅复合材料及其制备和应用
CN111554514B (zh) 一种柔性异质纳米片赝电容正极材料及其制备方法
CN114843494A (zh) 一种具有管中线结构的稀土钛酸盐电极材料及其制备方法
CN108417898A (zh) 一种基于碳纤维复合电极的柔性线状锂/钠电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant