WO2023045404A1 - Multi-stage periodic light-emitting apparatus for agricultural lighting and lighting method thereof - Google Patents

Multi-stage periodic light-emitting apparatus for agricultural lighting and lighting method thereof Download PDF

Info

Publication number
WO2023045404A1
WO2023045404A1 PCT/CN2022/097607 CN2022097607W WO2023045404A1 WO 2023045404 A1 WO2023045404 A1 WO 2023045404A1 CN 2022097607 W CN2022097607 W CN 2022097607W WO 2023045404 A1 WO2023045404 A1 WO 2023045404A1
Authority
WO
WIPO (PCT)
Prior art keywords
lighting
light
shaft
cultivation
plants
Prior art date
Application number
PCT/CN2022/097607
Other languages
French (fr)
Inventor
Sen WANG
Qichang Yang
Zonggeng LI
Original Assignee
Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences filed Critical Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences
Publication of WO2023045404A1 publication Critical patent/WO2023045404A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/24Devices or systems for heating, ventilating, regulating temperature, illuminating, or watering, in greenhouses, forcing-frames, or the like
    • A01G9/249Lighting means
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S4/00Lighting devices or systems using a string or strip of light sources
    • F21S4/20Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports
    • F21S4/28Lighting devices or systems using a string or strip of light sources with light sources held by or within elongate supports rigid, e.g. LED bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/12Technologies relating to agriculture, livestock or agroalimentary industries using renewable energies, e.g. solar water pumping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/21Dinitrogen oxide [N2O], e.g. using aquaponics, hydroponics or efficiency measures

Definitions

  • the present invention relates to plant cultivation technology, and more particularly to a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof.
  • CN110418571A discloses a lighting device for plant cultivation that generates artificial light suitable for occasions of increased harvests, or a plant cultivation apparatus using the device, or a plant cultivation method using the device.
  • the lighting device for plant cultivation projects artificial light to a plant from a lateral of the plant.
  • the known device is characterized in comprising an LED circuit that has plural LED elements serving to generate the artificial light; an LED drive circuit that supplies the LED circuit with a LED drive current.
  • the LED drive current includes a first period where the LED drive current is high and a second period where the LED drive current is low or zero. As the LED drive current changes periodically, the artificial light correspondingly has periodic variation in its intensity when irradiate the plant.
  • CN107439242A discloses a control method for shortening growth cycles of plants.
  • the known method comprising: providing lighting to plants using a control device capable of shortening growth cycles of the plants, so that light density at plant surfaces is 2000-6000Lux.
  • the method can be used to generate light having a waveband similar to that of sunlight, and can also be used to provide plants with light having a waveband matching their needs, thereby promoting plant growth.
  • the present invention provides a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof.
  • the present invention relates a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof, wherein the multi-stage periodic light-emitting apparatus comprises: a cultivation device for carrying or accommodating agricultural products, and a lighting device for providing lighting to the agricultural products cultivated in the cultivation device, wherein the lighting device has a first lighting portion made as a linear light source that is configured to, when driven by a rotating component, perform dynamic scanning on the agricultural products cultivated in the cultivation device, wherein spaced growing areas are defined in the cultivation device for the agricultural products, so that the first lighting portion provides lighting covering the growing areas having the agricultural products while performing the dynamic scanning.
  • agricultural products cultivated in a cultivation device may be plants.
  • a lighting device deposited on a cultivation device comprises a first lighting portion located at the remote-ground end of the shaft of the cultivation device and a second lighting portion located on the outer lateral surface of the shaft.
  • the first lighting portion and the second lighting portion each include plural light-emitting modules that can be driven independently.
  • the light-emitting module is constructed from a combination of light-emitting units that can be independently driven and have different emission wavelengths and/or light colors.
  • the light-emitting units of any light-emitting module in the first lighting portion are separated from each other by an installation clearance that gradually decreases as the distance between the light-emitting module and the shaft of the cultivation device increases.
  • the light-emitting units of any light-emitting module in the second lighting portion are separated from each other by an installation clearance that gradually decreases as the distance between the light-emitting module and the remote-ground end of the shaft of the cultivation device increases.
  • the first lighting portion is at least able to adjust an irradiating posture by which it irradiates plants in the cultivation device and/or light quality of the corresponding light source through an external drive, and the external drive associates monitoring data of a growing state and/or a growing environment of the plants through an external detecting device with preset thresholds.
  • the first lighting portion is at least able to swing against a shaft and rotate about the shaft by means of an external drive, and/or to adjust light source proportions of each light-emitting unit through an external drive.
  • the lighting device serves to provide controllable light that has changeable lighting intensity/illumination to the agricultural products in the cultivation device in response to input of an adjustable pulse voltage, wherein the pulse voltage has a pulse period that can be at least divided into a first waveband and a second waveband.
  • the lighting device provides the controllable light by adjusting lighting duration, the lighting intensity and/or proportions of the light sources of the corresponding light-emitting unit according to voltage variation and/or current variation of the first waveband.
  • the lighting device generates the controllable light having the lighting intensity/illumination close to or equal to zero candela according to a no-voltage state of the second waveband.
  • the cultivation device comprises first rails and second rails arranged coaxially.
  • at least one of the first rails extends from a remote-ground end to a near-ground end of the shaft and spirals about the shaft of the cultivation device, the first rail having a curve radius or its distance to the shaft increasing gradually in the extending direction from the remote-ground end to the near-ground end of the shaft.
  • plural second rails are such distributed on a peripheral surface of the shaft that adjacent second rails are staggered from each other according to set gaps provided in a first direction and/or a second direction, and when viewed in the first direction, the plural second rails arranged in the extending direction from the remote-ground end to the near-ground end of the shaft having lengths that are increasing gradually.
  • the first rails having a first channel and the second rails having a second channel intersect each other so as to form plural cultivation portions for cultivating the plants such that adjacent cultivation portions are staggered from each other.
  • plural first rails that extend axially along the shaft and spiral about the shaft are arranged on a peripheral surface of the shaft according to identical and/or different gaps configured in a first direction and/or a second direction, so that based on the gaps, plural first rails form cultivation layers separated by layer distances that are not completely equal.
  • plural second rails each form a certain included angle with the ground, and a curvature at any point on the second rail gradually decreases as its distance from the shaft increases, so that a nutrient solution can flow down by gravity so as to nourish the plants in the cultivation portion, and the flow rate of the nutrient solution flowing in the extending direction of the second rail gradually increases as the curvature of the second rail gradually decreases.
  • a hollow channel extends axially at the inner side of the shaft, wherein a pipe for delivering the nutrient solution is received in the hollow channel.
  • the pipe has plural outlets such formed on its outer lateral surface that adjacent said outlets are separated from each other in the axial direction of the shaft. Two ends of the pipe are connected to two ends of the first rail extending into the shaft, respectively, wherein each said outlet is communicated with one end of the second rail extending into the shaft.
  • the multi-stage periodic light-emitting apparatus is applicable to a management system that at least comprises: a managing device at least for real-time receiving state detection data of a plant factory, generating corresponding modulation data through calculation and analysis, and distributing the modulation data to corresponding devices; an imaging device for real-time monitoring growing states of plants in the plant factory and generating relevant images, and sending image information about the growing states of the plants to a managing device that generates the modulation data accordingly; a first detecting device for detecting plural parameters about a cultivation environment in the plant factory and transmitting information of the plural parameters to the managing device that generates the modulation data accordingly, so that the managing device can adjust the cultivation environment in the plant factory according to the modulation data; and an operation device, storing therein the modulation information to adjust the cultivation environment in the plant factory, for calling and distributing the corresponding modulation information in response to instructions from the managing device.
  • a managing device at least for real-time receiving state detection data of a plant factory, generating corresponding modulation data through calculation and analysis, and
  • the management system further comprises: a transceiver device serving to receive detection information uploaded by the imaging device and/or the first detecting device and send them to the managing device, and to receive the modulation information that is distributed to the operation device by the managing device and send it to the first detecting device and all the other devices except for itself; and an adjusting module serving to receive the modulation information distributed by the transceiver device, and according to the modulation information, to adjust the irradiating postures and/or the light qualities of the corresponding light sources for the first lighting portion and/or the second lighting portion to provide the supplementary lighting.
  • a transceiver device serving to receive detection information uploaded by the imaging device and/or the first detecting device and send them to the managing device, and to receive the modulation information that is distributed to the operation device by the managing device and send it to the first detecting device and all the other devices except for itself
  • an adjusting module serving to receive the modulation information distributed by the transceiver device, and according to the modulation information, to adjust the irradiating posture
  • the present invention provides a lighting method based on a management system, comprising a management system which can adjust the cultivation environment in the plant factory in a real-time manner
  • the process for the management system to adjust the plant cultivation environment in a real-time manner at least comprises the following steps: real-time receiving state detection data of a plant factory by a managing device and generating corresponding modulation data through calculation and analysis; real-time monitoring growing states of plants in the plant factory through an imaging device, generating relevant images, and sending image information about the growing states of the plants to a managing device that generates the modulation data accordingly; detecting plural parameters about a cultivation environment in the plant factory by a first detecting device and transmitting information of the plural parameters to the managing device that generates the modulation data accordingly, so that the managing device can adjust the cultivation environment in the plant factory according to the modulation data; in response to instructions from the managing device, calling and distributing through an operation device the corresponding modulation information stored therein to adjust the cultivation environment in the plant factory; receiving through a transceiver
  • FIG. 1 schematically illustrates the structure of a first rail according to a preferred mode of the present invention
  • FIG. 2 schematically illustrates the structure of a second rail according to a preferred mode of the present invention
  • FIG. 3 schematically illustrates the distribution of plural first rails along a shaft according to a preferred mode of the present invention
  • FIG. 4 is a top view of the first rail according to a preferred mode of the present invention.
  • FIG. 5 is a top view of the second rail according to a preferred mode of the present invention.
  • FIG. 6 is a top view of combined first and second rails according to a preferred mode of the present invention, showing that cultivation portions are formed by the combined first and second rails;
  • FIG. 7 schematically illustrates the structure of the shaft according to a preferred mode of the present invention.
  • FIG. 8 schematically illustrates the structure of a first lighting device according to a preferred mode of the present invention
  • FIG. 9 schematically illustrates the first lighting device in one of its irradiating states according to a preferred mode of the present invention.
  • FIG. 10 diagrammatically illustrates the control principle according to a preferred mode of the present invention.
  • first direction refers to the direction parallel to the ground or the X axis
  • second direction refers to the direction perpendicular to the ground or parallel to the Y axis
  • the present invention provides a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof, which are applicable to plant factories. Accordingly, the present invention further provides a plant factory, which at least comprises plural cultivation devices 1 that are installed in the plant factory for carrying plants to be cultivated, and a management system 2 that at least serves to adjust the cultivation environment in the plant factory in a real-time manner according to growing states and growing environments of the plants.
  • the cultivation device 1 in the plant factory at least comprises a plant cultivation shelf 10.
  • the plant cultivation shelf 10 may comprises a shaft 101, at least one first rail 102 extending spirally over the peripheral surface of the shaft 101, and plural second rails 103 distributed over the peripheral surface of the shaft 101 and spaced from each other in the axial direction of the shaft 101.
  • the end of the shaft 101 close to the ground is defined as a near-ground end 101a, and the end distant from the ground is defined as a remote-ground end 101b.
  • the first rail 102 spirally extending over the peripheral surface of the shaft 101 is zigzagged from the remote-ground end 101b to the near-ground end 101a, as shown in FIG. 1.
  • the first rail 102 spirally extending over the peripheral surface of the shaft 101 is configured to spirally extend along the axis of the shaft 101 and formed as a spiral rail expanding outward from the axis of the shaft 101 while extending downward.
  • the spiral expansion may be a regular spiral and/or an irregular spiral, as long as it forms the posture that the vertical distance between any point in the curve extending along the set direction and the shaft 101 gradually increases or decreases.
  • the first rail 102 spirally extending along the shaft 101 forms plural cultivation layers separated by layer distances that are not completely equal.
  • Every cultivation layer has an area defined by the first rail 102 circling the shaft 101, and the area of at least one of the cultivation layers may be defined as a complete plane, a half plane, or other options depending on the cultivation needs of the cultivation layers.
  • the layer distances between the cultivation layers are adaptive to the types of plants actually cultivated as well as growth properties and growth performance of the plants, so as to promote plant growth and development, thereby achieve their ideal growing states.
  • the first rail 102 is able to not only ensure ideal growth of the plants cultivated in the cultivation layers, but also make full use of the limited space of the cultivation layers.
  • the first rail 102 is configured to take the shaft 101 as its center of rotation, and extends spirally from the remote-ground end 101b of the shaft 101 toward the near-ground end 101a of the shaft 101.
  • the curve radius, at which the first rail 102 extends form the remote-ground end 101b to the near-ground end 101a of the shaft 101, or the vertical distance between the first rail and the shaft 101 is of the posture that it increases geometrically and/or proportionately.
  • at least a part of the first rail 102 that is close to the remote-ground end 101b is smaller in terms of curve radius or in terms of vertical distance to the shaft 101.
  • At least a part of the first rail 102 that is close to the near-ground end 101a is greater in terms of curve radius or in terms of vertical distance to the shaft 101.
  • This configuration is made with the consideration that plants at the remote-ground end 101b are closer to light sources and thus receive more plentiful and more intense light than plants at the lower side. Plants at the near-ground end 101a are relatively distant from light sources, and thus receive less plentiful and less intense light than plants at the upper side.
  • at least a part of the rail that is relatively close to the remote-ground end 101b may be used to plant light-demanding plants or long-day plants, or the same part of the rail that is relatively small in curve radius may be used to plant small plants.
  • a part of the rail that is relatively close to the near-ground end 101a may be used to plant plants having weak light tolerance or short-day plants, or the same part of the rail that is relatively large in curve radius may be used to plant large plants.
  • a first channel 1020 matching the first rail 102 in shape may be arranged to extend along the first rail 102 at the inner side of the first rail. The first channel 1020 is configured to carry and accommodate plants and deliver a nutrient solution.
  • plural first rails 102 may be arranged at the peripheral surface of the shaft 101.
  • the plural first rails 102 may be separated in a first direction and/or a second direction by certain clearances while spirally extending at the peripheral surface of the shaft 101.
  • the clearances between the plural first rails 102 in the first direction and/or the second direction may be identical or different, depending on the types of plants to be cultivated in the plant cultivation shelf 10.
  • the clearances between the plural first rails 102 may be adjusted so that plants at every site in every cultivation layer of the plural first rails 102 can receive proper lighting and achieve ideal growth matching their respective growth properties.
  • each of the first rails 102 is such arranged that its overall volume increases geometrically and/or proportionately.
  • the curve radius of at least a part of each of the first rail 102 that is in the same plane increases geometrically and/or proportionately.
  • the first rail 102 relatively close to the shaft 101 has an overall volume smaller than that of the first rail 102 relatively distant from the shaft 101.
  • the plural cultivation layers constructed by the plural first rails 102 are staggered from each other.
  • the plants in different cultivation layers of the first rails 102 mutually staggered can all be expose to lighting to the largest possible extent and thereby receive light that is at a proper ratio and of proper intensity, so as to keep the good growing state (e.g., developing upright) to the largest possible extent.
  • a ring-like second lighting portion 21b is provided on at least a part of the peripheral surface of the shaft 101, and at least one first lighting portion 21a of a roughly linear shape is movably provided at the remote-ground end 101b of the shaft 101.
  • the first lighting portion 21a may be of a folding structure.
  • the first lighting portion 21a covers the first rails 102 from above can shade at least a part of the plants below it, and prevents the natural light or sunlight light from reaching the shaded surfaces on the plants.
  • plants with these shaded surfaces can grow slowly as compared to nearby plants. This problem can be effectively solved by the folding structure as disclose herein.
  • the first lighting portion 21a may be folded toward the shaft 101 manually or by means of an external drive, so as not to block light, thereby allowing the plants on the first rails 102 to receive light uniformly and develop normally.
  • at least one first lighting portion 21a may be drawn toward the shaft 101 manually or in virtue of an external autonomous driving means to the extent that the first lighting portion 21a becomes parallel to the shaft 101, so as not to partially shade the underlying plants by the first lighting portion 21a and compromise their development.
  • the second lighting portion 21b may provide supplementary lighting to the plants on the spiral first rails 102 as it radially emits in a roughly ring-like pattern against the shaft 101.
  • the first lighting portion 21a irradiate the plants on the underlying first rails 102 from above, with the ideal case excepted from this discussion, some plants may shade each other from the lighting. For example, plants relatively close to the top may shade plants below them from light.
  • the first lighting portion 21a provides lighting to the plants on the first rails 102 in swinging and/or rotating motions, light pockets can appear on the plants.
  • the second lighting portion 21b is designed to work with the first lighting portion 21a and provide the plants on the first rails 102 with supplementary lighting from inside to outside. Particularly, when the first lighting portion 21a fails to provide perfect, full lighting coverage, the second lighting portion 21b may be used to irradiate the plants from different angles.
  • the second lighting portion 21b and the first lighting portion 21a may provide lighting at the same or different intensities. This is to ensure the optimal growth of the plants on each cultivation layers, so as to obtain good plant quality and make full use of available space on each first rail 102 and its cultivation layers. Further, a ratio of lighting intensity between the second lighting portion 21b and the first lighting portion 21a may be adjusted according to the real-time growing states of the plants in each cultivation layer. Specifically, an image-capturing device or the like may be used to detect the real-time growing states of the plants.
  • the first lighting portions 21a may be roughly parallel to the ground when projecting light to the plants on the first rails 102.
  • the first rails 102 may be parallel to the elements of the respective circular cones they form when projecting light to the plants on the first rails 102, as shown in FIG. 9.
  • the first lighting portions 21a may be mounted on a rotating component installed at the remote-ground end 101b of the shaft 101 and provide the plants on the first rails 102 with a light coverage in the shape of a circular truncated cone and/or a circular cone as they rotate about the shaft 101.
  • the rotating component may be any structure known in the art as long as it makes the first lighting portions 21a rotate about the shaft 101, without limitation.
  • the first lighting portion 21a as proposed in the embodiments of the present invention is configured to provide dynamic, moving, linear lighting, so the light pattern of the first lighting portion 21a is more constrictive, leading to increased lighting intensity.
  • the dynamic light helps reduce light pocket and allow more leaves to receive the light and prevents cilia on leaves from blocking the light, so that photoreceptors at the back of a leaf other can also get sufficient light and the plant can develop better.
  • the first lighting portions 21a are posed manually or in virtue of an external autonomous driving means before irradiating the underlying plants.
  • the external autonomous driving means such posing is made according to the growing states or the growing environment of the plants as monitored by an external device.
  • a known image-capturing device conventionally used for measuring plant leaf sizes or plant growth heights may be used.
  • sensors may be employed to detect parameters like the air humidity, temperature, lighting intensity, CO 2 concentration or O 2 concentration in the cultivation area of the plants.
  • an external control device or a central control device is used to analyze the images and compare them with standard data stored in a database. For example, when the leaf size reaches a preset growth threshold, an external control device or a central control device can drive the first lighting portions 21a to expand against the shaft 101. At this time, the plants in the lower cultivation layers may have not reached the growth threshold. Because of the relatively large distances between the terminal of each first lighting portions 21a and the lower cultivation layers, the resulting lighting intensity can be reduced.
  • an external drive may be used so as to increase the lighting intensity of the light-emitting elements of the first lighting portion 21a at the side distant from the shaft 101, and properly adjust the lighting intensity of the light-emitting elements in other sections of the first lighting portion 21a, thereby offsetting the effect of the light distance on lighting intensity.
  • an external control device or a central control device is used to analyze the images and compare them with standard data stored in a database. For example, when the leaf size reaches a preset growth threshold, an external control device or a central control device can drive the first lighting portions 21a to come close to and/or go distant from the shaft 101 in a retracting or expanding motion, and the rotating components can drive the first lighting portions 21a to rotate. For the plants in other zones not satisfying the growth threshold, an external drive may be used to adjust the lighting intensity of the light-emitting elements in the different sections of the first lighting portions 21a, thereby satisfying the light-exposure needs of these plants.
  • an external control device or a central control device is used to analyze the data and compare them with standard data to see whether the CO 2 concentration, the O 2 concentration, or the ratio therebetween reaches a preset threshold. For example, if the CO 2 concentration is lower than a certain threshold and the O 2 concentration is higher than a certain threshold or their ratio is higher than a certain threshold, it is determined that the plants in the area have relatively strong net photosynthesis.
  • an external control device or a central control device may be used to retract and/or expand the first lighting portions 21a, and the rotating component can drive the first lighting portions 21a to rotate, thereby decreasing lighting in the area where the plants satisfy the preset threshold and/or increasing lighting in the area where the plants have not reached the preset threshold.
  • the first lighting portion 21a and the second lighting portion 21b may each be composed of plural light-emitting modules 210 that can be driven independently.
  • each light-emitting module 210 may be composed of plural light-emitting units that can be driven independently and have different emission wavelengths or light colors.
  • each light-emitting module 210 is provided with a first light-emitting unit 210a, a second light-emitting unit 210b, and a third light-emitting unit 210c.
  • the first light-emitting unit 210a may use a red LED light source having an emission wavelength of 620nm ⁇ 760nm.
  • the second light-emitting unit 210b may use a blue LED light source having an emission wavelength of 400nm ⁇ 450nm.
  • the third light-emitting unit 210c may use a green LED light source having an emission wavelength of 492nm ⁇ 577nm.
  • the first light-emitting unit 210a, the second light-emitting unit 210b, and the third light-emitting unit 210c that have different emission wavelengths, light satisfying different growth needs of the plants on the first rails 102 can be provided.
  • the first light-emitting unit 210a, the second light-emitting unit 210b, and the third light-emitting unit 210c can be driven simultaneously so as to compose composite light that simulate natural light. Furthermore, by adjusting the intensity shares of the light-emitting units, the light quality of the composite light can be changed. This in turn changes the lighting effect on the plants and thereby promotes the plants to reach their optimal growing states in the ideal lighting environment. Specifically, in view that a high share of blue light may not only retard or inhibit plant growth and prevent synthesis of carbohydrates, but also cause harm to human eyes, a desired scheme is about properly increasing the share of red light and decreasing the share of blue light.
  • plural first rails 102 take the shaft 101 as its center of rotation and extend from the remote-ground end 101b to the near-ground end 101a of the shaft 101 while spiraling about the shaft 101.
  • the curve radius at which each first rail 102 spirally extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101 or the vertical distance to the shaft 101 increases geometrically and/or proportionately.
  • the light-emitting module 210 composed of plural light-emitting units that can be driven independently and have different emission wavelengths or light colors is such configured that when viewed in the arranged direction of the roughly linear first lighting portion 21a, the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in each light-emitting module 210 increases or decreases proportionately, as shown in FIG. 8.
  • the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in the light-emitting module 210 relatively close to shaft 101 is greater than the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in the light-emitting module 210 relatively distant from the shaft 101.
  • the exact installation clearances may be determined according to the actual configuration of the first rails 102 and with reference to parameters like the photosynthetic photon flux and the photon flux as computed using suitable equations.
  • the installation clearance among the light-emitting elements in the light-emitting modules 210 are set different according to the effect of the light quality, compositional proportions, and intensity of the first lighting portion 21a on the plants carried by the underlying first rails 102.
  • the installation clearance among the light-emitting elements in the light-emitting modules 210 are set different according to the effect of the light quality, compositional proportions, and intensity of the first lighting portion 21a on the plants carried by the underlying first rails 102.
  • the installation clearance among the light-emitting elements in the light-emitting modules 210 are set different according to the effect of the light quality, compositional proportions, and intensity of the first lighting portion 21a on the plants carried by the underlying first rails 102.
  • the horizontally posed first lighting portions 21a irradiate the plants in the underlying cultivation layers of the first rails 102
  • the installation clearances and the lighting intensity are both constant throughout the apparatus, the levels of effective lighting reaching the plants in different cultivation layers are different because the plants in different cultivation layers are distant from the first lighting portions 21a in the second direction differently.
  • the light available to the plants in the lower cultivation layers of the first rails 102 is even more limited.
  • the installation clearance among the light-emitting elements in the first lighting portion 21a decreases gradually as the curve radius increases geometrically and/or proportionately when the first rail 102 extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101.
  • At least a part of the plants relatively close to the remote-ground end 101b of the first rail 102 is relatively close to the first lighting portion 21a and thus receives effective lighting in the relatively high level, so the installation clearance among the light-emitting elements at this area is relatively large, thereby preventing excessively high photosynthetic photon flux generated at the overlapped area among the light ranges.
  • This not only prevents excessive light exposure of plants at the corresponding sites and waste of the redundant light, but also eliminates the growth-inhibiting effects brought about by excessive light exposure.
  • radiation diffusion of light can be accomplished to reduce superposition of light generated by the light-emitting elements, and to in turn expand the overall coverage of the disclosed apparatus.
  • the installation clearance among the light-emitting elements in the light-emitting module 210 at the side of the first lighting portion 21a close to the shaft 101 is relatively large, so the superposed light intensity acting on at least a part of the plants near the remote-ground end 101b of the first rail 102 can be reduced, thereby allowing light generated by these light-emitting elements to better reach plants in other cultivation layers.
  • the installation clearance among the light-emitting elements in the light-emitting module 210 at the tail of the side of the first lighting portion 21a distant from the shaft 101 is the smallest.
  • At least a part of the plants relatively close to the near-ground end 101a of the first rail 102 is distant from the first lighting portion 21a, and thus only receive the effective light in the relatively low level, so the installation clearance among the light-emitting elements at this area is relatively small, thereby increasing the photosynthetic photon flux generated at the overlapped area among the light ranges.
  • This not only prevents excessive low exposure of plants at the corresponding sites under the composite light and enhances the utilization rate of light, but also eliminates the growth-inhibiting effects brought about by insufficient light exposure.
  • radiation diffusion of light can be accomplished to increase superposition of light generated by the light-emitting elements, and to in turn decrease light dispersion, making more light concentrate here, thereby creating relatively strong light exposure.
  • the installation clearance among the light-emitting elements in the light-emitting module 210 at the side of the first lighting portion 21a close to the shaft 101 is relatively large, so the superposed light intensity acting on at least a part of the plants near the remote-ground end 101b of the first rail 102 can be reduced, thereby allowing light generated by these light-emitting elements to better reach plants in other cultivation layers.
  • the installation clearances among light-emitting elements in the first lighting portions 21a is relatively large, so the superposed light intensity acting on at least a part of the plants near the remote-ground end 101b of the first rail 102 can be reduced, thereby allowing light generated by these light-emitting elements to better reach plants in other cultivation layers.
  • the variation in lighting intensity caused by the variation in light distance can be compensated by adjusting the proportions and lighting intensities of the light-emitting elements in different sections of the first lighting portion 21a the according to the distance between the plants in each cultivation layer of first lighting portion 21a.
  • the installation clearance among the light-emitting units in each light-emitting module 210 of the second lighting portion 21b is set in the same way as described above for the first lighting portion 21a. Specifically, in the extending direction from the remote-ground end 101b to the near-ground end 101a of the shaft 101, the installation clearances among the light-emitting units in the light-emitting modules 210 of the second lighting portion 21b decrease successively.
  • the installation clearance among the light-emitting elements in each light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b that is close to the remote-ground end 101b is relatively large, and the installation clearance among the light-emitting elements in each light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b that is close to the near-ground end 101a is relatively small.
  • the part of the first rail 102 at its side close to the remote-ground end 101b of the shaft 101 has a relatively small curve radius or is relatively close to the shaft 101, and therefore this part of rail can receive more plentiful and more intense effective lighting than the lower part of the rail.
  • this part of rail can receive more plentiful and more intense effective lighting than the lower part of the rail.
  • the light-emitting elements in the light-emitting module 210 at this part of rail have a relatively large installation clearance.
  • the installation clearance among the light-emitting elements in the light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b close to the near-ground end 101a is relatively small.
  • at least a part of the plants relatively close to the near-ground end 101a of the first rail 102 is distant from the second lighting portion 21b, and thus only receive the effective light in the relatively low level, so the installation clearance among the light-emitting elements at this area is relatively small, thereby increasing the photosynthetic photon flux generated at the overlapped area among the light ranges.
  • the exact installation clearances may be determined according to the actual configuration of the first rails 102 and with reference to parameters like the photosynthetic photon flux and the photon flux as computed using suitable equations.
  • plural second rails 103 of different lengths are separated along the axial direction of the shaft 101 and distributed over the peripheral surface of the shaft. Specifically, every second rails 103 is inclined with respect to the ground so as to form a certain included angle with the ground. Preferably, such inclination is helpful for liquid to naturally flow down by gravity. Further, a second channel 1030 is formed at the inner side of the second rail 103. The first channel 1020 serves to accommodate the first rail 102 and deliver a nutrient solution. The first rail 102 and the second rail 103 are arranged coaxially.
  • plural first rails 102 and plural second rails 103 with their respective channels intersecting jointly create plural cultivation portions P for cultivating plants in the cultivation layers of the first rails 102, as shown in FIG. 6.
  • the cultivation portions P in the adjacent cultivation layers are staggered with a clearance left therebetween. This helps maximize the utilization rate of cultivation space in both the first and second directions.
  • the lengths of the plural second rails 103 arranged in the direction from the remote-ground end 101b to the near-ground end 101b of the shaft 101 successively increase, as shown in FIG. 2 and FIG. 5.
  • the second rail 103 closest to the remote-ground end 101b of the shaft 101 has the smallest length
  • the second rail 103 closest to the near-ground end 101b of the shaft 101 has the greatest length.
  • the difference in length between the second rail 103 adjacent in the axial direction of the shaft 101 may be selected according to the configuration of the first rail 102.
  • each first rail 102 spirally extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101 or the vertical distance to the shaft 101 increases geometrically and/or proportionately
  • the second rail 103 closer to the remote-ground end 101b requires a smaller curve radius of the first rails or fewer first rails 102
  • the second rail 103 closer to the near-ground end 101a requires a greater curve radius of the first rails or a fewer number of first rails 102.
  • plural cultivation portions P in the cultivation layers of the first rail 102 may have identical or different clearances, depending on the types of plants to be cultivated in the cultivation layers and full use of the limited space.
  • the number of the cultivation portions P and their clearances can be changed by adjusting the number of the second rails 103 and their clearances, in addition to the adjustment on the number of the first rails 102, their clearances, and the layer distances between the cultivation layers, so as to make full use of the cultivation space in the cultivation layers of the first rail 102, and improve light exposure of the plants in the cultivation layers.
  • the present invention is applicable to the existing practices of hydroponics and/or aeroponics.
  • hydroponics for example, for cultivation performed in plural cultivation portions P formed by the first rails 102 and the second rails 103, a nutrient solution in the first channel 1020 of the first rail 102 can easily flow down due to the gravity, and reach the cultivation portions P to soak the plants, so that the plants in the cultivation portions P can absorb nutrition delivered by the nutrient solution and have their growth promoted.
  • the shaft 101 is perpendicular to plural imaginary round, oval, or spiral planes of the first rails 102 that are spaced in the axial direction of the shaft 101 and defined by the first rails 102 surrounding the shaft.
  • the shaft 101 defines therein a hollow channel 1010 extending axially.
  • the hollow channel 1010 contains therein a pipe 1011 for delivering the nutrient solution.
  • Plural outlets 1012 are formed on the peripheral surface of the pipe 1011 and are separately staggered along its axial direction, as shown in FIG. 7.
  • every outlet 1012 is communicated with the end of the second rail 103 extending into the shaft 101.
  • a liquid pumping device such as a centrifugal pump may be provided inside the pipe 1011, so as to drawn the nutrient solution at the bottom of the pipe 1011 upward to the top of the pipe 1011 along the pipe 1011.
  • the nutrient solution can flow into the second channel 1030 of the second rail 103 through the outlet 1012, and then flow down by gravity in virtue of the inclination of the second rail 103.
  • the two ends of the pipe 1011 close to the near-ground end 101a and the remote-ground end 101b of the shaft 101, respectively, are connected to two ends of the first rail 102 extending into the shaft 101, so that the nutrient solution flows in the first channel 1020 of the first rail 102 can eventually flow into the pipe 1011, and when drawn up to the top of the pipe 1011, can flow into the first channel 1020 of the first rail 102 again, thereby repeating irrigation of the nutrient solution as described previously.
  • the curvature at any site on the curved second rail 103 continuously decrease as its distance to the shaft 101 increase.
  • the curvature of the second rail 103 continuously decreases in its extending direction.
  • the nutrient solution flows in the extending direction of the second channel 1030.
  • plants in the cultivation portion P at the top of the second rail 103 contact the nutrient solution first, and then the nutrient solution contact plants in the cultivation portion P below the second rail 103.
  • the nutrient solution will stay longer in the cultivation portion P at the top of the second rail 103 because the large curvature helps retain the nutrient solution to some extent, which means it contact the plants in the top cultivation portion P longer, thereby allowing the plants to absorb the nutrient in the nutrient solution effectively.
  • the curvature continuously decreases in the extending direction of the second rail 103, the flow rate of the nutrient solution increases gradually, and the time it contacts the plants in the cultivation portion P at the bottom of the second rail 103 decrease gradually.
  • a part of the nutrient solution in the cultivation portion P at the top of the second rail 103 may keep flowing down because the capacity of the cultivation portion P available for the nutrient solution is limited, or the retaining effect provided by the curvature features is limited. This makes some nutrient solution in the top cultivation portion P keep flowing downward, so as to replenish the bottom cultivation portion P with the nutrient solution, and prevent the concentration of the nutrient solution from becoming excessively high and causing seedling wilting among the plants in the bottom cultivation portion P.
  • the management system 2 for adjusting the cultivation environment in the plant factory may comprise a managing device 201 that is outside the plant factory and serves to drive or adjust the cultivation environment in the plant factory, a first communication device 202 outside the plant factory, as well as a second communication device 203, an operation device 204, a transceiver device 205, an imaging device 206, a power device 207, a regulator device 208, a second detecting device 209, a first detecting device 210, and a lighting device 21, all located inside the plant factory.
  • the lighting device 21 at least comprises the first lighting portion 21a and the second lighting portion 21b as described previously.
  • the managing device 201 may be any one or a combination of terminals like a desktop computer, a tablet computer, and a smartphone.
  • the managing device 201 can be used to set and execute the modulation program of the management system 2, to control the operation of the imaging device 206, to real-time check the environment image information of the plant factory uploaded by the imaging device 206, and to adjust the lighting posture, proportions of light sources, and lighting intensity of the lighting device 21 installed on the plant cultivation shelf 10 according to the real-time growing states of the plants in the plant factory.
  • the first communication device 202 may be a local area network (LAN) device
  • the second communication device 203 may be a wired/wireless router.
  • the transceiver device 205 may be a gateway server.
  • the imaging device 206 may be one or a combination of a video camera, a still camera, and other photography devices.
  • the power device 207 serves to power the other devices in its system.
  • the regulator device 208 serves to adjust the irradiating state of the lighting device 21.
  • the second detecting device 209 serves to detect the current or voltage of electric energy output by the power device 207 to the other devices in the system.
  • the first detecting device 210 comprises plural sensors for detecting parameters in the plant factory, such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration, the O 2 concentration, the current, and the voltage. These devices can all be connected in a wired or wireless manner.
  • the managing device 201 may analyze the image or digital information collected from, for example, the imaging device 206, the second detecting device 209, or the first detecting device 210, so as to identify the cultivation environment in the plant factory and the growing states of the cultivated plants.
  • the first detecting device 210 uploads parameter information of the plant factory such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration and the O 2 concentration to the managing device 201 through the network, if any parameter fails to meet the expected goal or exceed a preset threshold, it may suggest that the cultivation environment currently in the plant factory is not ideal for promotion of plant growth.
  • an administrator of the plant factory may be notified and then use the operation device 204 to adjust the parameters of, for example, fresh air equipment and temperature managing equipment, so as to restore the good cultivation environment for the plant factory.
  • the imaging device 206 uploads image information about the growing states of the plants, such as the growth heights and the leaf sizes, to the managing device 201, if any parameter fails to meet the expected goal or exceed a preset threshold, it may suggest that the lighting conditions for the plants in the plant factory is not optimal.
  • an administrator of the plant factory may be notified and then use the operation device 204 to adjust the relevant parameters of the lighting device 21, so as to change the proportions of light sources and the lighting intensity of the lighting device 21, thereby providing lighting most favorable to the plants in the plant factory.
  • the first communication device 202 serves to establish communication connection between the managing device 201 located in the plant factory and the second communication device 203 located outside the plant factory.
  • the first communication device 202 is wired or wireless.
  • the second communication device 203 serves to realize wired/wireless transmission and signal conversion between the managing device 201 and the operation device 204, or managing device 201, or the imaging device 206.
  • the second communication device 203 can search for any available operation device 204 and imaging device 206 in the plant factory, and connect thereto.
  • the operation device 204 may be a computer device located in the plant factory. Further, the operation device 204 has its memory storing modulation information about parameters such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration, the current, and the voltage. Preferably, different kinds of modulation information can be sent to the regulator device 208, the second detecting device 209, and the first detecting device 210 by the operation device 204. Specifically, an administrator may according to the instruction he/she received from the managing device 201, use the operation device 204 to select modulation information that meets different modulation requirements, and using the transceiver device 205 to send the information to the regulator device 208, the second detecting device 209, or the first detecting device 210.
  • the transceiver device 205 can receive the modulation information of the operation device 204, and further send the modulation information to the regulator device 208, the second detecting device 209, or the first detecting device 210.
  • the transceiver device 205 sends modulation data about the wavelength and the lighting intensity to the regulator device 208, for the latter to adjust the lighting device 21 in terms of lighting posture and light-emitting property.
  • the transceiver device 205 sends modulation data about the current and the voltage to the second detecting device 209, for the latter to adjust the power device 207 in terms of electric output.
  • the transceiver device 205 sends modulation data about the temperature and the humidity to the first detecting device 210, so as to maintain a stable cultivation environment according in the plant factory to the modulation data.
  • adjustment of light-emitting properties of the lighting device 21, such as the emission wavelength and the lighting intensity, according to the modulation information performed by the regulator device 208 may be achieved by adjusting the pulse voltages supplied by the power device 207 to the lighting device 21.
  • the pulse voltages supplied by the power device 207 to the lighting device 21 may be divided into at least two wavebands.
  • the first waveband may be a voltage-varying waveband where the voltage value decreases from the preset value to almost zero
  • the second waveband may be a no-voltage waveband.
  • the light-emitting units in the first lighting portion 21a and/or the second lighting portion 21b can adjust the lighting duration, the lighting intensity, the proportions of light sources and/or the lighting curve pattern in response to the voltage variation and/or the current variation of the first waveband, so as to emit the controllable light. Further, the light-emitting units in the first lighting portion 21a and/or the second lighting portion 21b can generate the controllable light having its lighting intensity/illumination close to or equal to zero candela in response to the no-voltage state of the second waveband.
  • the pulse period may be further divided into three wavebands.
  • the first waveband is a constant voltage waveband or voltage-varying waveband.
  • the second waveband is a voltage-varying waveband where the voltage changes continuously from the voltage value of the waveband to almost zero.
  • the third waveband is a no-voltage waveband.
  • the voltage variation, the lighting duration, and the spectral variation of the first waveband and the second waveband are controllable.
  • the lighting device 21 emit the first controllable light in response to the voltage variation and/or current variation of the first waveband according to a set of parameters including at least one of the lighting intensities, the lighting duration, the light-emitting spectrum, and the light-emitting curve.
  • the light of the first waveband may be light of constant lighting intensity, or may be light of varying lighting intensity.
  • the specific irradiating state of the lighting device 21 is adjusted according to factors like spatial locations of the plants in the cultivation device 1 and real-time growing states of the plants, so that the periodic light variation of the lighting device 21 matches the growth needs of the plants.
  • the light-emitting cycle can be regularly adjusted, so as to change one or several parameters of the lighting device 21 such as the lighting duration, the lighting intensity, and/or the proportions of light sources, thereby customizing the flicker specific to the properties of the plants, accelerating plant growth, optimizing growing states of plants, and maximizing economic profits.
  • the imaging device 206 can using the remote modulation functions of the managing device 201 to monitor the growing states of plants and operation states of the lighting device 21 in the plant factory in a real-time manner, and send the collected image data to the managing device 201. Further, in the event of abnormal growing states of plants or abnormal operation states of the lighting device in the plant factory, the managing device 201 may alarm and prompt an administrator to timely adjust the postures of the plants in the cultivation shelf 10 or investigate, repair, or replace the lighting device 21.
  • the second detecting device 209 generates power information by performing analog to digital conversion on the current or voltage of the electric energy output by the power device 207 to other devices in the system, such as the regulator device 208 and the lighting device 21, and sends the power information to the managing device 201 through the second communication device 203 and the transceiver device 205 successively.
  • the managing device 201 generates power adjustment data according to the power information through analysis and computation, and sends the power adjustment data to the operation device 204.
  • An administrator then can send the power adjustment data sent to the operation device 204 to the second detecting device 209 through the transceiver device 205, and reset the power output properties of the power device 207 according to the power adjustment data.
  • the saved electric energy may be used by the imaging device 206 for state monitoring of the plant factory, or may be used by the first detecting device 210 for measurement of environment parameters of the plant factory, or may be used by the lighting device 21 to provide supplementary lighting to the plants.

Abstract

A multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof, wherein the multi-stage periodic light-emitting apparatus comprises: a cultivation device (1) for carrying or accommodating agricultural products, and a lighting device (21) for providing lighting to the agricultural products cultivated in the cultivation device (1), wherein the lighting device (21) has a first lighting portion (21a) made as a linear light source that is configured to, when driven by a rotating component, perform dynamic scanning on the agricultural products cultivated in the cultivation device (1), wherein spaced growing areas are defined in the cultivation device (1) for the agricultural products, so that the first lighting portion (21a) provides lighting covering the growing areas having the agricultural products while performing the dynamic scanning.

Description

MULTI-STAGE PERIODIC LIGHT-EMITTING APPARATUS FOR AGRICULTURAL LIGHTING AND LIGHTING METHOD THEREOF BACKGROUND OF THE INVENTION
1. Technical Field
The present invention relates to plant cultivation technology, and more particularly to a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof.
2. Description of Related Art
CN110418571A discloses a lighting device for plant cultivation that generates artificial light suitable for occasions of increased harvests, or a plant cultivation apparatus using the device, or a plant cultivation method using the device. The lighting device for plant cultivation projects artificial light to a plant from a lateral of the plant. The known device is characterized in comprising an LED circuit that has plural LED elements serving to generate the artificial light; an LED drive circuit that supplies the LED circuit with a LED drive current. The LED drive current includes a first period where the LED drive current is high and a second period where the LED drive current is low or zero. As the LED drive current changes periodically, the artificial light correspondingly has periodic variation in its intensity when irradiate the plant.
CN107439242A discloses a control method for shortening growth cycles of plants. The known method comprising: providing lighting to plants using a control device capable of shortening growth cycles of the plants, so that light density at plant surfaces is 2000-6000Lux. The method can be used to generate light having a waveband similar to that of sunlight, and can also be used to provide plants with light having a waveband matching their needs, thereby promoting plant growth.
In the prior art, plant cultivation shelves in plant factories are structurally unsatisfying in terms of resource usage and plant growth. Hence, the prior art has to be improved in at least one or more aspects.
SUMMARY OF THE INVENTION
To address at least one or more technical problems of the prior art, the present invention provides a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof.
To achieve the above-mentioned objectives, the present invention relates a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof, wherein the multi-stage periodic light-emitting apparatus comprises: a cultivation device for carrying or accommodating agricultural products, and a lighting device for providing lighting to the agricultural products cultivated in the cultivation device, wherein the lighting device has a first lighting portion made as a linear light source that is configured to, when driven by a rotating component, perform dynamic scanning on the agricultural products cultivated in the cultivation device, wherein spaced growing areas are defined in the cultivation device for the agricultural products, so that the first lighting portion provides lighting covering the growing areas having  the agricultural products while performing the dynamic scanning. Preferably, agricultural products cultivated in a cultivation device may be plants.
According to a preferred mode, a lighting device deposited on a cultivation device comprises a first lighting portion located at the remote-ground end of the shaft of the cultivation device and a second lighting portion located on the outer lateral surface of the shaft. The first lighting portion and the second lighting portion each include plural light-emitting modules that can be driven independently. The light-emitting module is constructed from a combination of light-emitting units that can be independently driven and have different emission wavelengths and/or light colors. The light-emitting units of any light-emitting module in the first lighting portion are separated from each other by an installation clearance that gradually decreases as the distance between the light-emitting module and the shaft of the cultivation device increases. Preferably, the light-emitting units of any light-emitting module in the second lighting portion are separated from each other by an installation clearance that gradually decreases as the distance between the light-emitting module and the remote-ground end of the shaft of the cultivation device increases. Preferably, the first lighting portion is at least able to adjust an irradiating posture by which it irradiates plants in the cultivation device and/or light quality of the corresponding light source through an external drive, and the external drive associates monitoring data of a growing state and/or a growing environment of the plants through an external detecting device with preset thresholds. Preferably, the first lighting portion is at least able to swing against a shaft and rotate about the shaft by means of an external drive, and/or to adjust light source proportions of each light-emitting unit through an external drive.
Preferably, the lighting device serves to provide controllable light that has changeable lighting intensity/illumination to the agricultural products in the cultivation device in response to input of an adjustable pulse voltage, wherein the pulse voltage has a pulse period that can be at least divided into a first waveband and a second waveband. Preferably, the lighting device provides the controllable light by adjusting lighting duration, the lighting intensity and/or proportions of the light sources of the corresponding light-emitting unit according to voltage variation and/or current variation of the first waveband. Preferably, the lighting device generates the controllable light having the lighting intensity/illumination close to or equal to zero candela according to a no-voltage state of the second waveband.
Preferably, the cultivation device comprises first rails and second rails arranged coaxially. Preferably, at least one of the first rails extends from a remote-ground end to a near-ground end of the shaft and spirals about the shaft of the cultivation device, the first rail having a curve radius or its distance to the shaft increasing gradually in the extending direction from the remote-ground end to the near-ground end of the shaft. Preferably, plural second rails are such distributed on a peripheral surface of the shaft that adjacent second rails are staggered from each other according to set gaps provided in a first direction and/or a second direction, and when viewed in the first direction, the plural second rails arranged in the extending direction from the remote-ground end to the near-ground end of the shaft having lengths that are increasing gradually. Preferably, the first rails having a first channel and the second rails having a second channel intersect each other so as to form plural cultivation portions for cultivating the plants such that adjacent cultivation portions are staggered from each other.
Preferably, plural first rails that extend axially along the shaft and spiral about the shaft are arranged on a peripheral surface of the shaft according to identical and/or different gaps configured in a first direction and/or a second direction, so that based on the gaps, plural first rails form cultivation layers separated by layer distances that are not completely equal. Preferably,  plural second rails each form a certain included angle with the ground, and a curvature at any point on the second rail gradually decreases as its distance from the shaft increases, so that a nutrient solution can flow down by gravity so as to nourish the plants in the cultivation portion, and the flow rate of the nutrient solution flowing in the extending direction of the second rail gradually increases as the curvature of the second rail gradually decreases. Preferably, a hollow channel extends axially at the inner side of the shaft, wherein a pipe for delivering the nutrient solution is received in the hollow channel. Preferably, the pipe has plural outlets such formed on its outer lateral surface that adjacent said outlets are separated from each other in the axial direction of the shaft. Two ends of the pipe are connected to two ends of the first rail extending into the shaft, respectively, wherein each said outlet is communicated with one end of the second rail extending into the shaft.
Preferably, the multi-stage periodic light-emitting apparatus is applicable to a management system that at least comprises: a managing device at least for real-time receiving state detection data of a plant factory, generating corresponding modulation data through calculation and analysis, and distributing the modulation data to corresponding devices; an imaging device for real-time monitoring growing states of plants in the plant factory and generating relevant images, and sending image information about the growing states of the plants to a managing device that generates the modulation data accordingly; a first detecting device for detecting plural parameters about a cultivation environment in the plant factory and transmitting information of the plural parameters to the managing device that generates the modulation data accordingly, so that the managing device can adjust the cultivation environment in the plant factory according to the modulation data; and an operation device, storing therein the modulation information to adjust the cultivation environment in the plant factory, for calling and distributing the corresponding modulation information in response to instructions from the managing device. Preferably, the management system further comprises: a transceiver device serving to receive detection information uploaded by the imaging device and/or the first detecting device and send them to the managing device, and to receive the modulation information that is distributed to the operation device by the managing device and send it to the first detecting device and all the other devices except for itself; and an adjusting module serving to receive the modulation information distributed by the transceiver device, and according to the modulation information, to adjust the irradiating postures and/or the light qualities of the corresponding light sources for the first lighting portion and/or the second lighting portion to provide the supplementary lighting.
Preferably, the present invention provides a lighting method based on a management system, comprising a management system which can adjust the cultivation environment in the plant factory in a real-time manner, wherein the process for the management system to adjust the plant cultivation environment in a real-time manner at least comprises the following steps: real-time receiving state detection data of a plant factory by a managing device and generating corresponding modulation data through calculation and analysis; real-time monitoring growing states of plants in the plant factory through an imaging device, generating relevant images, and sending image information about the growing states of the plants to a managing device that generates the modulation data accordingly; detecting plural parameters about a cultivation environment in the plant factory by a first detecting device and transmitting information of the plural parameters to the managing device that generates the modulation data accordingly, so that the managing device can adjust the cultivation environment in the plant factory according to the modulation data; in response to instructions from the managing device, calling and distributing through an operation device the corresponding modulation information stored therein to adjust the cultivation environment in the plant factory; receiving through a transceiver device the detection information uploaded by the imaging device and/or the first detecting device and send  them to the managing device, and receiving the modulation information that is distributed to the operation device by the managing device and sending it to the first detecting device and all the other devices except for itself; and according to the modulation information distributed by the transceiver device, adjusting by an adjusting module the irradiating postures and/or the light qualities of the corresponding light sources for the first lighting portion and/or the second lighting portion to provide the supplementary lighting.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 schematically illustrates the structure of a first rail according to a preferred mode of the present invention;
FIG. 2 schematically illustrates the structure of a second rail according to a preferred mode of the present invention;
FIG. 3 schematically illustrates the distribution of plural first rails along a shaft according to a preferred mode of the present invention;
FIG. 4 is a top view of the first rail according to a preferred mode of the present invention;
FIG. 5 is a top view of the second rail according to a preferred mode of the present invention;
FIG. 6 is a top view of combined first and second rails according to a preferred mode of the present invention, showing that cultivation portions are formed by the combined first and second rails;
FIG. 7 schematically illustrates the structure of the shaft according to a preferred mode of the present invention;
FIG. 8 schematically illustrates the structure of a first lighting device according to a preferred mode of the present invention;
FIG. 9 schematically illustrates the first lighting device in one of its irradiating states according to a preferred mode of the present invention; and
FIG. 10 diagrammatically illustrates the control principle according to a preferred mode of the present invention.
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail with reference to the accompanying drawings.
To be defined at first, in the present invention, the “first direction” refers to the direction parallel to the ground or the X axis, and the “second direction” refers to the direction perpendicular to the ground or parallel to the Y axis.
The present invention provides a multi-stage periodic light-emitting apparatus for agricultural lighting and a lighting method thereof, which are applicable to plant factories. Accordingly, the present invention further provides a plant factory, which at least comprises plural cultivation devices 1 that are installed in the plant factory for carrying plants to be cultivated, and a management system 2 that at least serves to adjust the cultivation environment in the plant factory in a real-time manner according to growing states and growing environments of the plants.
According to a preferred mode, the cultivation device 1 in the plant factory at least comprises a plant cultivation shelf 10. The plant cultivation shelf 10 may comprises a shaft 101, at least one first rail 102 extending spirally over the peripheral surface of the shaft 101, and plural second rails 103 distributed over the peripheral surface of the shaft 101 and spaced from each other in the axial direction of the shaft 101. Preferably, the end of the shaft 101 close to the ground is defined as a near-ground end 101a, and the end distant from the ground is defined as a remote-ground end 101b.
According to a preferred mode, the first rail 102 spirally extending over the peripheral surface of the shaft 101 is zigzagged from the remote-ground end 101b to the near-ground end 101a, as shown in FIG. 1. Preferably, the first rail 102 spirally extending over the peripheral surface of the shaft 101 is configured to spirally extend along the axis of the shaft 101 and formed as a spiral rail expanding outward from the axis of the shaft 101 while extending downward. Preferably, the spiral expansion may be a regular spiral and/or an irregular spiral, as long as it forms the posture that the vertical distance between any point in the curve extending along the set direction and the shaft 101 gradually increases or decreases.
According to a preferred mode, the first rail 102 spirally extending along the shaft 101 forms plural cultivation layers separated by layer distances that are not completely equal. Every cultivation layer has an area defined by the first rail 102 circling the shaft 101, and the area of at least one of the cultivation layers may be defined as a complete plane, a half plane, or other options depending on the cultivation needs of the cultivation layers. Since plants cultivated in the cultivation layers may be the same or different, and the plants may be in different growth stages and thus have different morphological forms, the plants under cultivation can be diverse at least in terms of appearance. Therefore, preferably, the layer distances between the cultivation layers are adaptive to the types of plants actually cultivated as well as growth properties and growth performance of the plants, so as to promote plant growth and development, thereby achieve their ideal growing states. Preferably, with a structure designed properly, the first rail 102 is able to not only ensure ideal growth of the plants cultivated in the cultivation layers, but also make full use of the limited space of the cultivation layers.
According to a preferred mode, the first rail 102 is configured to take the shaft 101 as its center of rotation, and extends spirally from the remote-ground end 101b of the shaft 101 toward the near-ground end 101a of the shaft 101. In addition, the curve radius, at which the first rail 102 extends form the remote-ground end 101b to the near-ground end 101a of the shaft 101, or the vertical distance between the first rail and the shaft 101 is of the posture that it increases geometrically and/or proportionately. Optionally, at least a part of the first rail 102 that is close to the remote-ground end 101b is smaller in terms of curve radius or in terms of vertical distance to the shaft 101. On the contrary, at least a part of the first rail 102 that is close to the near-ground end 101a is greater in terms of curve radius or in terms of vertical distance to the shaft 101. This configuration is made with the consideration that plants at the remote-ground end 101b are closer to light sources and thus receive more plentiful and more intense light than plants at the lower  side. Plants at the near-ground end 101a are relatively distant from light sources, and thus receive less plentiful and less intense light than plants at the upper side. Preferably, at least a part of the rail that is relatively close to the remote-ground end 101b may be used to plant light-demanding plants or long-day plants, or the same part of the rail that is relatively small in curve radius may be used to plant small plants. On the contrary, at least a part of the rail that is relatively close to the near-ground end 101a may be used to plant plants having weak light tolerance or short-day plants, or the same part of the rail that is relatively large in curve radius may be used to plant large plants. Further, a first channel 1020 matching the first rail 102 in shape may be arranged to extend along the first rail 102 at the inner side of the first rail. The first channel 1020 is configured to carry and accommodate plants and deliver a nutrient solution.
According to a preferred mode, as shown in FIG. 3, plural first rails 102 may be arranged at the peripheral surface of the shaft 101. Specifically, the plural first rails 102 may be separated in a first direction and/or a second direction by certain clearances while spirally extending at the peripheral surface of the shaft 101. Optionally, the clearances between the plural first rails 102 in the first direction and/or the second direction may be identical or different, depending on the types of plants to be cultivated in the plant cultivation shelf 10. For adapting to growth morphology or light-exposure needs of different plants, the clearances between the plural first rails 102 may be adjusted so that plants at every site in every cultivation layer of the plural first rails 102 can receive proper lighting and achieve ideal growth matching their respective growth properties.
According to a preferred mode, as shown in FIG. 6, on the peripheral surface of the shaft 101, two first rails 102 having spirally expanding structures are separated by a clearance. Preferably, taking the shaft 101 as the center, in a direction that is parallel to the first direction and leaves the shaft 101, each of the first rails 102 is such arranged that its overall volume increases geometrically and/or proportionately. Or to say, the curve radius of at least a part of each of the first rail 102 that is in the same plane increases geometrically and/or proportionately. Additionally, the first rail 102 relatively close to the shaft 101 has an overall volume smaller than that of the first rail 102 relatively distant from the shaft 101. On other words, when viewed in the second direction from the top, the plural cultivation layers constructed by the plural first rails 102 are staggered from each other. Preferably, due to phototropism, the plants in different cultivation layers of the first rails 102 mutually staggered can all be expose to lighting to the largest possible extent and thereby receive light that is at a proper ratio and of proper intensity, so as to keep the good growing state (e.g., developing upright) to the largest possible extent.
According to a preferred mode, a ring-like second lighting portion 21b is provided on at least a part of the peripheral surface of the shaft 101, and at least one first lighting portion 21a of a roughly linear shape is movably provided at the remote-ground end 101b of the shaft 101. Specifically, the first lighting portion 21a may be of a folding structure. When the plants do not need supplementary lighting and simply the natural light or sunlight, the first lighting portion 21a covers the first rails 102 from above can shade at least a part of the plants below it, and prevents the natural light or sunlight light from reaching the shaded surfaces on the plants. As a result, for a long term, plants with these shaded surfaces can grow slowly as compared to nearby plants. This problem can be effectively solved by the folding structure as disclose herein. The first lighting portion 21a may be folded toward the shaft 101 manually or by means of an external drive, so as not to block light, thereby allowing the plants on the first rails 102 to receive light uniformly and develop normally. Alternatively, at least one first lighting portion 21a may be drawn toward the shaft 101 manually or in virtue of an external autonomous driving means to the extent that the first lighting portion 21a becomes parallel to the shaft 101, so as not to partially  shade the underlying plants by the first lighting portion 21a and compromise their development.
According to a preferred mode, the second lighting portion 21b may provide supplementary lighting to the plants on the spiral first rails 102 as it radially emits in a roughly ring-like pattern against the shaft 101. Specifically, when the first lighting portion 21a irradiate the plants on the underlying first rails 102 from above, with the ideal case excepted from this discussion, some plants may shade each other from the lighting. For example, plants relatively close to the top may shade plants below them from light. Besides, in the process where the first lighting portion 21a provides lighting to the plants on the first rails 102 in swinging and/or rotating motions, light pockets can appear on the plants. For example, at least a part of the first rails 102 relatively close to the shaft 101 may be shaded by the part of first rails 102 located more peripherally. Consequently, at least a part of the plants may be prevented from receiving effective lighting at their leaves for photosynthesis that is necessary to plant growth and development. As a solution to this problem, the second lighting portion 21b is designed to work with the first lighting portion 21a and provide the plants on the first rails 102 with supplementary lighting from inside to outside. Particularly, when the first lighting portion 21a fails to provide perfect, full lighting coverage, the second lighting portion 21b may be used to irradiate the plants from different angles. Preferably, in view of phototropism, the second lighting portion 21b and the first lighting portion 21a may provide lighting at the same or different intensities. This is to ensure the optimal growth of the plants on each cultivation layers, so as to obtain good plant quality and make full use of available space on each first rail 102 and its cultivation layers. Further, a ratio of lighting intensity between the second lighting portion 21b and the first lighting portion 21a may be adjusted according to the real-time growing states of the plants in each cultivation layer. Specifically, an image-capturing device or the like may be used to detect the real-time growing states of the plants.
According to a preferred mode, the first lighting portions 21a may be roughly parallel to the ground when projecting light to the plants on the first rails 102. Alternatively, the first rails 102 may be parallel to the elements of the respective circular cones they form when projecting light to the plants on the first rails 102, as shown in FIG. 9. Preferably, the first lighting portions 21a may be mounted on a rotating component installed at the remote-ground end 101b of the shaft 101 and provide the plants on the first rails 102 with a light coverage in the shape of a circular truncated cone and/or a circular cone as they rotate about the shaft 101. The rotating component may be any structure known in the art as long as it makes the first lighting portions 21a rotate about the shaft 101, without limitation. Preferably, compared to a static light source with large coverages that is conventionally employed for this purpose, the first lighting portion 21a as proposed in the embodiments of the present invention is configured to provide dynamic, moving, linear lighting, so the light pattern of the first lighting portion 21a is more constrictive, leading to increased lighting intensity. In addition, the dynamic light helps reduce light pocket and allow more leaves to receive the light and prevents cilia on leaves from blocking the light, so that photoreceptors at the back of a leaf other can also get sufficient light and the plant can develop better.
According to a preferred mode, the first lighting portions 21a are posed manually or in virtue of an external autonomous driving means before irradiating the underlying plants. As to the external autonomous driving means, such posing is made according to the growing states or the growing environment of the plants as monitored by an external device. For example, to monitor the growing states of the plants, a known image-capturing device conventionally used for measuring plant leaf sizes or plant growth heights may be used. Further, to monitor the growing environment of the plants, sensors may be employed to detect parameters like the air  humidity, temperature, lighting intensity, CO 2 concentration or O 2 concentration in the cultivation area of the plants.
Preferably, after the image-capturing device acquires images showing the growing states of the plants in the cultivation layers at the upper ends of the first rails 102, an external control device or a central control device is used to analyze the images and compare them with standard data stored in a database. For example, when the leaf size reaches a preset growth threshold, an external control device or a central control device can drive the first lighting portions 21a to expand against the shaft 101. At this time, the plants in the lower cultivation layers may have not reached the growth threshold. Because of the relatively large distances between the terminal of each first lighting portions 21a and the lower cultivation layers, the resulting lighting intensity can be reduced. To compensate the reduction, an external drive may be used so as to increase the lighting intensity of the light-emitting elements of the first lighting portion 21a at the side distant from the shaft 101, and properly adjust the lighting intensity of the light-emitting elements in other sections of the first lighting portion 21a, thereby offsetting the effect of the light distance on lighting intensity.
Alternatively, after the image-capturing device acquires images showing the growing states of the plants in at least a part of the cultivation layers of the first rail 102, an external control device or a central control device is used to analyze the images and compare them with standard data stored in a database. For example, when the leaf size reaches a preset growth threshold, an external control device or a central control device can drive the first lighting portions 21a to come close to and/or go distant from the shaft 101 in a retracting or expanding motion, and the rotating components can drive the first lighting portions 21a to rotate. For the plants in other zones not satisfying the growth threshold, an external drive may be used to adjust the lighting intensity of the light-emitting elements in the different sections of the first lighting portions 21a, thereby satisfying the light-exposure needs of these plants.
Preferably, after the sensor detects that the CO 2 concentration, the O 2 concentration, or the ratio therebetween in at least a part of the area of the first rails 102, an external control device or a central control device is used to analyze the data and compare them with standard data to see whether the CO 2 concentration, the O 2 concentration, or the ratio therebetween reaches a preset threshold. For example, if the CO 2 concentration is lower than a certain threshold and the O 2 concentration is higher than a certain threshold or their ratio is higher than a certain threshold, it is determined that the plants in the area have relatively strong net photosynthesis. Accordingly, an external control device or a central control device may be used to retract and/or expand the first lighting portions 21a, and the rotating component can drive the first lighting portions 21a to rotate, thereby decreasing lighting in the area where the plants satisfy the preset threshold and/or increasing lighting in the area where the plants have not reached the preset threshold.
According to a preferred mode, the first lighting portion 21a and the second lighting portion 21b may each be composed of plural light-emitting modules 210 that can be driven independently. Specifically, each light-emitting module 210 may be composed of plural light-emitting units that can be driven independently and have different emission wavelengths or light colors. Specifically, each light-emitting module 210 is provided with a first light-emitting unit 210a, a second light-emitting unit 210b, and a third light-emitting unit 210c.
Optionally, the first light-emitting unit 210a may use a red LED light source having an emission wavelength of 620nm~760nm. The second light-emitting unit 210b may use a blue LED light source having an emission wavelength of 400nm~450nm. The third light-emitting unit 210c  may use a green LED light source having an emission wavelength of 492nm~577nm.
Preferably, by independently driving the first light-emitting unit 210a, the second light-emitting unit 210b, and the third light-emitting unit 210c that have different emission wavelengths, light satisfying different growth needs of the plants on the first rails 102 can be provided.
Preferably, the first light-emitting unit 210a, the second light-emitting unit 210b, and the third light-emitting unit 210c can be driven simultaneously so as to compose composite light that simulate natural light. Furthermore, by adjusting the intensity shares of the light-emitting units, the light quality of the composite light can be changed. This in turn changes the lighting effect on the plants and thereby promotes the plants to reach their optimal growing states in the ideal lighting environment. Specifically, in view that a high share of blue light may not only retard or inhibit plant growth and prevent synthesis of carbohydrates, but also cause harm to human eyes, a desired scheme is about properly increasing the share of red light and decreasing the share of blue light.
According to a preferred mode, plural first rails 102 take the shaft 101 as its center of rotation and extend from the remote-ground end 101b to the near-ground end 101a of the shaft 101 while spiraling about the shaft 101. The curve radius at which each first rail 102 spirally extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101 or the vertical distance to the shaft 101 increases geometrically and/or proportionately. For meeting the lighting needs specific to the foregoing configuration of the first rails 102, in each first lighting portion 21a, the light-emitting module 210 composed of plural light-emitting units that can be driven independently and have different emission wavelengths or light colors is such configured that when viewed in the arranged direction of the roughly linear first lighting portion 21a, the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in each light-emitting module 210 increases or decreases proportionately, as shown in FIG. 8. Stated differently, the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in the light-emitting module 210 relatively close to shaft 101 is greater than the installation clearance among the first light-emitting unit 210a, the second light-emitting unit 210b, and third light-emitting unit 210c in the light-emitting module 210 relatively distant from the shaft 101. Preferably, the exact installation clearances may be determined according to the actual configuration of the first rails 102 and with reference to parameters like the photosynthetic photon flux and the photon flux as computed using suitable equations.
According to a preferred mode, the installation clearance among the light-emitting elements in the light-emitting modules 210 are set different according to the effect of the light quality, compositional proportions, and intensity of the first lighting portion 21a on the plants carried by the underlying first rails 102. Specifically, when light-emitting elements of different emission wavelengths arranged alternately emit light simultaneously, at least some parts of their respective light range can overlap each other. Similarly, at least some parts of light-emitting modules 210 composed of these light-emitting elements can overlap each other. As a result, light in the overlapped area is higher than light in the other areas in terms of photosynthetic photon flux. The resulting inhomogeneous light is nevertheless disadvantageous to plant growth, and this problem can become more significant in a multi-layer spiral structure like what is formed by the first rail 102 of the present invention.
According to a preferred mode, when the horizontally posed first lighting portions 21a  irradiate the plants in the underlying cultivation layers of the first rails 102, if the installation clearances and the lighting intensity are both constant throughout the apparatus, the levels of effective lighting reaching the plants in different cultivation layers are different because the plants in different cultivation layers are distant from the first lighting portions 21a in the second direction differently. Particularly, the light available to the plants in the lower cultivation layers of the first rails 102 is even more limited. Further, since in the present invention the curve radius, at which each first rail 102 spirally extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101, or the vertical distance to the shaft 101 increases geometrically and/or proportionately, for ensuring even light exposure of the plants in different cultivation layers of the first rails 102 each having a changing curve radius, the installation clearance among the light-emitting elements in the first lighting portion 21a decreases gradually as the curve radius increases geometrically and/or proportionately when the first rail 102 extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101. In other words, at least a part of the plants relatively close to the remote-ground end 101b of the first rail 102 is relatively close to the first lighting portion 21a and thus receives effective lighting in the relatively high level, so the installation clearance among the light-emitting elements at this area is relatively large, thereby preventing excessively high photosynthetic photon flux generated at the overlapped area among the light ranges. This not only prevents excessive light exposure of plants at the corresponding sites and waste of the redundant light, but also eliminates the growth-inhibiting effects brought about by excessive light exposure. Furthermore, radiation diffusion of light can be accomplished to reduce superposition of light generated by the light-emitting elements, and to in turn expand the overall coverage of the disclosed apparatus.
According to a preferred mode, the installation clearance among the light-emitting elements in the light-emitting module 210 at the side of the first lighting portion 21a close to the shaft 101 is relatively large, so the superposed light intensity acting on at least a part of the plants near the remote-ground end 101b of the first rail 102 can be reduced, thereby allowing light generated by these light-emitting elements to better reach plants in other cultivation layers. On the other hand, the installation clearance among the light-emitting elements in the light-emitting module 210 at the tail of the side of the first lighting portion 21a distant from the shaft 101 is the smallest. Similarly, at least a part of the plants relatively close to the near-ground end 101a of the first rail 102 is distant from the first lighting portion 21a, and thus only receive the effective light in the relatively low level, so the installation clearance among the light-emitting elements at this area is relatively small, thereby increasing the photosynthetic photon flux generated at the overlapped area among the light ranges. This not only prevents excessive low exposure of plants at the corresponding sites under the composite light and enhances the utilization rate of light, but also eliminates the growth-inhibiting effects brought about by insufficient light exposure. Meanwhile, radiation diffusion of light can be accomplished to increase superposition of light generated by the light-emitting elements, and to in turn decrease light dispersion, making more light concentrate here, thereby creating relatively strong light exposure.
According to a preferred mode, the installation clearance among the light-emitting elements in the light-emitting module 210 at the side of the first lighting portion 21a close to the shaft 101 is relatively large, so the superposed light intensity acting on at least a part of the plants near the remote-ground end 101b of the first rail 102 can be reduced, thereby allowing light generated by these light-emitting elements to better reach plants in other cultivation layers. Preferably, according to the arrangement of the installation clearances among light-emitting elements in the first lighting portions 21a. When the first lighting portions 21a are properly posed to irradiate the plants on the first rails 102, the variation in lighting intensity caused by the variation in light distance can be compensated by adjusting the proportions and lighting  intensities of the light-emitting elements in different sections of the first lighting portion 21a the according to the distance between the plants in each cultivation layer of first lighting portion 21a.
According to a preferred mode, the installation clearance among the light-emitting units in each light-emitting module 210 of the second lighting portion 21b is set in the same way as described above for the first lighting portion 21a. Specifically, in the extending direction from the remote-ground end 101b to the near-ground end 101a of the shaft 101, the installation clearances among the light-emitting units in the light-emitting modules 210 of the second lighting portion 21b decrease successively. As such, the installation clearance among the light-emitting elements in each light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b that is close to the remote-ground end 101b is relatively large, and the installation clearance among the light-emitting elements in each light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b that is close to the near-ground end 101a is relatively small.
Preferably, the part of the first rail 102 at its side close to the remote-ground end 101b of the shaft 101 has a relatively small curve radius or is relatively close to the shaft 101, and therefore this part of rail can receive more plentiful and more intense effective lighting than the lower part of the rail. Thus, for reducing superposed light irradiating this part of rail, lowering the overall lighting intensity, and enhancing the comprehensive utilization rate of light, the light-emitting elements in the light-emitting module 210 at this part of rail have a relatively large installation clearance. This also allows light generated by the light-emitting module 210 here to better irradiate plants in other cultivation layers, thereby decreasing the share of redundant light irradiating at least a part of the plants at the remote-ground end 101b and increasing the share of effective light irradiating at least a part of the plants in other cultivation layers.
Preferably, the installation clearance among the light-emitting elements in the light-emitting module 210 on the axial direction of the shaft 101 and at the side of the second lighting portion 21b close to the near-ground end 101a is relatively small. Similarly, at least a part of the plants relatively close to the near-ground end 101a of the first rail 102 is distant from the second lighting portion 21b, and thus only receive the effective light in the relatively low level, so the installation clearance among the light-emitting elements at this area is relatively small, thereby increasing the photosynthetic photon flux generated at the overlapped area among the light ranges. This not only prevents excessive low exposure of plants at the corresponding sites under the composite light and enhances the utilization rate of light, but also eliminates the growth-inhibiting effects brought about by insufficient light exposure. Meanwhile, radiation diffusion of light can be accomplished to increase superposition of light generated by the light-emitting elements, and to in turn decrease light dispersion, making more light concentrate here, thereby creating relatively strong light exposure. Preferably, the exact installation clearances may be determined according to the actual configuration of the first rails 102 and with reference to parameters like the photosynthetic photon flux and the photon flux as computed using suitable equations.
According to a preferred mode, as shown in FIG. 2 and FIG. 5, plural second rails 103 of different lengths are separated along the axial direction of the shaft 101 and distributed over the peripheral surface of the shaft. Specifically, every second rails 103 is inclined with respect to the ground so as to form a certain included angle with the ground. Preferably, such inclination is helpful for liquid to naturally flow down by gravity. Further, a second channel 1030 is formed at the inner side of the second rail 103. The first channel 1020 serves to accommodate the first rail 102 and deliver a nutrient solution. The first rail 102 and the second rail 103 are arranged  coaxially. In addition, plural first rails 102 and plural second rails 103 with their respective channels intersecting jointly create plural cultivation portions P for cultivating plants in the cultivation layers of the first rails 102, as shown in FIG. 6. Particularly, when viewed from top in the second direction, the cultivation portions P in the adjacent cultivation layers are staggered with a clearance left therebetween. This helps maximize the utilization rate of cultivation space in both the first and second directions.
According to a preferred mode, when viewed from top in the second direction, the lengths of the plural second rails 103 arranged in the direction from the remote-ground end 101b to the near-ground end 101b of the shaft 101 successively increase, as shown in FIG. 2 and FIG. 5. Specifically, the second rail 103 closest to the remote-ground end 101b of the shaft 101 has the smallest length, and the second rail 103 closest to the near-ground end 101b of the shaft 101 has the greatest length. Further, the difference in length between the second rail 103 adjacent in the axial direction of the shaft 101 may be selected according to the configuration of the first rail 102. Since in the present invention the curve radius at which each first rail 102 spirally extends from the remote-ground end 101b to the near-ground end 101a of the shaft 101 or the vertical distance to the shaft 101 increases geometrically and/or proportionately, the second rail 103 closer to the remote-ground end 101b requires a smaller curve radius of the first rails or fewer first rails 102, while the second rail 103 closer to the near-ground end 101a requires a greater curve radius of the first rails or a fewer number of first rails 102.
According to a preferred mode, plural first rails 102 and plural second rails 103 with their respective channels intersecting jointly create plural cultivation portions P for cultivating plants in the cultivation layers of the first rails 102. Preferably, plural cultivation portions P in the cultivation layers of the first rail 102 may have identical or different clearances, depending on the types of plants to be cultivated in the cultivation layers and full use of the limited space. The number of the cultivation portions P and their clearances can be changed by adjusting the number of the second rails 103 and their clearances, in addition to the adjustment on the number of the first rails 102, their clearances, and the layer distances between the cultivation layers, so as to make full use of the cultivation space in the cultivation layers of the first rail 102, and improve light exposure of the plants in the cultivation layers.
According to a preferred mode, the present invention is applicable to the existing practices of hydroponics and/or aeroponics. Taking hydroponics for example, for cultivation performed in plural cultivation portions P formed by the first rails 102 and the second rails 103, a nutrient solution in the first channel 1020 of the first rail 102 can easily flow down due to the gravity, and reach the cultivation portions P to soak the plants, so that the plants in the cultivation portions P can absorb nutrition delivered by the nutrient solution and have their growth promoted.
According to a preferred mode, as shown in FIGs. 1-6, the shaft 101 is perpendicular to plural imaginary round, oval, or spiral planes of the first rails 102 that are spaced in the axial direction of the shaft 101 and defined by the first rails 102 surrounding the shaft. Preferably, the shaft 101 defines therein a hollow channel 1010 extending axially. Further, the hollow channel 1010 contains therein a pipe 1011 for delivering the nutrient solution. Plural outlets 1012 are formed on the peripheral surface of the pipe 1011 and are separately staggered along its axial direction, as shown in FIG. 7.
According to a preferred mode, every outlet 1012 is communicated with the end of the second rail 103 extending into the shaft 101. Preferably, a liquid pumping device such as a centrifugal pump may be provided inside the pipe 1011, so as to drawn the nutrient solution at  the bottom of the pipe 1011 upward to the top of the pipe 1011 along the pipe 1011. When being lifted and arriving at each outlet 1012, the nutrient solution can flow into the second channel 1030 of the second rail 103 through the outlet 1012, and then flow down by gravity in virtue of the inclination of the second rail 103. Further, the two ends of the pipe 1011 close to the near-ground end 101a and the remote-ground end 101b of the shaft 101, respectively, are connected to two ends of the first rail 102 extending into the shaft 101, so that the nutrient solution flows in the first channel 1020 of the first rail 102 can eventually flow into the pipe 1011, and when drawn up to the top of the pipe 1011, can flow into the first channel 1020 of the first rail 102 again, thereby repeating irrigation of the nutrient solution as described previously.
According to a preferred mode, the curvature at any site on the curved second rail 103 continuously decrease as its distance to the shaft 101 increase. In other words, the curvature of the second rail 103 continuously decreases in its extending direction. Preferably, due to the gravity, the nutrient solution flows in the extending direction of the second channel 1030. During its advance, plants in the cultivation portion P at the top of the second rail 103 contact the nutrient solution first, and then the nutrient solution contact plants in the cultivation portion P below the second rail 103. Since the curvature of the second rail 103 continuously decreases, the nutrient solution will stay longer in the cultivation portion P at the top of the second rail 103 because the large curvature helps retain the nutrient solution to some extent, which means it contact the plants in the top cultivation portion P longer, thereby allowing the plants to absorb the nutrient in the nutrient solution effectively. As the curvature continuously decreases in the extending direction of the second rail 103, the flow rate of the nutrient solution increases gradually, and the time it contacts the plants in the cultivation portion P at the bottom of the second rail 103 decrease gradually. A part of the nutrient solution in the cultivation portion P at the top of the second rail 103 may keep flowing down because the capacity of the cultivation portion P available for the nutrient solution is limited, or the retaining effect provided by the curvature features is limited. This makes some nutrient solution in the top cultivation portion P keep flowing downward, so as to replenish the bottom cultivation portion P with the nutrient solution, and prevent the concentration of the nutrient solution from becoming excessively high and causing seedling wilting among the plants in the bottom cultivation portion P.
According to a preferred mode, as shown in FIG. 10, the management system 2 for adjusting the cultivation environment in the plant factory may comprise a managing device 201 that is outside the plant factory and serves to drive or adjust the cultivation environment in the plant factory, a first communication device 202 outside the plant factory, as well as a second communication device 203, an operation device 204, a transceiver device 205, an imaging device 206, a power device 207, a regulator device 208, a second detecting device 209, a first detecting device 210, and a lighting device 21, all located inside the plant factory. Therein, the lighting device 21 at least comprises the first lighting portion 21a and the second lighting portion 21b as described previously. Preferably, the managing device 201 may be any one or a combination of terminals like a desktop computer, a tablet computer, and a smartphone. Preferably, the managing device 201 can be used to set and execute the modulation program of the management system 2, to control the operation of the imaging device 206, to real-time check the environment image information of the plant factory uploaded by the imaging device 206, and to adjust the lighting posture, proportions of light sources, and lighting intensity of the lighting device 21 installed on the plant cultivation shelf 10 according to the real-time growing states of the plants in the plant factory.
According to a preferred mode, the first communication device 202 may be a local area network (LAN) device, and the second communication device 203 may be a wired/wireless router.  The transceiver device 205 may be a gateway server. The imaging device 206 may be one or a combination of a video camera, a still camera, and other photography devices. The power device 207 serves to power the other devices in its system. The regulator device 208 serves to adjust the irradiating state of the lighting device 21. The second detecting device 209 serves to detect the current or voltage of electric energy output by the power device 207 to the other devices in the system. The first detecting device 210 comprises plural sensors for detecting parameters in the plant factory, such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration, the O 2 concentration, the current, and the voltage. These devices can all be connected in a wired or wireless manner.
According to a preferred mode, the managing device 201 may analyze the image or digital information collected from, for example, the imaging device 206, the second detecting device 209, or the first detecting device 210, so as to identify the cultivation environment in the plant factory and the growing states of the cultivated plants. Preferably, After the first detecting device 210 uploads parameter information of the plant factory such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration and the O 2 concentration to the managing device 201 through the network, if any parameter fails to meet the expected goal or exceed a preset threshold, it may suggest that the cultivation environment currently in the plant factory is not ideal for promotion of plant growth. In this case, an administrator of the plant factory may be notified and then use the operation device 204 to adjust the parameters of, for example, fresh air equipment and temperature managing equipment, so as to restore the good cultivation environment for the plant factory. Or, after the imaging device 206 uploads image information about the growing states of the plants, such as the growth heights and the leaf sizes, to the managing device 201, if any parameter fails to meet the expected goal or exceed a preset threshold, it may suggest that the lighting conditions for the plants in the plant factory is not optimal. In this case, an administrator of the plant factory may be notified and then use the operation device 204 to adjust the relevant parameters of the lighting device 21, so as to change the proportions of light sources and the lighting intensity of the lighting device 21, thereby providing lighting most favorable to the plants in the plant factory.
According to a preferred mode, the first communication device 202 serves to establish communication connection between the managing device 201 located in the plant factory and the second communication device 203 located outside the plant factory. Preferably, the first communication device 202 is wired or wireless. The second communication device 203 serves to realize wired/wireless transmission and signal conversion between the managing device 201 and the operation device 204, or managing device 201, or the imaging device 206. Preferably, the second communication device 203 can search for any available operation device 204 and imaging device 206 in the plant factory, and connect thereto.
According to a preferred mode, the operation device 204 may be a computer device located in the plant factory. Further, the operation device 204 has its memory storing modulation information about parameters such as the air humidity, the temperature, the lighting intensity, the CO 2 concentration, the current, and the voltage. Preferably, different kinds of modulation information can be sent to the regulator device 208, the second detecting device 209, and the first detecting device 210 by the operation device 204. Specifically, an administrator may according to the instruction he/she received from the managing device 201, use the operation device 204 to select modulation information that meets different modulation requirements, and using the transceiver device 205 to send the information to the regulator device 208, the second detecting device 209, or the first detecting device 210.
According to a preferred mode, the transceiver device 205 can receive the modulation information of the operation device 204, and further send the modulation information to the regulator device 208, the second detecting device 209, or the first detecting device 210. Preferably, the transceiver device 205 sends modulation data about the wavelength and the lighting intensity to the regulator device 208, for the latter to adjust the lighting device 21 in terms of lighting posture and light-emitting property. The transceiver device 205 sends modulation data about the current and the voltage to the second detecting device 209, for the latter to adjust the power device 207 in terms of electric output. The transceiver device 205 sends modulation data about the temperature and the humidity to the first detecting device 210, so as to maintain a stable cultivation environment according in the plant factory to the modulation data.
According to a preferred mode, adjustment of light-emitting properties of the lighting device 21, such as the emission wavelength and the lighting intensity, according to the modulation information performed by the regulator device 208 may be achieved by adjusting the pulse voltages supplied by the power device 207 to the lighting device 21. Specifically, the pulse voltages supplied by the power device 207 to the lighting device 21 may be divided into at least two wavebands. The first waveband may be a voltage-varying waveband where the voltage value decreases from the preset value to almost zero, and the second waveband may be a no-voltage waveband. The light-emitting units in the first lighting portion 21a and/or the second lighting portion 21b can adjust the lighting duration, the lighting intensity, the proportions of light sources and/or the lighting curve pattern in response to the voltage variation and/or the current variation of the first waveband, so as to emit the controllable light. Further, the light-emitting units in the first lighting portion 21a and/or the second lighting portion 21b can generate the controllable light having its lighting intensity/illumination close to or equal to zero candela in response to the no-voltage state of the second waveband.
According to a preferred mode, the pulse period may be further divided into three wavebands. The first waveband is a constant voltage waveband or voltage-varying waveband. The second waveband is a voltage-varying waveband where the voltage changes continuously from the voltage value of the waveband to almost zero. The third waveband is a no-voltage waveband. Therein, the voltage variation, the lighting duration, and the spectral variation of the first waveband and the second waveband are controllable. The lighting device 21 emit the first controllable light in response to the voltage variation and/or current variation of the first waveband according to a set of parameters including at least one of the lighting intensities, the lighting duration, the light-emitting spectrum, and the light-emitting curve. In other words, the light of the first waveband may be light of constant lighting intensity, or may be light of varying lighting intensity. Preferably, the specific irradiating state of the lighting device 21 is adjusted according to factors like spatial locations of the plants in the cultivation device 1 and real-time growing states of the plants, so that the periodic light variation of the lighting device 21 matches the growth needs of the plants. Further, through adjustment of voltages, the light-emitting cycle can be regularly adjusted, so as to change one or several parameters of the lighting device 21 such as the lighting duration, the lighting intensity, and/or the proportions of light sources, thereby customizing the flicker specific to the properties of the plants, accelerating plant growth, optimizing growing states of plants, and maximizing economic profits.
According to a preferred mode, the imaging device 206 can using the remote modulation functions of the managing device 201 to monitor the growing states of plants and operation states of the lighting device 21 in the plant factory in a real-time manner, and send the collected image data to the managing device 201. Further, in the event of abnormal growing states of plants or abnormal operation states of the lighting device in the plant factory, the managing device 201  may alarm and prompt an administrator to timely adjust the postures of the plants in the cultivation shelf 10 or investigate, repair, or replace the lighting device 21.
According to a preferred mode, the second detecting device 209 generates power information by performing analog to digital conversion on the current or voltage of the electric energy output by the power device 207 to other devices in the system, such as the regulator device 208 and the lighting device 21, and sends the power information to the managing device 201 through the second communication device 203 and the transceiver device 205 successively. The managing device 201 generates power adjustment data according to the power information through analysis and computation, and sends the power adjustment data to the operation device 204. An administrator then can send the power adjustment data sent to the operation device 204 to the second detecting device 209 through the transceiver device 205, and reset the power output properties of the power device 207 according to the power adjustment data. Preferably, this can significantly decrease output loss of the power device and improve electricity efficiency, thereby reducing waste of resources. Meanwhile, the saved electric energy may be used by the imaging device 206 for state monitoring of the plant factory, or may be used by the first detecting device 210 for measurement of environment parameters of the plant factory, or may be used by the lighting device 21 to provide supplementary lighting to the plants.

Claims (15)

  1. A multi-stage periodic light-emitting apparatus for agricultural lighting, comprising: a cultivation device (1) for carrying or accommodating agricultural products, and a lighting device (21) for providing lighting to the agricultural products cultivated in the cultivation device (1) , wherein
    the lighting device (21) has a first lighting portion (21a) made as a linear light source that is configured to, when driven by a rotating component, perform dynamic scanning on the agricultural products cultivated in the cultivation device (1) , wherein spaced growing areas are defined in the cultivation device (1) for the agricultural products, so that the first lighting portion (21a) provides lighting covering the growing areas having the agricultural products while performing the dynamic scanning.
  2. The multi-stage periodic light-emitting apparatus of claim 1, wherein the first lighting portion (21a) is at least able to adjust an irradiating posture by which it irradiates plants in the cultivation device (1) and/or light quality of the corresponding light source through an external drive, and the external drive associates monitoring data of a growing state and/or a growing environment of the plants through an external detecting device with preset thresholds, wherein the first lighting portion (21a) is at least able to swing against a shaft (101) and rotate about the shaft (101) by means of an external drive, and/or to adjust light source proportions of each light-emitting unit through an external drive.
  3. The multi-stage periodic light-emitting apparatus of claim 2, wherein the cultivation device (1) comprises first rails (102) and second rails (103) arranged coaxially, wherein at least one of the first rails (102) extends from a remote-ground end (101b) to a near-ground end (101a) of the shaft (101) and spirals about the shaft (101) of the cultivation device (1) , the first rail (102) having a curve radius changing gradually in a direction in which it extends from the remote-ground end (101b) to the near-ground end (101a) of the shaft (101) ; and wherein plural said second rails (103) are such distributed on a peripheral surface of the shaft (101) that adjacent said second rails (103) are staggered from each other according to set gaps provided in a first direction and/or a second direction, the plural second rails (103) arranged axially/radially along the shaft (101) having lengths that are different from each other; and wherein the first rails (102) and the second rails (103) intersect each other so as to form plural cultivation portions (P) for cultivating the plants such that adjacent said cultivation portions (P) are staggered from each other.
  4. The multi-stage periodic light-emitting apparatus of claim 3, wherein at least one said first rail (102) that extends axially along the shaft (101) and spirals about the shaft (101) is arranged on a peripheral surface of the shaft (101) by means of preset gaps configured in a first direction and/or a second direction, and, based on the gaps, plural said first rails (102) form cultivation layers separated by layer distances that are not completely equal.
  5. The multi-stage periodic light-emitting apparatus of claim 4, wherein the second rail (103) is positioned inclined so that a nutrient solution for nourishing the plants flows down by gravity, thereby reaching the plants in the cultivation portions (P) from above, wherein a curvature at any point on the second rail (103) gradually decreases as its distance from the shaft (101) increases, and a flow rate of the nutrient solution that flows in an extending direction of the second rail (103) gradually increase as the curvature of the second rail (103) gradually  decreases.
  6. The multi-stage periodic light-emitting apparatus of claim 5, further comprising a pipe (1011) for delivering the nutrient solution that is received in a hollow channel (1010) of the shaft (101) , wherein the pipe (1011) has plural outlets (1012) such formed on a radially outer lateral surface of the pipe (1011) that adjacent said outlets (1012) are staggered from each other, and two ends of the pipe (1011) are connected to two ends of the first rail (102) extending into the shaft (101) , respectively, wherein each said outlet (1012) is communicated with one end of the second rail (103) extending into the shaft (101) .
  7. The multi-stage periodic light-emitting apparatus of claim 6, wherein the multi-stage periodic light-emitting apparatus is applicable to a management system (2) that at least comprises: a managing device (201) for receiving state detection data of a plant factory and distributing corresponding modulation data to other devices; an imaging device (206) for monitoring growing states of plants in the plant factory and sending image information about the growing states of the plants to a managing device (201) that generates the modulation data accordingly; a first detecting device (210) for detecting plural parameters about a cultivation environment in the plant factory and transmitting information of the plural parameters to the managing device (201) that generates the modulation data accordingly; and an operation device (204) for calling and distributing, in response to instructions from the managing device (201) , the modulation information kept therein.
  8. The multi-stage periodic light-emitting apparatus of claim 7, wherein the management system (2) further comprises a transceiver device (205) and an adjusting module (208) , the transceiver device (205) serving to receive detection information uploaded by the imaging device (206) and/or the first detecting device (210) and send them to the managing device (201) , and to receive the modulation information that is distributed to the operation device (204) by the managing device (201) and send it to the first detecting device (210) and all the other devices except for itself; the adjusting module (208) serving to receive the modulation information distributed by the transceiver device (205) , and according to the modulation information, adjust the irradiating postures and/or the light qualities of the corresponding light sources for the first lighting portion (21a) and/or a second lighting portion (21b) to provide the supplementary lighting.
  9. A multi-stage periodic light-emitting apparatus for agricultural lighting, comprising: a cultivation device (1) for carrying or accommodating agricultural products, and a lighting device (21) for proving lighting to the agricultural products in the cultivation device (1) , wherein
    the lighting device (21) serves to provide controllable light that has changeable lighting intensity/illumination to the agricultural products in the cultivation device (1) in response to input of an adjustable pulse voltage, wherein the pulse voltage has a pulse period that can be divided into at least two stages, wherein at least one of the stages is a voltage-varying stage where a voltage value changes from a set value to a zero voltage, and at least one of the stages is a no-voltage stages.
  10. The multi-stage periodic light-emitting apparatus of claim 9, wherein when the voltage value of the pulse period is in the voltage-varying stage, the lighting device (21) provides the controllable light by adjusting lighting duration, the lighting intensity and/or proportions of the light sources of the corresponding light-emitting unit according to voltage variation and/or current variation.
  11. The multi-stage periodic light-emitting apparatus of claim 10, wherein when the voltage value of the pulse period is in the no-voltage stage, the lighting device (21) generates the controllable light having the lighting intensity/illumination close to or equal to zero candela according to a no-voltage state.
  12. The multi-stage periodic light-emitting apparatus of claim 11, wherein the pulse period can be divided into three wavebands, in which a first waveband is a constant voltage waveband or a voltage-varying waveband, and a second waveband is a voltage-varying waveband where the voltage value continuously changes from the constant waveband to the zero voltage, while a third waveband is a no-voltage waveband, wherein in the first waveband and the second waveband, the voltage variation, the lighting duration, and spectral variation are controllable.
  13. The multi-stage periodic light-emitting apparatus of claim 12, wherein the lighting device (21) , in response to the voltage variation and/or the current variation in the first waveband, according to a set of parameters of at least one of the lighting intensity, the lighting duration, a light-emitting spectrum, and a light-emitting curve, emits a first controllable light; in response to the voltage variation and/or the current variation in the second waveband, according to a set of parameters of at least one of the lighting intensity, the lighting duration, and the light-emitting spectrum, emits a second controllable light whose lighting intensity/illumination showing a declining trend; in response to the no-voltage state in the third waveband, generates a third controllable light whose lighting intensity close to or equal to zero candela.
  14. The multi-stage periodic light-emitting apparatus of claim 1, wherein the lighting device (21) comprises the first lighting portion (21a) having a linear shape and the second lighting portion (21b) having a circular shape, both installed on the shaft (101) of the cultivation device (1) , wherein the first lighting portion (21a) and the second lighting portion (21b) each are formed by plural light-emitting modules (210) that are configured to be driven independently.
  15. A multi-stage periodic light-emitting lighting method for agricultural lighting, which uses the multi-stage periodic light-emitting apparatus of any of the preceding claims, wherein the method at least comprises adjusting a specific irradiating state of the lighting device (21) according to factors about spatial locations and real-time growing states of agricultural products in the cultivation device (1) , so that a periodic light profile of the lighting devices (21) matches growth needs of the plants.
PCT/CN2022/097607 2021-09-24 2022-06-08 Multi-stage periodic light-emitting apparatus for agricultural lighting and lighting method thereof WO2023045404A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111125765 2021-09-24
CN202111125765.4 2021-09-24
CN202111200173.4A CN113812275B (en) 2021-09-24 2021-10-14 Multi-section periodic light-emitting equipment for agricultural illumination and illumination method
CN202111200173.4 2021-10-14

Publications (1)

Publication Number Publication Date
WO2023045404A1 true WO2023045404A1 (en) 2023-03-30

Family

ID=78799537

Family Applications (4)

Application Number Title Priority Date Filing Date
PCT/CN2022/097609 WO2023045406A1 (en) 2021-09-24 2022-06-08 Scanning-type light-emitting apparatus for agriculture and cultivation and lighting method thereof
PCT/CN2022/097607 WO2023045404A1 (en) 2021-09-24 2022-06-08 Multi-stage periodic light-emitting apparatus for agricultural lighting and lighting method thereof
PCT/CN2022/097608 WO2023045405A1 (en) 2021-09-24 2022-06-08 Energy-saving agricultural lighting apparatus and method
PCT/CN2022/121138 WO2023046123A1 (en) 2021-09-24 2022-09-24 Multi-section periodic light emitting apparatus for agricultural lighting, and lighting method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/097609 WO2023045406A1 (en) 2021-09-24 2022-06-08 Scanning-type light-emitting apparatus for agriculture and cultivation and lighting method thereof

Family Applications After (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/097608 WO2023045405A1 (en) 2021-09-24 2022-06-08 Energy-saving agricultural lighting apparatus and method
PCT/CN2022/121138 WO2023046123A1 (en) 2021-09-24 2022-09-24 Multi-section periodic light emitting apparatus for agricultural lighting, and lighting method

Country Status (2)

Country Link
CN (26) CN113796300A (en)
WO (4) WO2023045406A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113796300A (en) * 2021-09-24 2021-12-17 中国农业科学院都市农业研究所 Plant factory and plant culture method
CN114391388B (en) * 2022-03-28 2022-09-06 深圳市长方集团股份有限公司 Sunlight-illumination-simulated sterilization type growth-promoting plant lighting
CN114494836B (en) * 2022-04-02 2022-07-01 蜂联智能(深圳)有限公司 Intelligent illumination debugging system based on regional environment
CN114868561A (en) * 2022-05-30 2022-08-09 李振源 Energy-saving passion fruit seedling culture device and method
CN115500164A (en) * 2022-11-07 2022-12-23 四川新叶光生物科技有限公司 Intelligent lighting device and method for animal and plant growth
CN116267293A (en) * 2023-02-10 2023-06-23 佛山科学技术学院 Lighting method capable of improving plant yield and quality
CN116075022B (en) * 2023-02-10 2023-11-14 佛山科学技术学院 Accurate illumination energy-saving design method and system for cultivating plants
CN116171754A (en) * 2023-03-03 2023-05-30 中国农业科学院都市农业研究所 Application method of thermoluminescent material
ES2952722A1 (en) * 2023-05-23 2023-11-03 Grodi Agrotech S L GREENHOUSE CROPS MONITORING SYSTEM (Machine-translation by Google Translate, not legally binding)
CN116389857B (en) * 2023-06-07 2023-09-12 北京市农林科学院信息技术研究中心 Plant phenotype acquisition platform, method, electronic equipment and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160286747A1 (en) * 2015-03-31 2016-10-06 Ushio Denki Kabushiki Kaisha Plant growth lighting apparatus, plant hydroponic cultivation apparatus and plant hydroponic cultivation method
CN108317443A (en) * 2018-04-17 2018-07-24 中国科学技术大学先进技术研究院 A kind of rotary scanning type plant lamp
CN108551909A (en) * 2018-01-08 2018-09-21 中科稀土(长春)有限责任公司 A kind of stroboscopic method of plant illumination device
CN208924740U (en) * 2018-09-27 2019-06-04 浙江农林大学 A kind of vertical farm of Combined spiral
CN110226509A (en) * 2019-07-19 2019-09-13 常州机电职业技术学院 A kind of aerial fog cultivation device
CN113812275A (en) * 2021-09-24 2021-12-21 中国农业科学院都市农业研究所 Multi-section periodic light-emitting equipment for agricultural illumination and illumination method

Family Cites Families (174)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898081A (en) * 1981-12-03 1983-06-10 Takashi Mori Photosynthetic apparatus
EP0115843B1 (en) * 1983-02-04 1989-06-28 Kei Mori Apparatus for time-sharing light distribution
AU2003266894A1 (en) * 2003-09-19 2005-04-11 David Knelsen Dyck Height adjustable mobile illumination apparatus for a greenhouse
CN2666132Y (en) * 2003-12-19 2004-12-29 章永泰 Combined plant artificial cultivating apparatus
US7617057B2 (en) * 2005-12-21 2009-11-10 Inst Technology Development Expert system for controlling plant growth in a contained environment
JP2007185115A (en) * 2006-01-11 2007-07-26 Shizuoka Giken Kogyo Kk Plant growth promoting apparatus
RU55249U1 (en) * 2006-03-24 2006-08-10 Геннадий Викторович Курочкин DEVICE FOR GROWING PLANTS UNDER CONDITIONS OF PROTECTED SOIL AND MOBILE Dismountable MULTI-TIED RACK FOR GROWING PLANTS UNDER CONDITIONS OF PROTECTED SOIL
JP3124026U (en) * 2006-05-24 2006-08-03 有限会社潮財務 Light source device for exciting phosphorescent phosphor
CN101766156A (en) * 2008-12-28 2010-07-07 张少伟 Solar broad-spectrum multicolor stroboscopic concentrating long-shot high-trapping LED lamp
CN101706040A (en) * 2009-09-28 2010-05-12 海安县奇锐电子有限公司 Thermoluminescence fabric
KR20110129066A (en) * 2010-05-25 2011-12-01 최재현 Promote plant growth system and method thereof
JP5645504B2 (en) * 2010-06-28 2014-12-24 Idec株式会社 Plant cultivation apparatus and plant cultivation method
JP5492758B2 (en) * 2010-12-08 2014-05-14 昭和電工株式会社 Lighting device for plant cultivation and plant cultivation device
US8696328B2 (en) * 2010-12-16 2014-04-15 Tai-Her Yang Photothermal source of fluid pumping device driven by self photovoltaic power
JP5951190B2 (en) * 2011-04-22 2016-07-13 富士フイルム株式会社 Circularly polarized illumination device and plant growth control method
CN102415291A (en) * 2011-08-16 2012-04-18 浙江晶日照明科技有限公司 Spectrum adjusting method for plant illumination
CN102287713A (en) * 2011-08-16 2011-12-21 浙江晶日照明科技有限公司 Adjustable spectrum lamp for plant irradiation
CN202285653U (en) * 2011-10-28 2012-07-04 林人杰 Plant cultivation device with adjustable illumination intensity
CN102577886A (en) * 2011-12-27 2012-07-18 达亮电子(苏州)有限公司 Plant lighting device
CN103314799A (en) * 2012-03-20 2013-09-25 西北农林科技大学 Method for promoting plant growth based on LED lamp
KR101268566B1 (en) * 2012-06-05 2013-05-28 김형철 Plant growing system using led
CN102809109A (en) * 2012-06-29 2012-12-05 苏州晶雷光电照明科技有限公司 LED (Light Emitting Diode) illuminating device for plant pot culture
US10172295B2 (en) * 2012-07-18 2019-01-08 Philips Lighting Holding B.V Method for providing horticulture light to a crop and lighting device for horticulture lighting
CN102917493B (en) * 2012-09-29 2015-03-04 杭州汉徽光电科技有限公司 Intelligent semiconductor illumination system for plant growth and spectral modulation method thereof
WO2014058081A1 (en) * 2012-10-08 2014-04-17 (주)유양디앤유 System and method for cultivating plant using led lighting, led lighting device for plant cultivation and method for driving said device
JP2014100080A (en) * 2012-11-19 2014-06-05 Panasonic Corp Plant growing device
CN203120545U (en) * 2013-01-30 2013-08-14 万贤能 Mobile artificial planting light source control system
CN103120100A (en) * 2013-01-30 2013-05-29 万贤能 Movable type artificial planting light source control system
CN203040341U (en) * 2013-02-05 2013-07-10 上海兰蕙园林绿化发展有限公司 Dendrobium officinale artificial cultivation device
KR20140102481A (en) * 2013-02-14 2014-08-22 서울바이오시스 주식회사 Ginseng cultivation apparatus for producing panax ginseng having high content of ginsenosides
CN103135540B (en) * 2013-03-22 2015-04-22 河北大学 Plant tissue culture environmental information monitoring and simulating system
CN203219574U (en) * 2013-04-16 2013-09-25 中山市合美电器有限公司 LED illumination system for aquatic product culture
KR20150000369A (en) * 2013-06-24 2015-01-02 한국전자통신연구원 Apparatus and method for controlling light in the plant factory
CN203421521U (en) * 2013-07-11 2014-02-05 杭州鸿雁电器有限公司 LED plant light supplement lamp
KR20150017462A (en) * 2013-08-07 2015-02-17 주식회사 맥스포 Plantgrowth illumination control system
CN103470973B (en) * 2013-08-31 2015-07-29 普天智能照明研究院有限公司 A kind of lighting device and method improving illuminance uniformity
KR101531759B1 (en) * 2013-09-24 2015-06-25 주식회사 한국에너지 Plant factory LED lighting system with controllable light source
WO2015059752A1 (en) * 2013-10-21 2015-04-30 株式会社日立製作所 Plant cultivation system
CN103749109A (en) * 2013-12-17 2014-04-30 丁志强 Method for cultivating vegetables in space environments
JP6656925B2 (en) * 2013-12-20 2020-03-04 千代田化工建設株式会社 Crop growth state discrimination method and growth method
CN103742839A (en) * 2014-01-17 2014-04-23 苏州承腾电子科技有限公司 Pendular LED plant light compensating lamp set
WO2015123587A1 (en) * 2014-02-13 2015-08-20 Fred Collins Light-weight modular adjustable vertical hydroponic growing system and method
CA2943332A1 (en) * 2014-03-21 2015-09-24 Deb Ranjan BHATTACHARYA An intelligent integrated plant growth system and a process of growing plant thereof
JP2015198615A (en) * 2014-04-09 2015-11-12 パナソニックIpマネジメント株式会社 Plant cultivation device
DE102014212657B4 (en) * 2014-06-30 2016-03-10 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System and method for the demand-oriented supply of lighting energy to plants
US9241453B1 (en) * 2014-07-30 2016-01-26 Indoor Farms Of America, Llc Aeroponic commercial plant cultivation system utilizing a grow enclosure
AU2015299205B2 (en) * 2014-08-06 2018-03-08 Infarm - Indoor Urban Farming Gmbh Plant growing system
JP6126061B2 (en) * 2014-10-15 2017-05-10 学校法人玉川学園 Distributed plant cultivation system and method
CN104462747B (en) * 2014-10-17 2017-05-10 复旦大学 Photometry method for evaluating influence of artificial lighting on photosynthesis of garden plants
CN104296011B (en) * 2014-10-24 2016-12-07 深圳莱特光电股份有限公司 A kind of LED plant illumination system
JP6148654B2 (en) * 2014-11-20 2017-06-14 豊田鉄工株式会社 Indoor plant cultivation equipment
CN104322297A (en) * 2014-11-28 2015-02-04 北京中农腾达科技有限公司 Light source irradiation device for promoting plant growth
JP3202088U (en) * 2014-12-04 2016-01-21 吉田 厚生 Intermittent light irradiation device with uniform ratio between light and dark inside and outside and intermittent
CN104976555B (en) * 2014-12-31 2017-11-21 苏州东善微光光电技术有限公司 A kind of plant illumination device and method
CN105802618B (en) * 2014-12-31 2018-05-11 四川新力光源股份有限公司 A kind of twilight sunset tunable radiation emitting material and preparation method thereof and use its LED light device
EP3045033A1 (en) * 2015-01-14 2016-07-20 Heliospectra AB Method and system for growth status determination of a plant
CN106134855A (en) * 2015-03-30 2016-11-23 小米科技有限责任公司 Plant is carried out the method and device of illumination
CN104898468B (en) * 2015-03-31 2017-06-16 小米科技有限责任公司 plant growth control system and method
TWM508899U (en) * 2015-04-20 2015-09-21 Univ Chung Chou Sci & Tech Planting and aquarium mixed breeding device
EP3292345B1 (en) * 2015-05-07 2021-07-07 Lumileds LLC High intensity light source with temperature independent color point
CN104776367B (en) * 2015-05-08 2017-12-19 深圳市壹鲜生生物科技有限公司 A kind of plant growth lamp
JP2017046651A (en) * 2015-09-02 2017-03-09 土屋 三恵子 Plant cultivation luminaire and plant cultivation method using the same
JP6799804B2 (en) * 2015-09-10 2020-12-16 パナソニックIpマネジメント株式会社 Lighting equipment and lighting systems equipped with it, mobile objects
ITUB20154156A1 (en) * 2015-10-06 2017-04-06 Osram Spa LIGHTING SYSTEM AND ITS PROCEDURE
CN105180018A (en) * 2015-10-21 2015-12-23 广州市光机电技术研究院 LED agricultural lighting system and method based on combined spectrum
CN106641837A (en) * 2015-11-03 2017-05-10 捷通国际有限公司 Foldable LED light-supplementing management unit and LED light-supplementing management system
KR20170053390A (en) * 2015-11-06 2017-05-16 손진두 Apparatus for vine cultivation
CN205124549U (en) * 2015-11-11 2016-04-06 彭文煌 A plant equipment of planting of different chromatic light is provided
US10645886B2 (en) * 2016-01-29 2020-05-12 Board Of Trustees Of Michigan State University Methods and apparatus for gnotobiotic plant growth
CN105746202A (en) * 2016-02-26 2016-07-13 广州富智信息科技有限公司 LED plant illuminating system and method based on PC/mobile terminal remote control
CN105830759A (en) * 2016-04-01 2016-08-10 中国农业大学 Method for regulating microbial ecology of greenhouse
CN105776755B (en) * 2016-04-15 2019-03-29 成都纺织高等专科学校 The integral purifying device of small-scale sewage and air-treatment
CN205694539U (en) * 2016-04-18 2016-11-23 云南天竺生物科技有限公司 A kind of high light rate succulent culture apparatus
US20170295727A1 (en) * 2016-04-19 2017-10-19 Suntracker Technologies Ltd. Temporally modulated lighting system and method
US11592168B2 (en) * 2016-05-02 2023-02-28 Growflux Inc. System and method for advanced horticultural lighting
CN105759838B (en) * 2016-05-11 2018-05-22 北方民族大学 Vegetation growth state monitoring device and method based on unmanned plane
CN107432216B (en) * 2016-05-25 2020-12-22 株式会社格林普乐斯 Plant cultivation device
CN206074432U (en) * 2016-05-26 2017-04-05 蒋门雪 A kind of LED illumination System of plant growth state real-time monitoring
CN105955300A (en) * 2016-06-12 2016-09-21 浙江大学 Intelligent crop detection system
TWI742100B (en) * 2016-07-06 2021-10-11 瑞士商西克帕控股有限公司 Method for authenticating a security marking utilizing long afterglow emission, and security marking comprising one or more afterglow compound
JP6830593B2 (en) * 2016-09-02 2021-02-17 国立大学法人東京農工大学 How to identify microorganisms
US20180084738A1 (en) * 2016-09-29 2018-03-29 Shu-Shyang Kuo Three-dimensional dynamic plant cultivating apparatus and implementing method thereof
EP3311656A1 (en) * 2016-10-20 2018-04-25 InFarm - Indoor Urban Farming GmbH A method for affecting plant growth and a plant growing system
DK3326452T3 (en) * 2016-11-24 2020-09-07 Heliospectra Ab CULTIVATION STORAGE SYSTEM
CN106774541A (en) * 2016-12-11 2017-05-31 镇江常青园林工程有限公司 Green management formula agricultural facility
CN106704889A (en) * 2016-12-13 2017-05-24 江苏云耕科技有限公司 Plant light source for plant wall
CN106719422B (en) * 2016-12-31 2019-10-25 枞阳县恒祥生态农业有限公司 A kind of chicken house large area feeding chicken in largely scale method
CN106596412A (en) * 2016-12-31 2017-04-26 上海复展智能科技股份有限公司 Method for monitoring plant growth by using unmanned aerial vehicle with multispectral light source
CN207179313U (en) * 2017-01-12 2018-04-03 刘子卓 A kind of soilless culture illuminator based on infrared survey
CN206932885U (en) * 2017-01-18 2018-01-30 上海三思电子工程有限公司 LED plant cultivating devices
CN106922414A (en) * 2017-02-27 2017-07-07 广东工业大学 A kind of intelligent controlling device and method that plant growth lighting is carried out with LED
CN106857038B (en) * 2017-03-02 2020-05-22 北京农业智能装备技术研究中心 Light supplementing device and method for greenhouse vine fruits and vegetables
CN106665151A (en) * 2017-03-17 2017-05-17 福建农林大学 Adaptive plant factory light culture system with high light energy utilization rate
CN207707682U (en) * 2017-06-10 2018-08-10 绿地集团森茂园林有限公司 A kind of gardens flower stand
KR101802189B1 (en) * 2017-06-26 2017-11-28 주식회사 쉘파스페이스 Intelligent illumination apparatus and intelligent plant cultivating system based on situation recognition having the same, and a method thereof
US10034358B1 (en) * 2017-07-08 2018-07-24 Xiaolai Chen User controllable grow lighting system, method, and online light settings store
CN107455183A (en) * 2017-07-28 2017-12-12 深圳前海弘稼科技有限公司 Guide implant system, guiding implantation methods and cultivation box
JP7091342B2 (en) * 2017-08-08 2022-06-27 Agcグリーンテック株式会社 Plant cultivation method and plant cultivation equipment
CN207005927U (en) * 2017-08-11 2018-02-13 濮阳市宇浩科技股份有限公司 A kind of portable plant growth lamp
CN109424945A (en) * 2017-08-30 2019-03-05 孙斐 A kind of illumination control method and system
CN107787708A (en) * 2017-09-21 2018-03-13 北京名南科技发展有限公司 Planting machine with plant climbing structures
CN107810846A (en) * 2017-09-21 2018-03-20 北京名南科技发展有限公司 From the lateral planting machine for applying illumination
CN107942955A (en) * 2017-09-29 2018-04-20 怀化学院 A kind of agriculture managing and control system based on Internet of Things cloud platform
CN107466716A (en) * 2017-09-30 2017-12-15 宁波神乙草生物科技有限公司 The cultural method of dendrobium candidum
CN207762645U (en) * 2017-10-22 2018-08-24 徐荫环 A kind of seedling culture fosterage of plants LED light
CN107593142A (en) * 2017-10-31 2018-01-19 四川和智创展企业管理咨询有限公司 Light source controlling mechanism in sapling cultivation
CN208300401U (en) * 2017-11-07 2019-01-01 厦门理工学院 A kind of environment self-test LED light supplementing lamp for plants
WO2019092869A1 (en) * 2017-11-12 2019-05-16 新電元工業株式会社 Plant system
CN108617322B (en) * 2017-12-15 2020-09-04 杭州彬康农业科技有限公司 Direction adjustable laser plant lamp
CN108617320A (en) * 2017-12-15 2018-10-09 杭州彬康农业科技有限公司 A kind of suspension illuminaton laser plant growth lamp
CN108184475B (en) * 2017-12-25 2020-06-19 中科稀土(长春)有限责任公司 Illumination system of plant factory
CN108124755B (en) * 2017-12-25 2020-06-19 中科稀土(长春)有限责任公司 Plant factory
CN209250914U (en) * 2018-01-02 2019-08-13 陈永强 A kind of LED plant illumination system of adjustable spectrum
CN108391542A (en) * 2018-01-30 2018-08-14 浙江大学 A kind of plant incubator system of automatic water and fertilizer management and Defect inspection
CN108460105B (en) * 2018-02-06 2021-05-04 中国农业大学 Plant data supervision method and system based on genetic network
CN208300577U (en) * 2018-03-16 2019-01-01 徐林波 The implementation facility of low-coat scale plant aerosol new method for cultivating
US10842082B1 (en) * 2018-03-24 2020-11-24 Growgenics LLC Grow light assembly with secondary light modules angularly movable relative to primary light modules
CN108386765A (en) * 2018-04-12 2018-08-10 中国科学技术大学先进技术研究院 A kind of packaged type laser light-supplementing system
CN108770118A (en) * 2018-05-24 2018-11-06 安徽中电晶超照明有限公司 Illumination control system based on demand of plant growth
KR20190140148A (en) * 2018-06-11 2019-12-19 주식회사 쉘파스페이스 system for supplementing main light using variable artificial light and light sensing device therefor
CA3106996A1 (en) * 2018-07-23 2020-01-30 Heliponix, Llc Automated plant growing system
US20200037414A1 (en) * 2018-07-25 2020-01-30 Every Industry Llc Plant light for promoting plant growth and control system thereof
CN208652249U (en) * 2018-07-26 2019-03-26 常州绿冠照明电器有限公司 A kind of fluorescent type light supplementing lamp for plants
US11125405B2 (en) * 2018-08-10 2021-09-21 Seoul Viosys Co., Ltd. Light source for plant cultivation and plant cultivation device
CN208905370U (en) * 2018-08-24 2019-05-28 浙江大学 A kind of device that the blade face medicine based on plant space prescription map sprays
JP2020048534A (en) * 2018-09-28 2020-04-02 株式会社アルミス Plant cultivation lighting device
CN109405114B (en) * 2018-10-22 2021-08-06 山东农利达生物科技有限公司 Intelligent city purification method and system based on agricultural planting
CN111089364B (en) * 2018-10-24 2022-01-21 青岛海尔空调器有限总公司 Movable air conditioner and control method thereof
CN209134952U (en) * 2018-11-26 2019-07-23 孙志平 A kind of freeze proof light compensating apparatus of heating for greenhouse and heliogreenhouse
CN209345654U (en) * 2018-12-05 2019-09-06 江苏苏林建设有限公司 A kind of cultivating seedlings device
CN109566383A (en) * 2018-12-05 2019-04-05 深圳凌晨之光科技有限公司 Change the planting equipment and method of intensity of illumination
CN211607483U (en) * 2019-01-16 2020-10-02 浙江万里学院 Planting big-arch shelter intelligence light filling system based on solar energy
EP3685656A1 (en) * 2019-01-23 2020-07-29 Merck Patent GmbH System for controlling a light-dependent condition of an organism and method of determining a configuration of the system
KR20200092022A (en) * 2019-01-24 2020-08-03 (주)두영티앤에스 Drone-mounted lighting system with heat shield in the gimbal and lighting areas
CN109644721A (en) * 2019-02-15 2019-04-19 福建省中科生物股份有限公司 A kind of light source of indoor growing plant
CN109618713A (en) * 2019-02-26 2019-04-16 河北工业大学 A kind of intelligence light supplementing lamp for plants
CN109973842B (en) * 2019-03-25 2021-01-05 昆明理工大学 Preparation method of long-afterglow LED plant lamp light-emitting chip
CN209989405U (en) * 2019-03-29 2020-01-24 江苏科海生物工程设备有限公司 Photosynthetic bacteria fermentation tank
CN110122319A (en) * 2019-05-21 2019-08-16 江苏大学 A kind of greenhouse independent navigation pollination unmanned plane and its control method
CN210076133U (en) * 2019-06-06 2020-02-18 张掖祁连药材保健开发研究有限责任公司 Tuber of hyacinth bletilla seedling breeding device
US10667468B1 (en) * 2019-06-19 2020-06-02 Yi-Wen Tang Spike light and spike light assembly including the same
WO2021023022A1 (en) * 2019-08-07 2021-02-11 潘皖瑜 Plant growth lighting apparatus having high visual security and control method therefor
CN112335439A (en) * 2019-08-07 2021-02-09 杭州汉徽光电科技有限公司 Plant growth illumination device with optical signal based on biological recognition and control method thereof
CN112335440A (en) * 2019-08-07 2021-02-09 杭州汉徽光电科技有限公司 Server-based plant growth illumination device with optical signal and control method thereof
IT201900015108A1 (en) * 2019-08-27 2021-02-27 Valter Mazzarolo AUTOMATIC / AUTONOMOUS SLIDING MOBILE APPARATUS ALONG PRESET PATHS BETWEEN ROWS OF VINEYARDS, FOR ANTIBACTERIAL AND FUNGICIDE TREATMENT OF THE VINEYARDS
CN110663382A (en) * 2019-10-21 2020-01-10 Awl农业科技(泰州)有限公司 Agricultural environment supervisory systems based on big data
CN112868419A (en) * 2019-12-01 2021-06-01 广州清凉农业科技有限公司 Agricultural sunlight transmission illumination system, greenhouse matched with same and illumination method
JP7342680B2 (en) * 2019-12-18 2023-09-12 ウシオ電機株式会社 Light irradiation device and light irradiation method
KR102130453B1 (en) * 2020-01-20 2020-07-08 (주)엘앤피 Smart lighting apparatus and method for planting
CN111174153A (en) * 2020-03-09 2020-05-19 江苏云与雾物联科技有限公司 Motion type plant light filling device
CN111226660A (en) * 2020-03-10 2020-06-05 中国农业科学院农业环境与可持续发展研究所 Heat storage and release light supplementing system for sunlight greenhouse
CN212278983U (en) * 2020-03-13 2021-01-05 江苏艾立特半导体科技有限公司 LED plant growth lamp for facility agriculture
CN111476149A (en) * 2020-04-03 2020-07-31 苏州浪潮智能科技有限公司 Plant cultivation control method and system
CN111418381A (en) * 2020-04-26 2020-07-17 南京格尼兹农业科技有限责任公司 Dynamically-adjustable L ED plant light supplementing system and dynamic light adjusting method
CN212876905U (en) * 2020-05-07 2021-04-06 天津谊农农业科技发展中心 Rice cultivation box
CN212381275U (en) * 2020-06-05 2021-01-19 苏州瑞佳尔网络科技有限公司 Illumination light source compensation device for monitoring platform
CN111578161A (en) * 2020-06-10 2020-08-25 中国农业科学院都市农业研究所 Intelligent regulation plant light filling system
CN111664392A (en) * 2020-06-18 2020-09-15 湖南省大观溪生物科技有限公司 Multicolor-light LED plant growth lamp system and regulation and control method thereof
CN212936857U (en) * 2020-06-19 2021-04-13 云南祥云圣龙农业庄园有限公司 Automatic monitoring system of vegetable greenhouse
CN212361779U (en) * 2020-07-14 2021-01-15 山东旭昇光电科技有限公司 LED plant lamp that helps succulent plant to color and prevent spindly growth
CN112015212A (en) * 2020-08-07 2020-12-01 中国农业科学院都市农业研究所 Light environment regulation and control method and system, equipment and medium
CN213280766U (en) * 2020-08-17 2021-05-28 福建信息职业技术学院 A adjustable device that is used for plant LED light to shine direction
CN213368842U (en) * 2020-09-23 2021-06-08 黑龙江宽亮科技有限公司 Aronia melanocarpa cultivation lighting device
CN112235917A (en) * 2020-09-29 2021-01-15 南京飞赫电器有限公司 Urban plant lighting system and method
CN112310265A (en) * 2020-10-30 2021-02-02 杭州数通光电有限公司 Light source for plant illumination and manufacturing method thereof
CN112167045A (en) * 2020-11-09 2021-01-05 爱莱特(深圳)生物科技有限公司 Automatic seedling raising method and planting equipment according to plant growth period
CN112432116A (en) * 2020-11-19 2021-03-02 吕胜战 Solar automobile lamp
CN213872495U (en) * 2020-11-30 2021-08-03 江苏松立太阳能科技有限公司 Bionic plant lighting and light supplementing lamp
CN112867196A (en) * 2021-01-12 2021-05-28 广东技术师范大学 Method and device for realizing artificial intelligence-based plant light formula light supplementing system
CN112889521B (en) * 2021-01-15 2024-04-12 湖南湘品堂药业有限公司 Self-adjusting type lighting equipment for medicinal material planting
CN113025484B (en) * 2021-03-01 2022-11-29 湖南腾阳生物科技股份有限公司 Intelligent interactive culture equipment for algae microorganisms
CN112923338A (en) * 2021-03-10 2021-06-08 长沙师范学院 Light control device based on computer control technology
AU2021101469A4 (en) * 2021-03-23 2021-05-13 Sanjeevkumar Angadi An artificial intelligence based organic LED farming during post Covid 19
CN113154274B (en) * 2021-05-07 2022-10-21 雄安创新研究院 Plant illumination device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160286747A1 (en) * 2015-03-31 2016-10-06 Ushio Denki Kabushiki Kaisha Plant growth lighting apparatus, plant hydroponic cultivation apparatus and plant hydroponic cultivation method
CN108551909A (en) * 2018-01-08 2018-09-21 中科稀土(长春)有限责任公司 A kind of stroboscopic method of plant illumination device
CN108317443A (en) * 2018-04-17 2018-07-24 中国科学技术大学先进技术研究院 A kind of rotary scanning type plant lamp
CN208924740U (en) * 2018-09-27 2019-06-04 浙江农林大学 A kind of vertical farm of Combined spiral
CN110226509A (en) * 2019-07-19 2019-09-13 常州机电职业技术学院 A kind of aerial fog cultivation device
CN113812275A (en) * 2021-09-24 2021-12-21 中国农业科学院都市农业研究所 Multi-section periodic light-emitting equipment for agricultural illumination and illumination method

Also Published As

Publication number Publication date
CN115428658B (en) 2023-12-22
CN113840434B (en) 2023-08-22
CN113853977B (en) 2023-02-24
CN114128513B (en) 2023-03-24
CN113796226B (en) 2023-02-28
CN113847566A (en) 2021-12-28
CN113847566B (en) 2023-09-12
CN113812277A (en) 2021-12-21
CN113796226A (en) 2021-12-17
CN113940206A (en) 2022-01-18
CN116123512A (en) 2023-05-16
CN114128513A (en) 2022-03-04
CN114071827A (en) 2022-02-18
CN113840434A (en) 2021-12-24
CN113834014A (en) 2021-12-24
CN113753247B (en) 2023-03-14
CN113834014B (en) 2023-10-20
CN113812276A (en) 2021-12-21
CN114208558A (en) 2022-03-22
CN114128512A (en) 2022-03-04
CN113883477B (en) 2023-09-05
CN113753247A (en) 2021-12-07
CN114128514A (en) 2022-03-04
CN115918392A (en) 2023-04-07
CN113940206B (en) 2022-12-13
CN113853048A (en) 2021-12-28
CN113812275B (en) 2022-10-14
CN113883477A (en) 2022-01-04
CN113812275A (en) 2021-12-21
CN114208558B (en) 2022-12-13
CN113840433B (en) 2024-01-16
CN216254135U (en) 2022-04-12
CN115568410A (en) 2023-01-06
WO2023045406A1 (en) 2023-03-30
CN114128514B (en) 2023-03-14
CN113840433A (en) 2021-12-24
CN114071827B (en) 2024-03-19
CN113812274B (en) 2022-11-04
CN113812277B (en) 2023-03-24
WO2023045405A1 (en) 2023-03-30
CN113883485A (en) 2022-01-04
CN113796300A (en) 2021-12-17
CN113812274A (en) 2021-12-21
CN115428658A (en) 2022-12-06
CN113853977A (en) 2021-12-31
WO2023046123A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
WO2023045404A1 (en) Multi-stage periodic light-emitting apparatus for agricultural lighting and lighting method thereof
US10034342B2 (en) Method and apparatus for an indoor horticultural facility
US9943040B1 (en) Method and apparatus for horticultural lighting and associated optic systems
US10309613B2 (en) Method and apparatus for horticultural lighting and associated optic systems
US10548264B2 (en) Method and apparatus for horticultural lighting to better simulate the sun
EP3277073B1 (en) System and method of illuminating plants
KR20150033364A (en) Plant factory LED lighting system with controllable light source
EP3003010A1 (en) A system and method for providing illumination to plants
US20190191517A1 (en) Method and apparatus for horticultural lighting with current sharing
US9936649B2 (en) Grow light systems and methods for controlling the same
CN104582471A (en) Method for providing horticulture light to a crop and lighting device for horticulture lighting
WO2013027198A1 (en) Light signaling system for plant behavior manipulation
WO2018058151A2 (en) Method and apparatus for horticultural lighting to better simulate the sun
KR102431196B1 (en) Plant growing system using led lamp
JP6621466B2 (en) Controllable power supply and lighting device
US20220174883A1 (en) Method and apparatus for an indoor horticultural facility
Jiang et al. An intelligent iot-enabled lighting system for energy-efficient crop production
EP3700307B1 (en) Method and apparatus for horticultural lighting with current sharing
KR101332542B1 (en) Method and apparatus for raising seeding
EP3654738A1 (en) Method and apparatus for horticultural lighting to better simulate the sun
RU225205U1 (en) DEVICE FOR GROWING GARDEN PLANTS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22871465

Country of ref document: EP

Kind code of ref document: A1