WO2023050865A1 - 烧绿石复合材料及其制备方法和应用 - Google Patents

烧绿石复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2023050865A1
WO2023050865A1 PCT/CN2022/097750 CN2022097750W WO2023050865A1 WO 2023050865 A1 WO2023050865 A1 WO 2023050865A1 CN 2022097750 W CN2022097750 W CN 2022097750W WO 2023050865 A1 WO2023050865 A1 WO 2023050865A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite material
pyrochlore
catalyst
temperature section
acid
Prior art date
Application number
PCT/CN2022/097750
Other languages
English (en)
French (fr)
Inventor
郝郑平
蒋国霞
杨镇文
张凤莲
赵梦菲
张中申
Original Assignee
中国科学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大学 filed Critical 中国科学院大学
Priority to KR1020237013225A priority Critical patent/KR20230158460A/ko
Publication of WO2023050865A1 publication Critical patent/WO2023050865A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/36Three-dimensional structures pyrochlore-type (A2B2O7)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to the technical field of acid gas treatment and resource recovery, in particular to a pyrochlore composite material and its preparation method and application.
  • Claus process is generally used in industry to harmlessly treat H 2 S and NH 3 in acid gas and recover sulfur.
  • the process consists of a thermal reaction section and a catalytic reaction section.
  • NH 3 is oxidized to N 2
  • one-third of H 2 S is oxidized to SO 2 by O 2 at high temperature (>1000°C)
  • SO 2 and the remaining H 2 S react at a relatively low temperature (200-350°C) to generate sulfur and water:
  • H2 is a clean energy source with high energy density, and it is also an important chemical raw material.
  • a catalytic material and method can be developed to selectively oxidize H2S in acidic gas into sulfur and water, and decompose NH3 into nitrogen and hydrogen, sulfur and hydrogen can be recovered from acidic waste gas , which is expected to achieve higher levels of environmental and economic benefits:
  • Pyrochlore composite oxides have attracted extensive attention in the field of catalysis due to their excellent thermal stability, excellent oxygen mobility, and intrinsic oxygen vacancies.
  • Its general formula is A 2 B 2 O 7 , which belongs to the face-centered cubic crystal system, Fd3m space group, and the A site is usually a trivalent rare earth metal ion with a large radius (such as La, Pr, Sm, Y, Nd, Gd). It coordinates with 8 oxyanions to form a twisted cubic structure, and the B site is a tetravalent transition metal ion with a small radius (such as Zr, Sn, Ti, Ir, Ru), and coordinates with 6 oxyanions to form an octahedral structure.
  • the radius ratio r A /r B of the metal ions at the A site and the B site has an important influence on the crystal structure of the material. If the r A /r B is between 1.46 and 1.78, A 2 B 2 O 7 will generally crystallize into an ordered burnt Greenstone structure; if r A /r B is less than 1.46, it tends to transform into disordered cubic fluorite.
  • Using different metal ions to replace the A-site or B-site elements can adjust the composition, structure and physical and chemical properties of the pyrochlore composite oxide, and improve its catalytic performance, so as to develop a compound suitable for H 2 S selective oxidation and NH 3 decomposition Catalytic materials for the reaction to recover sulfur resources and hydrogen resources in acidic gas.
  • the technical problem to be solved by the present invention is: to overcome the deficiencies of the prior art, to provide a pyrochlore composite material and a preparation method thereof, which can recover sulfur and H 2 , to maximize energy utilization.
  • a pyrochlore composite material is disclosed, the molecular formula of the pyrochlore composite material is: La 2 Fe x Zr 2-x O 7 , 0 ⁇ x ⁇ 0.5.
  • a method for preparing a pyrochlore composite material which is characterized in that it includes the following steps:
  • the molar ratio of La(NO 3 ) 3 ⁇ 6H 2 O, Fe(NO 3 ) 3 .9H 2 O and Zr(NO 3 ) 4 .5H 2 O in step 1) is 2:x:( 2-x), 0 ⁇ x ⁇ 0.5;
  • the volume ratio of the metal salt solution added dropwise to the buffer solution in step 3) is 1-2.
  • the third aspect discloses the application of pyrochlore composite material as a catalyst in the recovery of hydrogen sulfide resources of acid-containing gas. Is converted into sulfur and H 2 .
  • the acid-containing gas comes from petrochemical and/or coal chemical and/or natural gas chemical industries.
  • the concentration of H 2 S in the acidic acid gas is 0-100 vol%, and the concentration of NH 3 may be 0-40 vol%.
  • the H 2 S selective oxidation reaction temperature in the low-temperature section is 140-300° C.
  • the NH 3 decomposition reaction temperature in the high-temperature section is 350-800° C.
  • the reaction pressures in the low-temperature section and high-temperature section are both normal pressure.
  • the present invention has the following beneficial effects:
  • the structure of the pyrochlore composite oxide material of the present invention is stable, the composition and catalytic performance can be flexibly adjusted, the preparation method is simple and easy, it can efficiently convert H 2 S in the low temperature section, and maintain high sulfur selectivity. It can completely decompose NH 3 , showing excellent catalytic activity; 2.
  • the pyrochlore composite oxide material of the present invention is used as a catalyst, and the catalytic reaction is less disturbed by NH 3 , the required reaction temperature is lower, and the energy consumption is less.
  • the harmless treatment of gas and the recovery of sulfur and H 2 at the same time, the added value of the product is higher, the economic benefit is more significant, and it has important engineering significance.
  • Fig. 1 is the XRD spectrogram of the substitution type pyrochlore composite oxide material prepared by embodiment 1-6;
  • Fig. 2 is the XRD spectrogram of the substituted pyrochlore composite oxide material prepared in Example 4 and Comparative Examples 1-5;
  • Figure 3 is the H 2 S selective oxidation activity curve of the substituted pyrochlore composite oxide material at low temperature
  • Fig. 4 is the NH decomposition activity curve of the substituted pyrochlore composite oxide material in the high temperature section
  • Fig. 5 is the activity curve of selective oxidation of H 2 S by substituted pyrochlore composite oxide materials under NH 3 atmosphere.
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6 x 0 0.1 0.2 0.3 0.4 0.5 La(NO 3 ) 3 6H 2 O 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g Fe(NO 3 ) 3 9H 2 O 0g 0.4040g 0.8080g 1.2120g 1.6160g 2.0201g Zr(NO 3 ) 4 5H 2 O 8.5864g 8.1570g 7.7277g 7.2984g 6.8691g 6.4398g
