WO2023071352A1 - 普鲁士蓝类钠离子电池正极材料的制备方法 - Google Patents
普鲁士蓝类钠离子电池正极材料的制备方法 Download PDFInfo
- Publication number
- WO2023071352A1 WO2023071352A1 PCT/CN2022/109229 CN2022109229W WO2023071352A1 WO 2023071352 A1 WO2023071352 A1 WO 2023071352A1 CN 2022109229 W CN2022109229 W CN 2022109229W WO 2023071352 A1 WO2023071352 A1 WO 2023071352A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- sodium
- preparation
- nonionic surfactant
- prussian blue
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01C—AMMONIA; CYANOGEN; COMPOUNDS THEREOF
- C01C3/00—Cyanogen; Compounds thereof
- C01C3/08—Simple or complex cyanides of metals
- C01C3/12—Simple or complex iron cyanides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/054—Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/01—Particle morphology depicted by an image
- C01P2004/03—Particle morphology depicted by an image obtained by SEM
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the invention belongs to the technical field of sodium ion batteries, and in particular relates to a preparation method of a Prussian blue type sodium ion battery positive electrode material.
- Sodium-ion batteries have the same principle and structure as lithium-ion batteries, both of which are composed of positive electrode materials, negative electrode materials, electrolytes and separators.
- Na + intercalates and deintercalates back and forth between the two electrodes: when charging the battery , Na + is deintercalated from the positive electrode and intercalated into the negative electrode through the electrolyte, and the negative electrode is in a sodium-rich state.
- Na-ion batteries have the characteristics of low raw material cost, abundant resources, and great electrochemical performance potential, so they are expected to be applied in the field of large-scale energy storage, and are one of the important research directions of next-generation battery technology.
- the cathode materials of sodium-ion batteries mainly include transition metal oxides, phosphates, and Prussian blue materials.
- Prussian blue materials have the advantages of high voltage platform (>3V), large ion channels, large specific capacity, cheap, non-toxic and easy to prepare, and have become the research hotspots of cathode materials for sodium-ion batteries.
- crystallization water in the material has a great influence on its electrochemical performance, and its negative effects can be summarized as follows: 1) crystallization water occupies the sodium storage site, thus reducing the sodium storage capacity of the material; 2) Crystal water can hinder the migration of Na + , which leads to the deterioration of the electrode kinetics; 3) The coordination water in the vacancy defect inhibits the electrochemical activity of the low-spin state Fe connected to C, resulting in the failure of the high-potential platform capacity. 4) In the electrochemical reaction, crystal water and electrolyte are prone to irreversible reactions at high potentials, resulting in a decrease in Coulombic efficiency. Therefore, reducing the crystal water content in the material is the key to improving the electrochemical performance.
- the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing the positive electrode material of the Prussian blue sodium-ion battery, which can reduce the water content of the material and improve the consistency.
- a kind of preparation method of Prussian blue class sodium ion battery cathode material comprising the steps:
- the positive electrode material of the Prussian blue sodium ion battery Na x M [Fe (CN) 6 ], wherein, 1 ⁇ x ⁇ 2, M is one of Mn, Ni, Fe, V, Cr, Co, Cu or Zn or several.
- the first nonionic surfactant and the second nonionic surfactant are independently one or both of polyethylene glycol or polyoxyethylene alkylamide alcohol;
- the first nonionic surfactant is identical to the second nonionic surfactant, preferably, the molecular weights of the first nonionic surfactant and the second nonionic surfactant are ⁇ 1500g/mol.
- the concentration of the first nonionic surfactant in the first solution and the concentration of the second nonionic surfactant in the second solution are both 0.001-0.1mol/L.
- the concentration of the sodium ferrocyanide solution is 0.01-1 mol/L.
- the antioxidant is one or more of butyl hydroxyanisole, dibutyl hydroxytoluene, propyl gallate, tert-butyl hydroquinone or ascorbic acid; preferred , the concentration of the antioxidant in the first solution is 0.001-0.25mol/L.
- the concentration of the transition metal salt solution is 0.01-1mol/L; preferably, the flow rate of the second solution is 25-50mL/h.
- the protective gas is one or both of nitrogen or argon.
- the aging time is 2-48 hours.
- the temperature of the vacuum drying is 100-120° C.; preferably, the time of the vacuum drying is 12-24 hours.
- the sodium alkoxide is one or both of sodium methoxide and sodium ethoxide.
- the alcohol solution is one or both of absolute methanol or absolute ethanol.
- the solid-to-liquid ratio of the precipitate to the alcohol solution is 1g:(5-100)mL; preferably, the soaking time is 0.5-2h.
- the sodium alkoxide is sodium ethylate
- the alcoholic solution is absolute ethanol
- sodium methylate is inflammable, explosive and difficult to control
- the alcoholic solution of sodium alcoholate is preferably absolute alcohol of sodium ethylate
- sodium ethoxide can react with the moisture in the crystal lattice to generate ethanol and sodium hydroxide
- sodium hydroxide is soluble in ethanol, and is removed by filtration; Washing with methanol, the solubility of sodium hydroxide in methanol is higher than that of ethanol, which can further improve the product purity
- methanol belongs to small molecular compounds, which can enter the position of water in the crystal lattice of Na x M [Fe (CN) 6 ], Avoid secondary water absorption.
- the concentration of the sodium alkoxide in the alcohol solution is 0.05-0.5 mol/L.
- Ferrocyanide ions are easily transformed into ferricyanide ions or dissociated into iron ions and cyanide ions under light, adding antioxidants to alleviate the occurrence of this reaction and further improve the purity of the target product;
- the same nonionic surfactant is added to the sodium ferrocyanide solution and the transition metal salt solution. After the nonionic surfactant is dissolved in water, the oxygen atom on the ether bond forms a weak hydrogen bond with the hydrogen atom in the solution. , the molecular chain is in a zigzag shape, the hydrophilic oxygen atoms are located on the outside of the chain, and the hydrophobic segment (for example, ethylene, —CH 2 CH 2 —) is located on the inside of the chain, so the surrounding chain is like a hydrophilic whole .
- This hydrophilic whole is combined with the Na x M[Fe(CN) 6 ] ⁇ nH 2 O crystal through hydrogen bonds, and adsorbed on the crystal surface to form steric hindrance, inhibiting the C-axis growth advantage, and ultimately ensuring the uniformity of the crystal , so that the product particles have a high consistency, which improves its safety, cycleability and specific capacity when used as a cathode material;
- Two-stage dehydration technology first vacuum drying to remove most of the crystal water, and then soaking in alcohol solution containing sodium alkoxide to further remove the moisture in the crystal lattice, so that the moisture content of the material is ⁇ 0.1wt%, in order to solve the problem of A series of serious problems brought about by high water content.
- Sodium alkoxide can react with moisture in the crystal lattice to generate sodium hydroxide, which is soluble in alcohol solution and removed by filtration. This method can reduce the pressure of vacuum drying and shorten the drying time.
- Fig. 1 is the SEM image of the positive electrode material of Prussian blue sodium ion battery prepared in Example 1 of the present invention.
- a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
- preparation concentration is the sodium ferrocyanide solution of 0.01mol/L, and adds polyethylene glycol and ascorbic acid, the concentration of polyethylene glycol is 0.001mol/L, and the concentration of ascorbic acid is 0.001mol/L;
- preparation metal ion concentration is the manganese sulfate solution of 0.01mol/L, and adds the polyethylene glycol identical with step (1), and the concentration of polyethylene glycol is 0.001mol/L;
- the manganese sulfate solution is added to the sodium ferrocyanide solution through a peristaltic pump at a fixed flow rate of 50mL/h to carry out precipitation reaction. After the reaction is completed, age for 2-4 hours;
- the positive electrode material of the battery is Na 2 Mn [Fe(CN) 6 ], and the water content of the material is 0.081wt%.
- the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
- the first discharge specific capacity at 0.1C was 143.1mAh/g, 200 cycles
- the specific capacity after discharge is still 136.2mAh/g, which shows that it has good rate performance and cycle performance.
- Figure 1 is the SEM image of the positive electrode material of the Prussian blue sodium-ion battery prepared in this example. It can be seen from the figure that the crystal particles are consistent and uniform, indicating that the product particles have a high consistency.
