WO2024053304A1 - 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法 - Google Patents

結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法 Download PDF

Info

Publication number
WO2024053304A1
WO2024053304A1 PCT/JP2023/028547 JP2023028547W WO2024053304A1 WO 2024053304 A1 WO2024053304 A1 WO 2024053304A1 JP 2023028547 W JP2023028547 W JP 2023028547W WO 2024053304 A1 WO2024053304 A1 WO 2024053304A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
general formula
polyether nitrile
polyethernitrile
formula
Prior art date
Application number
PCT/JP2023/028547
Other languages
English (en)
French (fr)
Inventor
智明 下田
明弘 橋川
芳美 宇高
大地 岡村
泰宏 中野
春菜 松本
Original Assignee
本州化学工業株式会社
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社, ダイキン工業株式会社 filed Critical 本州化学工業株式会社
Publication of WO2024053304A1 publication Critical patent/WO2024053304A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group

Definitions

  • the present invention relates to a polyether nitrile having an excellent crystallization rate during molding, a method for producing the same, and a composition thereof.
  • Aromatic ether (co)polymers not only have excellent heat resistance, flame retardance, chemical resistance, and mechanical strength, but also are thermoplastic and can be molded by heating, so they can be used for injection molding and extrusion molding. It is one of the useful resins that can be used to obtain various molded products such as filaments, films, sheets, tubes, pipes, and round bars by molding methods such as heating and compression molding.
  • Polyether nitrile for example, Patent Documents 1 to 4
  • Patent Documents 1 to 4 which is one of aromatic ether-based (co)polymers, has the highest level of heat resistance among thermoplastic resins and is a resin with excellent mechanical strength.
  • polyethernitrile which is a composition consisting only of polyethernitrile resin.
  • known polyethernitrile, polyethernitrile synthesized from resorcinol and 2,6-dichlorobenzonitrile resorcinol-polyethernitrile
  • polyethernitrile synthesized from hydroquinone and 2,6-dichlorobenzonitrile hydroquinone - polyethernitrile
  • polyethernitrile synthesized from 4,4'-biphenol and 2,6-dichlorobenzonitrile biphenol-polyethernitrile
  • Patent Document 6 Polyether nitrile using a small amount of copolymerization component has a lower cooling-down crystallization temperature than a polymer using a single component, and conversely, the crystallization rate is lower.
  • An object of the present invention is to provide a polyether nitrile that can solve these problems of the conventional polyether nitrile, which has excellent heat resistance and mechanical strength, and can improve the productivity of molded products.
  • polyethernitrile whose crystallization time is within a specific range, has an improved crystallization rate, and therefore can be used for molded products by thermoforming such as injection molding.
  • the present invention was completed by discovering that the molding cycle during manufacturing can be shortened. Furthermore, by having a specific molecular weight range, it is necessary to have sufficient mechanical strength, and as explained in the examples below, the temperature of isothermal crystallization, the time required for crystallization, and the molecular weight of polyethernitrile By understanding the relationship between molecular weight distributions, we discovered that polyethernitrile that satisfies specific conditions has an excellent crystallization rate.
  • the invention is as follows. 1. A polyether nitrile whose half-crystallization time at 275°C is 100 seconds or less when the temperature is lowered from a molten state at 370°C to 275°C at a cooling rate of 500°C per minute as determined by input-compensated differential scanning calorimetry. 2. 1. The weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography analysis is 50,000 or more. Polyether nitrile as described in. 3. 2. The weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene measured by gel permeation chromatography analysis satisfy formula (i). Polyether nitrile as described in.
  • the polyether nitrile has a repeating unit represented by general formula (3). ⁇ 3.
  • the polyether nitrile according to any one of the above. represents a divalent group represented by general formula (1a) or general formula (1b), and r represents an integer of 1 to 4.
  • R 1 each independently represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or a phenyl group
  • m each independently represents Indicates an integer from 0 to 4, n indicates 0 or 1, p and q indicate 0, 1 or 2, and * indicates the bonding position.
  • R 1 and m are the same as defined in the general formula (1a), and Y is an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, an alkyliden
  • the repeating unit represented by the general formula (3) is a repeating unit represented by the general formula (3').
  • Polyether nitrile as described in. In the formula, R is the same as defined in general formula (3) above.
  • R of the repeating unit represented by the general formula (3') is at least one group selected from the divalent groups shown in the following structure; 6. Polyether nitrile as described in. 8.1.
  • polyethernitrile resin containing at least one member of the group consisting of (A) to (C) of a thermoplastic resin material (A), an additive (B), and a filler (C).
  • Composition 9. 1. Mixing two or more types of raw material polyethernitrile having different weight average molecular weights. The method for producing polyethernitrile described in . 10. 9. The polyether nitrile has a repeating unit represented by general formula (3). The method for producing polyethernitrile described in .
  • R represents a divalent group represented by general formula (1a) or general formula (1b), and r represents an integer of 1 to 4.
  • R 1 each independently represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or a phenyl group
  • m each independently represents Indicates an integer from 0 to 4, n indicates 0 or 1, p and q indicate 0, 1 or 2, and * indicates the bonding position.
  • R 1 and m are the same as defined in the general formula (1a), and Y is an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, an alkylidene group having 1 to 15 carbon atoms, or an alkylidene group having 2 to 15 carbon atoms.
  • Each of the two or more types of raw material polyethernitrile having different weight average molecular weights is a raw material polyethernitrile having the same repeating unit among the repeating units represented by the general formula (3). The method for producing polyethernitrile described in . 12.
  • a method for producing a polyether nitrile resin composition which comprises mixing at least one member of the group consisting of (A) to (C). 13.
  • a polyethernitrile mixing step to obtain a polyethernitrile having a half crystallization time of 100 seconds or less
  • the polyether nitrile obtained in the polyether nitrile mixing step and at least one of the group consisting of (A) to (C) of the thermoplastic resin material (A), the additive (B), and the filler (C). including a resin composition component mixing step of mixing seeds; 12.
  • the polyether nitrile of the present invention has an improved crystallization rate, there is no need for post-treatment such as annealing in hot molding such as injection molding of polyether nitrile, which has excellent heat resistance and mechanical strength, and the molding cycle is short. Molded products can be obtained with In addition, since the crystallization rate can be improved with only the polyether nitrile resin component, there is no problem of embrittlement and excellent mechanical strength compared to polyether nitrile resin compositions that contain conventionally known crystal nucleating agents. A molded article of polyethernitrile can be provided.
  • the method for producing polyethernitrile of the present invention involves mixing two or more types of raw material polyethernitrile having different weight average molecular weights, which requires a short reaction time for production, and is a rational and simple operation. Since the polyether nitrile resin composition of the present invention uses the polyether nitrile of the present invention having a fast crystallization rate, it is possible to obtain molded articles of the polyether nitrile resin composition with excellent heat resistance in a short molding cycle. can. Moreover, the polyether nitrile resin composition of the present invention has a short and reasonable reaction time for production, and can be produced by industrially simple operations.
  • Mw molecular weight distribution
  • Mw/Mn weight average molecular weight
  • the polyether nitrile of the present invention has a half-crystallization time of 100 seconds or less at 275°C when the temperature is lowered from a molten state of 370°C to 275°C at a cooling rate of 500°C per minute, as determined by input-compensated differential scanning calorimetry. be.
  • the half crystallization time is preferably 85 seconds or less, more preferably 70 seconds or less, and particularly preferably 50 seconds or less.
  • Input-compensated differential scanning calorimetry is generally performed under a nitrogen atmosphere.
  • the polyether nitrile of the present invention preferably has a weight average molecular weight (Mw) in terms of polystyrene measured by gel permeation chromatography (GPC) analysis of 50,000 or more. If it is less than 40,000, the mechanical strength may be poor, which is not preferable.
  • Mw weight average molecular weight
  • the range of the weight average molecular weight (Mw) is more preferably 50,000 or more and 1,000,000 or less, and 50,000 or more and 500,000 or less, since moldability becomes difficult. It is more preferable that it is, and it is particularly preferable that it is in the range of 50,000 or more and 300,000 or less.
  • the polyether nitrile of the present invention preferably has a weight average molecular weight (Mw) and a number average molecular weight (Mn) in terms of polystyrene that satisfy formula (i), as measured by gel permeation chromatography (GPC) analysis.
  • this relationship is based on the measured values of the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of polyethernitrile, and the temperature (T) at the time of half-crystallization time measurement, This was discovered by performing multiple regression analysis on the relationship between the measured values of half-crystallization time ( ⁇ c1/2) at that temperature.
  • the half crystallization time at 275° C. will be 100 seconds or less. Further, when the relationship of formula (ii) is satisfied, the half-crystallization time at 275°C is 85 seconds or less, and more preferably, when the relationship of formula (iii) is satisfied, the half-crystallization time at 275°C is 50 seconds or less. , particularly preferred.
  • repeating unit contained in the polyethernitrile of the present invention is not particularly limited, it is preferably a polyethernitrile having a repeating unit represented by general formula (3).
  • a repeating unit represented by general formula (3) it may have only one type of repeating unit, or it may have two or more types of repeating units. It is preferred to have only one type of repeating unit.
  • R represents a divalent group represented by general formula (1a) or general formula (1b), and r represents an integer of 1 to 4.
  • R 1 each independently represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or a phenyl group
  • m each independently represents Indicates an integer from 0 to 4, n indicates 0 or 1, p and q indicate 0, 1 or 2, and * indicates the bonding position.
  • R 1 and m are the same as defined in the general formula (1a), and Y is an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, an alkylidene group having 1 to 15 carbon atoms, or an alkylidene group having 2 to 15 carbon atoms.
  • R 1 each independently represents a linear or branched alkyl group having 1 to 6 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or a phenyl group, and A straight chain or branched alkyl group having ⁇ 4 carbon atoms, a cyclic alkyl group having 5 or 6 carbon atoms, or a phenyl group is preferable, and a straight chain or branched alkyl group having 1 to 4 carbon atoms, or a phenyl group More preferred is an alkyl group having one carbon atom, particularly a methyl group.
  • m represents an integer of 0 to 4, preferably an integer of 0, 1 or 2, more preferably 0 or 1, and particularly preferably 0.
  • n represents 0 or 1, and 1 is preferable.
  • p and q each independently represent 0, 1 or 2, preferably 0 or 1, and particularly preferably 0.
  • General formula (1a) when n is 1 and p and q are 0 is represented as general formula (1a').
  • R 1 , m and * are the same as defined in general formula (1a).
  • the bonding positions in general formula (1a') are preferably independently ortho or para positions with respect to the direct bonding positions of the two benzene rings, and particularly preferably both are para positions.
  • R 1 When m is 1 or 2, the bonding position of R 1 is preferably the meta position with respect to the direct bonding position of the two benzene rings. Preferred embodiments of R 1 and m are the same as in general formula (1a).
  • General formula (1a) when n, p and q are 0 is expressed as general formula (1a'').
  • the bonding position in the general formula (1a'') is preferably a para-position or a meta-position with respect to the other bonding position, and a para-position is particularly preferable.
  • a preferred embodiment of R 1 and m is a bonding position of the general formula (1a''). Same as 1a).
  • preferred embodiments are general formula (1a') where n is 1 and p and q are 0, or general formula (1a'') where n, p and q are 0.
  • R 1 and m in general formula (1b) are the same as defined in general formula (1a), and preferred embodiments are also the same.
  • Y in general formula (1b) is an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, an alkylidene group having 1 to 15 carbon atoms, a fluorine-containing alkylidene group having 2 to 15 carbon atoms, or a cyclic group having 5 to 15 carbon atoms.
  • alkylidene group a phenylmethylidene group, a phenylethylidene group, a phenylene group, or a fluorenylidene group
  • the cyclic alkylidene group having 5 to 15 carbon atoms may contain an alkyl group as a branched chain.
  • the cyclic alkylidene group includes, for example, a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), 4 -Methylcyclohexylidene group (7 carbon atoms), 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), cycloheptylidene group (7 carbon atoms), cyclododecanylidene group (carbon number of atoms: 12), etc.
  • Y in the general formula (1b) is a sulfonyl group, a carbonyl group, an alkylidene group having 1 to 6 carbon atoms, a fluorine-containing alkylidene group having 2 to 6 carbon atoms, a cyclic alkylidene group having 5 to 12 carbon atoms, or a phenylmethylidene group.
  • a lydene group, a phenylethylidene group, a phenylene group, or a fluorenylidene group is preferred; a sulfonyl group, a carbonyl group, an alkylidene group having 1 to 3 carbon atoms, a fluorine-containing alkylidene group having 2 or 3 carbon atoms, and a fluorine-containing alkylidene group having 6 to 12 carbon atoms.
  • a cyclic alkylidene group, a phenylmethylidene group or a fluorenylidene group is more preferable, and an alkylidene group having 3 carbon atoms, that is, a propylidene group, a fluorine-containing alkylidene group having 3 carbon atoms, that is, a fluorine-containing propylidene group, and a cyclic alkylidene group having 6 to 12 carbon atoms.
  • Z in the general formula (1b) represents an oxygen atom, a sulfur atom, or no crosslinking, preferably an oxygen atom or no crosslinking, and more preferably no crosslinking.
  • Ar in the general formula (1b) each independently represents an aryl group having 6 to 8 carbon atoms, and an aryl group having 6 carbon atoms is more preferable.
  • R in the general formula (3) is preferably a divalent group represented by the general formula (1a), and is preferably a divalent group represented by the general formula (1a') or a divalent group represented by the general formula (1a''). It is more preferably a divalent group represented by the following structure, and particularly preferably at least one group selected from the divalent groups shown in the following structure.
  • r represents an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • a repeating unit represented by general formula (3') having ether bonds at both ortho positions of the cyano group is preferred.
  • R is the same as the definition of general formula (3).
  • R in the general formula (3) is preferably a divalent group represented by the general formula (1a), and is preferably a divalent group represented by the general formula (1a') or a divalent group represented by the general formula (1a''). It is more preferably a divalent group represented by the following structure, and particularly preferably at least one group selected from the divalent groups shown in the following structure. (In the formula, * indicates each bonding position.)
  • the method for producing polyethernitrile of the present invention includes a method of mixing two or more types of raw material polyethernitrile having different weight average molecular weights obtained by separate polycondensation reactions in advance (Method 1), and a method of directly obtaining polyethernitrile by a polycondensation reaction. Method (Method 2) is mentioned. Method 1 is preferable because the polycondensation reaction to obtain the raw material polyether nitrile used in this method is short and rational, and can be produced by easy operations.
  • each of the two or more types of raw material polyethernitrile having different weight average molecular weights may be a raw material polyethernitrile obtained using the same aromatic dihydroxy compound (I) and the same dihalobenzonitrile compound (II). , is preferable because it can be mixed at the molecular level, improves the crystallization rate, and yields a strong molded product with a high degree of crystallinity.
  • a raw material polyether nitrile having units is more preferable.
  • the raw material polyether nitrile used in the manufacturing method 1 of polyether nitrile of the present invention contains an aromatic dihydroxy compound (I) and a dihalobenzonitrile compound (II) in the presence of a basic compound. It can be obtained by subjecting it to a polycondensation reaction.
  • Polyethernitrile having a repeating unit represented by the general formula (3) is, for example, a compound represented by the general formula (1) as an aromatic dihydroxy compound (I) and a general compound as a dihalobenzonitrile compound (II). It can be obtained by using a compound represented by formula (2) and subjecting it to a polycondensation reaction in the presence of a basic compound.
  • reaction formula in this case is shown below.
  • R and r are the same as defined in general formula (3), and each X independently represents a halogen atom.
  • the polycondensation reaction may be performed using a pre-synthesized alkali metal salt of aromatic dihydroxy compound (I) and dihalobenzonitrile compound (II).
  • the aromatic dihydroxy compound (I) includes all aromatic compounds having two hydroxyl groups, but is preferably a compound represented by the general formula (1).
  • R is the same as the definition of general formula (3).
  • the definition and preferred embodiments of R in general formula (1) are the same as in general formula (3).
  • aromatic dihydroxy compound (I) examples include hydroquinone, resorcinol, 2-phenylhydroquinone, 4,4'-biphenol, 3,3'-biphenol, 2,6-dihydroxynaphthalene, 2,7- Dihydroxynaphthalene, 1,1'-bi-2-naphthol, 2,2'-bi-1-naphthol, 1,3-bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,4 -bis[1-methyl-1-(4-hydroxyphenyl)ethyl]benzene, 1,3-(4-hydroxybenzoylbenzene), 1,4-(4-hydroxybenzoylbenzene), 1,3-bis(4-hydroxybenzoylbenzene) -hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenoxy)benzene, 1,4-bis(4-hydroxyphenyl)benz
  • the dihalobenzonitrile compound (II) includes all benzonitrile compounds having two halogen groups, but is preferably a compound represented by general formula (2).
  • r has the same definition as in general formula (3), and each X independently represents a halogen atom.
  • X in general formula (2) each independently represents a halogen atom, each independently preferably a chlorine atom, a bromine atom, or an iodine atom, and each independently a chlorine atom or a bromine atom more preferably.
  • both are chlorine atoms, particularly preferably.
  • r represents an integer of 1 to 4, preferably 1 or 2, and more preferably 1.
  • r is 1, a structural embodiment represented by general formula (2') in which halogen atoms are bonded to both ortho positions of the cyano group is preferred.
  • dihalobenzonitrile compound (II) examples include 2,6-difluorobenzonitrile, 2,5-difluorobenzonitrile, 2,4-difluorobenzonitrile, 2,6-dichlorobenzonitrile, 2 ,5-dichlorobenzonitrile, 2,4-dichlorobenzonitrile, 2,6-dibromobenzonitrile, 2,5-dibromobenzonitrile, 2,4-dibromobenzonitrile, 2,6-dinitrobenzonitrile, 2,5 -dinitrobenzonitrile, 2,4-dinitrobenzonitrile, and 1,4-dichloro-2,5-dicyanobenzene.
  • reactive derivatives thereof may be used.
  • 2,6-difluorobenzonitrile and 2,6-dichlorobenzonitrile are preferably used from the viewpoint of reactivity and economic efficiency. It is also possible to use two or more of these compounds in combination.
  • the above-mentioned reactive derivatives are compounds that can react with aromatic dihydroxy compounds, such as those represented by the following general formula, for example, a structure derived from 2,6-dihalobenzonitrile. It means a compound derived from the reaction of two 2,6-dihalobenzonitrile or 2,6-dihalobenzonitrile and an aromatic dihydroxy compound. (In the formula, R has the same definition as in general formula (3), and X has the same definition as in general formula (2).)
  • the molar ratio of the aromatic dihydroxy compound (I) to the dihalobenzonitrile compound (II) can be arbitrarily set depending on the desired molecular weight, but is usually in the range of 0.5 to 2.0.
  • the molar ratio is preferably in the range of 0.9 to 1.1, and preferably 0.95 to 1.1.
  • a range of 1.05 is more preferred, and a range of 0.99 to 1.01 is particularly preferred.
  • the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) in a substantially molar ratio of 1.00.
  • the molar ratio should be in the range of 0.5 to 0.9 or 1.1 to 2. The range is preferably .0.
  • the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) may each be used in combination of two or more types, but they may improve the crystallization rate, high crystallinity, and the toughness of the resulting molded product.
  • the molar ratio of the total amount of each of the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) is as described above.
  • the basic compound may be any organic or inorganic compound as long as it promotes the desalination polycondensation reaction and does not affect quality, but inorganic compounds are preferred, and among them, alkaline Metal compounds and alkaline earth metal compounds are preferred, and alkali metal compounds are particularly preferred.
  • organic bases include tetramethylammonium hydroxide, triethylamine, N,N-diisopropylethylamine, 1,1,3,3-tetramethylguanidine (TMG), N,N-dimethyl-4-aminopyridine (DMAP), 2 , 6-lutidine, pyridine, 1,8-diazabicyclo[5.4.0]-7-undecene (DBU), 1,5-diazabicyclo[4.3.0]-5-nonene (DBN), 7-methyl -1,5,7-triazabicyclo[4.4.0]dec-5-ene (MTBD), 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) , 1,8-bis(dimethylaminonaphthalene) (DMAN), 1,4-diazabicyclo[2.2.2]octane (DABCO), tert-butylimino-tri(pyrrolidino)phosphorane, tert-but
  • alkali metal compounds include alkali metals such as lithium, rubidium, cesium, potassium, and sodium; alkali metal hydrides such as lithium hydride, rubidium hydride, cesium hydride, potassium hydride, and sodium hydride; , alkali metal hydroxides such as lithium hydroxide, rubidium hydroxide, cesium hydroxide, potassium hydroxide and sodium hydroxide, alkali metal carbonates such as lithium carbonate, rubidium carbonate, cesium carbonate, potassium carbonate and sodium carbonate, hydrogen carbonate. Examples include alkali metal hydrogen carbonates such as lithium, rubidium hydrogen carbonate, cesium hydrogen carbonate, potassium hydrogen carbonate, and sodium hydrogen carbonate.
  • alkali metal compounds having a specific surface area of 0.3 m 2 /g or more can also be used alone or in combination of two or more.
  • the specific surface area of the alkali metal compound is preferably 0.8 m 2 /g or more, more preferably 1.2 m 2 /g or more.
  • alkali metal carbonates such as lithium carbonate, rubidium carbonate, cesium carbonate, potassium carbonate, and sodium carbonate are preferable, and lithium carbonate, potassium carbonate, and sodium carbonate are more preferable.
  • potassium carbonate and sodium carbonate having a specific surface area of 0.3 m 2 /g or more are particularly preferable.
  • the amount of the basic compound used in the polycondensation reaction to obtain the raw material polyether nitrile is, for example, in the case of an alkali metal compound, usually 2 mol based on the aromatic dihydroxy compound (I) as the alkali metal ion contained. It is preferable that the amount is 2 to 4 times or more, but if it is used in large excess, side reactions such as cleavage of ether bonds will occur during polycondensation. It is more preferably used in a range of 4 times the mole, and particularly preferably in a range of 2 to 2.2 times the mole.
  • reaction solvent can be used in the polycondensation reaction to obtain the raw material polyether nitrile, and it is preferable to use an aprotic solvent as the reaction solvent.
  • the aprotic solvent includes N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, ⁇ -butyrolactone, Sulfolane, dimethyl sulfoxide, diethyl sulfoxide, dimethyl sulfone, diethyl sulfone, diisopropylsulfone, diphenyl sulfone, diphenyl ether, benzophenone, dialkoxybenzene (alkoxy group has 1 to 4 carbon atoms), trialkoxybenzene (alkoxy group has 1 to 4 carbon atoms) ) etc.
  • polar organic solvents with a high dielectric constant such as N-methyl-2-pyrrolidone, N,N-dimethylacetamide, sulfolane, diphenylsulfone, and dimethylsulfoxide are particularly preferably used. These can also be used alone or in combination of two or more.
  • the amount of the aprotic solvent used is no particular restriction on the amount of the aprotic solvent used, as long as the amount allows uniform dissolution of the raw materials and good stirring and dispersion of the alkali metal salt.
  • the amount may be selected to maximize the volumetric efficiency of the polycondensation reactor based on the raw materials used and the desired polymer. Usually, it is selected in a range of 0.5 to 20 times the total weight of raw materials and alkali metal salt.
  • the polycondensation reaction to obtain the raw material polyether nitrile may be carried out by dividing the steps into an oligomer formation step (A) and a polymerization step (B) and changing the reaction method for each, or it may be carried out without dividing the steps. Good too.
  • the oligomer formation step (A) is a step in which an aromatic dihydroxy compound (I) and a dihalobenzonitrile compound (II) undergo a polycondensation reaction in the presence of a basic compound to form an oligomer.
  • the polymer formation step (B) is a step in which the oligomer obtained in step (A) is further subjected to a polycondensation reaction to form a polymer.
  • the polycondensation reaction solution of step (A) can be used as it is, or an oligomer isolated by performing step (A) separately can also be used.
  • the polycondensation reaction for obtaining the polyether nitrile according to the present invention includes an operation for removing moisture generated during the desalting reaction from the system.
  • the operation method is, for example, to carry out the reaction in the presence of a solvent that forms an azeotrope with water at a temperature that allows the desalting reaction to proceed, and during this process, water is distilled from the reaction mixture using a solvent that forms an azeotrope with water.
  • An example of this method is to remove it. This allows the reaction to be maintained in a substantially anhydrous state.
  • the temperature at which the desalting reaction begins is usually around 130°C, although it depends on the raw materials.
  • reaction temperature is preferably in the range of 130 to 170°C.
  • the solvent that forms an azeotrope with water include aromatic hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, octane, chlorobenzene, dioxane, tetrahydrofuran, anisole, and phenethole. These can also be used alone or in combination of two or more.
  • aromatic hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, octane, chlorobenzene, dioxane, tetrahydrofuran, anisole, and phenethole.
  • aromatic hydrocarbons such as benzene, toluene, xylene, hexane, cyclohexane, octane, chlorobenzene, dioxane, tetrahydrofuran, anisole, and phenethole.
  • reaction system When continuing the reaction, it is preferable to maintain the reaction system in a substantially anhydrous state while removing water produced by the reaction. If the produced water is not sufficiently removed, a phenol skeleton by-product is formed by reaction with the dihalobenzonitrile compound (II), and only a low molecular weight product is produced. That is, in order to obtain a high molecular weight polyether nitrile, it is preferable that the reaction system be substantially anhydrous, preferably less than 0.5% by weight.
  • the temperature of the polycondensation reaction to obtain the raw material polyether nitrile is in the range of 140 to 300°C. Within this range, the reaction may be continued at a constant temperature, or the temperature may be increased as the polycondensation reaction progresses.
  • the oligomer formation step (A) is preferably in the range of 140 to 200°C, and preferably in the range of 150 to 170°C.
  • the temperature is more preferably 155 to 165°C
  • the polymerization step (B) is preferably 200 to 300°C, more preferably 210 to 270°C.
  • the temperature is more preferably in the range of 210 to 240°C, and particularly preferably in the range of 215 to 230°C.
  • a temperature range of 190 to 280 °C is suitable.
  • the pressure may be normal pressure, higher or lower pressure.
  • the polycondensation reaction is preferably carried out under an inert atmosphere, for example under a nitrogen atmosphere and at atmospheric pressure.
  • the reaction time of the polycondensation reaction to obtain the raw material polyether nitrile depends on the molar ratio of the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) and the amount of the basic compound used, but it depends on the amount of the target polyether nitrile.
  • the time can be set arbitrarily depending on the molecular weight, but it is usually 3 to 20 hours.
  • the polycondensation reaction product after completion of the polycondensation reaction to obtain the raw material polyether nitrile can be used as it is as the raw material polyether nitrile, it is preferable to perform a treatment after the reaction.
  • the polycondensation reaction product is extracted from the reactor, cooled and solidified, and then pulverized for the next process of washing, drying, and manufacturing of molding materials (pellets, chips), or the polycondensation reaction product is extracted from the reactor. You can directly put the material into the cleaning tank for the cleaning process, or you can inject the solvent to be used in the cleaning process described later into the reactor after the polycondensation reaction has finished, and then carry out the cleaning process in a slurry or wax state. It may be transferred to
  • the washing step is a step of washing to remove salts, reaction solvents, etc. contained in the polycondensation reaction product obtained by the polycondensation reaction.
  • the reaction solvent in the polycondensation reaction product is extracted and washed using a known method using a solvent such as alcohol, ketone, aromatic hydrocarbon, aliphatic hydrocarbon, water, etc., and then preferably It is preferable to wash and remove the salt generated in the desalting reaction in the polycondensation reaction product with water.
  • the polycondensation reaction product in the form of pulverization, slurry, or wax is transferred to a container equipped with a stirrer, and stirred and washed with a washing solvent until the reaction solvent and salt content is below the target content. , repeat the filtration operation.
  • a washing tank a pressure filter, or a centrifugal separator
  • a multifunctional filtration device that can perform washing, filtration, and drying in one device may be used.
  • extraction and cleaning solvents for the reaction solvent other than water include alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and n-amyl alcohol. , isoamyl alcohol, t-amyl alcohol, n-hexyl alcohol, cyclohexanol, n-octyl alcohol, caprylic alcohol and the like.
  • alcohols such as methanol, ethanol, propyl alcohol, isopropyl alcohol, butyl alcohol, isobutyl alcohol, sec-butyl alcohol, t-butyl alcohol, and n-amyl alcohol.
  • ketone examples include acetone, methyl ethyl ketone, methyl n-propyl ketone, diethyl ketone, 2-hexanone, 3-hexanone, methyl-t-butyl ketone, di-n-propyl ketone, diisopropyl ketone, diisobutyl ketone, di-n- Examples include amylketone, diacetyl, acetylacetone, cyclohexanone, benzophenone and the like.
  • aliphatic hydrocarbons examples include n-hexane, 2-methylhebutane, 3-methylhebutane, 2,2-dimethylbutane, 2,3-dimethylbutane, n-hebutane, 2-methylhexane, 3 -Saturation of methylhexane, 2,2-dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 3-ethylpentane, 2,2,3-trimethylbutane, cyclohexane, etc.
  • Examples include aliphatic hydrocarbons, unsaturated hydrocarbons such as 1-hexene, 1-heptene, 1-octene, and cyclohexene.
  • aromatic hydrocarbons include benzene, toluene, o-xylene, m-xylene, p-xylene, ethylbenzene, n-propylbenzene, cumene, n-butylbenzene, t-butylbenzene, styrene, and allylbenzene.
  • acetone and methanol are particularly preferred in terms of operability and ease of distillation recovery of the reaction solvent after washing.
  • Water is preferable for washing the alkali metal salts such as potassium chloride produced in the desalination polycondensation reaction, and acidic water containing oxalic acid or acetic acid at a low concentration may also be used.
  • the conditions for this washing step include the amount of washing solvent used, the number of times of washing, and the washing temperature, which may be appropriately selected depending on the amount of residual reaction solvent and residual alkali metal salt to be removed.
  • the drying step is a step of drying the polycondensation reaction product subjected to the above-mentioned washing step. After washing, the water-containing polycondensation reaction product is dried by a known method.
  • a known device such as an evaporator, tray oven, or tumbler can be used.
  • the target moisture content is usually 0.5% by weight or less, preferably 0.4% by weight or less, and more preferably 0.3% by weight or less.
  • the conditions for this drying step may be any conditions as long as they can remove moisture at a temperature below the melting point of the polycondensation reaction product.
  • the dried polycondensation reaction product is basically a powder.
  • the raw material polyethernitrile may be in the form of a molding material (pellets, chips, etc.) for producing polyethernitrile molded articles.
  • a molding material pellets, chips, etc.
  • the powdered raw material polyethernitrile obtained as described above is heated and melted and molded into the shape of a molding material such as pellets or chips. good. It is preferable that such heating melting and molding operations are carried out under oxygen exclusion or an inert atmosphere such as nitrogen.