  • Step 1 the difference from Example 1 is that the metal salt solution in step 1) is different, and the rest of the steps are the same, specifically 8.6602g La(NO 3 ) 3 ⁇ 6H 2 O, 1.212g Fe(NO 3 ) 3 ⁇ 9H 2 O and 14.9823g TiCl 3 solution were dissolved in 200ml of nitric acid acidified aqueous solution to obtain a metal salt solution.
  • La 2 Ni 0.3 Ti 1.7 O 7 (referred to as LN 0.3 TO): the difference from Example 1 is that the metal salt solution in step 1) is different, and the rest of the steps are the same, specifically 8.6602g La(NO 3 ) 3 ⁇ 6H 2 O, 0.8724g Ni(NO 3 ) 2 ⁇ 6H 2 O and 14.9823g TiCl 3 solution were dissolved in 200ml of nitric acid acidified aqueous solution to obtain a metal salt solution.
  • La 2 Co 0.3 Ti 1.7 O 7 (abbreviated as LCo 0.3 TO): the difference from Example 1 is that the metal salt solution in step 1) is different, and the rest of the steps are the same, specifically, 8.6602g La(NO 3 ) 3 ⁇ 6H 2 O, 0.8731g Co(NO 3 ) 2 ⁇ 6H 2 O and 14.9823g TiCl 3 solution were dissolved in 200ml of nitric acid acidified aqueous solution to obtain a metal salt solution.
  • Step 1 the difference from Example 1 is that the metal salt solution in step 1) is different, and the rest of the steps are the same, specifically 8.6602g La(NO 3 ) 3 ⁇ 6H 2 O, 1.3027g Ce(NO 3 ) 3 ⁇ 6H 2 O and 14.9823g TiCl 3 solution were dissolved in 200ml of nitric acid acidified aqueous solution to obtain a metal salt solution.
  • La 2 Ni 0.3 Zr 1.7 O 7 (abbreviated as LN 0.3 ZO): the difference from Example 1 is that the metal salt solution in step 1) is different, and the rest of the steps are the same, specifically 8.6602g La(NO 3 ) 3 ⁇ 6H 2 O, 0.8724g Ni(NO 3 ) 2 ⁇ 6H 2 O and 7.2984g Zr(NO 3 ) 4 ⁇ 5H 2 O solution were dissolved in 200ml of nitric acid acidified aqueous solution to obtain a metal salt solution.
  • Example 7 is the catalyst LF x ZO prepared in Examples 1-6, the catalyst LF 0.3 TO prepared in Comparative Example 1, the LN 0.3 TO prepared in Comparative Example 2, the LCo 0.3 TO prepared in Comparative Example 3, and the LCe prepared in Comparative Example 4 0.3 TO and LN 0.3 ZO prepared in Comparative Example 5 are examples of selective catalytic oxidation of H 2 S at low temperature.
  • a small-scale fixed-bed continuous flow reaction evaluation device is used to test its catalytic performance in selective oxidation of H 2 S in acid-containing gas at low temperature to recover sulfur.
  • the specific operation is: fill the quartz reaction tube with a mass of 0.3g of a catalyst with a particle size of 40-60 mesh, and pass the acid-containing gas simulation gas (2000ppm H 2 S and 1000ppm O 2 , the flow rate is 150mL/min) into the catalyst bed
  • the gas-solid phase catalytic reaction was carried out at 280°C, and the gas composition and concentration after the reaction were detected by an XLZ-1090 online gas analyzer.
  • the catalytic performance of the catalyst is expressed by H2S conversion and SO2 yield:
  • H 2 S can be absorbed by LF 0.3 ZO and
  • the LF 0.3 TO two kinds of pyrochlore composite oxide materials are efficiently selectively catalyzed to oxidize sulfur to simple sulfur, and the amount of SO 2 generated is very small, which can ensure that the sulfur yield of H 2 S selective oxidation reaction in the low temperature section remains at a high level.
  • the activity of LF x ZO pyrochlore composites to selectively oxidize H 2 S at low temperature is significantly improved.
  • Example 8 is the catalyst LF 0.3 ZO prepared in Example 4, the catalyst LF 0.3 TO prepared in Comparative Example 1, the LN 0.3 TO prepared in Comparative Example 2, the LCo 0.3 TO prepared in Comparative Example 3, and the LCe 0.3 TO prepared in Comparative Example 4
  • the application example of the NH 3 catalytic decomposition of LN 0.3 ZO prepared in Comparative Example 5 in the high temperature section this example uses a small fixed-bed continuous flow reaction evaluation device.
  • the specific operation is: fill 0.3g of 40-60 mesh catalyst in the quartz reaction tube, pass the simulated gas containing acidic gas (containing 3000ppm NH 3 , the flow rate is 150mL/min) into the catalyst bed after recovering sulfur in the low-temperature section,
  • the gas-solid phase catalytic reaction is carried out at 400-650 ° C.
  • the gas composition and concentration after the reaction are detected by gas chromatography and XLZ-1090 online gas analyzer.
  • the catalytic performance of the catalyst is expressed by the conversion rate of NH 3 . The results are shown in Figure 4 shown.
  • Example 9 is an application example of the catalyst LF 0.3 ZO prepared in Example 4 in selective oxidation of H 2 S in acidic gas in the low temperature section.
  • a small fixed-bed continuous flow reaction evaluation device was used to test its selective oxidation of ammonia in the low temperature section Catalytic performance of H 2 S in acid gas to recover sulfur.
  • the specific operation is: fill the quartz reaction tube with a mass of 0.3g of a catalyst with a particle size of 40-60 meshes, and simulate gas containing acidic gas (containing 3000ppm NH 3 , 2000ppm H 2 S and 1000ppm O 2 , with a flow rate of 150mL/min ) into the catalyst bed, and the gas-solid phase catalytic reaction is carried out at 280 ° C.
  • the gas composition and concentration after the reaction are detected by the XLZ-1090 online gas analyzer.
  • the catalytic performance of the catalyst is expressed by NH3 conversion, H2S conversion and SO2 yield:
  • Example 9 The H 2 S selective oxidation activity curve of Example 9 at low temperature is shown in Fig. 5 .
  • H 2 S in acidic gas can be catalytically converted at low temperature to recover sulfur, while NH 3 is not converted, which fully proves the high efficiency of LF 0.3 ZO in low temperature selection It can catalyze H 2 S and maintain high sulfur selectivity.
  • the pyrochlore composite oxide material La 2 Fe x Zr 2-x O 7 (0 ⁇ x ⁇ 0.5) prepared by the present invention can meet the requirements of H 2 S selective oxidation and NH 3 decomposition in stages.
  • the high temperature section is filled with suitable H 2 S selective oxidation catalyst and NH 3 decomposition catalyst, which can harmlessly treat acid-containing gas and efficiently recover sulfhydryl resources from it;
  • the pyrochlore composite oxide material of the present invention has a stable structure, composition and catalytic
  • the performance can be adjusted flexibly, the preparation method is simple and easy, it can efficiently convert H 2 S in the low temperature section, maintain high sulfur selectivity, and can completely decompose NH 3 in the high temperature section, showing excellent catalytic activity;
  • the stone composite oxide material is used as a catalyst to catalyze the reaction, which is less disturbed by NH 3 , requires a lower reaction temperature, and consumes less energy. It can realize the harmless treatment of acid-containing gas, and recover sulfur and H 2 at the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

