CN114950451B - 烧绿石复合材料及其制备方法和应用 - Google Patents

烧绿石复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN114950451B
CN114950451B CN202210505726.5A CN202210505726A CN114950451B CN 114950451 B CN114950451 B CN 114950451B CN 202210505726 A CN202210505726 A CN 202210505726A CN 114950451 B CN114950451 B CN 114950451B
Authority
CN
China
Prior art keywords
ammonia
pyrochlore
catalyst
recovery
pyrochlore composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210505726.5A
Other languages
English (en)
Other versions
CN114950451A (zh
Inventor
郝郑平
蒋国霞
杨镇文
张凤莲
赵梦菲
张中申
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Chinese Academy of Sciences
Original Assignee
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Chinese Academy of Sciences filed Critical University of Chinese Academy of Sciences
Priority to CN202210505726.5A priority Critical patent/CN114950451B/zh
Priority to KR1020237013225A priority patent/KR102677328B1/ko
Priority to PCT/CN2022/097750 priority patent/WO2023050865A1/zh
Publication of CN114950451A publication Critical patent/CN114950451A/zh
Application granted granted Critical
Publication of CN114950451B publication Critical patent/CN114950451B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8612Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8634Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/047Decomposition of ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/36Three-dimensional structures pyrochlore-type (A2B2O7)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Combustion & Propulsion (AREA)
  • General Health & Medical Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种烧绿石复合材料及其制备方法和应用,属于酸性气治理和资源回收技术领域。其技术方案为:所述烧绿石复合材料的分子式为:La2FexZr2‑xO7,0≤x≤0.5,通过以下方法制备:1)前驱体金属盐溶液的制备;2)量取氨水加水稀释,配成缓冲溶液;3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100‑130℃干燥10h以上制得前驱物材料;4)将前驱物材料于空气中800℃以上焙烧4‑6h,得到复合氧化物催化剂La2FexZr2‑xO7。本发明烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H2S,保持高的硫选择性,在高温段能完全分解NH3,表现出优异的催化活性。