  • melt-kneading equipment such as single-screw, twin-screw or multi-screw extruders, Banbury mixers, kneaders, rollers, etc.
  • the sheet may be cut to produce molding materials such as pellets and chips.
  • the industrially preferred process for producing molding materials is as follows.
  • the polyether nitrile powder that has been polycondensed, crushed, washed, and vacuum-dried is directly transferred and stored in a silo sealed with nitrogen gas or the like without being exposed to the outside air.
  • the material is directly passed through piping and transferred to an extruder along with nitrogen gas. Then, the polymer is melt-kneaded without contact with oxygen (air), and the molten polymer from the die is cut underwater or the strands are water-cooled to be pelletized.
  • the above-mentioned operations are performed at a temperature sufficient to melt the polymer.
  • the upper limit of the temperature during melt processing is 500°C or less.
  • the raw material polyethernitrile obtained using biphenol and 2,6-dichlorobenzonitrile used in the example had a melting point of about 345°C, so processing should be performed at a higher temperature of 360°C or higher.
  • the upper limit of the temperature is preferably 480°C or lower, more preferably 450°C or lower, even more preferably 430°C or lower, and particularly preferably 400°C or lower.
  • the present invention uses the polyethernitrile of the present invention as one type of raw material polyethernitrile to be mixed, and shortens or lengthens the semi-crystallization time of the polyethernitrile used in order to obtain a desired molding cycle. It is also possible to produce polyethernitrile.
  • the form of the raw material polyether nitrile to be mixed is not particularly limited, and specifically, for example, a polycondensation reaction product after the completion of the polycondensation reaction to obtain the raw material polyether nitrile, a washed product of the polycondensation reaction product, and a powder.
  • a polycondensation reaction product after the completion of the polycondensation reaction to obtain the raw material polyether nitrile a washed product of the polycondensation reaction product, and a powder.
  • Examples include shapes of bodies and molding materials (pellets, chips, etc.). Among these, the form of powder or molding material (pellet, chip, etc.) is preferable, and powder is particularly preferable.
  • the mixture When heated and melted and mixed, the mixture may be directly subjected to the process of forming a molding material, which will be described later.
  • the polyether nitrile of the present invention is obtained by such mixing, and then treated based on the above-mentioned post-reaction treatment method. It is preferable to remove salts, reaction solvents, etc. contained in the polycondensation reaction product, and to remove water contained in the polycondensation reaction product. Through such treatment, the polyether nitrile powder of the present invention can be obtained. It is preferable to carry out such a mixing operation under oxygen exclusion or under an inert atmosphere such as nitrogen in order to obtain a polyether nitrile having excellent melt fluidity.
  • Method 2 In the case of the method (method 2) of directly obtaining the polyether nitrile of the present invention by polycondensation reaction, the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II), It can be obtained by carrying out a polycondensation reaction in the presence of a basic compound.
  • the types of aromatic dihydroxy compound (I), dihalobenzonitrile compound (II) and basic compound that can be used in the polycondensation reaction, the type and amount of the reaction solvent, the polycondensation reaction method, and the polycondensation reaction conditions are as described above. This is the same as the polycondensation reaction of raw material polyether nitrile.
  • the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) may each be used in combination of two or more types, but they may improve the crystallization rate, high crystallinity, and the toughness of the resulting molded product. From this point of view, it is preferable to use only one type of each compound. When two or more types of compounds are used, the molar ratio of the total amount of each of the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) is as described above.
  • the molar ratio of the aromatic dihydroxy compound (I) and the dihalobenzonitrile compound (II) used is substantially 1.00, and the basic compound, for example, in the case of an alkali metal compound, the alkali metal ion contained
  • the polycondensation reaction is carried out using 1 mole or more of the aromatic dihydroxy compound (I).
  • the polycondensation reaction time is such that the reduced viscosity of the polyethernitrile increases as the polycondensation reaction progresses, reaches a maximum, and then continues until the reduced viscosity decreases until the polyethernitrile of the present invention is obtained. You can get it by doing this.
  • the polyether nitrile of the present invention is obtained by continuing the reaction for 15 to 50 hours, preferably 20 to 50 hours, depending on conditions such as the amount of the basic compound used and the reaction temperature. be able to.
  • the polycondensation reaction product is extracted from the reactor, cooled and solidified, and then pulverized to produce the next washing step, drying step, and molding material (pellets, chips).
  • the polycondensation reaction product extracted from the reactor can be directly put into the cleaning tank of the cleaning process, or it can be used in the cleaning process described later in the reactor after the polycondensation reaction has finished.
  • the solvent may be injected and transferred to the cleaning process in a slurry or wax state.
  • the washing step and drying step performed on the polycondensation reaction product after the completion of the polycondensation reaction to obtain the polyethernitrile of the present invention are performed on the polycondensation reaction product after the completion of the polycondensation reaction to obtain the above-mentioned raw material polyethernitrile. It can be carried out in the same manner as the washing step and drying step.
  • the polyether nitrile of the present invention obtained by the method 1 or 2 described above can be shaped into a molding material (pellets, chips, etc.) for producing molded products.
  • a molding material pellets, chips, etc.
  • the polyethernitrile of the present invention obtained as described above may be heated and melted and molded into the shape of the molding material such as pellets or chips. . It is preferable that such heating melting and molding operations are carried out under oxygen exclusion or an inert atmosphere such as nitrogen.
  • melt-kneading equipment such as single-screw, twin-screw or multi-screw extruders, Banbury mixers, kneaders, rollers, etc. are used to manufacture molding materials such as pellets and chips;
  • the sheet may be cut to produce molding materials such as pellets and chips.
  • the industrially preferred process for producing molding materials is as follows.
  • the polyether nitrile powder that has been polycondensed, crushed, washed, and vacuum-dried is directly transferred and stored in a silo sealed with nitrogen gas or the like without being exposed to the outside air.
  • the material is directly passed through piping and transferred to an extruder along with nitrogen gas.
  • the polymer is melt-kneaded without contact with oxygen (air), and the molten polymer from the die is cut underwater or the strands are water-cooled to be pelletized.
  • the above-mentioned operations are performed at a temperature sufficient to melt the polymer.
  • the upper limit of the temperature during melt processing is 500°C or less.
  • the polyether nitrile powder using biphenol used in the examples had a melting point of about 345°C, so it is preferable to process it at a higher temperature of 360°C or higher, and the upper limit of the temperature is:
  • the temperature is preferably 480°C or lower, more preferably 450°C or lower, even more preferably 430°C or lower, and particularly preferably 400°C or lower.
  • the polyether nitrile of the present invention can be made into a polyether nitrile resin composition by mixing at least one member of the group consisting of a thermoplastic resin material (A), an additive (B), and a filler (C). .
  • the polyether nitrile of the present invention used here is preferably the polyether nitrile obtained by method 1.
  • thermoplastic resin material (A) contained in the polyether nitrile resin composition includes, for example, high density polyethylene, medium density polyethylene, isotactic polypropylene, acrylonitrile butadiene styrene (ABS) resin, Acrylonitrile styrene (AS) resin, acrylic resin, fluororesin (polytetrafluoroethylene, etc.), polyester, polycarbonate, polyarylate, aliphatic polyamide, aromatic polyamide, polysulfone, polyether sulfone, polyether ketone, polyether ether ketone , polyphenylene sulfide, polyetherimide, polyamideimide, polyesterimide, and modified polyphenylene oxide.
  • ABS acrylonitrile butadiene styrene
  • AS Acrylonitrile styrene
  • acrylic resin polytetrafluoroethylene, etc.
  • polyester polycarbonate, polyarylate, aliphatic polyamide, aromatic polyamide, polys
  • the additive (B) contained in the polyether nitrile resin composition includes, for example, a hydrophilic agent, an antioxidant, a secondary antioxidant, a flame retardant, a flame retardant aid, a plasticizer, and a lubricant. agent, mold release agent, antifogging agent, weathering stabilizer, light stabilizer, hydrolysis resistance improver, fluidity improver, ultraviolet absorber, antistatic agent, metal deactivator, near-infrared absorber, coloring agents (dyes, pigments).
  • the filler (C) contained in the polyether nitrile resin composition includes various metal powders, inorganic acid metal salts (calcium carbonate, zinc borate, calcium borate, zinc stannate, sulfuric acid, etc.).
  • metal oxides magnesium oxide, iron oxide, titanium oxide, zinc oxide, alumina, etc.
  • metal hydroxides aluminum hydroxide, magnesium hydroxide, zirconium hydroxide, alumina water, etc.
  • metal sulfides zinc sulfide, molybdenum sulfide, tungsten sulfide, etc.
  • ceramic materials such as silver nanowires, carbon fibers, glass fibers, carbon nanotubes, graphene, and silica.
  • the method for producing a polyethernitrile resin composition of the present invention includes mixing the polyethernitrile of the present invention with at least one member of the group consisting of a thermoplastic resin material (A), an additive (B), and a filler (C). This is the way to do it. At this time, it is preferable that the polyether nitrile is in the form of a powder or a molding material. In such a mixing method, when using the polyethernitrile of the present invention produced by method 1, when two or more raw material polyethernitrile having different weight average molecular weights are mixed, the polyethernitrile of the present invention is obtained.
  • the two or more types of raw polyether nitrile are mixed with at least one member of the group consisting of (A) to (C), including a thermoplastic resin material (A), an additive (B), and a filler (C).
  • the step of mixing each component is as follows: First, two or more types of raw material polyethernitrile having different weight average molecular weights are mixed by the method described above to obtain the polyethernitrile of the present invention.
  • the polyethernitrile obtained in the "polyethernitrile mixing step" the thermoplastic resin material (A), the additive (B), the filler (C), and the (A) It is preferable to include a "resin composition component mixing step” of mixing at least one member of the group consisting of ) to (C).
  • a "resin composition component mixing step” of mixing at least one member of the group consisting of ) to (C).
  • the polyether nitrile resin composition of the present invention thus obtained can be used to produce a molding material for a polyether nitrile resin composition in the same manner as in the process for producing the above-mentioned molding material. . Since it is possible to obtain a polyether nitrile resin composition molding material with excellent melt fluidity, melt molding in the step of preparing a molding material is preferably carried out under oxygen exclusion or an inert atmosphere.
  • the polyether nitrile obtained by the method of the present invention can be used as a molding material by the method described above, or can be used to manufacture molded products and parts, and has excellent heat resistance, chemical resistance, and flame retardant properties. It has high strength and mechanical properties. For example, it can be used in electrical and electronic applications such as personal computers and semiconductor parts, in automobile applications such as gears, bearings, and housings around engines, and in medical instruments and aerospace applications.
  • the analysis method in the present invention is as follows. (1) Half-crystallization time Using an input-compensated differential scanning calorimeter (manufactured by PerkinElmer: DSC8500), polyethernitrile pellets obtained in the Examples and Comparative Examples described below were measured at The half-crystallization time, which is the time that is half of the total crystallization heat amount, was measured. ⁇ Conditions> Sample: 5mg Measurement atmosphere: Nitrogen Temperature control: The temperature was raised from 30°C to 370°C at a heating rate of 500°C/min, held for 3 minutes, then lowered to the measurement temperature at a cooling rate of 500°C/min, and maintained at the measurement temperature.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) of the obtained polyether nitrile are determined by diluting a 1% p-chlorophenol solution of polyether nitrile 10 times with chloroform using the following method. Measured using equipment and conditions. From this value, the molecular weight distribution Mw/Mn was determined.
  • Tm melting point
  • Tg glass transition temperature
  • DCBN 2,6-dichlorobenzonitrile
  • Synthesis Example 2 powder raw material polyether nitrile (hereinafter referred to as "Raw Material Resin B”) was prepared in the same manner as in Synthesis Example 1, except that the polycondensation reaction was carried out at a temperature of 220° C. for 8.0 hours. Obtained.
  • Synthesis Example 3 powder raw material polyether nitrile (hereinafter referred to as "Raw Material Resin C”) was prepared in the same manner as in Synthesis Example 1, except that the polycondensation reaction was carried out at a temperature of 220° C. for 1.0 hours. Obtained.
  • Synthesis Example 4 powder raw material polyether nitrile (hereinafter referred to as "Raw Material Resin D”) was prepared in the same manner as in Synthesis Example 1, except that the polycondensation reaction was carried out at a temperature of 220° C. for 3.0 hours. Obtained.
  • the polyethernitrile of Examples 1 to 3 of the present invention has a half crystallization time of 100 seconds or less at 275°C, and has a half crystallization time of 100 seconds or less compared to the conventional polyethernitrile of Comparative Examples 1 to 5.
  • the crystallization time is short, and even when comparing polyether nitriles with similar weight average molecular weights (Comparative Example 1 and Examples 1 and 2, Comparative Example 2 and Example 3), the half crystallization time is significantly shortened. It became clear that the crystallization rate was significantly improved. It has also been found that the polyether nitrile of the present invention maintains a high melting point (Tm) and a high glass transition temperature (Tg).
  • the polyether nitrile of the present invention is very useful because it has a fast crystallization rate and a polyether nitrile molded article having high heat resistance can be obtained in a short molding cycle. Furthermore, it was also revealed that the polyether nitrile of Examples 1 to 3 of the present invention had a high weight average molecular weight of 50,000 or more and had sufficiently excellent mechanical properties.
  • FIG. 1 shows a graph of the relationship between molecular weight distribution (Mw/Mn) and weight average molecular weight (Mw), where Mw is in the range of 50,000 or more and 80,000 or less, and Mw/Mn is in the range of 0 or more and 10 or less.
  • the polyether nitriles of the present invention whose half crystallization time at 275°C is within 100 seconds, the polyether nitriles of Examples 1 and 2 satisfy the relationships of formulas (i) and (ii), and the polyether nitriles of Example 3 satisfy the following conditions: Polyether nitrile satisfies the relationships of formulas (i) to (iii), and the polyether nitriles of Comparative Examples 1 to 5, whose half-crystalization time at 275°C was longer than 100 seconds, satisfy formulas (i) to (iii). It became clear that neither of the relationships was satisfied.
  • the above examples are based on biphenol-polyethernitrile, which has a slow crystallization rate among polyethernitrile, so other polyethernitrile, such as resorcinol-polyethernitrile and hydroquinone-polyethernitrile, which have a faster crystallization rate, are used.
  • Any polyethernitrile is included in the present invention, and a person having ordinary knowledge in the field of polyethernitrile will understand that it is a polyethernitrile with a very short half-crystallization time and a very fast crystallization rate. I can understand.
  • the application of the technique of the present invention to other polyether resins that are difficult to crystallize will be readily conceivable to those skilled in the art and will be obvious from the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

実用的な成形サイクルとされる120秒未満の半結晶化時間を示す純粋なポリエーテルニトリルは、未だ報告されていないという問題点を解消し、成形品の生産性を向上できるポリエーテルニトリルの提供をすることを課題とする。解決手段として、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下である、ポリエーテルニトリルを提供する。

Description

結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法
 本発明は、成形時の結晶化速度が優れるポリエーテルニトリル及びその製造方法及びその組成物に関する。
 芳香族エーテル系(共)重合体は、耐熱性、難燃性、耐薬品性、機械強度に優れているのみならず、熱可塑性であり加熱による成形が可能であるため、射出成形、押出成形、加熱圧縮成形等の成形方法によりフィラメント、フィルム、シート、チューブ、パイプ、丸棒などの各種成形品を得ることが可能である有用な樹脂の1つである。
 芳香族エーテル系(共)重合体の1つであるポリエーテルニトリル(例えば、特許文献1~4)は、熱可塑性樹脂中、最高レベルの耐熱性を有し、機械強度に優れる樹脂である。ところが、これらポリエーテルニトリルは結晶化速度が遅く、このため射出成形など加熱成形による成形品の製造時に成形サイクルを十分に短くすることができないという問題がある。
 そこで、アルミナや二酸化チタン、タルク、カーボンブラックなどの種々の結晶核剤の添加によりポリエーテルニトリルの結晶化速度を向上させる試みがなされている(例えば、特許文献5、6)。
 また、結晶性を保持して融点を低くする方法として、少量の共重合成分を用いたポリエーテルニトリルが開示されている(例えば、特許文献7)。
特開昭59-206433号公報 特開昭60-147439号公報 特開昭61-055120号公報 特開昭62-223226号公報 特開昭62-240353号公報 特開平01-193354号公報 国際公開第2021/241492号
 ポリエーテルニトリル樹脂のみの組成である純粋なポリエーテルニトリルでは、結晶化速度の向上は達成されていない。
 例えば、公知のポリエーテルニトリルである、レゾルシンと2,6-ジクロロベンゾニトリルから合成したポリエーテルニトリル(レゾルシン-ポリエーテルニトリル)、ハイドロキノンと2,6-ジクロロベンゾニトリルから合成したポリエーテルニトリル(ハイドロキノン-ポリエーテルニトリル)及び4,4’-ビフェノールと2,6-ジクロロベンゾニトリルから合成したポリエーテルニトリル(ビフェノール-ポリエーテルニトリル)の280℃における半結晶化時間は、それぞれ、120秒、200秒、685秒と測定されており(特許文献6)、実用的な成形サイクルとされる120秒未満の半結晶化時間を示す純粋なポリエーテルニトリルは、未だ、報告がない。
 少量の共重合成分を用いたポリエーテルニトリルでは、いずれも単独成分でのポリマーより、降温結晶化温度が低くなっており、逆に結晶化速度が低下している。
 本発明は、耐熱性及び機械強度が優れるポリエーテルニトリルの従来のこのような問題点を解消し、成形品の生産性を向上できるポリエーテルニトリルを提供することを課題とする。
 本発明者は、上記課題の解決のために鋭意検討した結果、結晶化に要する時間が特定の範囲にあるポリエーテルニトリルが向上した結晶化速度を有するため、射出成形など加熱成形による成形品の製造時の成形サイクルを短くできることを見出し、本発明を完成させた。さらに、特定の分子量の範囲であることで、十分な機械強度を有することや、後述の実施例で説明されるように等温結晶化の温度と、結晶化に要する時間、ポリエーテルニトリルの分子量と分子量分布の関係を把握し、特定の条件を満たすポリエーテルニトリルは結晶化速度に優れることを見出した。
 本発明は以下の通りである。
 1.入力補償型示差走査熱量分析による370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下である、ポリエーテルニトリル。
 2.ゲル浸透クロマトグラフィー分析により測定したポリスチレン換算による重量平均分子量(Mw)が50,000以上である、1.に記載のポリエーテルニトリル。
 3.ゲル浸透クロマトグラフィー分析により測定したポリスチレン換算による重量平均分子量(Mw)及び数平均分子量(Mn)が、数式(i)を満たす、2.に記載のポリエーテルニトリル。
  数式(i):Mw/Mn≧2.4×10-4×Mw-11.8
 4.前記ポリエーテルニトリルが、一般式(3)で表される繰り返し単位を有する、1.~3.のいずれか1項に記載のポリエーテルニトリル。
 (式中、Rは、一般式(1a)又は一般式(1b)で表される2価の基を示し、rは1~4の整数を示す。)
(式中、Rは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、mは各々独立して0~4の整数を示し、nは0又は1を示し、p及びqは0、1又は2を示し、*は各々結合位置を示す。)
(式中、R及びmは一般式(1a)の定義と同じであり、Yは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、Zは酸素原子、硫黄原子又は無架橋であることを示し、Arは各々独立して炭素原子数6~8のアリール基を示し、*は各々結合位置を示す。)
 5.前記一般式(3)におけるRが、一般式(1a’)又は一般式(1a”)である、4.に記載のポリエーテルニトリル。
(式中、R、m及び*は、前記一般式(1a)の定義と同じである。)
(式中、R、m及び*は、前記一般式(1a)の定義と同じである。)
 6.前記一般式(3)で表される繰り返し単位が、一般式(3’)で表される繰り返し単位である、5.に記載のポリエーテルニトリル。
(式中、Rは前記一般式(3)の定義と同じである。)
 7.前記一般式(3’)で表される繰り返し単位のRが、下記構造で示す2価の基から選ばれる少なくとも1つの基である、6.に記載のポリエーテルニトリル。
 8.1.に記載のポリエーテルニトリル及び、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を含有するポリエーテルニトリル樹脂組成物。
 9.重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合する、1.に記載のポリエーテルニトリルの製造方法。
 10.前記ポリエーテルニトリルが、一般式(3)で表される繰り返し単位を有する、9.に記載のポリエーテルニトリルの製造方法。
(式中、Rは、一般式(1a)又は一般式(1b)で表される2価の基を示し、rは1~4の整数を示す。)
(式中、Rは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、mは各々独立して0~4の整数を示し、nは0又は1を示し、p及びqは0、1又は2を示し、*は各々結合位置を示す。)
(式中、R及びmは一般式(1a)の定義と同じであり、Yは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、Zは酸素原子、硫黄原子又は無架橋であることを示し、Arは各々独立して炭素原子数6~8のアリール基を示し、*は各々結合位置を示す。)
 11.前記重量平均分子量の異なる2種以上の原料ポリエーテルニトリルそれぞれが、前記一般式(3)で表される繰り返し単位のうち、同じ繰り返し単位を有する原料ポリエーテルニトリルである、10.に記載のポリエーテルニトリルの製造方法。
 12.重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合した場合に、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下であるポリエーテルニトリルとなる、その2種以上の原料ポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する、ポリエーテルニトリル樹脂組成物の製造方法。
 13.重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合して、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下であるポリエーテルニトリルを得る、ポリエーテルニトリル混合工程、
 次いで、ポリエーテルニトリル混合工程で得られたポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する、樹脂組成物成分混合工程を含む、
 12.に記載のポリエーテルニトリル樹脂組成物の製造方法。
 本発明のポリエーテルニトリルは、向上した結晶化速度を有することから、耐熱性及び機械強度が優れるポリエーテルニトリルの射出成形などの加熱成形において、アニーリングなどの後処理の必要がなく、短い成形サイクルで成形品を得ることができる。また、ポリエーテルニトリル樹脂成分のみで結晶化速度を向上できることから、従来公知の結晶核剤を添加しているポリエーテルニトリル樹脂組成物と比較して、脆化の問題もなく、機械強度に優れたポリエーテルニトリルの成形品を提供することができる。
 本発明のポリエーテルニトリルの製造方法は、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを用いて混合する、製造に要する反応時間が短く合理的、かつ、簡便な操作によるものである。
 本発明のポリエーテルニトリル樹脂組成物は、本発明の結晶化速度の速いポリエーテルニトリルを使用しているので、耐熱性に優れるポリエーテルニトリル樹脂組成物の成形品を短い成形サイクルで得ることができる。また、本発明のポリエーテルニトリル樹脂組成物は、製造するための反応時間が短く合理的であり、かつ、工業的にも簡便な操作によって製造することができる。
ポリエーテルニトリルの分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係における、Mwが50,000以上80,000以下の範囲、Mw/Mnが1以上10以下の範囲のグラフであり、温度275℃で半結晶化時間が100秒以下となるポリエーテルニトリルの領域を斜線部で示したものである。
(本発明のポリエーテルニトリル)
 本発明のポリエーテルニトリルは、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下である。当該半結晶化時間は85秒以下であることが好ましく、70秒以下であることがより好ましく、50秒以下であることが特に好ましい。当該半結晶化時間は短いほどポリエーテルニトリルの結晶化速度が速くて好ましいため、その範囲の下限値に特に制限は無いが、ポリエーテルニトリルの成形品の生産性の観点から、1秒以上であってもよく、10秒以上であっても好ましい。
 入力補償型示差走査熱量分析は窒素雰囲気下で行われることが一般的である。
 本発明のポリエーテルニトリルは、ゲル浸透クロマトグラフィー(GPC)分析で測定したポリスチレン換算による重量平均分子量(Mw)が50,000以上であることが好ましい。40,000未満であると機械強度に劣る場合があり、好ましくない。また、当該重量平均分子量(Mw)の範囲は成形性が困難になる事から、50,000以上1,000,000以下の範囲であることがより好ましく、50,000以上500,000以下の範囲であることがさらに好ましく、50,000以上300,000以下の範囲であることが特に好ましい。
 本発明のポリエーテルニトリルは、ゲル浸透クロマトグラフィー(GPC)分析で測定した、ポリスチレン換算による重量平均分子量(Mw)及び数平均分子量(Mn)が、数式(i)を満たすことが好ましい。
 数式(i):Mw/Mn≧2.4×10-4×Mw-11.8
 かかる関係は、後述の実施例で説明される通り、ポリエーテルニトリルの重量平均分子量(Mw)及び分子量分布(Mw/Mn)の測定値並びに、半結晶化時間測定時の温度(T)と、その温度における半結晶化時間(τc1/2)の測定値の関係を重回帰分析することにより見出された。このことから、かかる関係を満たすポリエーテルニトリルが十分な結晶化速度を有することは、本発明にかかるポリエーテルニトリル分野の当業者であれば理解できるものである。
 数式(i)の関係を満たすと275℃における半結晶化時間が100秒以下となる。さらに、数式(ii)の関係を満たすと、275℃における半結晶化時間は85秒以下となり、さらに好ましく、数式(iii)の関係を満たすと、275℃における半結晶化時間は50秒以下となり、特に好ましい。
 数式(ii):Mw/Mn≧2.4×10-4×Mw-11.4
 数式(iii):Mw/Mn≧2.4×10-4×Mw-10.4
 本発明のポリエーテルニトリルが有する繰り返し単位としては、特に限定されないが、一般式(3)で表される繰り返し単位を有するポリエーテルニトリルであることが好ましい。一般式(3)で表される繰り返し単位の範囲のうち、1種のみの繰り返し単位を有していてもよいし、2種以上の複数の繰り返し単位を有していてもよい。1種のみの繰り返し単位を有することが好ましい。
(式中、Rは一般式(1a)又は一般式(1b)で表される2価の基を示し、rは1~4の整数を示す。)
(式中、Rは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、mは各々独立して0~4の整数を示し、nは0又は1を示し、p及びqは0、1又は2を示し、*は各々結合位置を示す。)
(式中、R及びmは一般式(1a)の定義と同じであり、Yは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、Zは酸素原子、硫黄原子又は無架橋であることを示し、Arは各々独立して炭素原子数6~8のアリール基を示し、*は各々結合位置を示す。)
 一般式(1a)におけるRは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、炭素原子数1~4の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基が好ましく、炭素原子数1~4の直鎖状若しくは分岐鎖状アルキル基、又はフェニル基がより好ましく、炭素原子数1のアルキル基、すなわちメチル基が特に好ましい。
 一般式(1a)におけるmは0~4の整数を示し、0、1又は2の整数が好ましく、0又は1がより好ましく、0が特に好ましい。
 一般式(1a)におけるnは0又は1を示し、1が好ましい。
 一般式(1a)におけるp及びqは各々独立して0、1又は2を示し、0又は1であることが好ましく、0であることが特に好ましい。
 nが1、p及びqが0であるときの一般式(1a)は、一般式(1a’)として表される。
(式中、R、m及び*は、一般式(1a)の定義と同じである。)
 一般式(1a’)における結合位置は、2つのベンゼン環の直接結合位置に対して、各々独立してオルソ位又はパラ位であることが好ましく、共にパラ位であることが特に好ましい。Rの結合位置は、mが1又は2であるときは、2つのベンゼン環の直接結合位置に対してメタ位であることが好ましい。R及びmの好ましい態様は、一般式(1a)と同じである。
 n、p及びqが0であるときの一般式(1a)は、一般式(1a”)として表される。
(式中、R、m及び*は、一般式(1a)の定義と同じである。)
 一般式(1a”)における結合位置は、他方の結合位置に対してパラ位又はメタ位であることが好ましく、パラ位であることが特に好ましい。R及びmの好ましい態様は、一般式(1a)と同じである。
 一般式(1a)において、nが1、p及びqが0であるときの一般式(1a’)又は、n、p及びqが0であるときの一般式(1a”)の態様が好ましい。
 一般式(1b)におけるR及びmは、一般式(1a)の定義と同じであり、好ましい態様も同じである。
 一般式(1b)におけるYは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15の環状アルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、前記、炭素原子数5~15の環状アルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。環状アルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。
