WO2023040819A1 - 聚醚醚酮及其制备方法 - Google Patents

聚醚醚酮及其制备方法 Download PDF

Info

Publication number
WO2023040819A1
WO2023040819A1 PCT/CN2022/118390 CN2022118390W WO2023040819A1 WO 2023040819 A1 WO2023040819 A1 WO 2023040819A1 CN 2022118390 W CN2022118390 W CN 2022118390W WO 2023040819 A1 WO2023040819 A1 WO 2023040819A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
hydroquinone
argon
preset temperature
complex
Prior art date
Application number
PCT/CN2022/118390
Other languages
English (en)
French (fr)
Inventor
谢怀杰
平仕衡
Original Assignee
吉林省中研高分子材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吉林省中研高分子材料股份有限公司 filed Critical 吉林省中研高分子材料股份有限公司
Priority to KR1020247007851A priority Critical patent/KR20240046545A/ko
Publication of WO2023040819A1 publication Critical patent/WO2023040819A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones

Definitions

  • the invention relates to the field of polymer materials, in particular to polyether ether ketone and a preparation method thereof.
  • Poly(aryl ether ketone) polymer is an aromatic linear polymer material. It is a new type of semi-crystalline aromatic thermoplastic engineering plastic successfully researched and developed in the late 1970s. It has high temperature resistance, chemical resistance, high Strength, high modulus, high fracture toughness and excellent dimensional stability, etc.
  • a typical representative of poly(aryl ether ketone) polymers is polyetheretherketone, which has a glass transition temperature (Tg) of 143°C, a melting point of 334°C, and a maximum attainable crystallinity of 48%, generally 20%. ⁇ 30%. Its density in the amorphous state is 1.265g/cm 3 , and the density at the maximum crystallinity is 1.32g/cm 3 .
  • the continuous use temperature is 260°C, and the instantaneous use temperature can reach 300°C. It does not decompose in a short time at 400°C. Because of the excellent comprehensive properties of polyether ether ketone, it has a wide range of uses in many fields.
  • the synthesis method of polyether ether ketone currently on the market uses diphenyl sulfone as a solvent, and 4,4'-difluorobenzophenone and 1,4-benzenediol undergo nucleophilic copolymerization in the presence of carbonate Preparation, the color of polyetheretherketone prepared by this method is yellow, and it is mainly used in parts and components of various industries, and is widely used.
  • the technical problem to be solved by the present invention is how to prepare polyether ether ketone with higher chroma value L and whiter color.
  • an object of the present invention is to provide a preparation method of polyether ether ketone.
  • the method comprises: feeding argon into a container containing bisphenol compounds to obtain a complex of bisphenol compounds; mixing fluoroketone, alkali metal carbonate, the complex of bisphenol compounds and Solvents are mixed, and the mixture is subjected to temperature programming treatment to generate the polyether ether ketone.
  • the bisphenols were protected with argon so that they would not be oxidized to quinones when reacting with fluoroketones and alkali metal carbonates to obtain the color value L Taller, whiter polyether ether ketone solids.
  • the complex contains Ar atoms
  • forming the complex includes: passing argon gas into a container containing bisphenol compounds, with a flow rate of 20-100ml/min, and heating to make The bisphenol compound is melted; the flow rate of the argon gas is increased to 150-250ml/min, and the bisphenol compound is heated to a first preset temperature and maintained to obtain a complex of the bisphenol compound .
  • the bisphenols are protected with argon so that they will not be oxidized to quinones when they react with fluoroketones and alkali metal carbonates, so that the color value can be obtained PEEK solid with higher L* and whiter color.
  • the argon gas is introduced under the condition of stirring, and the rotating speed of the stirring is 70-100 rpm. Thereby, the bisphenol compound and the argon gas are fully brought into contact, and the reaction proceeds sufficiently.
  • the purity of the argon is 80%-100%.
  • the yield of the complex compound of a bisphenol compound can be improved.
  • the first preset temperature is 178°C-248°C.
  • the bisphenol compound and the argon gas are sufficiently reacted.
  • the temperature programming treatment includes: raising the temperature of the mixture of fluoroketone, alkali metal carbonate, bisphenol compound and the solvent to a second preset temperature to obtain The first solution; the first solution is heated to a third preset temperature and maintained to obtain a second solution; the second solution is heated to a fourth preset temperature and maintained to obtain a third solution, wherein , the second preset temperature is 190°C-210°C; the third preset temperature is 270°C-290°C; and the fourth preset temperature is 300°C-320°C.
  • the reaction is sufficiently advanced.
  • the holding time of the second preset temperature is 60 to 70 minutes; the holding time of the third preset temperature is 50 to 60 minutes; the holding time of the fourth preset temperature is 110-130 minutes.
  • the temperature programming treatment is performed under the protection of an inert gas, and before raising the temperature of the mixture to a second preset temperature, further comprising heating the mixture until the mixture melts.
  • the reaction is sufficiently advanced.
  • the inert gas is argon.
  • the bisphenol compound includes at least one of hydroquinone or biquinone, and the purity of the hydroquinone is 90%-103%.
  • the occurrence of side reactions can be reduced.
  • the purity of the hydroquinone is 98%-102%.
  • the occurrence of side reactions can be reduced.
  • the fluoroketones include 4,4'-difluorobenzophenone, 3,4'-difluorobenzophenone, and 2,4'-difluorobenzophenone
  • the alkali metal carbonate includes one or two of sodium carbonate, potassium carbonate, strontium carbonate, and cesium carbonate
  • the solvent includes sulfolane, diphenyl sulfone, dimethyl sulfoxide, and methylpyrrolidone
  • the molar ratio of the bisphenol compound, the fluoroketone and the alkali metal carbonate is (1-1.2):1:(1-1.1).
  • the reaction can be sufficiently advanced.
  • the method further includes: separating and purifying the mixed solution containing the polyetheretherketone to obtain the polyetheretherketone solid.
  • the purity of polyetheretherketone can be improved by removing other products generated by the reaction.
  • the chromaticity value (L*) of the polyether ether ketone is (81.15-88.26).
  • white polyether ether ketone was obtained.
  • the range of the product of the chromaticity value (L*) and the tensile strength (Rm) of the polyetheretherketone is 9975 ⁇ Rm*L* ⁇ 5100.
  • a polyether ether ketone solid is provided.
  • the polyether ether ketone solid is prepared by the aforementioned method, so it has all the features and advantages of the polyether ether ketone prepared by the aforementioned method, and will not be repeated here. Generally speaking, at least it has the advantage of higher chromaticity value (L*) and whiter color.