一种烧绿石复合材料及其制备方法和应用,属于酸性气治理和资源回收技术领域。所述烧绿石复合材料的分子式为:La 2Fe xZr 2-xO 7,0≤x≤0.5,通过以下方法制备:1)前驱体金属盐溶液的制备;2)量取氨水加水稀释,配成缓冲溶液;3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100-130℃干燥10h以上制得前驱物材料;4)将前驱物材料于空气中800℃以上焙烧4-6h,得到复合氧化物催化剂La 2Fe xZr 2-xO 7。烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H 2S,保持高的硫选择性,在高温段能完全分解NH 3,表现出优异的催化活性。

Description

烧绿石复合材料及其制备方法和应用 技术领域
本发明涉及酸性气治理和资源回收技术领域,具体涉及一种烧绿石复合材料及其制备方法和应用。
背景技术
随着全球能源需求的持续增长和清洁化石燃料的逐渐耗竭,越来越多的高含硫含氮油气资源被开采和利用。含硫和含氮燃料的直接燃烧会导致硫氧化物和氮氧化物污染排放。因此,精炼厂需要对这些油气燃料进行纯化,将其中的硫和氮转化为H 2S和NH 3,从而产生含氨酸性气。此外,煤化工行业也会产生这一酸性废气。
目前,工业上一般采用Claus工艺对酸性气中的H 2S和NH 3进行无害化处理,并回收硫磺。该工艺由热反应段和催化反应段组成,在热反应段,NH 3被氧化为N 2,同时三分之一的H 2S于高温(>1000℃)下被O 2氧化为SO 2;在催化反应段,借助催化剂的作用,SO 2和剩余的H 2S在较低温度(200-350℃)下发生反应,生成硫单质和水:
4NH 3+3O 2→2N 2+6H 2O
H 2S+3/2O 2→SO 2+H 2O
SO 2+2H 2S→3/nS n+2H 2O
现有技术虽然回收了含氨酸性气中的硫资源,却流失了含氨酸性气中蕴含的宝贵氢资源。H 2是一种高能量密度的清洁能源,也是一种重要的化工原料。目前,世界商用H 2有很大一部分来自化石燃料和醇类的裂解,成本和碳排放弊端不容忽视。因此,若能开发一种催化材料与方法,将含氨酸性气中的H 2S选择氧化为硫单质和水,而使NH 3分解为氮气和氢气,便能从酸性废气中回收硫磺和氢气,有望实现更高水平的环境效益和经济效益:
2H 2S+O 2→1/nS n+H 2O
2NH 3→N 2+3H 2
烧绿石复合氧化物因其极好的热稳定性、优异的氧移动性和本征氧空位而在催化领域受到广泛关注。其通式为A 2B 2O 7,属于面心立方晶系,Fd3m空间群,A位通常为半径较大的三价稀土金属离子(如La、Pr、Sm、Y、Nd、Gd),与8个氧阴离子配位形成扭曲立方结构,B位为半径较小的四价过渡金属离子(如Zr、Sn、Ti、Ir、Ru),与6个氧阴离子配位形成八面体结构。A位和B位金属离子的半径比r A/r B对材料晶体结构具有重要影响,若r A/r B在1.46-1.78之间,A 2B 2O 7一般会晶化为有序烧绿石结构;若r A/r B小于1.46,其趋向于转变为无序的立方萤石。使用不同的金属离子取代A位或B位元素,可调变烧绿石复合氧化物的组成、结构和理化性质,改善其催化性能,借此开发出适用于H 2S选择氧化和NH 3分解反应的催化材料,回收含氨酸性气中的硫资源和氢资源。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种烧绿石复合材料及其制备方法,在含氨酸性气硫氢资源回收中能够在高温段和低温段分别回收硫磺和H 2,实现能源的最大化利用。
本发明的技术方案为:
第一方面,公开了一种烧绿石复合材料,所述烧绿石复合材料的分子式为:La 2Fe xZr 2-xO 7,0≤x≤0.5。
第二方面,公开了烧绿石复合材料的制备方法,其特征在于,包括以下步骤:
1)将La(NO 3) 3·6H 2O、Fe(NO 3) 3·9H 2O和Zr(NO 3) 4·5H 2O溶解于硝酸酸化的水溶液中得到金属盐溶液;
2)量取氨水加水稀释,配成缓冲溶液;
3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH =10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100-130℃干燥10h以上制得前驱物材料。
4)将前驱物材料于空气中800℃以上焙烧4-6h,得到复合氧化物催化剂La 2Fe xZr 2-xO 7
优选地,所述步骤1)中La(NO 3) 3·6H 2O、Fe(NO 3) 3.9H 2O和Zr(NO 3) 4.5H 2O的摩尔比为2:x:(2-x),0≤x≤0.5;步骤2)中缓冲溶液按体积比水:氨水=0~1进行配制;步骤3)中滴加的金属盐溶液与缓冲溶液体积比为1~2。
第三方面,公开了烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:含氨酸性气和空气混合后通过上述催化剂,经低温段和高温段反应分别被转化为硫磺和H 2
优选地,所述含氨酸性气来自石油化工和/或煤化工和/或天然气化工行业。
优选地,所述含氨酸性气中H 2S浓度为0~100vol%,NH 3浓度可为0~40vol%。
优选地,所述低温段H 2S选择氧化反应温度为140~300℃,高温段NH 3分解反应温度为350~800℃,低温段和高温段反应压力均为常压。
本发明与现有技术相比,具有以下有益效果:
1.本发明烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H 2S,保持高的硫选择性,在高温段能完全分解NH 3,表现出优异的催化活性;2.本发明烧绿石复合氧化物材料作为催化剂催化反应受NH 3干扰小,所需反应温度更低,耗能少,可实现含氨酸性气的无害化处理,同时回收硫磺和H 2,产物的附加值更高,经济效益更显著,具有重要的工程意义。
附图说明
图1为实施例1-6制备的取代型烧绿石复合氧化物材料的XRD谱图;
图2为实施例4和对比例1-5制备的取代型烧绿石复合氧化物材料的XRD谱图;
图3为取代型烧绿石复合氧化物材料在低温段的H 2S选择氧化活性曲线;
图4为取代型烧绿石复合氧化物材料在高温段的NH 3分解活性曲线;
图5为取代型烧绿石复合氧化物材料在NH 3气氛下选择氧化H 2S的活性曲线。
具体实施方式
实施例1-6的烧绿石复合材料La 2Fe xZr 2-xO 7(0≤x≤0.5)(简称为LF xZO)的具体制备方法如下,
1)将La(NO 3) 3·6H 2O、Fe(NO 3) 3·9H 2O和Zr(NO 3) 4·5H 2O溶解于200ml硝酸酸化的水溶液中得到金属盐溶液;
2)量取50ml氨水(25%-28%)加50ml超纯水稀释,配成100ml缓冲溶液;
3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于120℃干燥12h制得前驱物材料。
4)将前驱物材料于空气中900℃焙烧5h,得到复合氧化物催化剂La 2Fe xZr 2-xO 7(LF xZO,0≤x≤0.5)。
实施例1-6中La(NO 3) 3·6H 2O、Fe(NO 3) 3·9H 2O和Zr(NO 3) 4·5H 2O的具体投料如表1所示,
表1
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
x 0 0.1 0.2 0.3 0.4 0.5
La(NO 3) 3·6H 2O 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g
Fe(NO 3) 3·9H 2O 0g 0.4040g 0.8080g 1.2120g 1.6160g 2.0201g
Zr(NO 3) 4·5H 2O 8.5864g 8.1570g 7.7277g 7.2984g 6.8691g 6.4398g
实施例1-6的烧绿石复合材料La 2Fe xZr 2-xO 7(0≤x≤0.5)的XRD图谱如图1 所示,从图中可以看出烧绿石复合材料La 2Fe xZr 2-xO 7(0≤x≤0.5)与标准图谱相应位置吻合,烧绿石复合材料La 2Fe xZr 2-xO 7(0≤x≤0.5)已成功制备。
对比例1
La 2Fe 0.3Ti 1.7O 7(简称为LF 0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO 3) 3·6H 2O、1.212g Fe(NO 3) 3·9H 2O和14.9823g TiCl 3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例2
La 2Ni 0.3Ti 1.7O 7(简称为LN 0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO 3) 3·6H 2O、0.8724g Ni(NO 3) 2·6H 2O和14.9823g TiCl 3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例3
La 2Co 0.3Ti 1.7O 7(简称为LCo 0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO 3) 3·6H 2O、0.8731g Co(NO 3) 2·6H 2O和14.9823g TiCl 3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例4
La 2Ce 0.3Ti 1.7O 7(简称为LCe 0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO 3) 3·6H 2O、1.3027g Ce(NO 3) 3·6H 2O和14.9823g TiCl 3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例5
La 2Ni 0.3Zr 1.7O 7(简称为LN 0.3ZO)的制备:与实施例1不同的是步骤1)中 金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO 3) 3·6H 2O、0.8724g Ni(NO 3) 2·6H 2O和7.2984g Zr(NO 3) 4·5H 2O溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