 一般式(1b)におけるYは、スルホニル基、カルボニル基、炭素原子数1~6のアルキリデン基、炭素原子数2~6のフッ素含有アルキリデン基、炭素原子数5~12の環状アルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基が好ましく、スルホニル基、カルボニル基、炭素原子数1~3のアルキリデン基、炭素原子数2若しくは3のフッ素含有アルキリデン基、炭素原子数6~12の環状アルキリデン基、フェニルメチリデン基又はフルオレニリデン基がより好ましく、炭素原子数3のアルキリデン基すなわちプロピリデン基、炭素原子数3のフッ素含有アルキリデン基すなわちフッ素含有プロピリデン基、炭素原子数6~12の環状アルキリデン基、フルオレニリデン基が更に好ましく、2,2’-イソプロピリデン基、2,2’-ヘキサフルオロイソプロピリデン基、シクロヘキシリデン基、3,3,5-トリメチルシクロヘキシリデン基、シクロドデカニリデン基、フルオレニリデン基が特に好ましい。
 一般式(1b)におけるZは、酸素原子、硫黄原子又は無架橋であることを示し、酸素原子又は無架橋であることが好ましく、無架橋であることがより好ましい。
 一般式(1b)におけるArは、各々独立して炭素原子数6~8のアリール基を示し、炭素原子数6のアリール基がより好ましい。
 一般式(3)におけるRは、一般式(1a)で表される2価の基であることが好ましく、一般式(1a’)で表される2価の基又は一般式(1a”)で表される2価の基であることがより好ましく、下記構造で示す2価の基から選ばれる少なくとも1つの基であることが特に好ましい。
 一般式(3)におけるrは1~4の整数を示し、1又は2であることが好ましく、1であることがより好ましい。rが1の場合、シアノ基の両オルソ位にエーテル結合を有する一般式(3’)で表される繰り返し単位が好ましい。
(式中、Rは一般式(3)の定義と同じである。)
 一般式(3)におけるRは、一般式(1a)で表される2価の基であることが好ましく、一般式(1a’)で表される2価の基又は一般式(1a”)で表される2価の基であることがより好ましく、下記構造で示す2価の基から選ばれる少なくとも1つの基であることが特に好ましい。
(式中、*は各々結合位置を示す。)
(本発明のポリエーテルニトリルの製造方法)
 本発明のポリエーテルニトリルの製造方法は、あらかじめ別々に重縮合反応して得た、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合する方法(方法1)、重縮合反応により直接得る方法(方法2)が挙げられる。
 方法1は、本方法で用いる原料ポリエーテルニトリルを得るための重縮合反応の時間が短く合理的であり、容易な操作で製造することができるので好ましい。また、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルそれぞれは、同じ芳香族ジヒドロキシ化合物(I)と同じジハロベンゾニトリル化合物(II)を用いて得られた原料ポリエーテルニトリルであることが、分子レベルで混合可能であり、結晶化速度が向上し、高い結晶化度で強靭な成形品が得られることから、好ましく、前記一般式(3)で表される繰り返し単位のうち、同じ繰り返し単位を有する原料ポリエーテルニトリルであることがより好ましい。
(方法1)
・原料ポリエーテルニトリルの製造方法
 本発明のポリエーテルニトリルの製造方法1で使用される原料ポリエーテルニトリルは、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)を塩基性化合物の存在下に重縮合反応させることにより得ることができる。一般式(3)で表される繰り返し単位を有するポリエーテルニトリルは、例えば、芳香族ジヒドロキシ化合物(I)として一般式(1)で表される化合物と、ジハロベンゾニトリル化合物(II)として一般式(2)で表される化合物を使用して、塩基性化合物の存在下に重縮合反応させることにより得ることができる。
 この場合の反応式を以下に示す。
(式中、R、rは、一般式(3)の定義と同じであり、Xは、各々独立してハロゲン原子を示す。)
 また、あらかじめ合成された芳香族ジヒドロキシ化合物(I)のアルカリ金属塩とジハロベンゾニトリル化合物(II)を使用して重縮合反応を行ってもよい。
<芳香族ジヒドロキシ化合物(I)>
 前記芳香族ジヒドロキシ化合物(I)は、2つの水酸基を有する芳香族化合物全てを含むものであるが、中でも、一般式(1)で表される化合物であることが好ましい。
(式中、Rは一般式(3)の定義と同じである。)
 一般式(1)におけるRの定義と好ましい態様は、一般式(3)と同じである。
 芳香族ジヒドロキシ化合物(I)として、具体的には、例えば、ハイドロキノン、レゾルシン、2-フェニルヒドロキノン、4,4’-ビフェノール、3,3’-ビフェノール、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、1,1’-ビ-2-ナフトール、2,2’-ビ-1-ナフトール、1,3-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,4-ビス[1-メチル-1-(4-ヒドロキシフェニル)エチル]ベンゼン、1,3-(4-ヒドロキシベンゾイルベンゼン)、1,4-(4-ヒドロキシベンゾイルベンゼン)、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,4-ビス(4-ヒドロキシフェニル)ベンゼン、1,3-ビス(4-ヒドロキシフェニル)ベンゼン、4,4’-イソプロピリデンビフェノール(Bis-A)、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、4,4’-ビスヒドロキシベンゾフェノン、4,4’-ビスヒドロキシジフェニルスルホン、4,4’-ジヒドロキシジフェニルエーテル、ビス(4-ヒドロキシフェニル)メタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(3-フェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(3,5-ジフェニル-4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-シクロヘキシルフェニル)フルオレン、4,4’-イソプロピリデンビス(2-フェニルフェノール)、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン等が挙げられる。
 この中でも、ハイドロキノン、レゾルシン、4,4’-ビフェノールが好ましく、4,4’-ビフェノールが特に好ましい。
<ジハロベンゾニトリル化合物(II)>
 前記ジハロベンゾニトリル化合物(II)は、2つのハロゲン基を有するベンゾニトリル化合物全てを含むものであるが、中でも、一般式(2)で表される化合物であることが好ましい。
(式中、rは、一般式(3)の定義と同じであり、Xは、各々独立してハロゲン原子を示す。)
 一般式(2)におけるXは、各々独立してハロゲン原子を示し、各々独立して塩素原子、臭素原子又はヨウ素原子であることが好ましく、各々独立して塩素原子又は臭素原子であることがより好ましく、共に塩素原子であることが特に好ましい。
 一般式(2)におけるrは1~4の整数を示し、1又は2であることが好ましく、1であることがより好ましい。rが1の場合、シアノ基の両オルソ位にハロゲン原子が結合する一般式(2’)で表される構造態様が好ましい。
 ジハロベンゾニトリル化合物(II)として、具体的には、例えば、2,6-ジフルオロベンゾニトリル、2,5-ジフルオロベンゾニトリル、2,4-ジフルオロベンゾニトリル、2,6-ジクロロベンゾニトリル、2,5-ジクロロベンゾニトリル、2,4-ジクロロベンゾニトリル、2,6-ジブロモベンゾニトリル、2,5-ジブロモベンゾニトリル、2,4-ジブロモベンゾニトリル、2,6-ジニトロベンゾニトリル、2,5-ジニトロベンゾニトリル、2,4-ジニトロベンゾニトリル、1,4-ジクロロ-2,5-ジシアノベンゼンが挙げられる。また、これらの反応性誘導体であってもよい。これらの中でも、反応性及び経済性等の観点から、2,6-ジフルオロベンゾニトリル及び2,6-ジクロロベンゾニトリルが好適に用いられる。これらの化合物は2種以上を組み合わせて用いることも可能である。
 上記反応性誘導体とは、2,6-ジハロベンゾニトリルから誘導される構造を例に挙げると、下記一般式で表されるような、芳香族ジヒドロキシ化合物と反応し得る化合物であり、これらは2つの2,6-ジハロベンゾニトリルや、2,6-ジハロベンゾニトリルと芳香族ジヒドロキシ化合物が反応して誘導される化合物を意味する。
(式中、Rは一般式(3)の、Xは一般式(2)の定義と同じである。)
 芳香族ジヒドロキシ化合物(I)をジハロベンゾニトリル化合物(II)に対して使用するモル比は、目的とする分子量によって任意に設定できるが、通常は0.5~2.0の範囲である。
 例えば、一般式(3)における繰り返し単位の平均ユニット数が10を超える分子量のポリマーを得たい場合は、当該モル比が0.9~1.1の範囲であることが好ましく、0.95~1.05の範囲であることがより好ましく、0.99~1.01の範囲であることが特に好ましい。重縮合反応の重合速度を最大限にするためには、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)を、実質的にモル比1.00で使用することが好適である。
 逆に、一般式(3)における繰り返し単位の平均ユニット数が10以下のような低い分子量のポリマーを得たい場合は、当該モル比は0.5~0.9の範囲若しくは1.1~2.0の範囲であることが好ましい。
 芳香族ジヒドロキシ化合物(I)及びジハロベンゾニトリル化合物(II)は、各々2種以上の化合物を併用してもよいが、結晶化速度の向上、高い結晶化度、得られる成形品の強靭さの観点より、各々1種のみの化合物を使用することが好ましい。それぞれ2種以上の化合物を使用する場合は、芳香族ジヒドロキシ化合物(I)及びジハロベンゾニトリル化合物(II)の各々の化合物の総量のモル比が上述の通りに使用する。
<塩基性化合物>
 前記塩基性化合物としては、脱塩重縮合反応を促進し、品質に影響を及ぼさないものであれば、有機、無機を問わず任意の化合物で構わないが、無機化合物が好ましく、その中でも、アルカリ金属化合物やアルカリ土類金属化合物が好ましく、アルカリ金属化合物が特に好ましい。
 有機塩基としては、水酸化テトラメチルアンモニウム、トリエチルアミン、N,N-ジイソプロピルエチルアミン、1,1,3,3-テトラメチルグアニジン(TMG)、N,N-ジメチル-4-アミノピリジン(DMAP)、2,6-ルチジン、ピリジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(MTBD)、1,5,7-トリアザビシクロ[4.4.0]デカ-5-エン(TBD)、1,8-ビス(ジメチルアミノナフタレン)(DMAN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、tert-ブチルイミノ-トリ(ピロリジノ)ホスホラン、tert-ブチルイミノ-トリス(ジメチルアミノ)ホスホラン、2-tert-ブチルイミノ-2-ジエチルアミノ-1,3-ジメチルペルヒドロ-1,3,2-ジアザホスホリン、tert-オクチルイミノ-トリス(ジメチルアミノ)ホスホラン、ホスファゼン塩基P-Et、ホスファゼン塩基P-t-Bu、ホスファゼン塩基P-t-Bu、ホスファゼン塩基P-t-Bu、ホスファゼン塩基P-t-Octが挙げられる。
 無機塩基のうち、アルカリ金属化合物としては、リチウム、ルビジウム、セシウム、カリウム及びナトリウム等のアルカリ金属、水素化リチウム、水素化ルビジウム、水素化セシウム、水素化カリウム及び水素化ナトリウム等の水素化アルカリ金属、水酸化リチウム、水酸化ルビジウム、水酸化セシウム、水酸化カリウム及び水酸化ナトリウム等の水酸化アルカリ金属、炭酸リチウム、炭酸ルビジウム、炭酸セシウム、炭酸カリウム及び炭酸ナトリウム等のアルカリ金属炭酸塩、炭酸水素リチウム、炭酸水素ルビジウム、炭酸水素セシウム、炭酸水素カリウム及び炭酸水素ナトリウム等のアルカリ金属炭酸水素塩等が挙げられる。これらは、1種又は2種以上を組み合わせて用いることも可能である。
 これらのアルカリ金属化合物の比表面積は、0.3m/g以上であるものを用いることによって、脱塩重縮合反応を高い効率で行うことが出来る。アルカリ金属化合物の比表面積は、0.8m/g以上であることが好ましく、1.2m/g以上であることがより好ましい。より大きな比表面積をもったアルカリ金属化合物を用いることによって、触媒と反応原料との接触機会がより増加し、更に高い効率で脱塩重縮合反応を行うことが可能となる。比表面積が0.3m/gより小さい場合、触媒量を増やさなければ脱塩重縮合反応を充分に高い効率で行うことができないことになるが、触媒の量を増やすと、重縮合体の品質に影響するために好ましくない。
 以上のことから、本発明の製造方法における塩基性化合物としては、炭酸リチウム、炭酸ルビジウム、炭酸セシウム、炭酸カリウム及び炭酸ナトリウム等のアルカリ金属炭酸塩が好ましく、炭酸リチウム、炭酸カリウム及び炭酸ナトリウムがさらに好ましく、特に、入手性の観点より、比表面積0.3m/g以上の炭酸カリウムと炭酸ナトリウムが好ましい。
 原料ポリエーテルニトリルを得る重縮合反応において使用される塩基性化合物の量としては、例えば、アルカリ金属化合物の場合は、含まれるアルカリ金属イオンとして芳香族ジヒドロキシ化合物(I)に対して、通常2モル倍以上であることが好ましいが、大過剰に使用すると重縮合中に、エーテル結合の切断などの副反応が起こるので、2~4モル倍の範囲で使用することがより好ましく、2~2.4モル倍の範囲で使用することがさらに好ましく、2~2.2モル倍の範囲で使用することが特に好ましい。
 また、重縮合反応の重合速度を最大限にするため、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)を、実質的にモル比1.00で使用した場合において、アルカリ金属イオンとして芳香族ジヒドロキシ化合物(I)に対して、2モル倍から1モル倍までの範囲で使用すれば、一般式(3)の平均ユニット数が無限大から1までの分子量のポリエーテルニトリルを製造することも可能である。
<反応溶媒>
 原料ポリエーテルニトリルを得る重縮合反応において反応溶媒を使用することができ、反応溶媒として非プロトン性溶媒を使用することが好ましい。
 非プロトン性溶媒としては、具体的には、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、γ-ブチロラクトン、スルホラン、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルスルホン、ジエチルスルホン、ジイソプロピルスルホン、ジフェニルスルホン、ジフェニルエーテル、ベンゾフェノン、ジアルコキシベンゼン(アルコキシ基の炭素数1~4)、トリアルコキシベンゼン(アルコキシ基の炭素数1~4)等が挙げられる。これらの溶媒の中でも、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、スルホラン、ジフェニルスルホン、ジメチルスルホキシド等の誘電率の高い極性有機溶媒が特に好適に用いられる。これらは、1種又は2種以上を組み合わせて用いることも可能である。
 非プロトン性溶媒の使用量については、原料を均一に溶解するほか、アルカリ金属塩の撹拌分散が良好であるような量であれば、特に制限はない。使用する原料、目的のポリマーに対して、重縮合反応器の容積効率を最大になるような量を選べば良い。通常、原料とアルカリ金属塩の合計重量の、0.5~20倍の範囲で選択される。
<重縮合反応の方法>
 原料ポリエーテルニトリルを得る重縮合反応は、オリゴマー形成工程(A)とポリマー化工程(B)に工程を分けて、それぞれ反応方法を変えて行ってもよいし、特に工程を分けずに行ってもよい。
 上記オリゴマー形成工程(A)は、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)を、塩基性化合物存在下において重縮合反応を行い、オリゴマーを形成する工程である。ここでいうオリゴマーには特に制限はないが、およそポリマー還元粘度が1未満となるような重縮合反応物をオリゴマーと称する。
 上記ポリマー形成工程(B)は、工程(A)により得られたオリゴマーを、さらに重縮合反応を行い、ポリマーを形成する工程である。この時、オリゴマーは、工程(A)の重縮合反応液をそのまま使用することができるし、別途工程(A)を実施して単離したオリゴマーを使用することもできる。