- a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
- preparation metal ion concentration is the nickel sulfate solution of 0.05mol/L, and adds polyoxyethylene alkylamide alcohol identical with step (1), the concentration of polyoxyethylene alkylamide alcohol is 0.01mol/L;
- the nickel sulfate solution is added to the sodium ferrocyanide solution at a flow rate of 40mL/h through a peristaltic pump to carry out precipitation reaction. After the reaction is completed, age for 10-12 hours;
- the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
- the first discharge specific capacity at 0.1C was 82.3mAh/g, 200 cycles
- the specific capacity after discharge is still 76.7mAh/g, indicating that it has good rate performance and cycle performance.
- a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
- preparation metal ion concentration is the cobalt sulfate solution of 1mol/L, and adds the polyethylene glycol identical with step (1), the concentration of polyethylene glycol is 0.1mol/L;
- the cobalt sulfate solution was added to the sodium ferrocyanide solution at a fixed flow rate of 25mL/h through a peristaltic pump for precipitation reaction. After the reaction was completed, it was aged for 24-48 hours;
- the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
- the first discharge specific capacity at 0.1C was 138.7mAh/g, 200 cycles
- the specific capacity after discharge is still 134.6mAh/g, indicating that it has good rate performance and cycle performance.
- a Prussian blue-type sodium-ion battery positive electrode material is prepared.
- step (6) is not carried out, and the product is directly obtained after step (5) vacuum drying.
- the moisture content of the resulting material was 2.88% by weight.
- the positive electrode material of the Prussian blue sodium-ion battery prepared in this comparative example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
- the first discharge specific capacity at 0.1C was 132.5mAh/g, 200 times After cycling, the discharge specific capacity is still 121.9mAh/g.
- the performance of the material that has not been subjected to the water removal treatment in step (6) is reduced. This is because even after 24 hours of vacuum drying, the water removal is not thorough enough, and the material still contains a part of crystal water, which affects the material performance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
Claims (10)
- 一种普鲁士蓝类钠离子电池正极材料的制备方法,其特征在于,包括如下步骤:向亚铁氰化钠溶液中加入第一非离子表面活性剂和抗氧化剂,得到第一溶液;向过渡金属盐溶液中加入第二非离子表面活性剂,得到第二溶液;在保护气氛围下,将所述第二溶液加入到所述第一溶液中进行沉淀反应,反应结束后进行陈化,收集沉淀物,洗涤;将洗涤后的沉淀物进行真空干燥,然后浸泡在含有醇钠的醇溶液中,再过滤,蒸干,即得所述普鲁士蓝类钠离子电池正极材料。
- 根据权利要求1所述的制备方法,其特征在于,所述第一非离子表面活性剂与所述第二非离子表面活性剂独立为聚乙二醇或聚氧乙烯烷基酰胺醇中的一种或两种;优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂相同,优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂的分子量均≥1500g/mol,优选的,所述第一溶液中的第一非离子表面活性剂的浓度、所述第二溶液中的第二非离子表面活性剂的浓度均为0.001-0.1mol/L。