Description

烧绿石复合材料及其制备方法和应用
技术领域
本发明涉及酸性气治理和资源回收技术领域,具体涉及一种烧绿石复合材料及其制备方法和应用。
背景技术
随着全球能源需求的持续增长和清洁化石燃料的逐渐耗竭,越来越多的高含硫含氮油气资源被开采和利用。含硫和含氮燃料的直接燃烧会导致硫氧化物和氮氧化物污染排放。因此,精炼厂需要对这些油气燃料进行纯化,将其中的硫和氮转化为H2S和NH3,从而产生含氨酸性气。此外,煤化工行业也会产生这一酸性废气。
目前,工业上一般采用Claus工艺对酸性气中的H2S和NH3进行无害化处理,并回收硫磺。该工艺由热反应段和催化反应段组成,在热反应段,NH3被氧化为N2,同时三分之一的H2S于高温(>1000℃)下被O2氧化为SO2;在催化反应段,借助催化剂的作用,SO2和剩余的H2S在较低温度(200-350℃)下发生反应,生成硫单质和水:
4NH3+3O2→2N2+6H2O
H2S+3/2O2→SO2+H2O
SO2+2H2S→3/nSn+2H2O
现有技术虽然回收了含氨酸性气中的硫资源,却流失了含氨酸性气中蕴含的宝贵氢资源。H2是一种高能量密度的清洁能源,也是一种重要的化工原料。目前,世界商用H2有很大一部分来自化石燃料和醇类的裂解,成本和碳排放弊端不容忽视。因此,若能开发一种催化材料与方法,将含氨酸性气中的H2S选择氧化为硫单质和水,而使NH3分解为氮气和氢气,便能从酸性废气中回收硫磺和氢气,有望实现更高水平的环境效益和经济效益:
2H2S+O2→1/nSn+H2O
2NH3→N2+3H2
烧绿石复合氧化物因其极好的热稳定性、优异的氧移动性和本征氧空位而在催化领域受到广泛关注。其通式为A2B2O7,属于面心立方晶系,Fd3m空间群,A位通常为半径较大的三价稀土金属离子(如La、Pr、Sm、Y、Nd、Gd),与8个氧阴离子配位形成扭曲立方结构,B位为半径较小的四价过渡金属离子(如Zr、Sn、Ti、Ir、Ru),与6个氧阴离子配位形成八面体结构。A位和B位金属离子的半径比rA/rB对材料晶体结构具有重要影响,若rA/rB在1.46-1.78之间,A2B2O7一般会晶化为有序烧绿石结构;若rA/rB小于1.46,其趋向于转变为无序的立方萤石。使用不同的金属离子取代A位或B位元素,可调变烧绿石复合氧化物的组成、结构和理化性质,改善其催化性能,借此开发出适用于H2S选择氧化和NH3分解反应的催化材料,回收含氨酸性气中的硫资源和氢资源。
发明内容
本发明要解决的技术问题是:克服现有技术的不足,提供一种烧绿石复合材料及其制备方法,在含氨酸性气硫氢资源回收中能够在高温段和低温段分别回收硫磺和H2,实现能源的最大化利用。
本发明的技术方案为:
第一方面,公开了一种烧绿石复合材料,所述烧绿石复合材料的分子式为:La2FexZr2-xO7,0≤x≤0.5。
第二方面,公开了烧绿石复合材料的制备方法,其特征在于,包括以下步骤:
1)将La(NO3)3·6H2O、Fe(NO3)3·9H2O和Zr(NO3)4·5H2O溶解于硝酸酸化的水溶液中得到金属盐溶液;
2)量取氨水加水稀释,配成缓冲溶液;
3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100-130℃干燥10h以上制得前驱物材料。
4)将前驱物材料于空气中800℃以上焙烧4-6h,得到复合氧化物催化剂La2FexZr2- xO7
优选地,所述步骤1)中La(NO3)3·6H2O、Fe(NO3)3.9H2O和Zr(NO3)4.5H2O的摩尔比为2:x:(2-x),0≤x≤0.5;步骤2)中缓冲溶液按体积比水:氨水=0~1进行配制;步骤3)中滴加的金属盐溶液与缓冲溶液体积比为1~2。
第三方面,公开了烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:含氨酸性气和空气混合后通过上述催化剂,经低温段和高温段反应分别被转化为硫磺和H2
优选地,所述含氨酸性气来自石油化工和/或煤化工和/或天然气化工行业。
优选地,所述含氨酸性气中H2S浓度为0~100vol%,NH3浓度可为0~40vol%。
优选地,所述低温段H2S选择氧化反应温度为140~300℃,高温段NH3分解反应温度为350~800℃,低温段和高温段反应压力均为常压。
本发明与现有技术相比,具有以下有益效果:
1.本发明烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H2S,保持高的硫选择性,在高温段能完全分解NH3,表现出优异的催化活性;2.本发明烧绿石复合氧化物材料作为催化剂催化反应受NH3干扰小,所需反应温度更低,耗能少,可实现含氨酸性气的无害化处理,同时回收硫磺和H2,产物的附加值更高,经济效益更显著,具有重要的工程意义。
附图说明
图1为实施例1-6制备的取代型烧绿石复合氧化物材料的XRD谱图;
图2为实施例4和对比例1-5制备的取代型烧绿石复合氧化物材料的XRD谱图;
图3为取代型烧绿石复合氧化物材料在低温段的H2S选择氧化活性曲线;
图4为取代型烧绿石复合氧化物材料在高温段的NH3分解活性曲线;
图5为取代型烧绿石复合氧化物材料在NH3气氛下选择氧化H2S的活性曲线。
具体实施方式
实施例1-6的烧绿石复合材料La2FexZr2-xO7(0≤x≤0.5)(简称为LFxZO)的具体制备方法如下,
1)将La(NO3)3·6H2O、Fe(NO3)3·9H2O和Zr(NO3)4·5H2O溶解于200ml硝酸酸化的水溶液中得到金属盐溶液;
2)量取50ml氨水(25%-28%)加50ml超纯水稀释,配成100ml缓冲溶液;
3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于120℃干燥12h制得前驱物材料。
4)将前驱物材料于空气中900℃焙烧5h,得到复合氧化物催化剂La2FexZr2-xO7(LFxZO,0≤x≤0.5)。
实施例1-6中La(NO3)3·6H2O、Fe(NO3)3·9H2O和Zr(NO3)4·5H2O的具体投料如表1所示,
表1
实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
x 0 0.1 0.2 0.3 0.4 0.5
La(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g 8.6602g
Fe(NO<sub>3</sub>)<sub>3</sub>·9H<sub>2</sub>O 0g 0.4040g 0.8080g 1.2120g 1.6160g 2.0201g
Zr(NO<sub>3</sub>)<sub>4</sub>·5H<sub>2</sub>O 8.5864g 8.1570g 7.7277g 7.2984g 6.8691g 6.4398g
实施例1-6的烧绿石复合材料La2FexZr2-xO7(0≤x≤0.5)的XRD图谱如图1所示,从图中可以看出烧绿石复合材料La2FexZr2-xO7(0≤x≤0.5)与标准图谱相应位置吻合,烧绿石复合材料La2FexZr2-xO7(0≤x≤0.5)已成功制备。
对比例1
La2Fe0.3Ti1.7O7(简称为LF0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO3)3·6H2O、1.212g Fe(NO3)3·9H2O和14.9823g TiCl3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例2
La2Ni0.3Ti1.7O7(简称为LN0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO3)3·6H2O、0.8724g Ni(NO3)2·6H2O和14.9823g TiCl3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例3
La2Co0.3Ti1.7O7(简称为LCo0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO3)3·6H2O、0.8731g Co(NO3)2·6H2O和14.9823g TiCl3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例4
La2Ce0.3Ti1.7O7(简称为LCe0.3TO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO3)3·6H2O、1.3027g Ce(NO3)3·6H2O和14.9823g TiCl3溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
对比例5
La2Ni0.3Zr1.7O7(简称为LN0.3ZO)的制备:与实施例1不同的是步骤1)中金属盐溶液不同,其余步骤均相同,具体为将8.6602g La(NO3)3·6H2O、0.8724g Ni(NO3)2·6H2O和7.2984g Zr(NO3)4·5H2O溶液溶解于200ml硝酸酸化的水溶液中得到金属盐溶液。
实施例4和对比例1-5制备的取代型烧绿石复合氧化物材料的XRD谱图如图2所示,从图中可以看出实施例4和对比例1-5的取代型烧绿石复合材料已成功制备。
实施例7
实施例7为实施例1-6制备的催化剂LFxZO、对比例1制备的催化剂LF0.3TO、对比例2制备的LN0.3TO、对比例3制备的LCo0.3TO、对比例4制备的LCe0.3TO和对比例5制备的LN0.3ZO在低温段的H2S选择催化氧化应用实施例,LFxZO、LF0.3TO、LN0.3TO、LCo0.3TO、LCe0.3TO、LN0.3ZO,采用小型固定床连续流动反应评价装置,测试其在低温段选择氧化含氨酸性气中H2S以回收硫磺的催化性能。具体操作为:在石英反应管中填充质量为0.3g粒径为40~60目的催化剂,将含氨酸性气模拟气(2000ppm H2S和1000ppm O2,流量为150mL/min)通入催化剂床层,在280℃下进行气固相催化反应,反应后的气体成分及浓度由XLZ-1090在线气体分析仪进行检测。催化剂的催化性能由H2S转化率和SO2产率表示:
Figure BDA0003635945950000061
Figure BDA0003635945950000062
实施例7在低温段的H2S选择氧化活性曲线如图3所示。
如图3(a)所示,在180-280℃温度范围内,相比于合成的LN0.3TO、LCo0.3TO、LCe0.3TO、LN0.3ZO催化材料,H2S可被LF0.3ZO和LF0.3TO两种烧绿石复合氧化物材料高效选择催化氧化为硫单质,并且生成SO2量很少,可确保低温段H2S选择氧化反应的硫收率保持在较高水平。另外,如图3(b)所示,随着Fe取代量的增加,LFxZO烧绿石复合材料在低温段选择氧化H2S活性明显提高。
实施例8
实施例8为实施例4制备的催化剂LF0.3ZO、对比例1制备的催化剂LF0.3TO、对比例2制备的LN0.3TO、对比例3制备的LCo0.3TO、对比例4制备的LCe0.3TO和对比例5制备的LN0.3ZO在高温段的NH3催化分解应用实施例,本实施例采用小型固定床连续流动反应评价装置。具体操作为:在石英反应管中填充0.3g 40~60目的催化剂,将经低温段回收硫磺后的含氨酸性气模拟气(含3000ppm NH3,流量为150mL/min)通入催化剂床层,在400~650℃下进行气固相催化反应,反应后的气体成分及浓度由气相色谱仪和XLZ-1090在线气体分析仪进行检测,催化剂的催化性能由NH3转化率表示,结果如图4所示。
由图4可知,合成的系列烧绿石复合氧化物催化剂均对NH3分解存在一定的催化活性,其中LF0.3ZO和LN0.3ZO在高温段几乎均能实现NH3完全分解(NH3转化率在96%以上)制H2,显示出最为优异的NH3分解活性。
实施例9
实施例9为实施例4制备的催化剂LF0.3ZO在低温段的含氨酸性气中H2S选择氧化应用实施例,采用小型固定床连续流动反应评价装置,测试其在低温段选择氧化含氨酸性气中H2S以回收硫磺的催化性能。具体操作为:在石英反应管中填充质量为0.3g粒径为40~60目的催化剂,将含氨酸性气模拟气(含3000ppm NH3、2000ppm H2S和1000ppm O2,流量为150mL/min)通入催化剂床层,在280℃下进行气固相催化反应,反应后的气体成分及浓度由XLZ-1090在线气体分析仪进行检测。催化剂的催化性能由NH3转化率、H2S转化率和SO2产率表示:
Figure BDA0003635945950000071
Figure BDA0003635945950000081
Figure BDA0003635945950000082
实施例9在低温段的H2S选择氧化活性曲线如图5所示。
在烧绿石催化剂LF0.3ZO的催化下,含氨酸性气中H2S可在低温段被催化转化以回收硫磺,而NH3不被转化,充分证明了LF0.3ZO在低温段高效性选择性催化H2S,保持高的硫选择性。
本发明制备的烧绿石复合氧化物材料La2FexZr2-xO7(0≤x≤0.5)能满足分段实现H2S选择氧化和NH3分解的要求,通过在低温段和高温段分别装填合适的H2S选择氧化催化剂和NH3分解催化剂,可无害化处理含氨酸性气并从中高效回收硫氢资源;本发明烧绿石复合氧化物材料结构稳定,组成与催化性能可灵活调控,制备方法简单易行,其在低温段能高效地转化H2S,保持高的硫选择性,在高温段能完全分解NH3,表现出优异的催化活性;本发明烧绿石复合氧化物材料作为催化剂催化反应受NH3干扰小,所需反应温度更低,耗能少,可实现含氨酸性气的无害化处理,同时回收硫磺和H2,产物的附加值更高,经济效益更显著,具有重要的工程意义。
尽管通过参考附图并结合优选实施例的方式对本发明进行了详细描述,但本发明并不限于此。在不脱离本发明的精神和实质的前提下,本领域普通技术人员可以对本发明的实施例进行各种等效的修改或替换,而这些修改或替换都应在本发明的涵盖范围内/任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (7)