 本発明にかかるポリエーテルニトリルを得る重縮合反応には、脱塩反応の際に発生する水分を系外に除去する操作が含まれる。その操作方法としては、例えば、水と共沸体を形成する溶媒存在下に、脱塩反応が進行する温度で反応させ、この間、反応混合物から水と共沸体を形成する溶媒により水を留出除去する方法が挙げられる。これにより、反応を実質的に無水の状態で維持することができる。
 脱塩反応が始まる温度は、原料にもよるが通常130℃付近である。例えば、芳香族ジヒドロキシ化合物(I)として4,4’-ビフェノール、ジハロベンゾニトリル化合物(II)として2,6-ジクロロベンゾニトリルを使用して、炭酸カリウム、非プロトン性溶媒にスルホラン(沸点285℃)、水と共沸体を形成する溶媒にトルエンを用いた場合、反応温度は130~170℃の範囲が好適である。
 前記水と共沸体を形成する溶媒としては、具体的には、ベンゼン、トルエン、キシレン、ヘキサン、シクロヘキサン、オクタン、クロロベンゼン、ジオキサン、テトラヒドロフラン、アニソール、フェネトール等の芳香族炭化水素が挙げられる。これらは、1種又は2種以上を組み合わせて用いることも可能である。
 水と共沸体を形成する溶媒を使用する場合は、非プロトン性溶媒100重量部に対して、水と共沸体を形成する溶媒を1~100重量部の範囲で使用することが好ましく、容積効率や溶媒の回収の観点からは、1~10重量部の範囲がより好ましく、2~5重量部の範囲がさらに好ましい。
 反応を継続する際は、反応により生成した水を除去しながら、反応系内を実質的に無水の状態に維持することが好ましい。生成した水の除去が十分でない場合は、ジハロベンゾニトリル化合物(II)と反応してフェノール骨格の副生成物が形成され、低分子量の生成物のみが生成してしまう。すなわち、高分子量のポリエーテルニトリルを得るために、反応系中は実質的に無水、好ましくは0.5重量%未満とすることが好ましい。
<重縮合反応条件>
 原料ポリエーテルニトリルを得る重縮合反応の温度は140~300℃の範囲である。この範囲内で、一定の温度で反応を継続してもよいし、重縮合反応が進行するに伴い温度を高くしてもよい。
 オリゴマー形成工程(A)とポリマー化工程(B)に工程を分けて重縮合反応を行う場合、オリゴマー形成工程(A)は140~200℃の範囲であることが好ましく、150~170℃の範囲であることがより好ましく、155~165℃の範囲であることがさらに好ましく、ポリマー化工程(B)は、200~300℃の範囲であることが好ましく、210~270℃の範囲であることがより好ましく、210~240℃の範囲であることがさらに好ましく、215~230℃の範囲が特に好ましい。
 例えば、芳香族ジヒドロキシ化合物(I)として4,4’-ビフェノール、ジハロベンゾニトリル化合物(II)として2,6-ジクロロベンゾニトリルを使用して、炭酸カリウム、非プロトン性溶媒にスルホラン(沸点285℃)、水と共沸体を形成する溶媒にトルエンを用いた場合は、190~280℃の範囲が好適である。
 圧力は、常圧であってもよく、より高い又はより低い圧力であってもよい。
 重縮合反応は、不活性雰囲気下、例えば窒素雰囲気下、大気圧下で行なわれることが好ましい。
 原料ポリエーテルニトリルを得る重縮合反応の反応時間は、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)のモル比や塩基性化合物の使用量によるが、目標としたポリエーテルニトリルの分子量に応じて任意に設定できるが、通常3~20時間である。
<反応後の処理>
 原料ポリエーテルニトリルを得る重縮合反応の終了後の重縮合反応物をそのまま原料ポリエーテルニトリルとして用いることもできるが、反応後の処理を行うことが好ましい。重縮合反応物を反応器から抜き出し、冷却固化後、粉砕して、次工程の洗浄工程、乾燥工程、成形用材料(ペレット、チップ)の製造工程を行うか、反応器から抜き出した重縮合反応物を直接、洗浄工程の洗浄槽へ投入しても良いし、重縮合反応の終了後の反応器中に、後述の洗浄工程で使用する溶媒を注入して、スラリー状態やワックス状態で洗浄工程に移送しても良い。
 洗浄工程は、重縮合反応により得られた重縮合反応物に含まれる塩や反応溶媒等を除去するために洗浄する工程である。
 この洗浄工程は、公知の方法で、アルコール、ケトン、芳香族炭化水素、脂肪族炭化水素、水等の溶媒を使用して、重縮合反応物中の反応溶媒を抽出洗浄し、次いで、好ましくは水により重縮合反応物中の脱塩反応で生成した塩を洗浄して除去することが好ましい。
 具体的な操作としては、粉砕、スラリー又はワックス状態の重縮合反応物を、撹拌機を備えた容器に移送し、反応溶媒や塩が目標とする含有量以下となるまで、洗浄溶媒で撹拌洗浄、ろ過の操作を繰り返す。
 装置としては、洗浄槽と加圧ろ過機又は遠心分離機の他、1つの装置で洗浄、ろ過、乾燥が可能な多機能ろ過装置等を用いてもよい。
 反応溶媒の抽出洗浄溶媒として水以外の具体例として、アルコールとしては、例えば、メタノール、エタノール、プロピルアルコール、イソプロピルアルコール、ブチルアルコール、イソブチルアルコール、sec-ブチルアルコール、t-ブチルアルコール、n-アミルアルコール、イソアミルアルコール、t-アミルアルコール、n-ヘキシルアルコール、シクロヘキサノール、n-オクチルアルコール、カプリルアルコール等が挙げられる。ケトンとしては、例えば、アセトン、メチルエチルケトン、メチルn-プロピルケトン、ジエチルケトン、2-ヘキサノン、3-ヘキサノン、メチル-t-ブチルケトン、ジ-n-プロピルケトン、ジイソプロピルケトン、ジイソブチルケトン、ジ-n-アミルケトン、ジアセチル、アセチルアセトン、シクロヘキサノン、ベンゾフェノン等が挙げられる。脂肪族炭化水素としては、例えば、n-ヘキサン、2-メチルへブタン、3-メチルへブタン、2,2-ジメチルブタン、2,3-ジメチルブタン、n-へブタン、2-メチルヘキサン、3-メチルヘキサン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2.4-ジメチルペンタン、3,3-ジメチルペンタン、3-エチルペンタン、2,2.3-トリメチルブタン、シクロヘキサン等の飽和脂肪族炭化水素、1-ヘキセン、1-ヘプテン、1-オクテン、シクロヘキセン等の不飽和炭化水素等が挙げられる。芳香族炭化水素としては、例えば、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、エチルベンゼン、n-プロピルベンゼン、キュメン、n-ブチルベンゼン、t-ブチルベンゼン、スチレン、アリルベンゼン等が挙げられる。
 これらの中でも、メタノール、エタノール、アセトン、メチルエチルケトン、キシレン、トルエン等が好ましく、操作性や洗浄後の反応溶媒の蒸留回収の容易さから、特に、アセトンやメタノールが好ましい。
 脱塩重縮合反応で生成した塩化カリウムなどのアルカリ金属塩の洗浄には、水が好ましく、シュウ酸や酢酸を低濃度で含んだ酸性水を使用しても良い。
 この洗浄工程の条件は、除去目標とする残留反応溶媒、残留アルカリ金属塩の量にあわせて、洗浄溶媒の使用量、洗浄回数、洗浄温度を適宜選択すればよい。
 乾燥工程は、上記洗浄工程を施した重縮合反応物を乾燥する工程である。
 洗浄終了後の水分を含む重縮合反応物を、公知の方法により乾燥する。乾燥機は、エバポレーター、棚段式オーブン、タンブラーなど、公知の装置を用いることができる。
 目標の水分含有率は、通常、0.5重量%以下、好ましくは0.4重量%以下、さらに好ましくは0.3重量%以下である。
 この乾燥工程の条件は、重縮合反応物の融点以下の温度で、水分の除去が可能な条件であればよい。できるだけ空気に触れないよう、不活性ガス(窒素、アルゴン等)の雰囲気下や、不活性ガス気流下、減圧下で行うのが好ましい。乾燥された重縮合反応物は、基本的に粉体である。
 原料ポリエーテルニトリルは、ポリエーテルニトリルの成形品を製造するための成形用材料(ペレット、チップ等)の形状であってもよい。かかる成形用材料を製造する方法については、特に制限はないが、上述の通り得られた粉体の原料ポリエーテルニトリルを加熱溶融して、ペレット、チップ等の成形用材料の形状に成形すればよい。かかる加熱溶融と成形操作は、酸素遮断下や、窒素等の不活性雰囲気下で行うことが好ましい。
 通常、ペレットやチップ等の成形用材料の製造には、1軸、2軸若しくは多軸の押出機、バンバリーミキサー、ニーダー、ローラー等の溶融混練装置が用いられるが、圧縮成形機を用いて作成されたシートを切断して、ペレットやチップ等の成形用材料を製造しても良い。
 成形用材料を製造する際の工業的に好ましいプロセスは以下のとおりである。重縮合、粉砕、洗浄、真空乾燥されたポリエーテルニトリル粉体は外気にさらすことなく、直接、窒素ガス等でシールされたサイロなどに移送、貯蔵しておく。ペレットやチップなどの形状に成形するときは、そのまま配管を通して、窒素ガスとともに押出機に移送する。そして、酸素(空気)との接触のない状態で、溶融混練して、ダイからの溶融ポリマーを、水中カット又はストランドを水冷切断してペレタイジングを行う。
 この成形用材料(ペレット、チップ)の製造工程の条件としては、溶融加工条件は、ポリマーが溶融するに十分な温度で、上記の操作を行う。溶融加工の際の温度の上限は500℃以下で行う。実施例で用いられたビフェノールと2,6-ジクロロベンゾニトリルを使用して得た原料ポリエーテルニトリルは、融点が345℃程度であったので、それより高い温度の360℃以上で加工を行うことが好適であり、温度の上限は、480℃以下で行うことが好ましく、450℃以下で行うことがより好ましく、430℃以下で行うことがさらに好ましく、400℃以下で行うことが特に好ましい。
・原料ポリエーテルニトリルの混合
 上述の方法により、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを別々に製造し、各々の原料ポリエーテルニトリルを本発明のポリエーテルニトリルとなるよう適切な量を混合することで、本発明のポリエーテルニトリルを製造することができる。より詳細には、各々の原料ポリエーテルニトリルのMwとMnに鑑み、本発明のポリエーテルニトリルの所望のMwとMnになるように適切な量を混合する。
 275℃における半結晶化時間が100秒以下となるポリエーテルニトリルを製造する場合は、数式(i)の関係を満たすように、原料ポリエーテルニトリルを混合するのが好ましい。275℃における半結晶化時間が85秒以下となるポリエーテルニトリルを製造する場合は、数式(ii)の関係を満たすように、原料ポリエーテルニトリルを混合するのがさらに好ましい。275℃における半結晶化時間が50秒以下となるポリエーテルニトリルを製造する場合は、数式(iii)の関係を満たすように、原料ポリエーテルニトリルを混合するのが特に好ましい。
 また、混合する原料ポリエーテルニトリルの1種として、本発明のポリエーテルニトリルを用いて、所望の成形サイクルとするために、その用いるポリエーテルニトリルの半結晶化時間を短く若しくは長くした、本発明のポリエーテルニトリルを製造することもできる。
 混合する原料ポリエーテルニトリルの形態は、特に限定されず、具体的には、例えば、原料ポリエーテルニトリルを得る重縮合反応の終了後の重縮合反応物及びかかる重縮合反応物の洗浄物、粉体、成形用材料(ペレット、チップ等)の形状が挙げられる。その中でも、粉体若しくは成形用材料(ペレット、チップ等)の形状の形態であることが好ましく、粉体であることが特に好ましい。
 混合操作をする重量平均分子量の異なる2種以上の原料ポリエーテルニトリルの形態は、特に制限はないが、全て重縮合反応物、全て粉体、全て成形用材料の形状、重縮合反応物と粉体、重縮合反応物と成形用材料の形状、粉体と成形用材料の形状などが挙げられる。この中でも、全て粉体、全て成形用材料の形状又は粉体と成形用材料の形状であることが好ましく、全て粉体であることがより好ましい。
 全て粉体で混合する場合、全て成形用材料の形状で混合する場合若しくは粉体と成形用材料の形状で混合する場合において、これらを溶融することなく混合してもよいし、加熱溶融して混合してもよい。加熱溶融して混合した場合は、そのまま後述する成形用材料とする工程に供してもよい。
 重縮合反応物、重縮合反応物の洗浄物の形態を含む混合をする場合は、かかる混合により本発明のポリエーテルニトリルを得たのち、上述の反応後の処理の方法に基づき処理をして、重縮合反応物に含まれる塩や反応溶媒等を除去したり、含まれる水分を除去したりすることが好ましい。かような処理をして、本発明のポリエーテルニトリルの粉体を得ることができる。
 かかる混合操作は、酸素遮断下や、窒素等の不活性雰囲気下で行うことが溶融流動性に優れるポリエーテルニトリルを得るために好ましい。
(方法2)
 本発明のポリエーテルニトリルを重縮合反応により直接得る方法(方法2)の場合、原料ポリエーテルニトリルを製造する方法と同様に、芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)、塩基性化合物の存在下に重縮合反応させることにより得ることができる。
 重縮合反応において使用できる芳香族ジヒドロキシ化合物(I)、ジハロベンゾニトリル化合物(II)及び塩基性化合物の種類、反応溶媒の種類と量、重縮合反応の方法、重縮合反応条件は、上述した原料ポリエーテルニトリルの重縮合反応と同様である。
 芳香族ジヒドロキシ化合物(I)及びジハロベンゾニトリル化合物(II)は、各々2種以上の化合物を併用してもよいが、結晶化速度の向上、高い結晶化度、得られる成形品の強靭さの観点より、各々1種のみの化合物を使用することが好ましい。それぞれ2種以上の化合物を使用する場合は、芳香族ジヒドロキシ化合物(I)及びジハロベンゾニトリル化合物(II)の各々の化合物の総量のモル比が上述の通りに使用する。
 芳香族ジヒドロキシ化合物(I)とジハロベンゾニトリル化合物(II)を使用するモル比は実質的に1.00であり、塩基性化合物を、例えば、アルカリ金属化合物の場合は、含まれるアルカリ金属イオンとして芳香族ジヒドロキシ化合物(I)に対して1モル倍以上使用して重縮合反応を行う。
 重縮合反応の時間は、重縮合反応が進行してポリエーテルニトリルの還元粘度が増大し、極大となった後に還元粘度が低下する領域まで反応を、本発明のポリエーテルニトリルとなるまで継続することで得ることができる。具体的には、使用する塩基性化合物の使用量や反応温度などの条件によるが、15~50時間の範囲、好ましくは20~50時間の範囲で継続することで本発明のポリエーテルニトリルを得ることができる。
<反応後の処理>
 本発明のポリエーテルニトリルを得る重縮合反応の終了後の重縮合反応物を反応器から抜き出し、冷却固化後、粉砕して、次工程の洗浄工程、乾燥工程、成形用材料(ペレット、チップ)の製造工程を行うか、反応器から抜き出した重縮合反応物を直接、洗浄工程の洗浄槽へ投入しても良いし、重縮合反応の終了後の反応器中に、後述の洗浄工程で使用する溶媒を注入して、スラリー状態やワックス状態で洗浄工程に移送しても良い。
 本発明のポリエーテルニトリルを得る重縮合反応の終了後の重縮合反応物に対して施す洗浄工程及び乾燥工程は、上述の原料ポリエーテルニトリルを得る重縮合反応の終了後の重縮合反応物に施す洗浄工程及び乾燥工程と同様に行うことができる。
(本発明のポリエーテルニトリルの成形用材料)
 上述の方法1若しくは方法2により得られた本発明のポリエーテルニトリルは、成形品を製造するための成形用材料(ペレット、チップ等)の形状とすることができる。成形用材料を製造する方法については、特に制限はないが、上述の通りに得られた本発明のポリエーテルニトリルを加熱溶融して、ペレット、チップ等の成形用材料の形状に成形すればよい。かかる加熱溶融と成形操作は、酸素遮断下や、窒素等の不活性雰囲気下で行うことが好ましい。
 通常、ペレットやチップ等の成形用材料の製造には、1軸、2軸若しくは多軸の押出機、バンバリーミキサー、ニーダー、ローラー等の溶融混練装置が用いられるが、圧縮成形機を用いて作成されたシートを切断して、ペレットやチップ等の成形用材料を製造しても良い。
 成形用材料を製造する際の工業的に好ましいプロセスは以下のとおりである。重縮合、粉砕、洗浄、真空乾燥されたポリエーテルニトリル粉体は外気にさらすことなく、直接、窒素ガス等でシールされたサイロなどに移送、貯蔵しておく。ペレットやチップなどの形状に成形するときは、そのまま配管を通して、窒素ガスとともに押出機に移送する。そして、酸素(空気)との接触のない状態で、溶融混練して、ダイからの溶融ポリマーを、水中カット又はストランドを水冷切断してペレタイジングを行う。