  • Fig. 1 shows a schematic flow chart of a method for preparing polyether ether ketone according to an embodiment of the present invention.
  • Embodiments of the present invention are described in detail below.
  • the embodiments described below are exemplary only for explaining the present invention and should not be construed as limiting the present invention. If no specific technique or condition is indicated in the examples, it shall be carried out according to the technique or condition described in the literature in this field or according to the product specification. The reagents or instruments used were not indicated by the manufacturer, and they were all commercially available conventional products.
  • a method for preparing polyether ether ketone comprises: feeding argon gas into a container containing bisphenol compounds to obtain a complex compound of bisphenol compounds; mixing fluoroketone, alkali metal carbonate, complex compounds of bisphenol compounds and a solvent , and the mixture is subjected to a temperature-programmed treatment to generate polyether ether ketone. Therefore, before the preparation of polyetheretherketone, the bisphenols are protected with argon, so that they will not be oxidized when they react with fluoroketones and alkali metal carbonates, so as to obtain a higher color value L* , PEEK solid with white color.
  • polyether ether ketone As mentioned earlier, the synthesis method of polyether ether ketone currently on the market is to use diphenyl sulfone as a solvent, and 4,4'-difluorobenzophenone and 1,4-benzenediol are carried out in the presence of sodium carbonate It is prepared by nucleophilic copolymerization reaction.
  • the color of polyether ether ketone prepared by this method is yellow. It is mainly used in parts and components in various industries, and is widely used. However, polyetheretherketone with a whiter color is needed in specific fields, and there is no such product on the market, which cannot meet the needs of specific fields.
  • the hydroquinone before hydroquinone reacts with 4,4'-difluorobenzophenone and sodium carbonate, the hydroquinone is protected with argon to generate hydroquinone containing Ar atoms
  • the complex of hydroquinone will not be oxidized to p-benzoquinone during the subsequent nucleophilic substitution reaction, and the complex of hydroquinone can directly react with sodium carbonate to generate sodium phenate for nucleophilic substitution , the color of polyether ether ketone prepared by this method is white.
  • the method may include:
  • argon gas is introduced into the container containing the bisphenol compound at a flow rate of 20-100 ml/min, and heated to melt the bisphenol compound.
  • the flow rate of argon gas is not particularly limited, and those skilled in the art can freely choose according to needs, specifically, it can be 30, 50, 80 ml/min, etc.
  • the flow rate of argon in this step, after heating to melt the bisphenol compound, the flow rate of argon can be increased, and the bisphenol compound can be heated to a first preset temperature and kept there, so as to obtain complexes of bisphenols.
  • the flow rate of argon is not particularly limited, and those skilled in the art can freely choose according to needs, for example, it can be 200ml/min to obtain a complex of bisphenol compounds.
  • bisphenol compounds can form complexes of bisphenol compounds, specifically, phenolic hydroxyl groups in bisphenol compounds can form weak chemical bonds with Ar atoms.
  • the bonding force between the phenolic hydroxyl group and the Ar atom in the complex is weak, and cannot exist stably for a long time at room temperature.
  • the complex can continue to form phenate with the alkali metal carbonate in the subsequent process, so as not to affect the subsequent formation of polyether ether ketone.
  • the Ar atom in the complex formed in this step has a certain degree of protection for the phenolic hydroxyl group, it can prevent the bisphenol compound from being oxidized to a quinone compound before it forms a phenoxide.
  • the bisphenol compound includes at least one of hydroquinone or biquinone, and the purity of hydroquinone is 90%-103%.
  • the hydroquinone The purity is 98%-102%.
  • the purity of the argon is 80%-100%, preferably, the purity of the argon is 99.0%-99.9%, most preferably 99.999%.
  • the yield of the complex compound of a bisphenol compound improves.
  • the argon gas can be continuously fed under the condition of stirring, so that the bisphenol compounds can fully form complexes.
  • the stirring speed may be 70-100 rpm, specifically 80 rpm.
  • the flow rate of the argon gas can also be increased, for example, the flow rate of the argon gas can be increased to 150-250 ml/min, specifically about 200 ml/min.
  • the weight of the product after the reaction is greater than the weight of the feed before the reaction, and during the experiment, before the complex is completely generated, the flow rate of the argon gas at the gas outlet of the container is less than that of the argon gas at the gas inlet. gas flow rate. It can be judged that the argon gas passed into the container participated in the reaction, and what this step obtained was not purely molten bisphenols. According to some specific embodiments of the present invention, what is obtained in this step is a hydroquinone complex containing Ar atoms.
  • the flow rate and time of argon feeding can be adjusted according to the formation of complexes. Specifically, the reaction between argon and bisphenols is concentrated at the interface, so the flow of argon can be adjusted according to the volume of the container and the area of the interface in this step to ensure that there is a sufficient amount of argon in the container. Gas, can react with bisphenol compounds at the interface in time. After the bisphenol compound is melted, the flow rate of argon can be increased under the condition of stirring to promote the reaction to proceed faster. When it is detected that the flow rate of argon gas at the inlet and outlet of the container is consistent, it can be judged that the reaction is complete, for example, the holding time of the first preset temperature is 1 hour.
  • the first preset temperature is 178°C-248°C. Specifically, it may be 188 degrees Celsius, 198 degrees Celsius, 208 degrees Celsius, 218 degrees Celsius, 228 degrees Celsius, 238 degrees Celsius and so on.
  • the bisphenol compound and the argon gas are sufficiently reacted.
  • the heating rate of the bisphenol compound is not particularly limited, and those skilled in the art can choose according to their needs, as long as they can meet the experimental requirements.
  • the fluoroketone, the alkali metal carbonate, the complex compound of the bisphenol compound and the solvent are mixed, and the mixture is subjected to temperature programming treatment.
  • the type of fluoroketone is not particularly limited, for example, it may include 4,4'-difluorobenzophenone, 3,4'-difluorobenzophenone, 2,4'-difluorobenzophenone, at least one of benzophenones.
  • 4,4'-difluorobenzophenone 3,4'-difluorobenzophenone
  • 2,4'-difluorobenzophenone at least one of benzophenones.