1.一种烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:含氨酸性气和空气混合后通过作为催化剂的烧绿石复合材料,经低温段和高温段反应分别被转化为硫磺和H2,所述烧绿石复合材料的分子式为:La2FexZr2-xO7,0≤x≤0.5。
2.如权利要求1所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于,烧绿石复合材料的制备包括以下步骤:
1)将La(NO3)3·6H2O、Fe(NO3)3·9H2O和Zr(NO3)4·5H2O溶解于硝酸酸化的水溶液中得到金属盐溶液;
2)量取氨水加水稀释,配成缓冲溶液;
3)将上述两种溶液以一定的速度同时滴入盛有蒸馏水的烧杯中,保持pH=10±0.5,搅拌,陈化过夜,离心洗涤沉淀,于100-130℃干燥10h以上,制得前驱物材料;
4)将前驱物材料于空气中800℃以上焙烧4-6h,得到复合氧化物催化剂La2FexZr2-xO7
3.如权利要求2所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述步骤1)中La(NO3)3·6H2O、Fe(NO3)3·9H2O和Zr(NO3)4·5H2O的摩尔比为2:x:(2-x),0≤x≤0.5;步骤2)中缓冲溶液按体积比水:氨水=0~1进行配制;步骤3)中滴加的金属盐溶液与缓冲溶液体积比为1~2。
4.如权利要求1所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述含氨酸性气来自石油化工和/或煤化工和/或天然气化工行业。
5.如权利要求4所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述含氨酸性气中H2S浓度为0~100vol%,NH3浓度为0~40vol%。
6.如权利要求4所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述低温段H2S选择氧化反应温度为140~300℃,高温段NH3分解反应温度为350~800℃,低温段和高温段反应压力均为常压。
7.如权利要求4所述的烧绿石复合材料作为催化剂在含氨酸性气硫氢资源回收中的应用,其特征在于:所述低温段H2S选择氧化反应中,O2/H2S为0.3~1.5;高温段NH3分解反应中,O2/NH3为0~0.5。
CN202210505726.5A 2022-05-10 2022-05-10 烧绿石复合材料及其制备方法和应用 Active CN114950451B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210505726.5A CN114950451B (zh) 2022-05-10 2022-05-10 烧绿石复合材料及其制备方法和应用
KR1020237013225A KR102677328B1 (ko) 2022-05-10 2022-06-09 파이로클로어 복합 재료 및 이의 제조 방법과 응용
PCT/CN2022/097750 WO2023050865A1 (zh) 2022-05-10 2022-06-09 烧绿石复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210505726.5A CN114950451B (zh) 2022-05-10 2022-05-10 烧绿石复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN114950451A CN114950451A (zh) 2022-08-30
CN114950451B true CN114950451B (zh) 2023-03-28