- 根据权利要求1所述的制备方法,其特征在于,所述抗氧化剂为丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、特丁基对苯二酚或抗坏血酸中的一种或几种;优选的,所述第一溶液中所述抗氧化剂的浓度为0.001-0.25mol/L。
- 根据权利要求1所述的制备方法,其特征在于,所述过渡金属盐溶液的浓度为0.01-1mol/L;优选的,所述第二溶液的加入流速为25-50mL/h。
- 根据权利要求1所述的制备方法,其特征在于,所述真空干燥的温度为100-120℃;优选的,所述真空干燥的时间为12-24h。
- 根据权利要求1所述的制备方法,其特征在于,所述醇钠为甲醇钠或乙醇钠中的一种或两种。
- 根据权利要求1所述的制备方法,其特征在于,所述醇溶液为无水甲醇或无水乙醇中的一种或两种。
- 根据权利要求1所述的制备方法,其特征在于,浸泡时,所述沉淀物与所述醇溶液的固液比为1g:(5-100)mL;优选的,所述浸泡的时间为0.5-2h。
- 根据权利要求1所述的制备方法,其特征在于,所述醇钠在醇溶液中的浓度为0.05-0.5mol/L。
- 根据权利要求1所述的制备方法,其特征在于,在所述蒸干前,还包括对所述过滤得到的沉淀物用无水甲醇进行冲洗。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB2315715.9A GB2620324B (en) | 2021-10-26 | 2022-07-29 | Preparation method for Prussian blue sodium-ion battery positive electrode material |
ES202390186A ES2986178A2 (es) | 2021-10-26 | 2022-07-29 | Método de preparación para material de electrodo positivo de batería de iones de sodio de azul de Prusia |
DE112022001347.8T DE112022001347B4 (de) | 2021-10-26 | 2022-07-29 | VERFAHREN ZUR HERSTELLUNG EINES POSITIVEN ELEKTRODENMATERIALS FÜR EINE PREUßISCH-BLAU-NATRIUM-IONEN-BATTERIE |
US18/555,558 US12113215B2 (en) | 2021-10-26 | 2022-07-29 | Preparation method for Prussian blue sodium-ion battery positive electrode material |
MA62720A MA62720A1 (fr) | 2021-10-26 | 2022-07-29 | Procédé de préparation d'un matériau d'électrode positive de batterie au sodium-ion bleu de prusse |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111246996.0 | 2021-10-26 | ||
CN202111246996.0A CN114212802B (zh) | 2021-10-26 | 2021-10-26 | 普鲁士蓝类钠离子电池正极材料的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023071352A1 true WO2023071352A1 (zh) | 2023-05-04 |
Family
ID=80696269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/109229 WO2023071352A1 (zh) | 2021-10-26 | 2022-07-29 | 普鲁士蓝类钠离子电池正极材料的制备方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US12113215B2 (zh) |
CN (1) | CN114212802B (zh) |
DE (1) | DE112022001347B4 (zh) |
ES (1) | ES2986178A2 (zh) |
GB (1) | GB2620324B (zh) |
MA (1) | MA62720A1 (zh) |
WO (1) | WO2023071352A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114212802B (zh) | 2021-10-26 | 2023-04-11 | 广东邦普循环科技有限公司 | 普鲁士蓝类钠离子电池正极材料的制备方法 |
CN115108566B (zh) * | 2022-06-22 | 2023-12-19 | 三峡大学 | 长寿命铁基普鲁士蓝正极材料的制备方法 |
CN115072741B (zh) * | 2022-07-08 | 2023-11-17 | 金驰能源材料有限公司 | 普鲁士蓝正极材料及其连续式制备方法以及钠离子电池 |
CN115377412A (zh) * | 2022-09-29 | 2022-11-22 | 广东邦普循环科技有限公司 | 高导电性普鲁士蓝类正极材料的制备方法及其应用 |
CN115448327B (zh) * | 2022-09-29 | 2024-03-12 | 广东邦普循环科技有限公司 | 低缺陷普鲁士蓝类正极材料的制备方法及其应用 |
CN115504488B (zh) * | 2022-10-13 | 2023-10-17 | 广东邦普循环科技有限公司 | 一种普鲁士蓝电极材料及其制备方法与应用 |
CN115611296B (zh) * | 2022-12-19 | 2023-05-09 | 中节能万润股份有限公司 | 一种普鲁士蓝类钠离子电池正极材料制备方法及应用 |