  • the alkali metal carbonate includes one or two of sodium carbonate, potassium carbonate, strontium carbonate, and cesium carbonate.
  • the performance of the polyetheretherketone prepared by the method can be further improved.
  • the specific type of solvent is not particularly limited, for example, may include at least one of sulfolane, diphenyl sulfone, dimethyl sulfoxide and methylpyrrolidone.
  • sulfolane diphenyl sulfone
  • dimethyl sulfoxide dimethyl sulfoxide
  • methylpyrrolidone a compound that has a high boiling point inert protic solvent.
  • the molar ratio of the bisphenol compound complex, fluoroketone and alkali metal carbonate is (1-1.2):1:(1-1.1), specifically, the molar ratio may be (1 ⁇ 1.2): 1:1.1, 1:1:1.1.
  • the inventors have found that when the alkali metal carbonate satisfies the above molar ratio, polyetheretherketone with narrow molecular weight and better mechanical properties can be obtained, and the amount of alkali metal carbonate is not excessive, which is beneficial to the subsequent Product isolation and purification.
  • the temperature-programmed treatment includes heating the mixture of fluoroketone, alkali metal carbonate, bisphenol compound complex and solvent to a second preset temperature to obtain a first solution;
  • the solution is heated to a third preset temperature and maintained to obtain a second solution;
  • the second solution is heated to a fourth preset temperature and maintained to obtain a third solution, wherein the second preset temperature is 190 degrees Celsius to 210 degrees Celsius , and react at a constant temperature for 60 to 70 minutes at the second preset temperature;
  • the third preset temperature is 270 degrees Celsius to 290 degrees Celsius, and react at a constant temperature for 50 to 60 minutes at the third preset temperature;
  • the fourth preset temperature is 300 Celsius -320 Celsius, and react at a constant temperature for 110 to 130 minutes at the fourth preset temperature, specifically, the second preset temperature is 200 degrees Celsius, and react at a constant temperature for 60 minutes at the second preset temperature;
  • the third preset temperature The temperature is 280 degrees Celsius, and the constant temperature reaction is performed at the third prese
  • heating through temperature programming can avoid local overheating during the reaction process, improve the uniformity of the reaction, and improve the performance of the polyether ether ketone.
  • What needs to be specially explained here is that the heating rate of the mixture when it is heated up to the second preset temperature, from the second preset temperature to the third preset temperature, and from the third preset temperature to the fourth preset temperature is not affected.
  • Special restrictions, those skilled in the art can freely choose according to needs, as long as the needs can be met.
  • the temperature programming treatment is performed under the protection of an inert gas, and before raising the temperature of the mixture to a second preset temperature, further includes heating the mixture until the mixture melts.
  • the reaction is sufficiently advanced.
  • the inert gas is preferably argon to further prevent hydroquinone from being oxidized.
  • the temperature-programmed treatment is carried out under stirring conditions, for example, the stirring speed may be 60 rpm.
  • the third solution was placed in cold distilled water to obtain a white lumpy solid.
  • the obtained white blocky solid needs to be further subjected to separation and purification treatment to obtain polyetheretherketone solid. Thereby, other products generated by the reaction can be removed, and the purity of polyetheretherketone can be improved.
  • this step after grinding the white blocky solid into powder, wash with ethanol for 5 to 6 times to remove the solvent diphenyl sulfone, and wash with distilled water for 5 to 6 times to remove the sodium fluoride generated by the reaction , to obtain white polyether ether ketone powder.
  • the chromaticity value L* of polyetheretherketone is (81.15-88.26).
  • white polyether ether ketone was obtained.
  • the range of the product of the chromaticity value (L*) and the tensile strength (Rm*) of the polyether ether ketone is 9975 ⁇ Rm*L* ⁇ 5100.
  • a polyether ether ketone solid is provided.
  • the polyether ether ketone solid is prepared by the aforementioned method, so it has all the features and advantages of the polyether ether ketone prepared by the aforementioned method, and will not be repeated here. Generally speaking, at least it has the advantages of higher chroma value L* and whiter color.
  • the sample was injection molded into a chromaticity standard sample under the condition of 380°C, and the chromaticity value L* was tested with a color difference meter.
  • the injection molding machine After the injection molding machine is injected into a standard test sample, use the Shimadzu AG-Xplus universal testing machine to test the tensile strength of the sample according to the ISO 527 standard. Form a sample strip with a size of 50 ⁇ 4mm, fix the two ends of the sample on the tensile mold of the universal testing machine, the tensile speed is 2mm/min, and repeat the test for each sample three times to obtain the average value.
  • Reduced viscosity is measured in concentrated sulfuric acid (1 wt.%/vol) at 25°C according to ASTM D2857-95 (2007).
  • the viscometer tube was a No. 50 Cannon Fenske.
  • ground powder approximately average particle size 200-600 ⁇ m was used. The sample was dissolved at room temperature (without heating).
  • t solution and t solvent are the efflux times measured for the solution and the blank solvent, respectively. The average of at least 3 measurements was used for the efflux time. Under these conditions, the outflow time should be longer than 200 s and no correction for kinetic energy should be made.
  • the purity of hydroquinone in the following examples is all above 99.5%, and the highest purity reaches 99.9%.
  • the feeding amount is 300g, and the product weight is greater than 300g, so it can be judged that hydroquinone and argon have generated hydroquinone complexes.
  • the hydroquinone in the reactant is the hydroquinone complex containing Ar atom during nucleophilic substitution reaction
  • the inert gas of embodiment 1-8 is argon
  • the inert gas of Comparative Example 2 was nitrogen. It can be seen from Table 1 that the polyether ether ketone produced in Comparative Example 2 has a lower chromaticity value L*, indicating that the inert gas during the nucleophilic substitution reaction is argon, which can further prevent hydroquinone from being oxidized to a certain extent.
  • the polyether ether ketone prepared by the preparation method of the polyetheretherketone of the present invention has a higher chromaticity value L* and a brighter color, and can be applied to specific electronic fields, such as manufacturing wafer carriers, electronic insulating films, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了聚醚醚酮及其制备方法。本发明方法包括:向含有双酚类化合物的容器内通入氩气,以获得双酚类化合物的络合物;将氟酮、碱金属碳酸盐、所述双酚类化合物的络合物以及溶剂混合,并对混合物进行程序升温处理,以生成所述聚醚醚酮。由此,在制备聚醚醚酮之前,将双酚类化合物用氩气进行保护,使其在与氟酮和碱金属碳酸盐反应时不会被氧化为醌类,从而可以获得色度值L*更高、颜色更白的聚醚醚酮固体。

Description

聚醚醚酮及其制备方法 技术领域
本发明涉及高分子材料领域,具体地,涉及聚醚醚酮及其制备方法。
背景技术
聚(芳基醚酮)聚合物是一种芳香线性高分子材料,是20世纪70年代末研究开发成功的一种新型半晶态芳香族热塑性工程塑料,具有耐高温、耐化学药品腐蚀、高强度、高模量、高断裂韧性和优良的尺寸稳定性等。聚(芳基醚酮)聚合物的典型代表是聚醚醚酮,它的玻璃化转变温度(Tg)为143℃,熔点为334℃,可达到的最大结晶度为48%,一般为20%~30%。其在无定型状态下的密度为1.265g/cm 3,最大结晶度时密度为1.32g/cm 3。它的结晶形态使其具有突出的耐热性能和力学性能,连续使用温度为260℃,瞬间使用温度可达到300℃,在400℃下短时间内不分解。正因为聚醚醚酮具有优异的综合性能,使得它在很多领域都有着广泛的用途。目前市场上的聚醚醚酮的合成方法是以二苯砜为溶剂,4,4’-二氟二苯甲酮和1,4-苯二酚在碳酸盐的存在下进行亲核共聚反应制备,这种方法制备的聚醚醚酮颜色发黄,主要应用于各行业零部件等方面,应用也较广泛。
但在特定领域中需要颜色更白的聚醚醚酮,因此,目前的聚醚醚酮及其制备方法仍需进一步改进。
发明公开
本发明要解决的技术问题是如何制备色度值L更高、颜色更白的聚醚醚酮。
为此,本发明的一个目的在于提出一种聚醚醚酮的制备方法。该方法包括:向含有双酚类化合物的容器内通入氩气,以获得双酚类化合物的络合物;将氟酮、碱金属碳酸盐、所述双酚类化合物的络合物以及溶剂混合,并对混合物进行程序升温处理,以生成所述聚醚醚酮。由此,在制备聚醚醚酮之前,将双酚类化合物用氩气进行保护,使其在与氟酮和碱金属碳酸盐反应时不会被氧化为醌类,以获得色度值L更高、颜色更白的聚醚醚酮固体。
根据本发明的实施例,所述络合物中含有Ar原子,形成所述络合物包括:向含有双酚类化合物的容器内通入氩气,流量为20-100ml/min,并加热 使所述双酚类化合物熔融;提高所述氩气的流量至150-250ml/min,并将所述双酚类化合物加热至第一预设温度并保持,以获得双酚类化合物的络合物。由此,在制备聚醚醚酮之前,将双酚类化合物用氩气进行保护,使其在与氟酮和碱金属碳酸盐反应时不会被氧化为醌类,从而可以获得色度值L*更高、颜色更白的聚醚醚酮固体。
根据本发明的实施例,所述双酚类化合物熔融后,在搅拌的条件下通入所述氩气,所述搅拌的转速为70-100rpm。由此,使双酚类化合物与氩气充分接触,反应充分进行。
根据本发明的实施例,所述氩气的纯度为80%-100%。由此,可提高双酚类化合物的络合物的产率。
根据本发明的实施例,所述第一预设温度为178摄氏度-248摄氏度。由此,使双酚类化合物与氩气充分反应。
根据本发明的实施例,所述程序升温处理包括:将所述氟酮、碱金属碳酸盐、双酚类化合物的络合物以及所述溶剂的混合物升温至第二预设温度,以获得第一溶液;将所述第一溶液升温至第三预设温度并保持,以获得第二溶液;将所述第二溶液升温至第四预设温度并保持,以或得第三溶液,其中,所述第二预设温度为190摄氏度-210摄氏度;所述第三预设温度为270摄氏度-290摄氏度;所述第四预设温度为300摄氏度-320摄氏度。由此,使反应充分进行。
根据本发明的实施例,所述第二预设温度的保持时间为60~70分钟;所述第三预设温度的保持时间为50~60分钟;所述第四预设温度的保持时间为110~130分钟。
根据本发明的实施例,所述程序升温处理是在惰性气体保护下进行的,将所述混合物升温至第二预设温度之前,进一步包括对所述混合物进行加热至所述混合物熔融。由此,使反应充分进行。
根据本发明的实施例,所述惰性气体为氩气。
根据本发明的实施例,所述双酚类化合物包括对苯二酚或联苯二酚中的至少一种,所述对苯二酚的纯度为90%-103%。由此,可以减少副反应的发生。
根据本发明的实施例,所述对苯二酚的纯度为98%-102%。由此,可以 减少副反应的发生。
根据本发明的实施例,所述的氟酮包括4,4’-二氟二苯甲酮、3,4’-二氟二苯甲酮、2,4’-二氟二苯甲酮中的至少一种,所述碱金属碳酸盐包括碳酸钠、碳酸钾、碳酸锶、碳酸铯中的一种或两种,所述溶剂包括环丁砜、二苯砜、二甲基亚砜和甲基吡咯烷酮中的至少一种,所述双酚类化合物、所述氟酮以及所述碱金属碳酸盐的摩尔比为(1~1.2):1:(1~1.1)。由此,可使反应充分进行。
根据本发明的实施例,所述方法进一步包括:将含有所述聚醚醚酮的混合溶液进行分离纯化处理,以获得所述的聚醚醚酮固体。由此,以除去反应生成的其他产物,提高聚醚醚酮的纯度。
根据本发明的实施例,所述聚醚醚酮的色度值(L*)为(81.15-88.26)。由此,以获得白色的聚醚醚酮。
根据本发明的实施例,所述聚醚醚酮的色度值(L*)和拉伸强度(Rm)的乘积范围为9975≥Rm*L*≥5100。由此,以提高聚醚醚酮的性能。
在本发明的另一个方面,提供了一种聚醚醚酮固体。该聚醚醚酮固体是有前述方法制备的,因此具有前述方法制备的聚醚醚酮的全部特征以及优点,在此不再赘述。总的来说,至少具有色度值(L*)较高、颜色较白的优点。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本发明一个实施例制备聚醚醚酮的方法的流程示意图。
实施发明的最佳方式
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
在本发明的一个方面,提出了一种制备聚醚醚酮的方法。该方法包括:向含有双酚类化合物的容器内通入氩气,以获得双酚类化合物的络合物;将氟酮、碱金属碳酸盐、双酚类化合物的络合物以及溶剂混合,并对混合物进行程序升温处理,以生成聚醚醚酮。由此,在制备聚醚醚酮之前,将双酚类化合物用氩气进行保护,使其在与氟酮和碱金属碳酸盐反应时不会被氧化,以获得色度值L*较高、颜色较白的聚醚醚酮固体。
为了方便理解,下面首先对该方法能够实现上述有益效果的原理进行简单说明:
如前所述,目前市场上的聚醚醚酮的合成方法是以二苯砜为溶剂,4,4’-二氟二苯甲酮和1,4-苯二酚在碳酸钠的存在下进行亲核共聚反应制备,这种方法制备的聚醚醚酮颜色发黄,主要应用于各行业零部件等方面,应用也较广泛。但在特定领域中需要颜色更白的聚醚醚酮,市场上还没有这样的产品,不能满足特定领域的需要。发明人发现,目前方法制备的聚醚醚酮颜色发黄是因为亲核取代反应过程中,对苯二酚被氧化成醌类,醌类具有一定的颜色,所以生成的聚醚醚酮颜色发黄。本发明提出的方法,在对苯二酚与4,4’-二氟二苯甲酮、碳酸钠反应前,先用氩气对对苯二酚进行保护,生成含有Ar原子的对苯二酚的络合物,使对苯二酚在后续亲核取代反应过程中,不会被氧化成对苯醌,对苯二酚的络合物可直接与碳酸钠反应生成酚钠从而进行亲核取代,此方法制备的聚醚醚酮颜色较白。
下面,根据本发明的实施例,对该方法的各个步骤进行详细说明。参考图1,该方法可以包括:
S100:向含有双酚类化合物的容器内通入氩气
在该步骤中,向含有双酚类化合物的容器内通入氩气,流量为20-100ml/min,并加热使双酚类化合物熔融。
根据本发明的一些实施例,氩气流量不受特别限制,本领域技术人员可根据需要自由选择,具体地,可以为30、50、80ml/min等。根据本发明的一些实施例,在该步骤中,可以在加热令双酚类化合物熔融后,提高氩气的流量,将双酚类化合物加热至第一预设温度并保持,以获得含有Ar原子的双酚类化合物的络合物。根据本发明的一些实施例,氩气的流量不 受特别限制,本领域技术人员可根据需要自由选择,例如可以为200ml/min,以获得双酚类化合物的络合物。