Family

ID=82981114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210505726.5A Active CN114950451B (zh) 2022-05-10 2022-05-10 烧绿石复合材料及其制备方法和应用

Country Status (3)

Country Link
KR (1) KR102677328B1 (zh)
CN (1) CN114950451B (zh)
WO (1) WO2023050865A1 (zh)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101716502A (zh) * 2009-11-17 2010-06-02 华东师范大学 一种烧绿石型复合氧化物光催化剂的制备方法
US8900537B2 (en) 2010-05-11 2014-12-02 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The University Of Nevada, Reno Synthesis of pyrochlore nanostructures and uses thereof
CN101879445A (zh) * 2010-07-15 2010-11-10 济南大学 一种催化燃烧去除柴油车碳烟的稀土烧绿石型复合氧化物催化剂及其制备方法
JP5503465B2 (ja) * 2010-08-30 2014-05-28 Jx日鉱日石エネルギー株式会社 パイロクロア型酸化物触媒の調製方法および燃料電池用電極触媒の製造方法
KR101395548B1 (ko) * 2012-03-23 2014-05-14 경북대학교 산학협력단 H2s 및 nh3 동시 제거용 고성능 몰리브덴―니켈계 촉매―흡수제 및 이의 제조방법
CN104812699B (zh) * 2012-11-08 2017-09-26 代表Mt创新中心的斯塔米卡邦有限公司 从含有nh3的进料回收硫并同时制造氢的方法
US9409150B2 (en) 2013-05-09 2016-08-09 Sabic Global Technologies B.V. Clay mineral supported catalysts
WO2015004529A2 (en) * 2013-07-11 2015-01-15 Sabic Global Technologies B.V. Method of making pyrochlores
CN106673068A (zh) * 2016-11-22 2017-05-17 中国科学院生态环境研究中心 钙钛矿型复合氧化物催化材料在h2s选择氧化过程中的应用
CN109114577B (zh) * 2018-06-29 2020-11-06 山东三维石化工程股份有限公司 一种Claus工艺H2S酸性气催化燃烧方法
CN110841641A (zh) * 2019-11-23 2020-02-28 青岛联信催化材料有限公司 一种硫化氢选择氧化制硫磺催化剂及其制备方法
JP7517685B2 (ja) * 2020-10-06 2024-07-17 国立大学法人 大分大学 含ビスマスルテニウムパイロクロア金属酸化物の製造方法および酸素電極触媒の製造方法