实施例4和对比例1-5制备的取代型烧绿石复合氧化物材料的XRD谱图如图2所示,从图中可以看出实施例4和对比例1-5的取代型烧绿石复合材料已成功制备。
实施例7
实施例7为实施例1-6制备的催化剂LF xZO、对比例1制备的催化剂LF 0.3TO、对比例2制备的LN 0.3TO、对比例3制备的LCo 0.3TO、对比例4制备的LCe 0.3TO和对比例5制备的LN 0.3ZO在低温段的H 2S选择催化氧化应用实施例,LF xZO、LF 0.3TO、LN 0.3TO、LCo 0.3TO、LCe 0.3TO、LN 0.3ZO,采用小型固定床连续流动反应评价装置,测试其在低温段选择氧化含氨酸性气中H 2S以回收硫磺的催化性能。具体操作为:在石英反应管中填充质量为0.3g粒径为40~60目的催化剂,将含氨酸性气模拟气(2000ppm H 2S和1000ppm O 2,流量为150mL/min)通入催化剂床层,在280℃下进行气固相催化反应,反应后的气体成分及浓度由XLZ-1090在线气体分析仪进行检测。催化剂的催化性能由H 2S转化率和SO 2产率表示:
Figure PCTCN2022097750-appb-000001
Figure PCTCN2022097750-appb-000002
实施例7在低温段的H 2S选择氧化活性曲线如图3所示。
如图3(a)所示,在180-280℃温度范围内,相比于合成的LN 0.3TO、LCo 0.3TO、LCe 0.3TO、LN 0.3ZO催化材料,H 2S可被LF 0.3ZO和LF 0.3TO两种烧绿石复合氧化物材料高效选择催化氧化为硫单质,并且生成SO 2量很少,可确保低温段H 2S选 择氧化反应的硫收率保持在较高水平。另外,如图3(b)所示,随着Fe取代量的增加,LF xZO烧绿石复合材料在低温段选择氧化H 2S活性明显提高。
实施例8
实施例8为实施例4制备的催化剂LF 0.3ZO、对比例1制备的催化剂LF 0.3TO、对比例2制备的LN 0.3TO、对比例3制备的LCo 0.3TO、对比例4制备的LCe 0.3TO和对比例5制备的LN 0.3ZO在高温段的NH 3催化分解应用实施例,本实施例采用小型固定床连续流动反应评价装置。具体操作为:在石英反应管中填充0.3g 40~60目的催化剂,将经低温段回收硫磺后的含氨酸性气模拟气(含3000ppm NH 3,流量为150mL/min)通入催化剂床层,在400~650℃下进行气固相催化反应,反应后的气体成分及浓度由气相色谱仪和XLZ-1090在线气体分析仪进行检测,催化剂的催化性能由NH 3转化率表示,结果如图4所示。
由图4可知,合成的系列烧绿石复合氧化物催化剂均对NH 3分解存在一定的催化活性,其中LF 0.3ZO和LN 0.3ZO在高温段几乎均能实现NH 3完全分解(NH 3转化率在96%以上)制H 2,显示出最为优异的NH 3分解活性。
实施例9
实施例9为实施例4制备的催化剂LF 0.3ZO在低温段的含氨酸性气中H 2S选择氧化应用实施例,采用小型固定床连续流动反应评价装置,测试其在低温段选择氧化含氨酸性气中H 2S以回收硫磺的催化性能。具体操作为:在石英反应管中填充质量为0.3g粒径为40~60目的催化剂,将含氨酸性气模拟气(含3000ppm NH 3、2000ppm H 2S和1000ppm O 2,流量为150mL/min)通入催化剂床层,在280℃下进行气固相催化反应,反应后的气体成分及浓度由XLZ-1090在线气体分析仪进行检测。催化剂的催化性能由NH 3转化率、H 2S转化率和SO 2产率表示:
Figure PCTCN2022097750-appb-000003
Figure PCTCN2022097750-appb-000004
Figure PCTCN2022097750-appb-000005
实施例9在低温段的H 2S选择氧化活性曲线如图5所示。
在烧绿石催化剂LF 0.3ZO的催化下,含氨酸性气中H 2S可在低温段被催化转化以回收硫磺,而NH 3不被转化,充分证明了LF 0.3ZO在低温段高效性选择性催化H 2S,保持高的硫选择性。
本发明制备的烧绿石复合氧化物材料La 2Fe xZr 2-xO 7(0≤x≤0.5)能满足分段实现H 2S选择氧化和NH 3分解的要求,通过在低温段和高温段分别装填合适的H 2S选择氧化催化剂和NH 3分解催化剂,可无害化处理含氨酸性气并从中高效回收硫氢资源;本发明烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H 2S,保持高的硫选择性,在高温段能完全分解NH 3,表现出优异的催化活性;本发明烧绿石复合氧化物材料作为催化剂催化反应受NH 3干扰小,所需反应温度更低,耗能少,可实现含氨酸性气的无害化处理,同时回收硫磺和H 2,产物的附加值更高,经济效益更显著,具有重要的工程意义。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (8)