发明人发现,经过上述处理,双酚类化合物可形成双酚类化合物的络合物,具体地,双酚类化合物中的酚羟基可以和Ar原子形成弱化学键。该络合物中酚羟基和Ar原子之间的键合力较弱,在常温下不能长期稳定存在。由此,该络合物可以在后续过程中继续和碱金属碳酸盐形成酚盐,从而不影响后续形成聚醚醚酮的生成。但由于该步骤中形成的络合物中的Ar原子对于酚羟基具有一定的保护左右,进而可以防止在双酚类化合物形成酚盐之前,被氧化为醌类化合物。
根据本发明的实施例,双酚类化合物包括对苯二酚或联苯二酚中的至少一种,对苯二酚的纯度为90%-103%,优选地,所述对苯二酚的纯度为98%-102%。由此,减少副反应的发生。
根据本发明的一些实施例,氩气的纯度为80%-100%,优选的,氩气的纯度为99.0%-99.9%,最优选的为99.999%。由此,提高双酚类化合物的络合物的产率。
根据本发明的一些实施例,双酚类化合物熔融后,可以在搅拌的条件下继续通入氩气,以令双酚类化合物充分地形成络合物。在该步骤中,搅拌的转速可以为70-100rpm,具体可以为80rpm。此时也可以增大氩气的流量,例如将氩气的流量提高至150-250ml/min,具体可以为200ml/min左右。由此,使双酚类化合物与氩气充分接触,反应充分进行。
根据本发明的一些实施例,此步骤中,反应后产物的重量大于反应前投料的重量,并且实验过程中,当络合物未完全生成之前,容器出气口氩气的流速小于进气口氩气的流速。由此可判断产通入容器中的氩气参与了反应,该步骤获得的并非为单纯的熔融的双酚类化合物。根据本发明的一些具体实施例,该步骤中获得的为含有Ar原子的对苯二酚络合物。
发明人发现,在该步骤中,氩气通入的流量以及时间,可通过形成络合物的情况进行调节。具体而言,氩气和双酚类化合物反应集中在界面处,因此可根据该步骤中容器的体积以及界面面积等情况,调节通入的氩气的流量,以保证容器内部具有足量的氩气,可及时在界面处和双酚类化合物反应。在双酚类化合物熔融后,可在搅拌的条件下加大氩气的流量, 促使反应更快地进行。当检测到容器入口以及出口处氩气的流量相一致时,则可判断反应完全,例如,第一预设温度的保持时间为1h。
根据本发明的一些实施例,第一预设温度为178摄氏度-248摄氏度。具体地,可以为188摄氏度、198摄氏度、208摄氏度、218摄氏度、228摄氏度、238摄氏度等等。由此,使双酚类化合物与氩气充分反应。此处需要特别说明的是,双酚类化合物加热速率不受特别限制,本领域技术人员可根据需要自行选择,只要能满足实验需求即可。
S200:将氟酮、碱金属碳酸盐、所述双酚类化合物的络合物以及溶剂混合
在该步骤中,将氟酮、碱金属碳酸盐、双酚类化合物的络合物以及溶剂混合,并对混合物进行程序升温处理。
根据本发明的实施例,氟酮的种类不受特别限制,例如可以包括4,4’-二氟二苯甲酮,3,4’-二氟二苯甲酮,2,4’-二氟二苯甲酮中的至少一种。本领域技术人员可以根据需要灵活选择,只要满足实验条件即可。由此,可进一步提高该方法获得的聚醚醚酮的性能。
根据本发明的一些实施例,碱金属碳酸盐包括碳酸钠、碳酸钾、碳酸锶、碳酸铯中的一种或两种。由此,可进一步提高该方法制备的聚醚醚酮的性能。
根据本发明的实施例,溶剂的具体种类不受特别限制,例如可以包括环丁砜、二苯砜、二甲基亚砜和甲基吡咯烷酮中的至少一种。本领域技术人员可以根据需要灵活选择,只要满足实验条件即可。具体地,采用上述高沸点惰性质子性溶剂,可进一步提高该方法获得的聚醚醚酮的性能。
根据本发明的一些实施例,双酚类化合物的络合物、氟酮以及碱金属碳酸盐的摩尔比为(1~1.2):1:(1~1.1),具体地,摩尔比可以是(1~1.2):1:1.1、1:1:1.1。
发明人发现,当碱金属碳酸盐满足上述摩尔比时,即可获得分子量较窄,机械性能较优的聚醚醚酮,且碱金属碳酸盐的量并未大量过量,从而有利于后续产物的分离和提纯。
根据本发明的实施例,程序升温处理包括将氟酮、碱金属碳酸盐、双酚类化合物的络合物以及溶剂的混合物升温至第二预设温度,以获得第一 溶液;将第一溶液升温至第三预设温度并保持,以获得第二溶液;将第二溶液升温至第四预设温度并保持,以获得第三溶液,其中,第二预设温度为190摄氏度-210摄氏度,并在第二预设温度下恒温反应60~70分钟;第三预设温度为270摄氏度-290摄氏度,并在第三预设温度下恒温反应50~60分钟;第四预设温度为300摄氏度-320摄氏度,并在第四预设温度下恒温反应110~130分钟,具体地,第二预设温度为200摄氏度,并在第二预设温度下恒温反应60分钟;第三预设温度为280摄氏度,并在第三预设温度下恒温反应60分钟;第四预设温度为305摄氏度,并在第四预设温度下恒温反应120分钟。由此,通过程序升温进行加热,可避免反应过程中局部过热,提高反应的均匀性,以提高聚醚醚酮的性能。此处需要特别说明的是,混合物升温至第二预设温度、由第二预设温度升温至第三预设温度、由第三预设温度升温至第四预设温度时的升温速率不受特别限制,本领域技术人员可根据需要自由选择,只要能满足需求即可。
根据本发明的实施例,程序升温处理是在惰性气体保护下进行的,将所述混合物升温至第二预设温度之前,进一步包括对所述混合物进行加热至所述混合物熔融。由此,使反应充分进行。其中,惰性气体优选为氩气,以进一步防止对苯二酚被氧化。
根据本发明的实施例,程序升温处理是在搅拌条件下进行的,例如,搅拌转速可以是60rpm。
S300:分离纯化处理
在此步骤中,将第三溶液置于冷的蒸馏水中,即可得到白色的块状固体。
根据本发明的一些实施例,所得的白色块状固体需要进一步进行分离纯化处理,以获得聚醚醚酮固体。由此,可以除去反应生成的其他产物,提高聚醚醚酮的纯度。
根据本发明的一些实施例,在该步骤中,将白色块状固体研成粉末后,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色聚醚醚酮粉末。
根据本发明的一些实施例,聚醚醚酮的色度值L*为(81.15-88.26)。由此,以获得白色的聚醚醚酮。
根据本发明的实施例,所述聚醚醚酮的色度值(L*)和拉伸强度(Rm*)的乘积范围为9975≥Rm*L*≥5100。由此,以提高聚醚醚酮的性能。
在本发明的另一个方面,提供了一种聚醚醚酮固体。该聚醚醚酮固体是有前述方法制备的,因此具有前述方法制备的聚醚醚酮的全部特征以及优点,在此不再赘述。总的来说,至少具有色度值L*较高、颜色较白的优点。
下面根据本发明的具体实施例,对本发明进行解释说明。实施例中未注明具体技术或条件的,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产商者,均未可以通过市购获得的常规产品。
性能测试
色度测试方法:
将样品在380℃的条件下注塑为色度标准样板,用色差仪测试色度值L*。
拉伸强度:
经过注塑机注塑成标准测试样条后,使用岛津AG-Xplus万能实验机,按照ISO 527的标准检测样品的拉伸强度,测试方法:首先将经过注塑机注塑成标准测试样条利用模具割成50×4mm大小的样品条,将样品两端固定在万能试验机的拉伸模具上,拉伸速度为2mm/min,每种样品重复测试三次取其平均值。
粘度:
比浓粘度(RV)是根据ASTM D2857-95(2007)于25℃在浓硫酸(1wt.%/vol)中测量的。粘度计管是编号50的Cannon Fenske。所用的溶液是通过将1.0000±0.0004g树脂溶解在100ml±0.3ml浓硫酸(95%-98%,密度=1.84)中而制备的。以g/dl计的浓度C等于聚合物重量(g)除以体积(dl)(100ml=1dl)。为了促进这种溶解,使用了研磨过的粉末(近似平均粒度200-600μm)。将该样品在室温下溶解(不加热)。
将溶液在使用前于玻璃料(中级孔隙率)上过滤。按如下计算RV:
Figure PCTCN2022118390-appb-000001
其中,t溶液和t溶剂是分别对该溶液和空白溶剂测得的流出时间。对于流出时间使用了至少3次测量结果的平均值。在这些条件下,流出时间应该长于200s并且不对动能进行校正。
因为在浓硫酸中可能发生该聚合物的磺化反应,所以必须在溶液制备后3小时内对该溶液的流出时间进行测量。
下述实施例中的对苯二酚的纯度均为99.5%以上,最高纯度达到99.9%。
实施例1
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为178℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物,称取质量为301.12g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,110.51g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例2
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量 至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为188℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气络合物,取出瓶中的对苯二酚络合物称取质量为301.66g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,110.71g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例3
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为198℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物称取质量为301.95g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,称取实施例1的对苯二酚络合物110.82g加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例4
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边 口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为208℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物,称取质量为302.37g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,110.97g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例5
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为218℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物称取质量为305.40g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,112.09g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例6
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为228℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物称取质量为313.52g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,115.07g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例7
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为238℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物称取质量为307.45g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,112.84g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯 砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
实施例8
向一个500ml四口瓶中加入300g对苯二酚,在四口瓶的中间口插入搅拌桨,一个边口插入三通管,三通管分别接温度计和氩气进气口,一个边口插入通气管至四口瓶底部,一个边口接球形冷凝管作为排气口。将四口瓶放入电热套,从两个进气边口向四口瓶中通入高纯氩气,氩气流量为50ml/min,氩气纯度≥99.999%。开启加热至对苯二酚熔融,调整氩气流量至200ml/min,启动搅拌转速至80rpm,维持对苯二酚熔融液体的温度为248℃,持续反应1h,将盛有熔融的对苯二酚的四口瓶放入热的油浴中冷却至室温,关闭氩气,得到对苯二酚和氩气的络合物,取出瓶中的对苯二酚络合物称取质量为300.22g。
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,110.18g的对苯二酚络合物加入三口瓶中,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
对比例1
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,对苯二酚110.1g,通入高纯氩气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
对比例2
在三口瓶中加入521.34g二苯砜,218.2g的4,4’-二氟二苯甲酮,121.89g的碳酸钠,110.1g的对苯二酚络合物加入三口瓶中,通入高纯氮气,加热至熔融,启动搅拌至60rpm,升温至200℃恒温1h,继续加热至280℃恒温1h,升温至305℃,恒温反应2h,将物料倒入冷的蒸馏水水中,得到白色块状物,粉碎白色块状物,用乙醇洗涤5~6次去除溶剂二苯 砜,用蒸馏水洗涤5~6次去除反应生成的氟化钠,得到白色粉末。
表1
Figure PCTCN2022118390-appb-000002
实施例1-8中可以看出,生成对苯二酚络合物的过程中,投料均为300g,产物重量均大于300g,由此可判断对苯二酚与氩气生成了对苯二酚络合物。
对比实施例1~8,不同的温度下,制备的对苯二酚络合物的产率不同。随着温度的升高,对苯二酚络合物收率越大,280摄氏度时收率最高,随后随着温度的升高收率反而减小。通过实施例1-8与对比例1和2的对比,用对苯二酚络合物制备的聚醚醚酮色度值L*更大,即得到的聚醚醚酮固体颜色更白。
对比实施例1-8与对比例2,亲核取代反应时反应物中的对苯二酚均为含有Ar原子的对苯二酚络合物,实施例1-8的惰性气体为氩气,对比例2的惰性气体为氮气。由表1可知,对比例2生成的聚醚醚酮色度值L*较低,说明亲核取代反应过程中惰性气体为氩气,可在一定程度上进一步防止对苯二酚被氧化。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或 示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。
工业应用
本发明聚醚醚酮的制备方法制备得到的聚醚醚酮色度值L*较高,颜色较,可应用于特定的电子领域,例如制造晶圆承载器、电子绝缘膜等。

Claims (15)

  1. 一种聚醚醚酮的制备方法,其特征在于,包括
    向含有双酚类化合物的容器内通入氩气,以获得双酚类化合物的络合物;
    将氟酮、碱金属碳酸盐、所述双酚类化合物的络合物以及溶剂混合,并对混合物进行程序升温处理,以生成所述聚醚醚酮。
  2. 根据权利要求1所述的方法,其特征在于,所述络合物中含有Ar原子,形成所述络合物包括:
    向含有双酚类化合物的容器内通入氩气,流量为20-100ml/min,并加热使所述双酚类化合物熔融;
    提高所述氩气的流量至150-250ml/min,并将所述双酚类化合物加热至第一预设温度并保持,以获得双酚类化合物的络合物。
  3. 根据权利要求2所述的方法,其特征在于,所述双酚类化合物熔融后,在搅拌的条件下继续通入所述氩气,所述搅拌的转速为70-100rpm。
  4. 根据权利要求1所述的方法,其特征在于,所述氩气的纯度为80%-100%。
  5. 根据权利要求2所述的方法,其特征在于,所述第一预设温度为178摄氏度-248摄氏度。
  6. 根据权利要求1所述的方法,其特征在于,所述程序升温处理包括:
    将所述氟酮、碱金属碳酸盐、双酚类化合物的络合物以及所述溶剂的混合物升温至第二预设温度,以获得第一溶液;
    将所述第一溶液升温至第三预设温度并保持,以获得第二溶液;
    将所述第二溶液升温至第四预设温度并保持,以或得第三溶液;
    其中,所述第二预设温度为190摄氏度-210摄氏度;
    所述第三预设温度为270摄氏度-290摄氏度;
    所述第四预设温度为300摄氏度-320摄氏度。
  7. 根据权利要求6所述的方法,其特征在于,所述程序升温处理是在惰性气体保护下进行的,将所述混合物升温至第二预设温度之前,进一步包括对所述混合物进行加热至所述混合物熔融。
  8. 根据权利要求1所述的方法,其特征在于,所述双酚类化合物包括对苯二酚或联苯二酚中的至少一种,所述对苯二酚的纯度为90%-103%。
  9. 根据权利要求8所述的方法,其特征在于,所述对苯二酚的纯度为98%-102%。
  10. 根据权利要求1所述的方法,其特征在于,所述的氟酮包括4,4’-二氟二苯甲酮、3,4’-二氟二苯甲酮、2,4’-二氟二苯甲酮中的至少一种;
    所述碱金属碳酸盐包括碳酸钠、碳酸钾、碳酸锶、碳酸铯中的一种或两种;
    所述溶剂包括环丁砜、二苯砜、二甲基亚砜和甲基吡咯烷酮中的至少一种;
    所述双酚类化合物、所述氟酮以及所述碱金属碳酸盐的摩尔比为(1~1.2):1:(1~1.1)。
  11. 根据权利要求1所述的方法,其特征在于,进一步包括:
    将含有所述聚醚醚酮的混合溶液进行分离纯化处理,以获得所述的聚醚醚酮固体。
  12. 根据权利要求1所述的方法,其特征在于,所述聚醚醚酮的色度值(L*)为(81.15-88.26)。
  13. 根据权利要求1所述的方法,其特征在于,所述聚醚醚酮的色度值(L*)和拉伸强度(Rm*)的乘积范围为9975≥Rm*L*≥5100。
  14. 根据权利要求7所述的方法,其特征在于,所述惰性气体为氩气。
  15. 一种聚醚醚酮固体,其特征在于,是由权利要求1-13任一项或权利要求14所述的方法制备的。
PCT/CN2022/118390 2021-09-16 2022-09-13 聚醚醚酮及其制备方法 WO2023040819A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247007851A KR20240046545A (ko) 2021-09-16 2022-09-13 폴리에테르에테르케톤 및 이의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111088630.5A CN113912799B (zh) 2021-09-16 2021-09-16 聚醚醚酮及其制备方法
CN202111088630.5 2021-09-16

Publications (1)

Publication Number Publication Date
WO2023040819A1 true WO2023040819A1 (zh) 2023-03-23

Family

ID=79235267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118390 WO2023040819A1 (zh) 2021-09-16 2022-09-13 聚醚醚酮及其制备方法

Country Status (3)

Country Link
KR (1) KR20240046545A (zh)
CN (1) CN113912799B (zh)
WO (1) WO2023040819A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113912799B (zh) * 2021-09-16 2022-05-10 吉林省中研高分子材料股份有限公司 聚醚醚酮及其制备方法
CN114920922B (zh) * 2022-06-27 2024-02-06 山东君昊高性能聚合物有限公司 一种低色度、高拉伸强度聚醚醚酮的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4326774A1 (de) * 1993-08-10 1995-02-16 Basf Ag Verfahren zur Herstellung von Polyarylenetherketonen
US6372877B1 (en) * 1999-06-01 2002-04-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Poly(aryl ether ketones) bearing alkylated side chains
WO2009021918A1 (en) * 2007-08-10 2009-02-19 Solvay Advanced Polymers, L.L.C. Improved poly(aryletherketone)s and process for making them
CN101475729A (zh) * 2009-01-20 2009-07-08 吉林大学 电连接器用聚醚醚酮酮树脂专用料及其制备方法
CN104497239A (zh) * 2014-12-17 2015-04-08 江门市优巨新材料有限公司 一种低色度、高热稳定性封端的聚醚醚酮树脂的工业化合成方法
CN104788632A (zh) * 2015-04-27 2015-07-22 吉林省中研高性能工程塑料股份有限公司 一种高纯聚醚醚酮的制备方法
CN107383293A (zh) * 2017-08-16 2017-11-24 宜宾天原集团股份有限公司 一种适用于3d打印的聚醚醚酮的制备方法
CN113912799A (zh) * 2021-09-16 2022-01-11 吉林省中研高分子材料股份有限公司 聚醚醚酮及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2342259B1 (en) * 2008-10-24 2013-08-07 Solvay Specialty Polymers USA, LLC. Improved process for preparing a poly(aryl ether ketone) using a high purity 4,4'-difluorobenzophenone
CN104497240A (zh) * 2014-12-17 2015-04-08 江门市优巨新材料有限公司 一种高流动性聚醚醚酮树脂的工业化合成方法及用途
CN107459613A (zh) * 2017-08-16 2017-12-12 宜宾天原集团股份有限公司 一种聚醚醚酮类三元共聚物的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4326774A1 (de) * 1993-08-10 1995-02-16 Basf Ag Verfahren zur Herstellung von Polyarylenetherketonen
US6372877B1 (en) * 1999-06-01 2002-04-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Poly(aryl ether ketones) bearing alkylated side chains
WO2009021918A1 (en) * 2007-08-10 2009-02-19 Solvay Advanced Polymers, L.L.C. Improved poly(aryletherketone)s and process for making them
CN101809063A (zh) * 2007-08-10 2010-08-18 索维高级聚合物股份有限公司 改进的聚(芳基醚酮)类以及生产它们的方法
CN101475729A (zh) * 2009-01-20 2009-07-08 吉林大学 电连接器用聚醚醚酮酮树脂专用料及其制备方法
CN104497239A (zh) * 2014-12-17 2015-04-08 江门市优巨新材料有限公司 一种低色度、高热稳定性封端的聚醚醚酮树脂的工业化合成方法
CN104788632A (zh) * 2015-04-27 2015-07-22 吉林省中研高性能工程塑料股份有限公司 一种高纯聚醚醚酮的制备方法
CN107383293A (zh) * 2017-08-16 2017-11-24 宜宾天原集团股份有限公司 一种适用于3d打印的聚醚醚酮的制备方法
CN113912799A (zh) * 2021-09-16 2022-01-11 吉林省中研高分子材料股份有限公司 聚醚醚酮及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCCLAIN, J.W. ; DIETHORN, W.S.: "Thermal and radiation stability of the argon clathrate of hydroquinone", INTERNATIONAL JOURNAL OF APPLIED RADIATION AND ISOTOPS., PERGAMON PRESS, NEW YORK, NY., US, vol. 15, no. 3, 1 March 1964 (1964-03-01), US , pages 151 - 157, XP022739211, ISSN: 0020-708X, DOI: 10.1016/0020-708X(64)90046-8 *
P.S.MEENAKSHI, ET AL.: "Theoretical and experimental studies on the hydroquinone–argon 1:1 complex: A blueshifted O–H–Ar bond.", JOURNAL OF CHEMICAL PHYSICS., vol. 118, no. 22, 8 June 2003 (2003-06-08), pages 9963 - 7790, XP009544636, ISSN: 0021-9606, DOI: 10.1063/1.1573189 *

Also Published As

Publication number Publication date
CN113912799B (zh) 2022-05-10
CN113912799A (zh) 2022-01-11
KR20240046545A (ko) 2024-04-09

Similar Documents

Publication Publication Date Title
WO2023040819A1 (zh) 聚醚醚酮及其制备方法
CN105593267A (zh) 聚合物材料
WO2016148133A1 (ja) 芳香族ポリスルホン
JP2018502972A (ja) 溶融重合法からのポリアリールエーテルの脱塩
KR102327908B1 (ko) 용융 추출에 의한 폴리아릴 에테르의 탈염
KR930006259B1 (ko) 새로운 방향족 폴리술폰에테르케톤 중합체
JP2018502973A (ja) 溶融抽出を用いるポリアリールエーテルの脱塩
WO2014136448A1 (ja) ブロック共重合体およびその製造方法
JP2019119810A (ja) ポリフェニレンスルフィド樹脂組成物およびその製造方法
JPWO2019142942A1 (ja) ポリアリーレンエーテルケトン樹脂及びその製造方法、並びに成形品
TW201302848A (zh) 聚苯醚醚酮之製造方法
JPS62148524A (ja) 熱可塑性芳香族ポリエ−テルの製造方法
JPH07138360A (ja) 結晶性ポリエーテルの製造方法
CN113929844B (zh) 聚醚醚酮及其制备方法
JP2002256072A (ja) フタルアジン構造を含むポリエーテルケトン(ppek)の合成方法
JPH05339363A (ja) 芳香族ポリエーテル系共重合体の製造法
JPH0475251B2 (zh)
JPS58101113A (ja) ポリエ−テル系重合体の製造方法
WO2024053304A1 (ja) 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法
WO2023090099A1 (ja) ポリエーテルニトリルの製造方法
JPH0458807B2 (zh)
WO2019153135A1 (zh) 一种聚芳醚砜-醚酰亚胺共聚物及其制备方法
WO2023190280A1 (ja) ポリエーテルニトリル成形用材料及びその製造方法、ポリエーテルニトリル樹脂組成物成形用材料の製造方法
JP2018024851A (ja) ポリアリーレンスルフィドおよびその製造方法
JP2008200986A (ja) ポリフェニレンスルフィドの回転成形方法とその回転成形体。

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22869188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247007851

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022869188

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022869188

Country of ref document: EP

Effective date: 20240315

NENP Non-entry into the national phase

Ref country code: DE