Also Published As

Publication number Publication date
CN114950451A (zh) 2022-08-30
WO2023050865A1 (zh) 2023-04-06
KR20230158460A (ko) 2023-11-20
KR102677328B1 (ko) 2024-06-24

Similar Documents

Publication Publication Date Title
Chen et al. SCR catalyst doped with copper for synergistic removal of slip ammonia and elemental mercury
Zhou et al. NH3 treatment of CeO2 nanorods catalyst for improving NH3-SCR of NO
CN112892547B (zh) 一种同时脱除氮氧化物和一氧化碳的催化剂及制备方法
CN101810996A (zh) 氨水-乙二胺合钴(ⅱ)同时脱硫脱硝生产硫酸铵和硝酸铵的方法
Ao et al. Simultaneous catalytic oxidation of NO and Hg0 over LaBO3 (B= Co, Mn, Ni, and Cu) perovskites
CN110479303A (zh) 一种干法固体脱硫脱硝用催化剂及其脱硫脱硝剂
CN102513095B (zh) 一种炭基材料负载铈钨的中温脱硝催化剂及其制备方法
CN112138725B (zh) 催化分解n2o的钴基金属有机框架衍生催化剂的制备方法
CN113877638B (zh) 分步沉淀法制备脱硝脱二噁英脱VOCs一体化催化剂的制备方法、制得的催化剂
Li et al. Insights into the simultaneously enhanced activity, selectivity, and H2O resistance of cobalt modified MnCeOx/TiO2 catalyst for selective catalytic reduction of NOx with NH3
Zhang et al. Establishment of a novel Fenton-like enhanced low-temperature selective catalytic reduction over FeVO4 catalysts
Wang et al. The promotion of NH3-SCR performance and its mechanism on Sm modified birnessite
Liu et al. Getting insight into the CO tolerance over Co-modified MnSm/Ti catalyst for NH3-SCR of NOx at low temperature: Experiments and DFT studies
CN104772037A (zh) 利用Pd-CeO2/Me-SAPO分子筛净化丙烯腈装置吸收塔尾气的方法
CN111268735B (zh) 一种片状二氧化锰及其制备方法和应用
CN114950451B (zh) 烧绿石复合材料及其制备方法和应用
US20010000475A1 (en) Sulfide catalysts for reducing SO2 to elemental sulfur
Xiong et al. Removal of NO by catalytic decomposition of vaporized H2O2 over Mo–Fe/TiO2 catalyst
CN113648826B (zh) 一种基于钙循环的协同脱除co2和no的方法
CN113083314B (zh) 一种钒掺杂铁基低温脱硝催化剂及其制备方法和应用
CN109364713A (zh) 一种同时脱除烟气中SO2和NOx的方法
Wang et al. Enhancement of N2O decomposition performance by co-doping of Ni and Y to Co3O4 catalyst
Shi et al. Rational modulation of redox equilibrium over Mn modified Ce-Sn catalyst for low-temperature elimination of NO and Hg0
Van Steenweghen et al. Green ammonia synthesis from stationary NO x emission sources on a catalytic lean NO x trap
CN116099541B (zh) 一种富含氧空位的铁基钙钛矿催化剂的制备及其高效脱除no方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant