WO2023071352A1 - 普鲁士蓝类钠离子电池正极材料的制备方法 - Google Patents

普鲁士蓝类钠离子电池正极材料的制备方法 Download PDF

Info

Publication number
WO2023071352A1
WO2023071352A1 PCT/CN2022/109229 CN2022109229W WO2023071352A1 WO 2023071352 A1 WO2023071352 A1 WO 2023071352A1 CN 2022109229 W CN2022109229 W CN 2022109229W WO 2023071352 A1 WO2023071352 A1 WO 2023071352A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
sodium
preparation
nonionic surfactant
prussian blue
Prior art date
Application number
PCT/CN2022/109229
Other languages
English (en)
French (fr)
Inventor
余海军
谢英豪
李爱霞
张学梅
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2315715.9A priority Critical patent/GB2620324B/en
Priority to ES202390186A priority patent/ES2986178A2/es
Priority to DE112022001347.8T priority patent/DE112022001347B4/de
Priority to US18/555,558 priority patent/US12113215B2/en
Priority to MA62720A priority patent/MA62720A1/fr
Publication of WO2023071352A1 publication Critical patent/WO2023071352A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/08Simple or complex cyanides of metals
    • C01C3/12Simple or complex iron cyanides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium ion batteries, and in particular relates to a preparation method of a Prussian blue type sodium ion battery positive electrode material.
  • Sodium-ion batteries have the same principle and structure as lithium-ion batteries, both of which are composed of positive electrode materials, negative electrode materials, electrolytes and separators.
  • Na + intercalates and deintercalates back and forth between the two electrodes: when charging the battery , Na + is deintercalated from the positive electrode and intercalated into the negative electrode through the electrolyte, and the negative electrode is in a sodium-rich state.
  • Na-ion batteries have the characteristics of low raw material cost, abundant resources, and great electrochemical performance potential, so they are expected to be applied in the field of large-scale energy storage, and are one of the important research directions of next-generation battery technology.
  • the cathode materials of sodium-ion batteries mainly include transition metal oxides, phosphates, and Prussian blue materials.
  • Prussian blue materials have the advantages of high voltage platform (>3V), large ion channels, large specific capacity, cheap, non-toxic and easy to prepare, and have become the research hotspots of cathode materials for sodium-ion batteries.
  • crystallization water in the material has a great influence on its electrochemical performance, and its negative effects can be summarized as follows: 1) crystallization water occupies the sodium storage site, thus reducing the sodium storage capacity of the material; 2) Crystal water can hinder the migration of Na + , which leads to the deterioration of the electrode kinetics; 3) The coordination water in the vacancy defect inhibits the electrochemical activity of the low-spin state Fe connected to C, resulting in the failure of the high-potential platform capacity. 4) In the electrochemical reaction, crystal water and electrolyte are prone to irreversible reactions at high potentials, resulting in a decrease in Coulombic efficiency. Therefore, reducing the crystal water content in the material is the key to improving the electrochemical performance.
  • the present invention aims to solve at least one of the technical problems in the above-mentioned prior art. For this reason, the present invention proposes a method for preparing the positive electrode material of the Prussian blue sodium-ion battery, which can reduce the water content of the material and improve the consistency.
  • a kind of preparation method of Prussian blue class sodium ion battery cathode material comprising the steps:
  • the positive electrode material of the Prussian blue sodium ion battery Na x M [Fe (CN) 6 ], wherein, 1 ⁇ x ⁇ 2, M is one of Mn, Ni, Fe, V, Cr, Co, Cu or Zn or several.
  • the first nonionic surfactant and the second nonionic surfactant are independently one or both of polyethylene glycol or polyoxyethylene alkylamide alcohol;