 この成形用材料(ペレット、チップ)の製造工程の条件としては、溶融加工条件は、ポリマーが溶融するに十分な温度で、上記の操作を行う。溶融加工の際の温度の上限は500℃以下で行う。実施例で用いられたビフェノールを使用したポリエーテルニトリル粉体は、融点が345℃程度であったので、それより高い温度の360℃以上で加工を行うことが好適であり、温度の上限は、480℃以下で行うことが好ましく、450℃以下で行うことがより好ましく、430℃以下で行うことがさらに好ましく、400℃以下で行うことが特に好ましい。
(本発明のポリエーテルニトリル樹脂組成物)
 本発明のポリエーテルニトリルは、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)からなる群の少なくとも1種を混合して、ポリエーテルニトリル樹脂組成物とすることができる。ここで用いる本発明のポリエーテルニトリルは、方法1により得られたポリエーテルニトリルが好ましい。
 前記ポリエーテルニトリル樹脂組成物に含まれる熱可塑性樹脂材料(A)としては、具体的には、例えば、高密度ポリエチレン、中密度ポリエチレン、アイソタクチックポリプロピレン、アクリロニトリル・ブタジエン・スチレン(ABS)樹脂、アクリロニトリル・スチレン(AS)樹脂、アクリル樹脂、フッ素樹脂(ポリテトラフルオロエチレンなど)、ポリエステル、ポリカーボネート、ポリアリレート、脂肪族ポリアミド、芳香族ポリアミド、ポリスルホン、ポリエーテルスルホン、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリエステルイミド、変性ポリフェニレンオキシドが挙げられる。
 前記ポリエーテルニトリル樹脂組成物に含まれる添加剤(B)としては、具体的には、例えば、親水剤、酸化防止剤、二次抗酸化剤、難燃剤、難燃助剤、可塑剤、潤滑剤、離型剤、防曇剤、耐候安定剤、耐光安定剤、耐加水分解性向上剤、流動性向上剤、紫外線吸収剤、帯電防止剤、金属不活性化剤、近赤外線吸収剤、着色剤(染料、顔料)が挙げられる。
 前記ポリエーテルニトリル樹脂組成物に含まれる充填剤(C)としては、具体的には、例えば、各種金属粉末、無機酸金属塩(炭酸カルシウム、ホウ酸亜鉛、ホウ酸カルシウム、スズ酸亜鉛、硫酸カルシウム、硫酸バリウム等)の粉末、金属酸化物(酸化マグネシウム、酸化鉄、酸化チタン、酸化亜鉛、アルミナ等)の粉末、金属水酸化物(水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウム、アルミナ水和物(ベーマイト)等)の粉末、金属硫化物(硫化亜鉛、硫化モリブデン、硫化タングステン等)の粉末、銀ナノワイヤー、炭素繊維、ガラス繊維、カーボンナノチューブ、グラフェン、シリカ等のセラミック材料が挙げられる
 これら(A)~(C)は、使用目的に応じて適当量配合することができるが、(A)~(C)の配合量の合計は、ポリエーテルニトリル樹脂組成物の全重量に対して、90重量%以下とすることが好ましい。
(本発明のポリエーテルニトリル樹脂組成物の製造方法)
 本発明のポリエーテルニトリル樹脂組成物の製造方法は、本発明のポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)からなる群の少なくとも1種を混合する方法である。この時、ポリエーテルニトリルの形状は粉体若しくは成形用材料の形状であることが好ましい。
 かかる混合する方法において、方法1により製造した本発明のポリエーテルニトリルを用いる場合は、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合した場合に、本発明のポリエーテルニトリルとなる、その2種以上の原料ポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する。
 この場合の各成分を混合する工程としては、初めに、先述の通りの方法で、重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合して、本発明のポリエーテルニトリルを得る、「ポリエーテルニトリル混合工程」を行い、次いで、「ポリエーテルニトリル混合工程」で得られたポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する、「樹脂組成物成分混合工程」を行うことを含むことが好ましい。
 方法2により製造した本発明のポリエーテルニトリルを用いる場合は、そのポリエーテルニトリルの粉体若しくは成形用材料と、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する。
 このようにして得られた本発明のポリエーテルニトリル樹脂組成物は、上述の成形用材料を製造する際の工程と同様にして、ポリエーテルニトリル樹脂組成物の成形用材料を製造することができる。溶融流動性に優れたポリエーテルニトリル樹脂組成物成形用材料を得ることができるため、成形用材料とする工程における溶融成形は、酸素遮断下又は不活性雰囲気下ですることが好ましい。
 本発明の方法により得られたポリエーテルニトリルは、上述の方法により成形用材料とすることや、それを利用した成形品や部品の製造に供することができ、耐熱性、耐薬品性、難燃性、高い機械特性を有するものである。例えば、パーソナルコンピューターや半導体部品等の電気・電子用途、ギアやベアリング、エンジン周りのハウジング等の自動車用途、又は医療器具、宇宙航空分野の用途などに利用することができる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 本発明における分析方法は以下のとおりである。
(1)半結晶化時間
 入力補償型示差走査熱量測定装置(パーキンエルマー製:DSC8500)を用いて、下記条件により、後述の実施例並びに比較例で得られたポリエーテルニトリルのペレットについて、測定温度における総結晶化熱量の半分となる時間である半結晶化時間を測定した。
 <条件>
  試料:5mg
  測定雰囲気:窒素
  温度制御:30℃から昇温速度500℃/minで370℃にし、3分間保持後、500℃/minの冷却速度で測定温度へ降温して、測定温度に保持。
(2)分子量の測定
 得られたポリエーテルニトリルの重量平均分子量(Mw)、数平均分子量(Mn)は、ポリエーテルニトリルの1%p-クロロフェノール溶液をクロロホルムで10倍希釈した溶液を下記の装置、条件で測定した。この値より、分子量分布Mw/Mnを求めた。
 装置:ゲル浸透クロマトグラフィー:515HPLCポンプ、717plus自動注入装置、2487紫外可視検出器(日本ウォーターズ株式会社製)
 カラム:2×PLgel5μMIXED-D、7.5×300mm(アジレント・テクノロジー)
 カラム温度:40℃
 流量:1.0mL/分
 注入量:2.5μL
 検出:紫外可視検出器:254nm
 カラム較正:単分散ポリスチレン(EasiCal PS-1 アジレント・テクノロジー)
 分子量較正:相対比較正法(ポリスチレン換算)
 解析ソフト:Empower3(日本ウォーターズ株式会社製)
(3)ポリマーの還元粘度ηred(dL/g)の測定方法
 サンプル0.1gを5g程度のパラクロロフェノールに180℃で溶解し、10mLメスフラスコへ移して40℃でメスアップし、これを5mLホールピペットで定容し、オストワルド管(毛細管0.75mm)に入れたものを、40.0℃の恒温槽で15分間静置し、流下時間Tを測定し、以下の計算式により算出した。
[計算式]
 還元粘度ηred={(T/T)-1}/C
 C:溶液の濃度(g/dL)
 T:サンプル溶液の流下時間(秒)
 T:パラクロロフェノールの流下時間(秒)
(4)熱的性質の分析:融点(Tm)、ガラス転移温度(Tg)、降温結晶化温度(Tc)
 示差走査熱量測定装置((株)島津製作所製:DSC-60)を用いて、下記条件により、後述の実施例並びに比較例で得られたポリエーテルニトリルのペレットを用いて熱的性質を測定した。融点(Tm)、ガラス転移温度(Tg)の測定は昇温時に、降温結晶化温度は370℃で1分間保持後、毎分10℃の降温時に測定した。
 <条件>
  試料:10mg
  窒素流量:50mL/min.
  変温領域:50~370℃
  変温速度:10℃/min.
<合成例1>
 機械的撹拌機と、温度計と、乾燥窒素入口と、還流器を備えた4つ口の3リットル反応容器に、2,6-ジクロロベンゾニトリル(以下、「DCBN」という。)298.45g(1.735モル)、4,4’-ビフェノール(以下、「BP」という。)323.08g(1.735モル)、無水炭酸カリウム251.79g(1.822モル:BPに対して1.05モル倍)、トルエン60g及び無水スルホラン1562gを仕込んだ。この混合物を窒素気流中で室温より加熱し、250rpmで撹拌しながら、160℃まで加熱還流をかけながら昇温した。130℃以上で、炭酸カリウムと「BP」の反応から、二酸化炭素が発生した。160℃で3時間後、「DCBN」と「BP」とのオリゴマー化反応が完了し、次いで、水及びトルエンを還流器の冷却水を温水に切り替え出口より除去することによって温度を220℃まで上げ、1.5時間重縮合反応を行った。
 重縮合反応後、重縮合反応物を反応容器底部より抜出し、放冷して固化させた。この固形生成物をWaringブレンダーで粉砕した後、粉砕物をアセトンと蒸留水で洗浄して、真空オーブン中、120℃で16時間乾燥し、粉体の原料ポリエーテルニトリル(以下、「原料樹脂A」と称する)を470g得た(収率95%)。
 なお、「DCBN」と「BP」との重縮合反応により得られた、この原料ポリエーテルニトリルは、下記式で表される繰り返し単位を有する。
<合成例2>
 合成例1において、温度220℃で8.0時間重縮合反応を行った以外は、合成例1と同様の操作で、粉体の原料ポリエーテルニトリル(以下、「原料樹脂B」と称する)を得た。
<合成例3>
 合成例1において、温度220℃で1.0時間重縮合反応を行った以外は、合成例1と同様の操作で、粉体の原料ポリエーテルニトリル(以下、「原料樹脂C」と称する)を得た。
<合成例4>
 合成例1において、温度220℃で3.0時間重縮合反応を行った以外は、合成例1と同様の操作で、粉体の原料ポリエーテルニトリル(以下、「原料樹脂D」と称する)を得た。
<合成例5>
 合成例1において、無水炭酸カリウムの量を237.42g(1.718モル:BPに対して0.90モル倍)にし、220℃で1時間反応させた以外は、合成例1と同様の操作で、粉体の原料ポリエーテルニトリル(以下、「原料樹脂E」と称する)を得た。
 合成例1~5で得られた原料ポリエーテルニトリル(原料樹脂A~E)を、上記分析方法により、重量平均分子量(Mw)、数平均分子量(Mn)、還元粘度ηredを分析した。その結果と、「Mw/Mn」値を表1に併せ示す。
<実施例1~3、比較例1~5>
 上記合成例1~5で得られた原料ポリエーテルニトリル(原料樹脂A~E)を用いて、下記表2における原料樹脂(1)と原料樹脂(2)の欄の樹脂の種類とその重量部の配合比で粉体混合し、窒素下、380℃で溶融混練した。その後、ペレットにした。
 得られたポリエーテルニトリルの重量平均分子量(Mw)、数平均分子量(Mn)、熱的性質、275℃及び300℃における半結晶化時間を上記方法により測定した。
 その結果を表2に示す。
 表2に示す通り、本発明の実施例1~3のポリエーテルニトリルは、275℃における半結晶化時間が100秒以下であり、従来の比較例1~5のポリエーテルニトリルと比べて、半結晶化時間が短いこと、重量平均分子量が近いポリエーテルニトリル同士(比較例1と実施例1及び2、比較例2と実施例3)で比較しても半結晶化時間が大幅に短縮され、結晶化速度が大幅に向上していることが明らかになった。
 また、本発明のポリエーテルニトリルは、高い融点(Tm)及び高いガラス転移温度(Tg)も保持されていることも明らかになった。
 よって、本発明のポリエーテルニトリルは結晶化速度が速く、短い成形サイクルで高い耐熱性を有するポリエーテルニトリルの成形品を得ることができるため非常に有用である。
 さらに、本発明の実施例1~3のポリエーテルニトリルは、重量平均分子量が50,000以上と高く、機械特性が十分に優れることも明らかになった。
<半結晶化時間(τc1/2:秒)と重量平均分子量(Mw)、分子量分布(Mw/Mn)、温度(T:℃)の関係>
 実施例1~3と比較例1及び3~5で得たポリエーテルニトリルについて、測定した重量平均分子量(Mw)及び分子量分布(Mw/Mn)、半結晶化時間測定時の温度(T)とその温度における測定した半結晶化時間(τc1/2)を用いて、半結晶化時間(τc1/2)と重量平均分子量(Mw)、分子量分布(Mw/Mn)、温度(T)の関係を、Microsoft Excelを用いた重回帰分析することにより、補正Rが0.94の高い精度で分析結果を得ることができ、数式(I)の関係式となることを見出した。重回帰分析に用いた上記測定値を表3に、重回帰分析結果を表4に示す。
 数式(I):τc1/2=0.00873×Mw-36.4×Mw/Mn+1.02×T-609.8
 数式(I)より、温度275℃の半結晶化時間が100秒以下のポリエーテルニトリルの分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係は、下記数式(i)で表すことができることが明らかになった。
 数式(i):Mw/Mn≧2.4×10-4×Mw-11.8
 すなわち、分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係において、Mw/Mn=2.4×10-4×Mw-11.8の直線より上の領域に該当する分子量分布(Mw/Mn)と重量平均分子量(Mw)を有するポリエーテルニトリルが、温度275℃で半結晶化時間が100秒以下を与えることが明らかになった。
 分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係における、Mwが50,000以上80,000以下の範囲、Mw/Mnが0以上10以下の範囲のグラフを図1に示す。ポリエーテルニトリルの分子量分布(Mw/Mn)と重量平均分子量(Mw)が、直線:「Mw/Mn=2.4×10-4×Mw-11.8」より上の斜線部の領域にある時、温度275℃で半結晶化時間が100秒以下となる。
 さらに、数式(I)より、温度275℃の半結晶化時間が85秒以下のポリエーテルニトリルの分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係は、数式(ii)で表すことができ、温度275℃の半結晶化時間が50秒以下のポリエーテルニトリルの分子量分布(Mw/Mn)と重量平均分子量(Mw)の関係は、数式(iii)で表すことができることが明らかになった。
 数式(ii):Mw/Mn≧2.4×10-4×Mw-11.4
 数式(iii):Mw/Mn≧2.4×10-4×Mw-10.4
 実施例1~3及び比較例1~5のポリエーテルニトリルの275℃における半結晶化時間、Mw/Mn、数式(i)~(iii)右辺の計算値及び、数式(i)~(iii)を満たすか否かについて、表5にまとめて示す。
 なお、表5における「数式(i)を満たす」、「数式(ii)を満たす」、「数式(iii)を満たす」の欄において、「〇」は数式を満たすことを、「×」は数式を満たさないことを意味する。
 275℃における半結晶化時間が100秒以内である本発明のポリエーテルニトリルのうち、実施例1及び2のポリエーテルニトリルは数式(i)及び(ii)の関係を満たすこと、実施例3のポリエーテルニトリルは数式(i)~(iii)の関係を満たすこと、275℃における半結晶化時間が100秒より長かった比較例1~5のポリエーテルニトリルは、数式(i)~(iii)の何れの関係を満たさないことが明らかになった。
 以上の実施例は、ポリエーテルニトリルの中でも、結晶化速度が遅いビフェノール-ポリエーテルニトリルによるものなので、結晶化速度がこれと比較して早い、レゾルシノール-ポリエーテルニトリルやハイドロキノン-ポリエーテルニトリル等のあらゆるポリエーテルニトリルは本発明に含まれ、半結晶化時間が非常に短く、結晶化速度が非常に速いポリエーテルニトリルであることが、ポリエーテルニトリルの分野における通常の知識を有する者であれば理解することができる。また、結晶化し難い他のポリエーテル系樹脂への本発明の技術の適用は、当業者にとり容易に思いつくものであり、本発明から自明である。