  1. 一种烧绿石复合材料,其特征在于,所述烧绿石复合材料的分子式为:La 2Fe xZr 2-xO 7,0≤x≤0.5。
  2. 如权利要求1所述的烧绿石复合材料的制备方法,其特征在于,包括以下步骤:
    1)将La(NO 3) 3·6H 2O、Fe(NO 3) 3·9H 2O和Zr(NO 3) 4·5H 2O溶解于硝酸酸化的水溶液中得到金属盐溶液;
    2)量取氨水加水稀释,配成缓冲溶液;
    3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100-130℃干燥10h以上,制得前驱物材料;
    4)将前驱物材料于空气中800℃以上焙烧4-6h,得到复合氧化物催化剂La 2Fe xZr 2-xO 7
  3. 如权利要求2所述的烧绿石复合材料的制备方法,其特征在于:所述步骤1)中La(NO 3) 3·6H 2O、Fe(NO 3) 3·9H 2O和Zr(NO 3) 4·5H 2O的摩尔比为2:x:(2-x),0≤x≤0.5;步骤2)中缓冲溶液按体积比水:氨水=0~1进行配制;步骤3)中滴加的金属盐溶液与缓冲溶液体积比为1~2。
  4. 如权利要求1所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:含氨酸性气和空气混合后通过上述催化剂,经低温段和高温段反应分别被转化为硫磺和H 2
  5. 如权利要求4所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述含氨酸性气来自石油化工和/或煤化工和/或天然气化工行业。
  6. 如权利要求5所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述含氨酸性气中H 2S浓度为0~100vol%,NH 3 浓度为0~40vol%。
  7. 如权利要求5所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述低温段H 2S选择氧化反应温度为140~300℃,高温段NH 3分解反应温度为350~800℃,低温段和高温段反应压力均为常压。
  8. 如权利要求5所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述低温段H 2S选择氧化反应中,O 2/H 2S为0.3~1.5;高温段NH 3分解反应中,O 2/NH 3为0~0.5。
PCT/CN2022/097750 2022-05-10 2022-06-09 烧绿石复合材料及其制备方法和应用 WO2023050865A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237013225A KR20230158460A (ko) 2022-05-10 2022-06-09 파이로클로어 복합 재료 및 이의 제조 방법과 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210505726.5A CN114950451B (zh) 2022-05-10 2022-05-10 烧绿石复合材料及其制备方法和应用
CN202210505726.5 2022-05-10

Publications (1)

Publication Number Publication Date
WO2023050865A1 true WO2023050865A1 (zh) 2023-04-06

Family

ID=82981114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097750 WO2023050865A1 (zh) 2022-05-10 2022-06-09 烧绿石复合材料及其制备方法和应用

Country Status (3)

Country Link
KR (1) KR20230158460A (zh)
CN (1) CN114950451B (zh)
WO (1) WO2023050865A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150080213A1 (en) * 2010-05-11 2015-03-19 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada Synthesis of Pyrochlore Nanostructures and Uses Thereof
CN105026316A (zh) * 2013-07-11 2015-11-04 沙特基础工业全球技术公司 制备烧绿石的方法
CN105188917A (zh) * 2013-05-09 2015-12-23 沙特基础工业全球技术公司 粘土矿物负载型催化剂
JP2022061331A (ja) * 2020-10-06 2022-04-18 国立大学法人 大分大学 含ビスマスルテニウムパイロクロア金属酸化物の製造方法および酸素電極触媒の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716502A (zh) * 2009-11-17 2010-06-02 华东师范大学 一种烧绿石型复合氧化物光催化剂的制备方法
CN101879445A (zh) * 2010-07-15 2010-11-10 济南大学 一种催化燃烧去除柴油车碳烟的稀土烧绿石型复合氧化物催化剂及其制备方法
JP5503465B2 (ja) * 2010-08-30 2014-05-28 Jx日鉱日石エネルギー株式会社 パイロクロア型酸化物触媒の調製方法および燃料電池用電極触媒の製造方法
DK2928819T3 (da) * 2012-11-08 2019-05-06 Stamicarbon B V Acting Under The Name Of Mt Innovation Center FREMGANGSMÅDE TIL SVOVLGENVINDING MED SAMTIDIG HYDROGENFREMSTILLING UD AF NH3- og H2S-HOLDIG TILFØRSESLGAS
CN106673068A (zh) * 2016-11-22 2017-05-17 中国科学院生态环境研究中心 钙钛矿型复合氧化物催化材料在h2s选择氧化过程中的应用
CN109114577B (zh) * 2018-06-29 2020-11-06 山东三维石化工程股份有限公司 一种Claus工艺H2S酸性气催化燃烧方法
CN110841641A (zh) * 2019-11-23 2020-02-28 青岛联信催化材料有限公司 一种硫化氢选择氧化制硫磺催化剂及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150080213A1 (en) * 2010-05-11 2015-03-19 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada Synthesis of Pyrochlore Nanostructures and Uses Thereof
CN105188917A (zh) * 2013-05-09 2015-12-23 沙特基础工业全球技术公司 粘土矿物负载型催化剂
CN105026316A (zh) * 2013-07-11 2015-11-04 沙特基础工业全球技术公司 制备烧绿石的方法
JP2022061331A (ja) * 2020-10-06 2022-04-18 国立大学法人 大分大学 含ビスマスルテニウムパイロクロア金属酸化物の製造方法および酸素電極触媒の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENG, J. ; LI, J. ; MA, C. ; HAO, Z.: "Catalytic combustion of methane over La"2TM"0"."3Zr"1"."7O"7"-"@d (TM=Mn, Fe, and Co) pyrochlore oxides", CATALYSIS COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 10, no. 8, 30 March 2009 (2009-03-30), AMSTERDAM, NL , pages 1170 - 1173, XP025980691, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2009.01.006 *
MAURICIO, M. ET AL.: "Catalytic assessment of Fe-La-Zr trimetallic mixed oxides in the FischerTropsch synthesis using bio-syngas", BIOMASS AND BIOENERGY, vol. 127, 17 June 2019 (2019-06-17), XP085798035, DOI: 10.1016/j.biombioe.2019.105278 *

Also Published As

Publication number Publication date
CN114950451B (zh) 2023-03-28
KR20230158460A (ko) 2023-11-20
CN114950451A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
Zhou et al. Mn and Fe oxides co-effect on nanopolyhedron CeO2 catalyst for NH3-SCR of NO
CN110508309B (zh) 一种氮化碳负载铬氧化物催化剂及其制备方法和应用
Zeng et al. A study on the NH 3-SCR performance and reaction mechanism of a cost-effective and environment-friendly black TiO 2 catalyst
WO2017181570A1 (zh) 兼具抗碱(土)金属和抗硫抗水功能的脱硝催化剂及其制法和应用
CN109012144B (zh) 六铝酸盐复合氧化物材料在h2s催化分解反应中的应用
CN102764645A (zh) 一种选择性催化还原氮氧化物的催化剂、其制备方法及用途
JPWO2011105501A1 (ja) Coシフト触媒、coシフト反応装置及びガス化ガスの精製方法
CN110773219B (zh) 一种光-Fenton脱硫脱硝催化剂及其制备方法
Ao et al. Simultaneous catalytic oxidation of NO and Hg0 over LaBO3 (B= Co, Mn, Ni, and Cu) perovskites
CN108772057A (zh) 一种低温scr氧化锰催化剂及其制备方法和应用
CN113877638B (zh) 分步沉淀法制备脱硝脱二噁英脱VOCs一体化催化剂的制备方法、制得的催化剂
Que et al. Novel synthesis of reed flower-like SmMnOx catalyst with enhanced low-temperature activity and SO2 resistance for NH3-SCR
Cheng et al. Facile synthesis of Schistose-like Co-Mn oxides for low-temperature catalytic oxidation of NO with enhanced SO2/H2O tolerance
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
WO2023050865A1 (zh) 烧绿石复合材料及其制备方法和应用
Chen et al. In-situ DRIFTS for reaction mechanism and SO 2 poisoning mechanism of NO oxidation over γ-MnO 2 with good low-temperature activity
Li et al. Insights into the simultaneously enhanced activity, selectivity, and H2O resistance of cobalt modified MnCeOx/TiO2 catalyst for selective catalytic reduction of NOx with NH3
CN112221488A (zh) 一种协同脱硝脱汞的新型核壳结构催化剂及制备方法
CN112892569B (zh) 碳化硅负载氧化铈催化剂及采用其在中高温条件下硫化氢选择氧化制硫的方法
Li et al. Mn MOF-derivatives synthesized based upon a mechanochemistry method for low-temperature NH3-SCR: From amorphous precursor to amorphous catalyst
CN114522691A (zh) 一种用于有机硫催化水解的复合金属氧化物的制备方法
CN100522317C (zh) 低温催化n2o直接分解的钴铈复合氧化物催化剂
Zhu et al. N-doped porous carbon material derived by MOFs calcined in proper oxygen atmosphere as high-performance catalyst for the low-temperature NH3-SCR
US8754137B2 (en) Methanation reaction methods utilizing enhanced catalyst formulations and methods of preparing enhanced methanation catalysts
CN112774688A (zh) 一种纳米锰基氧化物低温脱硝催化剂及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874263

Country of ref document: EP

Kind code of ref document: A1