  • the first nonionic surfactant is identical to the second nonionic surfactant, preferably, the molecular weights of the first nonionic surfactant and the second nonionic surfactant are ⁇ 1500g/mol.
  • the concentration of the first nonionic surfactant in the first solution and the concentration of the second nonionic surfactant in the second solution are both 0.001-0.1mol/L.
  • the concentration of the sodium ferrocyanide solution is 0.01-1 mol/L.
  • the antioxidant is one or more of butyl hydroxyanisole, dibutyl hydroxytoluene, propyl gallate, tert-butyl hydroquinone or ascorbic acid; preferred , the concentration of the antioxidant in the first solution is 0.001-0.25mol/L.
  • the concentration of the transition metal salt solution is 0.01-1mol/L; preferably, the flow rate of the second solution is 25-50mL/h.
  • the protective gas is one or both of nitrogen or argon.
  • the aging time is 2-48 hours.
  • the temperature of the vacuum drying is 100-120° C.; preferably, the time of the vacuum drying is 12-24 hours.
  • the sodium alkoxide is one or both of sodium methoxide and sodium ethoxide.
  • the alcohol solution is one or both of absolute methanol or absolute ethanol.
  • the solid-to-liquid ratio of the precipitate to the alcohol solution is 1g:(5-100)mL; preferably, the soaking time is 0.5-2h.
  • the sodium alkoxide is sodium ethylate
  • the alcoholic solution is absolute ethanol
  • sodium methylate is inflammable, explosive and difficult to control
  • the alcoholic solution of sodium alcoholate is preferably absolute alcohol of sodium ethylate
  • sodium ethoxide can react with the moisture in the crystal lattice to generate ethanol and sodium hydroxide
  • sodium hydroxide is soluble in ethanol, and is removed by filtration; Washing with methanol, the solubility of sodium hydroxide in methanol is higher than that of ethanol, which can further improve the product purity
  • methanol belongs to small molecular compounds, which can enter the position of water in the crystal lattice of Na x M [Fe (CN) 6 ], Avoid secondary water absorption.
  • the concentration of the sodium alkoxide in the alcohol solution is 0.05-0.5 mol/L.
  • Ferrocyanide ions are easily transformed into ferricyanide ions or dissociated into iron ions and cyanide ions under light, adding antioxidants to alleviate the occurrence of this reaction and further improve the purity of the target product;
  • the same nonionic surfactant is added to the sodium ferrocyanide solution and the transition metal salt solution. After the nonionic surfactant is dissolved in water, the oxygen atom on the ether bond forms a weak hydrogen bond with the hydrogen atom in the solution. , the molecular chain is in a zigzag shape, the hydrophilic oxygen atoms are located on the outside of the chain, and the hydrophobic segment (for example, ethylene, —CH 2 CH 2 —) is located on the inside of the chain, so the surrounding chain is like a hydrophilic whole .
  • This hydrophilic whole is combined with the Na x M[Fe(CN) 6 ] ⁇ nH 2 O crystal through hydrogen bonds, and adsorbed on the crystal surface to form steric hindrance, inhibiting the C-axis growth advantage, and ultimately ensuring the uniformity of the crystal , so that the product particles have a high consistency, which improves its safety, cycleability and specific capacity when used as a cathode material;
  • Two-stage dehydration technology first vacuum drying to remove most of the crystal water, and then soaking in alcohol solution containing sodium alkoxide to further remove the moisture in the crystal lattice, so that the moisture content of the material is ⁇ 0.1wt%, in order to solve the problem of A series of serious problems brought about by high water content.
  • Sodium alkoxide can react with moisture in the crystal lattice to generate sodium hydroxide, which is soluble in alcohol solution and removed by filtration. This method can reduce the pressure of vacuum drying and shorten the drying time.
  • Fig. 1 is the SEM image of the positive electrode material of Prussian blue sodium ion battery prepared in Example 1 of the present invention.
  • a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
  • preparation concentration is the sodium ferrocyanide solution of 0.01mol/L, and adds polyethylene glycol and ascorbic acid, the concentration of polyethylene glycol is 0.001mol/L, and the concentration of ascorbic acid is 0.001mol/L;
  • preparation metal ion concentration is the manganese sulfate solution of 0.01mol/L, and adds the polyethylene glycol identical with step (1), and the concentration of polyethylene glycol is 0.001mol/L;
  • the manganese sulfate solution is added to the sodium ferrocyanide solution through a peristaltic pump at a fixed flow rate of 50mL/h to carry out precipitation reaction. After the reaction is completed, age for 2-4 hours;
  • the positive electrode material of the battery is Na 2 Mn [Fe(CN) 6 ], and the water content of the material is 0.081wt%.
  • the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
  • the first discharge specific capacity at 0.1C was 143.1mAh/g, 200 cycles
  • the specific capacity after discharge is still 136.2mAh/g, which shows that it has good rate performance and cycle performance.
  • Figure 1 is the SEM image of the positive electrode material of the Prussian blue sodium-ion battery prepared in this example. It can be seen from the figure that the crystal particles are consistent and uniform, indicating that the product particles have a high consistency.
  • a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
  • preparation metal ion concentration is the nickel sulfate solution of 0.05mol/L, and adds polyoxyethylene alkylamide alcohol identical with step (1), the concentration of polyoxyethylene alkylamide alcohol is 0.01mol/L;
  • the nickel sulfate solution is added to the sodium ferrocyanide solution at a flow rate of 40mL/h through a peristaltic pump to carry out precipitation reaction. After the reaction is completed, age for 10-12 hours;
  • the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
  • the first discharge specific capacity at 0.1C was 82.3mAh/g, 200 cycles
  • the specific capacity after discharge is still 76.7mAh/g, indicating that it has good rate performance and cycle performance.
  • a positive electrode material for a Prussian blue sodium-ion battery is prepared, and the specific process is as follows:
  • preparation metal ion concentration is the cobalt sulfate solution of 1mol/L, and adds the polyethylene glycol identical with step (1), the concentration of polyethylene glycol is 0.1mol/L;
  • the cobalt sulfate solution was added to the sodium ferrocyanide solution at a fixed flow rate of 25mL/h through a peristaltic pump for precipitation reaction. After the reaction was completed, it was aged for 24-48 hours;
  • the positive electrode material of the Prussian blue sodium-ion battery prepared in this example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
  • the first discharge specific capacity at 0.1C was 138.7mAh/g, 200 cycles
  • the specific capacity after discharge is still 134.6mAh/g, indicating that it has good rate performance and cycle performance.
  • a Prussian blue-type sodium-ion battery positive electrode material is prepared.
  • step (6) is not carried out, and the product is directly obtained after step (5) vacuum drying.
  • the moisture content of the resulting material was 2.88% by weight.
  • the positive electrode material of the Prussian blue sodium-ion battery prepared in this comparative example was assembled into an organic electrolyte system sodium-ion half-cell, and the electrochemical performance test was carried out.
  • the first discharge specific capacity at 0.1C was 132.5mAh/g, 200 times After cycling, the discharge specific capacity is still 121.9mAh/g.
  • the performance of the material that has not been subjected to the water removal treatment in step (6) is reduced. This is because even after 24 hours of vacuum drying, the water removal is not thorough enough, and the material still contains a part of crystal water, which affects the material performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种普鲁士蓝类钠离子电池正极材料的制备方法,包括向亚铁氰化钠溶液中加入第一非离子表面活性剂和抗氧化剂,得到第一溶液,向过渡金属盐溶液中加入第二非离子表面活性剂,得到第二溶液,在保护气氛围下,将第二溶液加入到第一溶液中进行沉淀反应,反应结束后进行陈化,收集沉淀物,洗涤,将洗涤后的沉淀物进行真空干燥,然后浸泡在含有醇钠的醇溶液中,再过滤,蒸干,即得普鲁士蓝类钠离子电池正极材料。本发明采用二段除水技术,首先真空干燥除去大部分的结晶水,再使用含有醇钠的醇溶液浸泡,进一步除去晶格中的水分,以解决材料中含水量高带来的一系列严重问题,该方法可减轻真空干燥的压力,缩短干燥的时间。

Description

普鲁士蓝类钠离子电池正极材料的制备方法 技术领域
本发明属于钠离子电池技术领域,具体涉及一种普鲁士蓝类钠离子电池正极材料的制备方法。
背景技术
钠离子电池与锂离子电池具有相同的原理和结构,均由正极材料、负极材料,电解质和隔膜组成,电池在充放电时,Na +在两个电极之间往返嵌入和脱嵌:充电池时,Na +从正极脱嵌,经过电解质嵌入负极,负极处于富钠状态。
钠离子电池具有原料成本低、资源丰富、电化学性能潜力大等特点,因此有望在大规模储能领域得到应用,是下一代电池技术的重要研究方向之一。目前,钠离子电池的正极材料主要包括过渡金属氧化物、磷酸盐、普鲁士蓝类材料等。其中,普鲁士蓝类材料具有电压平台较高(>3V)、离子通道大、比容量大、廉价无毒易制备等优点而成为钠离子电池正极材料的研究热点。
然而,目前普鲁士蓝类材料存在以下两点难题:
一方面,颗粒的一致性差,且目前没有相关文献就此问题进行报道;另一方面,则是材料含水的问题;由于普鲁士蓝类材料的合成通常采用水相共沉淀法和水热法。在水溶液中,可溶性金属盐与Na 4Fe(CN) 6迅速反应成核并长大,在此过程中,一方面水分子可以进入到A位间隙位置形成间隙水;另一方面,结构中易存在M(CN) 6空位(M为Fe、Co、Mn等),空位中的不饱和金属原子与水分子中的氧原子键合,进一步引入新的配位水分子,导致其实际结晶水(包括配位水和间隙水)含量往往大于15wt%。
从已有的研究成果来看,材料中的结晶水对其电化学性能影响巨大,其负面作用可归纳如下:1)结晶水占据储钠位点,因而降低了材料的储钠能力;2)结晶水可阻碍Na +的迁移,进而导致电极动力学性能恶化;3)空位缺陷中的配位水使得与C相连的低自旋态Fe的电化学活性被抑制,导致高电位的平台容量不能发挥;4)在电化学反应中,结晶水与电 解液在高电位易发生不可逆反应,导致库仑效率下降。因此,降低材料中的结晶水含量,是提高电化学性能的关键。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种普鲁士蓝类钠离子电池正极材料的制备方法,能够降低材料的含水量,提高一致性。
根据本发明的一个方面,提出了一种普鲁士蓝类钠离子电池正极材料的制备方法,包括如下步骤:
向亚铁氰化钠溶液中加入第一非离子表面活性剂和抗氧化剂,得到第一溶液;
向过渡金属盐溶液中加入第二非离子表面活性剂,得到第二溶液;
在保护气氛围下,将所述第二溶液加入到所述第一溶液中进行沉淀反应,反应结束后进行陈化,收集沉淀物,洗涤;
将洗涤后的沉淀物进行真空干燥,然后浸泡在含有醇钠的醇溶液中,再过滤,蒸干,即得所述普鲁士蓝类钠离子电池正极材料。所述普鲁士蓝类钠离子电池正极材料Na xM[Fe(CN) 6],其中,1≤x≤2,M为Mn、Ni、Fe、V、Cr、Co、Cu或Zn中的一种或几种。
在本发明的一些实施方式中,所述第一非离子表面活性剂与所述第二非离子表面活性剂独立为聚乙二醇或聚氧乙烯烷基酰胺醇中的一种或两种;优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂相同,优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂的分子量均≥1500g/mol,优选的,所述第一溶液中的第一非离子表面活性剂的浓度、所述第二溶液中的第二非离子表面活性剂的浓度均为0.001-0.1mol/L。
在本发明的一些实施方式中,所述亚铁氰化钠溶液的浓度为0.01-1mol/L。
在本发明的一些实施方式中,所述抗氧化剂为丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、特丁基对苯二酚或抗坏血酸中的一种或几种;优选的,所述第一溶液中所述抗氧化剂的浓度为0.001-0.25mol/L。
在本发明的一些实施方式中,所述过渡金属盐溶液的浓度为0.01-1mol/L;优选的,所 述第二溶液的加入流速为25-50mL/h。
在本发明的一些实施方式中,所述保护气为氮气或氩气中的一种或两种。
在本发明的一些实施方式中,所述陈化的时间为2-48小时。
在本发明的一些实施方式中,所述真空干燥的温度为100-120℃;优选的,所述真空干燥的时间为12-24h。
在本发明的一些实施方式中,所述醇钠为甲醇钠或乙醇钠中的一种或两种。
在本发明的一些实施方式中,所述醇溶液为无水甲醇或无水乙醇中的一种或两种。
在本发明的一些实施方式中,浸泡时,所述沉淀物与所述醇溶液的固液比为1g:(5-100)mL;优选的,所述浸泡的时间为0.5-2h。
在本发明的一些优选的实施方式中,所述醇钠为乙醇钠,所述醇溶液为无水乙醇,甲醇钠易燃易爆不易控制,故醇钠的醇溶液优选乙醇钠的无水乙醇,乙醇钠可与晶格中的水分发生反应生成乙醇和氢氧化钠,氢氧化钠可溶于乙醇,过滤除去;在所述蒸干前,还包括对所述过滤得到的沉淀物用无水甲醇进行冲洗,氢氧化钠在甲醇中的溶解度比乙醇高,可进一步提高产品纯度,且甲醇属于小分子化合物,可进入Na xM[Fe(CN) 6]的晶格中取代水的位置,避免二次吸水。
在本发明的一些实施方式中,所述醇钠在醇溶液中的浓度为0.05-0.5mol/L。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、亚铁氰根离子在光照下容易转变成铁氰根离子或者解离成铁离子以及氰根离子,加入抗氧化剂以缓解该反应的发生,进一步提高目标产品的纯度;
2、亚铁氰化钠溶液与过渡金属盐溶液中均加入相同的非离子表面活性剂,非离子表面活性剂溶于水后醚键上的氧原子与溶液中的氢原子形成微弱的氢键,分子链呈曲折状,亲水性的氧原子位于链的外侧,而疏水链段(例如,次乙基,—CH 2CH 2—)位于链的内侧,因而链周围恰似一个亲水的整体。这种亲水整体与Na xM[Fe(CN) 6]·nH 2O晶体通过氢键结合,吸附在晶体表面形成空间位阻,抑制C轴生长优势,最终起到保证晶体一致均匀的目的,使得产品颗粒具有较高的一致性,提高了其作为正极材料使用时的安全性、循环性及 比容量;
3、二段除水技术,首先真空干燥除去大部分的结晶水,再使用含有醇钠的醇溶液浸泡,进一步除去晶格中的水分,使得材料的含水量<0.1wt%,以解决材料中含水量高带来的一系列严重问题。醇钠可与晶格中的水分发生反应生成氢氧化钠,氢氧化钠可溶于醇溶液,过滤除去,该方法可减轻真空干燥的压力,缩短干燥的时间。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的普鲁士蓝类钠离子电池正极材料的SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种普鲁士蓝类钠离子电池正极材料,具体过程为:
(1)配制浓度为0.01mol/L的亚铁氰化钠溶液,并加入聚乙二醇和抗坏血酸,聚乙二醇的浓度为0.001mol/L,抗坏血酸的浓度为0.001mol/L;
(2)配制金属离子浓度为0.01mol/L的硫酸锰溶液,并加入与步骤(1)相同的聚乙二醇,聚乙二醇的浓度为0.001mol/L;
(3)在氮气氛围下,将硫酸锰溶液以50mL/h的固定流速通过蠕动泵加入到亚铁氰化钠溶液中进行沉淀反应,反应结束后,陈化2-4小时;
(4)离心收集沉淀物,并用去离子水和无水乙醇洗涤;
(5)将沉淀物置于100℃下真空干燥24h;
(6)按固液比1g:5mL,将沉淀物浸泡在含有0.1mol/L乙醇钠的无水乙醇中2h,过滤,再用无水甲醇进行冲洗,蒸干,即得普鲁士蓝类钠离子电池正极材料Na 2Mn[Fe(CN) 6], 材料的含水量为0.081wt%。
将本实例制得的普鲁士蓝类钠离子电池正极材料组装为有机电解液体系钠离子半电池,并进行电化学性能测试,在0.1C下的首次放电比容量为143.1mAh/g,200次循环后放电比容量仍有136.2mAh/g,表明其有良好的倍率性能和循环性能。
图一为本实施例制备的普鲁士蓝类钠离子电池正极材料的SEM图,从图中可见晶体颗粒一致均匀,表明产品颗粒具有较高的一致性。
实施例2
本实施例制备了一种普鲁士蓝类钠离子电池正极材料,具体过程为:
(1)配制浓度为0.05mol/L的亚铁氰化钠溶液,并加入聚氧乙烯烷基酰胺醇和丁基羟基茴香醚,聚氧乙烯烷基酰胺醇的浓度为0.01mol/L,丁基羟基茴香醚的浓度为0.01mol/L;
(2)配制金属离子浓度为0.05mol/L的硫酸镍溶液,并加入与步骤(1)相同的聚氧乙烯烷基酰胺醇,聚氧乙烯烷基酰胺醇的浓度为0.01mol/L;
(3)在氩气氛围下,将硫酸镍溶液通过蠕动泵以40mL/h的流速加入到亚铁氰化钠溶液中进行沉淀反应,反应结束后,陈化10-12小时;
(4)离心收集沉淀物,并用去离子水和无水乙醇洗涤;
(5)将沉淀物置于110℃下真空干燥18h;
(6)按固液比1g:50mL,将沉淀物浸泡在含有0.1mol/L乙醇钠的无水乙醇中2h,过滤,再用无水甲醇进行冲洗,蒸干,即得普鲁士蓝类钠离子电池正极材料Na 2Ni[Fe(CN) 6]。材料的含水量为0.076wt%。
将本实例制得的普鲁士蓝类钠离子电池正极材料组装为有机电解液体系钠离子半电池,并进行电化学性能测试,在0.1C下的首次放电比容量为82.3mAh/g,200次循环后放电比容量仍有76.7mAh/g,表明其有良好的倍率性能和循环性能。
实施例3
本实施例制备了一种普鲁士蓝类钠离子电池正极材料,具体过程为:
(1)配制浓度为1mol/L的亚铁氰化钠溶液,并加入聚乙二醇和特丁基对苯二酚,聚 乙二醇的浓度为0.1mol/L,特丁基对苯二酚的浓度为0.25mol/L;
(2),配制金属离子浓度为1mol/L的硫酸钴溶液,并加入与步骤(1)相同的聚乙二醇,聚乙二醇的浓度为0.1mol/L;
(3)在氮气氛围下,将硫酸钴溶液通过蠕动泵以25mL/h的固定流速加入到亚铁氰化钠溶液中进行沉淀反应,反应结束后,陈化24-48小时;
(4)离心收集沉淀物,并用去离子水和无水乙醇洗涤;
(5)将沉淀物置于120℃下真空干燥12h;
(6)按固液比1g:100mL,将沉淀物浸泡在含有0.05mol/L乙醇钠的无水乙醇中2h,过滤,再用无水甲醇进行冲洗,蒸干,即得普鲁士蓝类钠离子电池正极材料Na 2Co[Fe(CN) 6]。材料的含水量为0.059wt%。
将本实例制得的普鲁士蓝类钠离子电池正极材料组装为有机电解液体系钠离子半电池,并进行电化学性能测试,在0.1C下的首次放电比容量为138.7mAh/g,200次循环后放电比容量仍有134.6mAh/g,表明其有良好的倍率性能和循环性能。
对比例1
本对比例制备了一种普鲁士蓝类钠离子电池正极材料,与实施例1的区别在于,不进行步骤(6),步骤(5)真空干燥后直接得到产品。所得材料的含水量为2.88wt%。
将本对比例制得的普鲁士蓝类钠离子电池正极材料组装为有机电解液体系钠离子半电池,并进行电化学性能测试,在0.1C下的首次放电比容量为132.5mAh/g,200次循环后放电比容量仍有121.9mAh/g。未经过步骤(6)除水处理的材料的性能有所降低,这是由于即使经过真空干燥24h后,除水还不够彻底,材料中仍然含有一部分结晶水,进而影响材料性能。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种普鲁士蓝类钠离子电池正极材料的制备方法,其特征在于,包括如下步骤:
    向亚铁氰化钠溶液中加入第一非离子表面活性剂和抗氧化剂,得到第一溶液;
    向过渡金属盐溶液中加入第二非离子表面活性剂,得到第二溶液;
    在保护气氛围下,将所述第二溶液加入到所述第一溶液中进行沉淀反应,反应结束后进行陈化,收集沉淀物,洗涤;
    将洗涤后的沉淀物进行真空干燥,然后浸泡在含有醇钠的醇溶液中,再过滤,蒸干,即得所述普鲁士蓝类钠离子电池正极材料。
  2. 根据权利要求1所述的制备方法,其特征在于,所述第一非离子表面活性剂与所述第二非离子表面活性剂独立为聚乙二醇或聚氧乙烯烷基酰胺醇中的一种或两种;优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂相同,优选的,所述第一非离子表面活性剂与所述第二非离子表面活性剂的分子量均≥1500g/mol,优选的,所述第一溶液中的第一非离子表面活性剂的浓度、所述第二溶液中的第二非离子表面活性剂的浓度均为0.001-0.1mol/L。
  3. 根据权利要求1所述的制备方法,其特征在于,所述抗氧化剂为丁基羟基茴香醚、二丁基羟基甲苯、没食子酸丙酯、特丁基对苯二酚或抗坏血酸中的一种或几种;优选的,所述第一溶液中所述抗氧化剂的浓度为0.001-0.25mol/L。
  4. 根据权利要求1所述的制备方法,其特征在于,所述过渡金属盐溶液的浓度为0.01-1mol/L;优选的,所述第二溶液的加入流速为25-50mL/h。
  5. 根据权利要求1所述的制备方法,其特征在于,所述真空干燥的温度为100-120℃;优选的,所述真空干燥的时间为12-24h。
  6. 根据权利要求1所述的制备方法,其特征在于,所述醇钠为甲醇钠或乙醇钠中的一种或两种。
  7. 根据权利要求1所述的制备方法,其特征在于,所述醇溶液为无水甲醇或无水乙醇中的一种或两种。
  8. 根据权利要求1所述的制备方法,其特征在于,浸泡时,所述沉淀物与所述醇溶液的固液比为1g:(5-100)mL;优选的,所述浸泡的时间为0.5-2h。
  9. 根据权利要求1所述的制备方法,其特征在于,所述醇钠在醇溶液中的浓度为0.05-0.5mol/L。
  10. 根据权利要求1所述的制备方法,其特征在于,在所述蒸干前,还包括对所述过滤得到的沉淀物用无水甲醇进行冲洗。
PCT/CN2022/109229 2021-10-26 2022-07-29 普鲁士蓝类钠离子电池正极材料的制备方法 WO2023071352A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
GB2315715.9A GB2620324B (en) 2021-10-26 2022-07-29 Preparation method for Prussian blue sodium-ion battery positive electrode material
ES202390186A ES2986178A2 (es) 2021-10-26 2022-07-29 Método de preparación para material de electrodo positivo de batería de iones de sodio de azul de Prusia
DE112022001347.8T DE112022001347B4 (de) 2021-10-26 2022-07-29 VERFAHREN ZUR HERSTELLUNG EINES POSITIVEN ELEKTRODENMATERIALS FÜR EINE PREUßISCH-BLAU-NATRIUM-IONEN-BATTERIE
US18/555,558 US12113215B2 (en) 2021-10-26 2022-07-29 Preparation method for Prussian blue sodium-ion battery positive electrode material
MA62720A MA62720A1 (fr) 2021-10-26 2022-07-29 Procédé de préparation d'un matériau d'électrode positive de batterie au sodium-ion bleu de prusse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111246996.0 2021-10-26
CN202111246996.0A CN114212802B (zh) 2021-10-26 2021-10-26 普鲁士蓝类钠离子电池正极材料的制备方法

Publications (1)

Publication Number Publication Date
WO2023071352A1 true WO2023071352A1 (zh) 2023-05-04

Family

ID=80696269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109229 WO2023071352A1 (zh) 2021-10-26 2022-07-29 普鲁士蓝类钠离子电池正极材料的制备方法

Country Status (7)

Country Link
US (1) US12113215B2 (zh)
CN (1) CN114212802B (zh)
DE (1) DE112022001347B4 (zh)
ES (1) ES2986178A2 (zh)
GB (1) GB2620324B (zh)
MA (1) MA62720A1 (zh)
WO (1) WO2023071352A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114212802B (zh) 2021-10-26 2023-04-11 广东邦普循环科技有限公司 普鲁士蓝类钠离子电池正极材料的制备方法
CN115108566B (zh) * 2022-06-22 2023-12-19 三峡大学 长寿命铁基普鲁士蓝正极材料的制备方法
CN115072741B (zh) * 2022-07-08 2023-11-17 金驰能源材料有限公司 普鲁士蓝正极材料及其连续式制备方法以及钠离子电池
CN115377412A (zh) * 2022-09-29 2022-11-22 广东邦普循环科技有限公司 高导电性普鲁士蓝类正极材料的制备方法及其应用
CN115448327B (zh) * 2022-09-29 2024-03-12 广东邦普循环科技有限公司 低缺陷普鲁士蓝类正极材料的制备方法及其应用
CN115504488B (zh) * 2022-10-13 2023-10-17 广东邦普循环科技有限公司 一种普鲁士蓝电极材料及其制备方法与应用
CN115611296B (zh) * 2022-12-19 2023-05-09 中节能万润股份有限公司 一种普鲁士蓝类钠离子电池正极材料制备方法及应用
CN116425175B (zh) * 2023-04-23 2024-09-24 广东凯金新能源科技股份有限公司 普鲁士白类正极材料的制备方法、正极材料及二次电池
CN116588953B (zh) * 2023-04-25 2024-03-22 武汉理工大学 一种普鲁士蓝类似物钠离子电池正极材料的制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180469A (ja) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology プルシアンブルー型金属錯体ナノ粒子を具備する電気化学素子、これを用いたエレクトロクロミック素子及び二次電池
CN106654263A (zh) * 2016-12-30 2017-05-10 东莞市佳乾新材料科技有限公司 一种普鲁士蓝基钠离子电池正极材料的制备方法
CN106745068A (zh) * 2016-12-12 2017-05-31 华中科技大学 一种低缺陷的纳米普鲁士蓝的制备方法及其应用
CN110048104A (zh) * 2019-04-16 2019-07-23 浙江大学 一种基于氰化框架材料的水系电池及其制备方法
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN112429744A (zh) * 2020-11-02 2021-03-02 山东联科科技股份有限公司 一种无水偏硅酸钠生产方法
CN112607748A (zh) * 2020-12-24 2021-04-06 三峡大学 一种多元普鲁士蓝钠离子电池正极材料及其制备方法
CN113488646A (zh) * 2021-06-17 2021-10-08 三峡大学 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN114212802A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 普鲁士蓝类钠离子电池正极材料的制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140037552A1 (en) * 2011-02-15 2014-02-06 Domokos Máthé Prussian blue based nanoparticle as multimodal imaging contrast material
CN105271307B (zh) * 2015-10-12 2017-05-03 上海第二工业大学 一种普鲁士蓝衍生物Cd2[Fe(CN)6]纳米棒及其制备方法
WO2018209653A1 (zh) * 2017-05-18 2018-11-22 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法、电化学储能装置
CN109698345B (zh) 2017-10-23 2021-05-11 宁德时代新能源科技股份有限公司 普鲁士蓝类正极材料及其制备方法及电化学储能装置
CN108493423B (zh) * 2018-04-11 2020-12-18 南京林业大学 一种纳米普鲁士蓝钠离子电池正极材料及其制备方法
CN109065883B (zh) * 2018-07-27 2021-02-09 张五星 一种普鲁士蓝及其类似物的改性方法及钠离子电池
CN111377462B (zh) * 2019-07-05 2022-10-11 上海交通大学 普鲁士蓝类正极材料、钠离子电池及其制备方法和应用
CN110510638B (zh) * 2019-08-12 2021-01-01 浙江大学 一种低空位的普鲁士蓝类钠离子电池正极材料及其制备方法
CN111525129A (zh) * 2020-04-22 2020-08-11 大连理工大学 一种基于镍普鲁士蓝正极材料的水系钠离子全电池及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011180469A (ja) * 2010-03-03 2011-09-15 National Institute Of Advanced Industrial Science & Technology プルシアンブルー型金属錯体ナノ粒子を具備する電気化学素子、これを用いたエレクトロクロミック素子及び二次電池
CN106745068A (zh) * 2016-12-12 2017-05-31 华中科技大学 一种低缺陷的纳米普鲁士蓝的制备方法及其应用
CN106654263A (zh) * 2016-12-30 2017-05-10 东莞市佳乾新材料科技有限公司 一种普鲁士蓝基钠离子电池正极材料的制备方法
CN110048104A (zh) * 2019-04-16 2019-07-23 浙江大学 一种基于氰化框架材料的水系电池及其制备方法
CN111943228A (zh) * 2020-08-24 2020-11-17 全球能源互联网研究院有限公司 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN112429744A (zh) * 2020-11-02 2021-03-02 山东联科科技股份有限公司 一种无水偏硅酸钠生产方法
CN112607748A (zh) * 2020-12-24 2021-04-06 三峡大学 一种多元普鲁士蓝钠离子电池正极材料及其制备方法
CN113488646A (zh) * 2021-06-17 2021-10-08 三峡大学 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN114212802A (zh) * 2021-10-26 2022-03-22 广东邦普循环科技有限公司 普鲁士蓝类钠离子电池正极材料的制备方法

Also Published As

Publication number Publication date
DE112022001347T5 (de) 2023-12-21
ES2986178A2 (es) 2024-11-08
GB202315715D0 (en) 2023-11-29
US20240088383A1 (en) 2024-03-14
CN114212802A (zh) 2022-03-22
DE112022001347B4 (de) 2025-03-13
US12113215B2 (en) 2024-10-08
CN114212802B (zh) 2023-04-11
GB2620324B (en) 2024-11-06
MA62720A1 (fr) 2024-02-29
GB2620324A (en) 2024-01-03

Similar Documents

Publication Publication Date Title
WO2023071352A1 (zh) 普鲁士蓝类钠离子电池正极材料的制备方法
CN111943228A (zh) 一种普鲁士蓝类钠离子电池正极材料及其制备方法
CN114212803B (zh) 掺杂氟的普鲁士蓝类钠离子电池正极材料的制备方法
CN108258241B (zh) 一种利用zif-8多孔碳材料抑制锂枝晶生长的锂电池负极
CN115611296A (zh) 一种普鲁士蓝类钠离子电池正极材料制备方法及应用
CN108417786B (zh) 一种棒状多层微孔草酸亚铁锂离子电池负极材料制备方法
CN113839032A (zh) 一种低成本普鲁士白材料、及其制备方法和应用
CN113830792A (zh) 一种无水普鲁士白材料、制备方法和应用
CN116425175B (zh) 普鲁士白类正极材料的制备方法、正极材料及二次电池
CN114583282B (zh) 一种吸收补锂剂分解产气的多功能电解液及其应用
CN103515578A (zh) 锂离子电池正极材料的制备方法
CN117012953B (zh) 一种循环有机还原溶剂亚临界补锂修复磷酸盐类正极材料的方法
CN117430134B (zh) 一种锰铁基普鲁士蓝钠电正极材料的制备方法及由该方法制备的正极材料
CN116247201A (zh) 一种钠离子电池用普鲁士蓝类正极材料及其制备方法及钠离子电池
WO2024182971A1 (zh) 一种电化学脱嵌盐湖镁锂分离及提锂的方法
CN116119687A (zh) 一种六氟磷酸钠的提纯方法
CN115215768A (zh) 一种多元环化合物有机补锂剂及其制备方法、应用
CN110707309B (zh) 一种3dom结构的zif8锂硫电池正极材料的制备方法
CN114583279B (zh) 一种具有催化补锂剂分解的电解液添加剂及其应用
CN114014330B (zh) 一种储能电极材料K3Nb3Si2O13的制备方法及应用
CN104766972A (zh) 一种纳米棒状磷酸锰锂正极材料及其制备方法
CN113629295B (zh) 含有zif-67纳米颗粒的电解液制备方法及电池应用
CN115882045A (zh) 一种高熵普鲁士蓝钾离子电池正极材料、钾离子电池及其制备方法
CN116002649A (zh) 一种复合正极材料及其制备方法和应用
CN117096435B (zh) 一种钠离子电池电解液添加剂、电解液及钠离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202315715

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220729

WWE Wipo information: entry into national phase

Ref document number: 18555558

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112022001347

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22885252

Country of ref document: EP

Kind code of ref document: A1

WWG Wipo information: grant in national office

Ref document number: 112022001347

Country of ref document: DE