 

Claims (13)

  1.  入力補償型示差走査熱量分析による370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下である、ポリエーテルニトリル。
  2.  ゲル浸透クロマトグラフィー分析により測定したポリスチレン換算による重量平均分子量(Mw)が50,000以上である、請求項1に記載のポリエーテルニトリル。
  3.  ゲル浸透クロマトグラフィー分析により測定したポリスチレン換算による重量平均分子量(Mw)及び数平均分子量(Mn)が、数式(i)を満たす、請求項2に記載のポリエーテルニトリル。
     数式(i):Mw/Mn≧2.4×10-4×Mw-11.8
  4.  前記ポリエーテルニトリルが、一般式(3)で表される繰り返し単位を有する、請求項1~3のいずれか1項に記載のポリエーテルニトリル。
    (式中、Rは、一般式(1a)又は一般式(1b)で表される2価の基を示し、rは1~4の整数を示す。)
    (式中、Rは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、mは各々独立して0~4の整数を示し、nは0又は1を示し、p及びqは0、1又は2を示し、*は各々結合位置を示す。)
    (式中、R及びmは一般式(1a)の定義と同じであり、Yは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、Zは酸素原子、硫黄原子又は無架橋であることを示し、Arは各々独立して炭素原子数6~8のアリール基を示し、*は各々結合位置を示す。)
  5.  前記一般式(3)におけるRが、一般式(1a’)又は一般式(1a”)である、請求項4に記載のポリエーテルニトリル。
    (式中、R、m及び*は、前記一般式(1a)の定義と同じである。)
    (式中、R、m及び*は、前記一般式(1a)の定義と同じである。)
  6.  前記一般式(3)で表される繰り返し単位が、一般式(3’)で表される繰り返し単位である、請求項5に記載のポリエーテルニトリル。
    (式中、Rは前記一般式(3)の定義と同じである。)
  7.  前記一般式(3’)で表される繰り返し単位のRが、下記構造で示す2価の基から選ばれる少なくとも1つの基である、請求項6に記載のポリエーテルニトリル。
  8.  請求項1に記載のポリエーテルニトリル及び、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を含有するポリエーテルニトリル樹脂組成物。
  9.  重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合する、請求項1に記載のポリエーテルニトリルの製造方法。
  10.  前記ポリエーテルニトリルが、一般式(3)で表される繰り返し単位を有する、請求項9に記載のポリエーテルニトリルの製造方法。
    (式中、Rは、一般式(1a)又は一般式(1b)で表される2価の基を示し、rは1~4の整数を示す。)
    (式中、Rは各々独立して炭素原子数1~6の直鎖状若しくは分岐鎖状アルキル基、炭素原子数5若しくは6の環状アルキル基又はフェニル基を示し、mは各々独立して0~4の整数を示し、nは0又は1を示し、p及びqは0、1又は2を示し、*は各々結合位置を示す。)
    (式中、R及びmは一般式(1a)の定義と同じであり、Yは酸素原子、硫黄原子、スルホニル基、カルボニル基、炭素原子数1~15のアルキリデン基、炭素原子数2~15のフッ素含有アルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニルメチリデン基、フェニルエチリデン基、フェニレン基又はフルオレニリデン基を示し、Zは酸素原子、硫黄原子又は無架橋であることを示し、Arは各々独立して炭素原子数6~8のアリール基を示し、*は各々結合位置を示す。)
  11.  前記重量平均分子量の異なる2種以上の原料ポリエーテルニトリルそれぞれが、前記一般式(3)で表される繰り返し単位のうち、同じ繰り返し単位を有する原料ポリエーテルニトリルである、請求項10に記載のポリエーテルニトリルの製造方法。
  12.  重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合した場合に、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下であるポリエーテルニトリルとなる、その2種以上の原料ポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する、ポリエーテルニトリル樹脂組成物の製造方法。
  13.  前記重量平均分子量の異なる2種以上の原料ポリエーテルニトリルを混合して、入力補償型示差走査熱量分析による、370℃の溶融状態から毎分500℃の冷却速度で275℃に降温したときの275℃における半結晶化時間が100秒以下であるポリエーテルニトリルを得る、ポリエーテルニトリル混合工程、
     次いで、ポリエーテルニトリル混合工程で得られたポリエーテルニトリルと、熱可塑性樹脂材料(A)、添加剤(B)、充填剤(C)、の(A)~(C)からなる群の少なくとも1種を混合する、樹脂組成物成分混合工程を含む、
     請求項12に記載のポリエーテルニトリル樹脂組成物の製造方法。

     
PCT/JP2023/028547 2022-09-06 2023-08-04 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法 WO2024053304A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022141134 2022-09-06
JP2022-141134 2022-09-06

Publications (1)

Publication Number Publication Date
WO2024053304A1 true WO2024053304A1 (ja) 2024-03-14

Family

ID=90190960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028547 WO2024053304A1 (ja) 2022-09-06 2023-08-04 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法

Country Status (2)

Country Link
TW (1) TW202419520A (ja)
WO (1) WO2024053304A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193354A (ja) * 1988-01-29 1989-08-03 Idemitsu Kosan Co Ltd 樹脂組成物
JPH03181518A (ja) * 1989-12-11 1991-08-07 Idemitsu Kosan Co Ltd 耐熱性樹脂用可塑剤
WO2012005346A1 (ja) * 2010-07-09 2012-01-12 Jsr株式会社 重合体、その製造方法、フィルムおよびその製造方法
CN111303609A (zh) * 2019-12-26 2020-06-19 电子科技大学 一种高流动性结晶聚芳醚腈合金及其制备方法
JP2022071959A (ja) * 2020-10-29 2022-05-17 東レ株式会社 ポリエーテルニトリル
JP2022115276A (ja) * 2021-01-28 2022-08-09 東レ株式会社 ポリエーテルニトリル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01193354A (ja) * 1988-01-29 1989-08-03 Idemitsu Kosan Co Ltd 樹脂組成物
JPH03181518A (ja) * 1989-12-11 1991-08-07 Idemitsu Kosan Co Ltd 耐熱性樹脂用可塑剤
WO2012005346A1 (ja) * 2010-07-09 2012-01-12 Jsr株式会社 重合体、その製造方法、フィルムおよびその製造方法
CN111303609A (zh) * 2019-12-26 2020-06-19 电子科技大学 一种高流动性结晶聚芳醚腈合金及其制备方法
JP2022071959A (ja) * 2020-10-29 2022-05-17 東レ株式会社 ポリエーテルニトリル
JP2022115276A (ja) * 2021-01-28 2022-08-09 東レ株式会社 ポリエーテルニトリル

Also Published As

Publication number Publication date
TW202419520A (zh) 2024-05-16

Similar Documents

Publication Publication Date Title
CN105555834B (zh) 制备高温聚碳酸酯的方法
TWI513731B (zh) Method for producing aromatic polycarbonate resin by high molecular weight
JP6237785B2 (ja) 高分子量芳香族ポリカーボネート樹脂の製造方法
CN114230779B (zh) 一种聚碳酸酯及其制备方法、应用
WO2024053304A1 (ja) 結晶化速度の向上したポリエーテルニトリル及びその製造方法、ポリエーテルニトリル樹脂組成物及びその製造方法
EP2937374B1 (en) Method for producing cyclic polyphenylene ether ether ketone composition and linear polyphenylene ether ether ketone, and method for producing polyphenylene ether ether ketone
WO1999048947A1 (fr) Polycarbonate et materiau optique
WO2023090099A1 (ja) ポリエーテルニトリルの製造方法
WO2023190280A1 (ja) ポリエーテルニトリル成形用材料及びその製造方法、ポリエーテルニトリル樹脂組成物成形用材料の製造方法
TWI794164B (zh) 高分子量芳香族聚碳酸脂樹脂的製造方法
JP2023075022A (ja) ポリエーテルニトリルの製造方法
WO2023090101A1 (ja) ポリエーテルニトリルの製造方法
EP4435034A1 (en) Method for producing polyethernitrile
EP4435052A1 (en) Polyether nitrile molding material, method for manufacturing same, and method for manuacturing polyether nitrile resin composition molding material
JP6445262B2 (ja) 芳香族ポリカーボネート樹脂シート又はフィルム
WO2023189822A1 (ja) ポリエーテルニトリル成形用材料の製造方法、ポリエーテルニトリル樹脂組成物成形用材料の製造方法
CN118251442A (zh) 聚醚腈的制造方法
CN118871270A (zh) 聚醚腈成形用材料的制造方法、聚醚腈树脂组合物成形用材料的制造方法
CN118871505A (zh) 聚醚腈成形用材料及其制造方法、聚醚腈树脂组合物成形用材料的制造方法
JP3164668B2 (ja) 粒状ポリカーボネートの製造方法
JP2012214620A (ja) ポリカーボネート樹脂シート
JP6314601B2 (ja) 芳香族ポリカーボネート樹脂組成物
KR100733924B1 (ko) 고분자량의 가지형 폴리카보네이트 수지 제조방법
JP2003138009A (ja) 芳香族ポリエーテルの製造方法
JP2024038822A (ja) ポリアリールエーテルケトン樹脂、該樹脂を含む組成物、成形体、該樹脂の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23862847

Country of ref document: EP

Kind code of ref document: A1