CN116425175B (zh) * | 2023-04-23 | 2024-09-24 | 广东凯金新能源科技股份有限公司 | 普鲁士白类正极材料的制备方法、正极材料及二次电池 |
CN116588953B (zh) * | 2023-04-25 | 2024-03-22 | 武汉理工大学 | 一种普鲁士蓝类似物钠离子电池正极材料的制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011180469A (ja) * | 2010-03-03 | 2011-09-15 | National Institute Of Advanced Industrial Science & Technology | プルシアンブルー型金属錯体ナノ粒子を具備する電気化学素子、これを用いたエレクトロクロミック素子及び二次電池 |
CN106654263A (zh) * | 2016-12-30 | 2017-05-10 | 东莞市佳乾新材料科技有限公司 | 一种普鲁士蓝基钠离子电池正极材料的制备方法 |
CN106745068A (zh) * | 2016-12-12 | 2017-05-31 | 华中科技大学 | 一种低缺陷的纳米普鲁士蓝的制备方法及其应用 |
CN110048104A (zh) * | 2019-04-16 | 2019-07-23 | 浙江大学 | 一种基于氰化框架材料的水系电池及其制备方法 |
CN111943228A (zh) * | 2020-08-24 | 2020-11-17 | 全球能源互联网研究院有限公司 | 一种普鲁士蓝类钠离子电池正极材料及其制备方法 |
CN112429744A (zh) * | 2020-11-02 | 2021-03-02 | 山东联科科技股份有限公司 | 一种无水偏硅酸钠生产方法 |
CN112607748A (zh) * | 2020-12-24 | 2021-04-06 | 三峡大学 | 一种多元普鲁士蓝钠离子电池正极材料及其制备方法 |
CN113488646A (zh) * | 2021-06-17 | 2021-10-08 | 三峡大学 | 一种普鲁士蓝类钠离子电池正极材料及其制备方法 |
CN114212802A (zh) * | 2021-10-26 | 2022-03-22 | 广东邦普循环科技有限公司 | 普鲁士蓝类钠离子电池正极材料的制备方法 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140037552A1 (en) * | 2011-02-15 | 2014-02-06 | Domokos Máthé | Prussian blue based nanoparticle as multimodal imaging contrast material |
CN105271307B (zh) * | 2015-10-12 | 2017-05-03 | 上海第二工业大学 | 一种普鲁士蓝衍生物Cd2[Fe(CN)6]纳米棒及其制备方法 |
WO2018209653A1 (zh) * | 2017-05-18 | 2018-11-22 | 宁德时代新能源科技股份有限公司 | 普鲁士蓝类正极材料及其制备方法、电化学储能装置 |
CN109698345B (zh) | 2017-10-23 | 2021-05-11 | 宁德时代新能源科技股份有限公司 | 普鲁士蓝类正极材料及其制备方法及电化学储能装置 |
CN108493423B (zh) * | 2018-04-11 | 2020-12-18 | 南京林业大学 | 一种纳米普鲁士蓝钠离子电池正极材料及其制备方法 |
CN109065883B (zh) * | 2018-07-27 | 2021-02-09 | 张五星 | 一种普鲁士蓝及其类似物的改性方法及钠离子电池 |
CN111377462B (zh) * | 2019-07-05 | 2022-10-11 | 上海交通大学 | 普鲁士蓝类正极材料、钠离子电池及其制备方法和应用 |
CN110510638B (zh) * | 2019-08-12 | 2021-01-01 | 浙江大学 | 一种低空位的普鲁士蓝类钠离子电池正极材料及其制备方法 |
CN111525129A (zh) * | 2020-04-22 | 2020-08-11 | 大连理工大学 | 一种基于镍普鲁士蓝正极材料的水系钠离子全电池及其制备方法与应用 |
-
2021
- 2021-10-26 CN CN202111246996.0A patent/CN114212802B/zh active Active
-
2022
- 2022-07-29 US US18/555,558 patent/US12113215B2/en active Active
- 2022-07-29 ES ES202390186A patent/ES2986178A2/es active Pending
- 2022-07-29 MA MA62720A patent/MA62720A1/fr unknown
- 2022-07-29 GB GB2315715.9A patent/GB2620324B/en active Active
- 2022-07-29 DE DE112022001347.8T patent/DE112022001347B4/de active Active
- 2022-07-29 WO PCT/CN2022/109229 patent/WO2023071352A1/zh active IP Right Grant
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011180469A (ja) * | 2010-03-03 | 2011-09-15 | National Institute Of Advanced Industrial Science & Technology | プルシアンブルー型金属錯体ナノ粒子を具備する電気化学素子、これを用いたエレクトロクロミック素子及び二次電池 |
CN106745068A (zh) * | 2016-12-12 | 2017-05-31 | 华中科技大学 | 一种低缺陷的纳米普鲁士蓝的制备方法及其应用 |
CN106654263A (zh) * | 2016-12-30 | 2017-05-10 | 东莞市佳乾新材料科技有限公司 | 一种普鲁士蓝基钠离子电池正极材料的制备方法 |
CN110048104A (zh) * | 2019-04-16 | 2019-07-23 | 浙江大学 | 一种基于氰化框架材料的水系电池及其制备方法 |
CN111943228A (zh) * | 2020-08-24 | 2020-11-17 | 全球能源互联网研究院有限公司 | 一种普鲁士蓝类钠离子电池正极材料及其制备方法 |
CN112429744A (zh) * | 2020-11-02 | 2021-03-02 | 山东联科科技股份有限公司 | 一种无水偏硅酸钠生产方法 |
CN112607748A (zh) * | 2020-12-24 | 2021-04-06 | 三峡大学 | 一种多元普鲁士蓝钠离子电池正极材料及其制备方法 |
CN113488646A (zh) * | 2021-06-17 | 2021-10-08 | 三峡大学 | 一种普鲁士蓝类钠离子电池正极材料及其制备方法 |
CN114212802A (zh) * | 2021-10-26 | 2022-03-22 | 广东邦普循环科技有限公司 | 普鲁士蓝类钠离子电池正极材料的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
DE112022001347T5 (de) | 2023-12-21 |
ES2986178A2 (es) | 2024-11-08 |
GB202315715D0 (en) | 2023-11-29 |
US20240088383A1 (en) | 2024-03-14 |
CN114212802A (zh) | 2022-03-22 |
DE112022001347B4 (de) | 2025-03-13 |
US12113215B2 (en) | 2024-10-08 |
CN114212802B (zh) | 2023-04-11 |
GB2620324B (en) | 2024-11-06 |
MA62720A1 (fr) | 2024-02-29 |
GB2620324A (en) | 2024-01-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023071352A1 (zh) | 普鲁士蓝类钠离子电池正极材料的制备方法 | |
CN111943228A (zh) | 一种普鲁士蓝类钠离子电池正极材料及其制备方法 | |
CN114212803B (zh) | 掺杂氟的普鲁士蓝类钠离子电池正极材料的制备方法 | |
CN108258241B (zh) | 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极 | |
CN115611296A (zh) | 一种普鲁士蓝类钠离子电池正极材料制备方法及应用 | |
CN108417786B (zh) | 一种棒状多层微孔草酸亚铁锂离子电池负极材料制备方法 | |
CN113839032A (zh) | 一种低成本普鲁士白材料、及其制备方法和应用 | |
CN113830792A (zh) | 一种无水普鲁士白材料、制备方法和应用 | |
CN116425175B (zh) | 普鲁士白类正极材料的制备方法、正极材料及二次电池 | |
CN114583282B (zh) | 一种吸收补锂剂分解产气的多功能电解液及其应用 | |
CN103515578A (zh) | 锂离子电池正极材料的制备方法 | |
CN117012953B (zh) | 一种循环有机还原溶剂亚临界补锂修复磷酸盐类正极材料的方法 | |
CN117430134B (zh) | 一种锰铁基普鲁士蓝钠电正极材料的制备方法及由该方法制备的正极材料 | |
CN116247201A (zh) | 一种钠离子电池用普鲁士蓝类正极材料及其制备方法及钠离子电池 | |
WO2024182971A1 (zh) | 一种电化学脱嵌盐湖镁锂分离及提锂的方法 | |
CN116119687A (zh) | 一种六氟磷酸钠的提纯方法 | |
CN115215768A (zh) | 一种多元环化合物有机补锂剂及其制备方法、应用 | |
CN110707309B (zh) | 一种3dom结构的zif8锂硫电池正极材料的制备方法 | |
CN114583279B (zh) | 一种具有催化补锂剂分解的电解液添加剂及其应用 | |
CN114014330B (zh) | 一种储能电极材料K3Nb3Si2O13的制备方法及应用 | |
CN104766972A (zh) | 一种纳米棒状磷酸锰锂正极材料及其制备方法 | |
CN113629295B (zh) | 含有zif-67纳米颗粒的电解液制备方法及电池应用 | |
CN115882045A (zh) | 一种高熵普鲁士蓝钾离子电池正极材料、钾离子电池及其制备方法 | |
CN116002649A (zh) | 一种复合正极材料及其制备方法和应用 | |
CN117096435B (zh) | 一种钠离子电池电解液添加剂、电解液及钠离子电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22885252 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 202315715 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20220729 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18555558 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112022001347 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22885252 Country of ref document: EP Kind code of ref document: A1 |
|
WWG | Wipo information: grant in national office |
Ref document number: 112022001347 Country of ref document: DE |